【风力发电机组主要系统】变流器介绍(中级)

合集下载

变流器介绍1

变流器介绍1

1.
2. 3.
器件的作用 网侧模块用于将输入的三相交流电整流为变流器直 流母线所需的直流电,或将转子侧模块输出的能量 回馈电网,在电网波动的情况下维持直流母线电压 的稳定,还有调节网侧的有功和无功。在软起主接 触器闭合的时候在网侧开始调制,调制的目的是使 主接触前后的波形保持一致避免产生一个很大的冲 击电流。 CLL 滤波器接在电网和网侧模块之间,用于吸收高 频分量,防止变流器的开关噪声污染电网。 转子侧模块连接在发电机转子上,通过调节转子励 磁电流实现系统的变速恒频发电以及发电机有功、 无功的调节。


低压穿越:低电压穿越能力是当电力系统中风电装机容量 比例较大时,电力系统故障导致电压跌落后,风电场切除 会严重影响系统运行的稳定性,这就要求风电机组具有低 电压穿越能力,保证系统发生故障后风电机组不间断并网 运行。 风电机组应该具有低电压穿越能力: a)风电场必须具有在电压跌至20%额定电压时能够维持并 网运行625ms的低电压穿越能力; b)风电场电压在发生跌落后3s内能够恢复到额定电压的 90%时,风电场必须保持并网运行; c)风电场电压不低于额定电压的90%时,风电场必须不间 断并网运行。

通信参数设臵 在确认光纤连接正确的情况下,在菜单栏中点击“配 臵”→“通讯设臵”或工具栏上的 图标在通讯端口处选 择 USB 转光纤模块的 COM 点击“测试连接”按钮,若测 试成功后,会弹出所示界面,点击“确定”按钮。

用户切换 在建立通讯连接以后, 用户需要切换权限到“高级用户” 权限, 在 菜单栏选择“管理”→“切换用户”,弹 出如图输入用户密码,单击“确定”按钮以后,软件将开 放所有“高级用户”的权限。
在发电机转子侧装有crowbar电路,为转子侧电路提供旁

风力发电机组各系统介绍

风力发电机组各系统介绍

08
噪声(声功率级):≤90 dB(A)
09
润滑油: Mobil或Shell、BP的合成齿轮油
偏航齿箱
参数:
01
型式: 具有多层盘式制动和顶端通风的三相电动机
02
额定功率: 1.5kW
03
额定转速: 940rpm
04
电压: 690V
05
频率: 50Hz
该程序用于紧急状况或过转速飞车
调 整
刹车系统的控制机构-液压系统
塔架的作用
支承风力发电机组的机械部件,承受各部件作用在塔架上的力和风载
基础的作用
安装、支承风力发电机组,平衡运行过程中产生的各种载荷。
四、支承系统
塔架
01.
材料:Q345
02.
轮毂高度:依据项目和当地风切变指数综合考虑 而定
将旋转机械能转化成电能
传递扭矩,并增速达到发电机的同步转速
把风能转化成旋转机械能
C
B
A
一、传动系统
作用:
传动系统组成 桨叶、轮毂、主轴、轴承、轴承座、胀套、齿轮箱、联轴器、发电机
桨 叶
1
3
4
6
7
轮毂材料: QT400-18或 QT350-22L 涂层: HEMPEL 与桨叶连接: 高强度螺栓
该刹车程序用于正常停机或一般故障停机
慢速刹车
刹车程序
03
04
快速刹车
紧急刹车
步骤:得到指令后,释放叶尖快速刹车,电机立即切出电网。风轮刹车得到指令,一个圆盘刹车制动。当电机转速为0rpm,第二个圆盘刹车制动。两个圆盘刹车全部作用。
步骤:得到指令后,释放叶尖快速刹车, 两个圆盘刹车全部作用,电机立即切出电网。

