24.3 正多边形和圆.ppt

合集下载

《24.3-正多边形和圆》课件

《24.3-正多边形和圆》课件

..O
D
rR
∴亭子的周长 L=6×4=24(m) B P C
在RtOPC中,OC 4,PC BC 4 2 22
根据勾股定理,可得边 心距r 42 22 2 3
亭子的面积 S 1 Lr 1 24 2 22
3 41.6(m2)
小练习
已知点A、B、C、D、E是⊙O 的5等分点, 画出⊙O的内接正五边形和外切正五边形.
A
B C
E O
D
外切正多边形
把圆分成 n(n≥3)等份: 经过各分点作圆的切线,以相邻 切线的交点为顶点的多边形是这个圆 的外切正多边形.
定理证明
证明:连结OA、OB、OC,则:
∠OAB=∠OBA=∠OBC=∠OCB ∵TP、PQ、QR分别是以A、B、C
P
为切点的⊙O的切线
∴∠OAP=∠OBP=∠OBQ=∠OCQ B
2S小弓形 S弓形AOC SAOC
O
(S扇形OAOC SAOC ) SAOC
S扇形OAOC 2SAOC
B
C
S阴影
6S小弓形
3(S扇形OAOC
2SAOC )
(
3
3 )a2 2
10. A是半径为2的⊙O外的一点,OA=4,AB
是⊙O的切线,点B是切点,弦BC∥OA,边结AC,
则图中阴影部分的面积等于 ( A )
等分点,则作出正六边形.
B
C
先作出正六边形,则可
作正三角形,正十二边形,
正二十四边形………
例题
有一个亭子它的地基是半径为4m的正六边形,
求地基的周长和面积(精确到0.1平方米).
F
解: 由于ABCDEF是正六边形,所以
E
它的中心角等于360 60,

人教版数学九年级上册24.3正多边形和圆课件(36张PPT)

人教版数学九年级上册24.3正多边形和圆课件(36张PPT)
24.3 正多边形和圆
人教版·九年级上册
学习目标
(1)理解正多边形及其半径、边长、边心距、中心 角等概念. (2)会进行特殊的与正多边形有关的计算,会画某 些正多边形.
新课导入
问题1:观察下面多边形,它们的边、角有什么特点?
都是各边相等,各内角相等的多边形
问题2:观看这些美丽的图案,都是在日常生活中我们 经常能看到的.你能从这些图案中找出类似的图形吗?
动手操作
操作一:自己动手试一试,你能画出什么正多边 形?你是怎么画的? 操作二:画一个半径是1.5cm的圆,并画出它的正 六边形。
解:方法 1 (1)作一个半径是1.5cm的圆⊙O ; (2)用量角器依次作∠AOB=∠BOC=∠COD= ∠DOE=∠EOF=∠FOA= 360 =60°,将360°圆心角六
想一想
有没有对称轴?
正多边形都是 轴对称 图形,一个正n边形共有
n 条对称轴,每条对称轴都通过n边形的 中心 .
边数3是条偶数的正4多条边形还是 5中条心对称图形6条,它的中 心就是对称中心.
你知道正多边形与圆的关系吗?
把一个圆分成相等的弧?依次连接各等分点,得到一个什 么图形? 如果五、六、七…等分?如果将圆n等分呢?
思考 什么叫正多边形?图中有哪些正多边形? 正多边形与圆有哪些关系?
探索新知
图形 ……
名称 正三角形 正四角形 正五角形 正六角形
……
边的关系
角的关系
三条边相等 三个角相等(60°)
四条边相等 四个角相等(90°)
五条边相等 五个角相等(108°)
六条边相等 六个角相等(120°)
……
……
正多边形的概念:
< 针对训练 >