用于直驱型风力发电系统的变流器

用于直驱型风力发电系统的变流器

用于直驱型风力发电系统的变流器Introduction:现在的能源越来越受到人们的关注,各种新的能源板块不断涌现。

在这其中,风能便是一种十分有前景的新能源,因此风力发电也是目前非常热门的产业之一,风力发电系统的核心组成部分就是变流器,本篇文章将围绕直驱型风力发电系统的变流器展开讨论。

直驱型风力发电系统的变流器变流器是能够将非直流电源转化成直流电源的电子设备,其作用在于将交流电能转化成可用直流电能。

风力发电系统的核心组成部分之一即为变流器,变流器可以将风起的旋转运动转换成直流电能,从而保证整个系统的正常运转。

因此直驱型风力发电系统的变流器是一个至关重要的部分。

直驱型风力发电系统的优点直驱型风力发电系统,顾名思义,即是指直接驱动风能发电机,适用于风速较大的场合。

相对于其它类型的风力发电系统,直驱型风力发电系统具有以下优点:1. 比传统型低速轴噪音小。

2. 没有减速箱,磨损小,寿命长。

3. 不需要润滑油,环保无污染。

4. 在风速越大时功率输出越高,效率相对较高。

直驱型风力发电系统的缺点然而,直驱型风力发电系统同样存在着缺点:1. 直驱式发电机,大功率和大尺寸难以实现高效、低成本和高可靠性。

2. 接口限制:没有旋转的传动部分,要直接接到风轮,因此不能使用具有偏心量的风刀片减小振动和抗风力突变的能力。

3. 运行稳定性有待提高。

直驱型风力发电系统中变流器的作用直驱型风力发电系统中的变流器具有将可变频率的风能产生的电能转换为稳定频率的电能输出的功能,从而满足系统对电能的要求。

直驱式变流器的核心是一个PWM逆变器,负责将直驱式风机的三相电能转换成电网电能,调节电压、电流、功率等参数,保证电网的稳定性和安全性。

直驱型风力发电系统中变流器的原理直驱型风力发电系统采用电子变频技术,因此变流器是其核心部件。

变流器能够将风力发电机转化所得的交流电转化为稳定的直流电,以保证系统的正常运转。

其中一个非常重要的环节就是控制变流器的换向工作。

风电机组发电机系统

风电机组发电机系统

风电机组发电机系统1. 简介风电机组发电机系统是风能转化为电能的关键部分,它负责将风能转化为旋转机械能,再通过励磁控制使其产生电能。

本文将从风电机组发电机系统的组成、工作原理、性能指标以及维护等方面进行介绍。

2. 组成风电机组发电机系统主要由以下几个部分组成:2.1 风轮风轮是风电机组的关键部件,它通过捕捉和利用风能来转动发电机。

风轮通常由多个叶片组成,这些叶片的形状和数量会对风能的捕捉效率产生影响。

2.2 塔架塔架是支撑整个风电机组的结构,它通常是由钢铁材料构建的,以提供足够的稳定性和抗风能力。

2.3 发电机发电机是风电机组的核心组件,它将风轮产生的旋转机械能转化为电能。

发电机的类型可以分为同步发电机和异步发电机两种,其中同步发电机在风电机组中更加常见。

2.4 变流器变流器是将发电机输出的交流电转化为适用于电网的电能的装置。

它可以将发电机输出的电能进行调整和稳定,以满足电网的要求。

3. 工作原理风电机组发电机系统的工作原理如下:1.风能通过风轮被捕捉和利用,使风轮产生旋转。

2.风轮的旋转通过轴将旋转机械能传递给发电机。

3.发电机接收到机械能后,通过励磁控制产生感应电流。

4.产生的电流经过变流器转化为适用于电网的电能。

5.变流器输出的电能通过电网传输和使用。

4. 性能指标风电机组发电机系统的性能指标通常包括以下几个方面:4.1 发电效率发电效率是指发电机将机械能转化为电能的效率,通常以百分比表示。

高发电效率意味着更多的风能被有效转化为电能。

4.2 功率因数发电机的功率因数是指发电机输出电能的正弦波形与电压波形之间的相位差。

功率因数越接近1,表示发电机输出的电能质量越高。

4.3 响应速度响应速度是指发电机在遇到电网故障或电网负荷变化时,重新建立稳定运行状态所需的时间。

响应速度越快,表示发电机对电网变化的适应能力越强。

4.4 可靠性发电机系统的可靠性是指其在长时间运行中能够保持稳定工作的能力,并且在出现故障时能够自动检测和隔离故障,以保证风电机组的正常发电运行。

风电变流器简介

风电变流器简介

风电变流器简介快速浮点运算能力的“双DSP的全数字化控制器”;在发电机的转子压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有防尘、防盐雾等运行要求。

变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、和最大功率点跟踪控制功能。

功率模块采用高开关频率的IGBT功率QHVERT-DFIG型风电变流器基本原理器件,保证良好的输出波形。

这种整流逆变装置具有结构简单、谐波制,是目前双馈异步风力发电机组的一个代表方向。

变流器工作原理框图如下所示:统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控能质量。

这种电压型交-直-交变流器的双馈异步发电机励磁控制系含量少等优点,可以明显地改善双馈异步发电机的运行状态和输出电变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。

侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电本文将针对市场上主流的双馈型风电变流器进行简介。

型风电变流器系统功能变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机关,目前已实现规模化的生产。

06年成功研制第一台风电变流器以来,不断寻求技术革新严把质量风能作为一种清洁的可再生能源,越来越受到世界各国的重视,我国变流器配电系统提供雷击、过流、过压、过温等保护功能。

的定子侧输出电压的幅值、频率和相位与电网相同,并且可根据需要风能资源丰富,近几年来国家政策也大力扶持风电产业。

我公司自求扩展),用户可通过这些接口方便的实现变流器与系统控制器及风进行有功和无功的独立解耦控制。

机和电网造成的不利影响。

变流器提供多种通信接口,如Profibus, CANopen等(可根据用户要场远程监控系统的集成控制。

变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电转子侧逆变器、直流母线单元、电网侧整流器。

原理图如下:控制器、监控界面等部件。

变流器主回路系统包含如下几个基本单元:QHVERT-DFIG型风电变流器系统构成变流器由主电路系统、配电系统以及控制系统构成。

全功率变流器风电机组的工作原理及控制策略

全功率变流器风电机组的工作原理及控制策略

全功率变流器风电机组的工作原理及控制策略CATALOGUE 目录•全功率变流器风电机组概述•全功率变流器风电机组的工作原理•全功率变流器风电机组的控制策略•全功率变流器风电机组的性能评估与优化•全功率变流器风电机组的发展趋势与挑战CHAPTER全功率变流器风电机组概述风能发电简介风能是一种清洁、可再生的能源,具有广泛的应用前景。

风力发电技术经过多年的发展,已经逐渐成熟并被广泛应用于电力领域。

风能发电的基本原理是利用风能驱动风力发电机转动,进而驱动发电机产生电能。

全功率变流器是风电机组中重要的组成部分,主要作用是将风力发电机产生的电能进行变换和调节,以满足电网的需求。

全功率变流器具有高效率、高可靠性、高灵活性等特点,能够有效提升风电机组的整体性能。

全功率变流器的作用风电机组与电网的交互风电机组需要与电网进行良好的配合,以保证电能的质量和稳定性。

风电机组需要适应电网的运行要求,如电压、频率、相位等参数,以保证风电场的稳定运行。

风电机组与电网的交互是实现风能发电的重要环节之一。

CHAPTER全功率变流器风电机组的工作原理风轮齿轮箱将风轮的转速提升,并将其传递给发电机。

齿轮箱通常位于风轮和发电机之间。

齿轮箱发电机01020303开关全功率变流器的电力电子器件01整流器02逆变器最大风能追踪电力控制全功率变流器的控制原理CHAPTER全功率变流器风电机组的控制策略最大风能追踪控制变速恒频控制1直交轴电流控制23直交轴电流控制是一种用于抑制风电机组运行过程中产生的谐波电流的控制策略。