《24.3正多边形和圆》.ppt

《24.3正多边形和圆》.ppt
正多边形和圆
正多边形:
各边相等,各角
E
也相等的多边形叫做
正多边形。
A
D
正n边形:
如果一个正多边
形有n条边,那么这个 正多边形叫做正n边形。
B
C
想一想:菱形是正多边形吗?矩形和正 方形 呢?为什么?
正多边形与圆到底 有什么样的关系呢? 以正五边形为例,你能证 B 2
A
1
5E
明吗?
3
4
C
D
弦相等(多边形的边相等)
弧相等—
圆周角相等(多边形的角相等)
这个正多边形就是这个圆的内接正多边形, 这个圆叫做这个正多边形的外接圆.
请同学们设法画出一个正五边形.
正多边形的中心:
一个正多边形的外接圆的圆心.
A
正多边形的半径:
外接圆的半径 正多边形的中心角:
B
正多边形的每一条边所对的圆心角.
·O
E
正多边形的边心距:
E
中心到正多边形的一边的距离. C
解:作等边△ABC的BC边上的高AD,垂足为D
连接OB,则OB=R 在Rt△OBD中,∠OBD=30°,
边心距=OD=
1 2
R.
A
在Rt△ABD中,∠BAD=30°,
AD OA OD R 1 R 3 R,
22
·O
∴AB= 3R
∴S△ABC=
3R

3 2
R
3
B
3R2
2
4
D
C
解:连接OB,OC 作OE⊥BC垂足为E,
5.正多边形一定是 轴 对称图形,一个正n边 形共有 n 条对称轴,每条对称轴都通 过 中心 ;如果一个正n边形是中心对称图 形,n一定是 偶 数.

人教版数学九年级上册第二十四章《24.3 正多边形和圆》课件(共19张PPT)

人教版数学九年级上册第二十四章《24.3  正多边形和圆》课件(共19张PPT)

对于一些特殊的正多边形,还可以用圆规和直尺来作图. 再如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作 出正方形.
用尺规等分圆: 用尺规作图的方法等分圆周,然后依次连接圆上各分点得到正多边形,这 种方法有局限性,不是任意正多边形都能用此法作图,这种方法从理论上 讲是一种准确方法.
2.如图,正五边形ABCDE的对角线AC和BE相交于点M. 求证:(1) AC//ED;(2) ME=AE.
如图,正五边形ABCDE的对角线AC和BE相交于点M. 求证:(1) AC//ED;(2) ME=AE.
归纳新知
正多边形 的画法
用量角器等分圆 用尺规等分圆
此方法可将圆任意n等分,所以用 该方法可作出任意正多边形,但边 数很大时,容易产生较大的误差.
度量法③:
用圆规在⊙O 上顺次截取6条长度等于半径(2 cm)的弦,连接其中的 AB, BC,CA 即可.
B
O
A
C
对于一些特殊的正多边形,还可以用圆规和直尺来作图. 例如,我们也可以这样来作正六边形.由于正六边形的边长等于半径,所以 在半径为R的圆上依次截取等于R的弦,就可以把圆六等分,顺次连接各分 点即可得到半径为R的正六边形.
课堂练习
1.画一个半径为2 cm的正五边形,再作出这个正五边形的各条对角线,画 出一个五角星.
2.面积相等的正三角形与正六边形的边长之比为
.
中考实题
1.已知⊙O如图所示. (1) 求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法); (2) 若⊙O的半径为4,求它的内接正方形的边长.
此方法是一种比较准确的等分圆的方 法,但有局限性,不能将圆任意等分.
再见
合作探究
已知⊙O 的半径为 2 cm,画圆的内接正三角形. 度量法①: 用量角器或 30°角的三角板度量,使∠BAO=∠CAO=30°.

正多边形和圆ppt课件

正多边形和圆ppt课件
解:(1)如图所示,正八边形ABCDEFGH即为所求.
图24-3-4





(2)求出地基的中心角和面积.(结果保留根号)
(2)如图,连接OA,OB,过点A作AM⊥OB于点M.
∵八边形ABCDEFGH是正八边形,
360°
∴地基的中心角∠O=
=45°,
8
∴△OAM是等腰直角三角形.
∵OA=OB=4 m,∴AM=OM=2 2 m,
解:如图.
(1)画半径为1 cm的☉O;
(2)用量角器把☉O九等分(依次画40°的圆心角);
(3)依次连接各分点,即得☉O的内接正九边形ABCDEFGHI.
谢 谢 观 看!
1
1
∴S△OAB= OB·AM= ×4×2
2
2
2=4 2(m2),
∴地基的面积=8S△OAB=8×4 2=32 2(m2).