该控制策略通过实时监测发电机电流,将其中谐波电流分量消除或减弱,以减小谐波对电网的污染。

直交轴电流控制通常采用PWM整流器来实现,通过控制PWM的占空比和相位,实现谐波电流的抑制和功率因数的优化。

矢量控制策略CHAPTER全功率变流器风电机组的性能评估与优化性能评估方法发电效率评估01电网稳定性评估02抗干扰能力评估03控制策略优化最大风能追踪控制滑模变结构控制电力电子器件的优化与保护电力电子器件的选型与配置全功率变流器风电机组需要选择适当的电力电子器件,如IGBT、IGCT等,并配置相应的保护电路,以确保其在高电压、大电流等极端环境下能够安全、可靠地运行。

【风力发电机组主要系统】变流器介绍(中级)

【风力发电机组主要系统】变流器介绍(中级)
在放电过程中,开关断开(三极管截止) 时,电感开始给电容充电,电容两端电压升高, 升压完毕。
直接控制发电机转矩,动态响应好, 发电机端电流THD小。
发电机转矩不直接控制,直流侧斩波环 节可采用多重化,动态响应慢,定子电 流谐波大。
全功率变流器电气组成:1、电网侧变流器回路
2、电机侧变流器回路 3、直流侧卸荷单元
回路、定子开关等构成
启动时直流侧电压已稳定建立,电网侧主回路开关闭合, 此时闭合电机侧定子开关,电机侧PWM变换器开始调制
平波电抗器
NPR 2
MPR 2
Du/dt 接触器 2
熔断器
G2
S2
断路器
MPR 1 S1
Chopper
Du/dt
接触器 1
定子
发电机
定子电压 PWM
直流卸荷回路:由直流侧卸荷IGBT开关及释能电阻构成。
电网电压 测量
变流器 网侧电流测量
变流器
转子电流测量
滤波器
Crowbar
双馈型变流器控制原理
由交流异步发电机的原理可得下面关系式:
f1
fr
fs
np 60
fs
其中f1为定子电流频率,n为转速,p为电机极对 数,fs为转子励磁电流频率,由该公式可知,当发 电机 转速变化时,若控制转子供电频率fs相应变化 ,可使f1保持不变,与电网电压保持一致,这就是 交流励磁发电机变速恒频运行的基本原理。
并网点电压(pu)
电网故障引起电压跌落
1、不脱网要求:风电场并网点电压跌
1.0 0.9
要求风电机组不 脱网连续运行
至20%标称电压时,风电场内的风电机 组能够保证不脱网运行625ms;风电场 并网点电压在发生跌落后2s内能够恢

风电变流器简介

风电变流器简介

风电变流器简介风能作为一种清洁得可再生能源,越来越受到世界各国得重视,我国风能资源丰富,近几年来国家政策也大力扶持风电产业。

我公司自06年成功研制第一台风电变流器以来,不断寻求技术革新严把质量关,目前已实现规模化得生产。

本文将针对市场上主流得双馈型风电变流器进行简介。

QHVERT-DFIG型风电变流器系统功能变流器通过对双馈异步风力发电机得转子进行励磁,使得双馈发电机得定子侧输出电压得幅值、频率与相位与电网相同,并且可根据需要进行有功与无功得独立解耦控制。

变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电机与电网造成得不利影响。

变流器提供多种通信接口,如Profibus, CANopen等(可根据用户要求扩展),用户可通过这些接口方便得实现变流器与系统控制器及风场远程监控系统得集成控制。

变流器配电系统提供雷击、过流、过压、过温等保护功能。

变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。

变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、防尘、防盐雾等运行要求。

QHVERT-DFIG型风电变流器基本原理变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有快速浮点运算能力得“双DSP得全数字化控制器”;在发电机得转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网与最大功率点跟踪控制功能。