学 方法
等分圆周画正多边形的工具和方法
①只用量角器:用量角器把360°的圆心角n等分,相应的圆周
也被n等分,顺次连接各分点得到正n边形.
1
②用量角器和圆规:先用量角器画出360°的圆心角的 ,相应

1
得到圆周的 ;再用圆规顺次截取,便得到圆周的n等分点,顺

次连接各分点得到正n边形.
③用圆规和直尺:用尺规等分圆周,可以作正六边形、正方
形等特殊正多边形.







[检测]
1.如果一个正多边形的中心角为72°,那么这个正多边形的边
数是
( B )
A.4
B.5
C.6

24.3.正多边形和圆课件PPT(共22张)

24.3.正多边形和圆课件PPT(共22张)
24.3 正多边形(zhèngduōbiānxíng) 和圆
点击页面即可演示
第1页,共22页。
观察下列图形它们有什么(shén 特 me) 点?
第2页,共22页。
三条边相等,
四条边相等,四
正三 三个角相等 角形 (60°).
正方形 个角相等 (90°).
一、正多边形的定义
各边相等,各角也相等的多边形叫做(jiàozuò)正多边 形.
边形ABCDE的 内切圆的半径(bànjìng). D
7.∠AOB叫做正五边形
ABCDE的 中心角,
它的度数是 72°.
E
C
.O
AF
B
第12页,共22页。
8.图中正(zhōnɡ zhènɡ)六边形ABCDEF的中心角∠是AOB
它的度数是 60°
9.你发现正六边形
ABCDEF的半径
与边长具有什么
数量关系?
第5页,共22页。
A
D
B
C
弧相等
弦相等 (多边形的边相等 ) (xiāngděng)
(xiāngděng)
圆周角相等(多边形的角相等)
—多边形是正多边形
第6页,共22页。
A
E B
H D
G
C
弧相等
F
全等三角形
边相等
(xiāngděng)
角相等
多边形是正多边形
第7页,共22页。
定理:
把圆分成n(n≥3)等份: ⑴依次连接各分点所得(suǒ dé)的多边形是这个圆 的
相等
E F
D
.O
C
A
B
第13页,共22页。
判断题
①各边都相等的多边形是正多边形.( ) ×

24.3正多边形和圆 课件 人教版数学九年级上册

24.3正多边形和圆 课件 人教版数学九年级上册

因此,亭子地基的周长l=6×4=24(m).
作OP⊥BC,垂足为P.
在Rt△OPC中,OC=4 m,
PC=
=2(m),利用勾股定理,
可得边心距r=
亭子地基的面积S=
感悟新知
1.连半径,得中心角; 2.作边心距,构造直角三角形.
感悟新知
思考1 正n边形的一个内角的度数是多少?中心角呢? 正多边形的中心角与外角的大小有什么关系? 互补
教学目标解析
本节课首先复习正多边形的有关概念,为本课学习作铺垫.引导学生画正多边形 的外接圆,通过动手操作,感知数形结合思想,为探讨正多边形与圆的关系服务,也为 接下来计算正多边形与圆提供基本图形,再通过问题的探讨,让学生认识到正多边形 与圆的关系密切,并为接下来可利用圆与正多边形的知识进行连线,实现计算的目的. 数学学习的过程是一个思维展现的过程,通过例题的计算,并让学生说出解题经验小 结,培养学生学会反思的学习习惯,从而形成举一反三,触类旁通的高效学习意识.
思考2 正n边形的半径R、边心距r和边长a有什么关系?
思考3 正n边形的面积怎么计算?
跟踪练习
1、完成下表中有关正多边形的计算:
正多边 形边数
3
4 6
内角
60° 90° 120°
中心角 半径R
120°
2
90°
60°
2
边长a 边心距r 周长
1
2
1
8
2
12
面积
16
跟踪练习
2、一元钱硬币的直径约为24 mm,则用它能完全覆盖
弧 弦相等(多边形的边相等) 相 等 圆周角相等(多边形的角相等)
感悟新知
半径 中心角 中心
边心距

正多边形和圆ppt课件

正多边形和圆ppt课件

D.60°或120°
随堂练习
2. 如图,点O是正五边形ABCDE的中心,求∠BAO的度数.
解:连接OB,则OB=OA,
∴∠BAO=∠ABO,
∵点O是正五边形ABCDE的中心,
∴∠AOB=360°÷5=72°,

∴∠BAO= (180°﹣72°)=54°.

随堂练习
3. 如图,已知等边△ABC内接于⊙O,BD为内接正十二边形的一边,
(3)正多边形每一边所对的圆心角叫做正多边形的中心角.
(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.
知识讲解
知识点1 正多边形及有关概念
【例1】矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?
解析:矩形不是正多边形,因为矩形不符合各边相
等;菱形不是正多边形,因为菱形不符合各角相等.
显然,A、E、F(或C、B、D)是⊙O的3等分点.
知识讲解
知识点3 正多边形的画法
②正六、三、十二边形的作法.
同样,在图(3)中平分每条边所对的弧,就可把⊙O 12等分…….
知识讲解
知识点3 正多边形的画法
【例 4】如图,已知半径为R的⊙O,用多种工具、多种方法作出圆内
接正三角形.
点拨:【度量法】用量角器量出圆心角是120度
而作出正四边形. 再逐次平分各边所对的弧就可作出正八边形、正十六
边形等,边数逐次倍增的正多边形.
知识讲解
知识点3 正多边形的画法
②正六、三、十二边形的作法.
通过简单计算可知,正六边形的边长与其半径相等,所以,在⊙O中,
任画一条直径AB, 分别以A、 B为圆心,以⊙O的半径为半径画弧与⊙O
相交于C、D和E、F,则A、C、E、B、F、D是⊙O的6等分点.

人教版数学九年级上册24.正多边形和圆经典课件

人教版数学九年级上册24.正多边形和圆经典课件

6
A
OBC是等边三角形,从而正
六边形的边长等于它的半径. B
∴亭子的周长 L=6×4=24(m)
E
.. O
D
r R=4
PC
在RtOPC中,OC 4,PC BC 4 2 22
根据勾股定理,可得边 心距r 42 22 2 3
亭子的面积 S 1 Lr 1 24 2 22
3 41.6(m2)
正多边形对称性
1、正多边形都是轴对称图形,一个正n边 形共有n条对称轴,每条对称轴都通过n边 形的中心。
2、边数是偶数的正多边形还是中心 对称图形,它的中心就是对称中心。
两个正六边形的边 长分别是3和4,这 两个正六边形的面 积之比等于_______
圆内接正方形的 半径与边长的比 值是________
下列图形中:①正五边形;②等 腰三角形;③正八边形;④正 2n(n为自然数)边形;⑤任意 的平行四边形。是轴对称图形的
有①__②__③__④____,是中心对称图形 的有③__④__⑤____,既是中心对称图
形,又是轴对称图形的有
__③__④___。
已知正三角形ABC的边长为 4,则它的内切圆和外接圆 组成的圆环面积是多C 少?
D
O
A
B
A、B、C在⊙O上,且B在弧AC 上,AB、AC分别是正九边形和 正六边形的一边。请问:BC是 此圆内接正几边形的一边?
A
B
O
C
B.互补
C.互余或互补 D.不能确定
正多边形的性质
各边相等,各角相等
圆的内接正n边形的各个顶点把圆分成n等分 圆的外切正n边形的各边与圆的n个切点把圆分成n
等分
每个正多边形都有一个内切圆和外接圆,这两个圆 是同心圆,圆心就是正多边形的中心
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档