功率模块采用高开关频率得IGBT功率器件,保证良好得输出波形。

这种整流逆变装置具有结构简单、谐波含量少等优点,可以明显地改善双馈异步发电机得运行状态与输出电能质量。

这种电压型交-直-交变流器得双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪得发电机有功与无功得解耦控制,就是目前双馈异步风力发电机组得一个代表方向。

变流器工作原理框图如下所示:QHVERT-DFIG型风电变流器系统构成变流器由主电路系统、配电系统以及控制系统构成。

风力发电机组变流器基本原理

风力发电机组变流器基本原理

1、双馈型风力发电系统的运行原理双馈型风力发电系统结构图如图1所示,由风轮机、齿轮箱、变桨结构、偏航机构、双馈电机、变流器、变压器、电网等构成。

其工作过程为:当风吹动风轮机转动时,风轮机将其捕获的风能转化为机械能再通过齿轮箱传递到双馈电机,双馈电机将机械能转化为电能,再经变流器及变压器将其并入电网。

通过系统控制器及变流器对桨叶、双馈电机进行合理的控制使整个系统实现风能最大捕获,同时,通过对变桨机构、变流器及Crowbar 保护电路的控制来应对电力系统的各种故障。

双馈异步发电机的定子与转子两侧都可以馈送能量,由于转子侧是通过变频器接入的低频电流起到了励磁作用,因此又名交流励磁发电机。

双馈异步发电机主机结构特点是:定子与一般三相交流发电机定子一样,具有分布式绕组;转子不是采用同步发电机的直流集中绕组,而是采用三相分布式交流绕组,与三相绕线式异步机的转子结构相似。

正常工作时,定子绕组并入工频电网,转子绕组由一个频率、幅值、相位都可以调节的三相变频电源供电,转子励磁系统通常采用交-直-交变频电源供电。

图1、双馈风力发电系统结构图双馈异步发电机在稳态运行时,定子旋转磁场和转子旋转磁场在空间上保持相对静止,此时有如下数学关系表达式:12r n n n =±2160f n n f r p ±=1211r n n n s n n −==±式中,1n 、r n 、2n 分别为定子电流产生磁场的旋转速度、转子旋转速度和转子电流产生磁场相对于转子的旋转速度,1f 、2f 分别为定、转子电流频率,p n 为发电机极对数,ss n n n s −=为发电机的转差率。

由上式可知,当发电机转子转速r n 发生变化时,若调节转子电流频率2f 相应变化,可使1f 保持恒定不变,实现双馈异步发电机的变速恒频控制。

当r n <1n 时,电机处于亚同步速运行状态,转子旋转磁场相对于转子的旋转方向与转子旋转方向相同,变频器向转子提供交流励磁,定子向电网馈出电能;当r n >1n 时,电机处于超同步速运行状态,转子旋转磁场相对于转子的旋转方向与转子旋转方向相反,此时定、转子均向电网馈出电能;当r n =1n 时,2f =0,变频器向转子提供直流励磁,此时电机作为普通隐极式同步发电机运行。

风电系统PWM并网变流器

风电系统PWM并网变流器

第二章风电系统PWM并网变流器2.1直驱风力发电变流系统概述直驱型风力发电机组需要做全功率的变流器变换"其交/直整流既可以采用IGBTPWM整流器,也可以采用二极管不控整流与升压斩波"后者使用的大功率IGBT开关管少,因而性价比更高"本文研究的MW 级风力发电变流系统采用二极管不控整流,升压斩波与两重并网逆变器的功率变换拓扑结构"通过控制升压斩波器的输入电流以控制有功功率,调节无功则通过控制作为电网接口的电压型PWM变流器"系统变流部分拓扑如图2一1所示"图2一1直驱风力发电变流系统拓扑结构发电机采用多极永磁同步电机"发.出的交流电的电压幅值与频率随风速的变化而改变"经电容滤波后,六相二极管桥式整流器将幅值与频率变化的交流电变换为直流"不控整流输出的卜直流电压往往不能达到网侧逆变(PWM变换)对直流侧电压的要求,需要升压斩波器提高直流侧电压"三相电压型PWM变流器将直流电逆变为电压幅值和频率恒定的交流电馈入电网"图2一1所示的网侧逆变器采用特殊的直流侧中点接地的拓扑结构"另外在升压斩波与网侧逆变器中间有制动单元"一旦电网电压跌落,制动单元IGBT导通,电阻消耗能量,从而减小并网电流"网侧采用LCL滤波技术可以有效地滤除PWM变换中产生的高频谐波"系统结构具有以下特点:1.电机采用多极永磁同步结构:实现了电机的低速运转,无齿轮箱:不需励磁,无滑环和电刷;大大减少了系统的机械维护成本"2.电机与整流桥均采用六相结构,可减小电压脉动并降低对直流侧滤波电容量的要求"3.升压斩波器和并网逆变器采用并联多重化结构,一方面分担电流;另一方面采用合理的调制模式可以有效地抑制高频谐波"4.PWM变流器直流侧中点接地使三相电流独立控制,且对多重化结构能抑制环流,同时由于对直流电压中点的箱位降低了对直流母线绝缘性能的要求;而将直流电压分为两个独立变量,在控制上必须增加一个直流电压控制环或直流电压补偿器,加大了控制难度,且由于中线的连接,引入了零序电流"5.斩波器输出之后加入了制动单元"当电网电压突然跌落时,由于风轮机的机械惯性,传递功率不变而使并网电流突增"此时使制动单元IGBT导通,旁路PWM变流器,电阻能耗制动,降低并网电流"待电网电压恢复后再断开制动单元开关管,系统正常运行"6.PWM变流器网侧采用LCL滤波,实现了风电变流系统与电网的隔离:既滤除PWM变换的高频谐波,又滤除电网尖峰信号对功率变换系统的干扰"变流系统控制主要针对斩波器和逆变器"斩波器通过调节输入电流控制系统传输的有功功率"因为斩波器输出侧直流电压由PWM变流器控制恒定,所以控制输入电流时,调节IGBT开关管的占空比即控制了升压斩波器的输出电流,进而控制输入风能的功率"对变速恒频系统,斩波器输入电压会随风速的变化而改变"为了控制系统的有功功率,其输入电流指令也必然会相应的改变"所以快速的动态跟随性是斩波器的重要指标"网侧逆变器有两个控制要求,其一要求控制直流侧电压恒定,其二要求控制并网输出电流谐波畸变(THD)小,且保持单位功率因数(unitypowerfactor),以控制系统无功功率为零"当然在必要的情况下,也应可以向电网发出需要的感性无功或容性无功"而网侧逆变器由于与风轮机和同步发电机隔离,其主要控制目标是保持良好的抗扰性能"当然在系统指令改变时,PWM变流器也应具有快速的动态响应"2.2PwM变流器的分类及其拓扑从电力电子技术的发展来看,变流器较早应用的一种形式就是AC 心C变换装置,即整流器"它的发展经历了由不控整流器(二极管整流)!相控整流器(采用半控开关器件,如晶闸管)到PwM整流器(采用全控开关器件,如IGBT)的发展历程"传统的相控整流器,应用的时间较长,技术也较为成熟,但存在以下问题:图2一1直驱风力发电变流系统拓扑结构发电机采用多极永磁同步电机"发.出的交流电的电压幅值与频率随风速的变化而改变"经电容滤波后,六相二极管桥式整流器将幅值与频率变化的交流电变换为直流"不控整流输出的卜直流电压往往不能达到网侧逆变(PWM变换)对直流侧电压的要求,需要升压斩波器提高直流侧电压"三相电压型PWM变流器将直流电逆变为电压幅值和频率恒定的交流电馈入电网"图2一1所示的网侧逆变器采用特殊的直流侧中点接地的拓扑结构"另外在升压斩波与网侧逆变器中间有制动单元"一旦电网电压跌落,制动单元IGBT导通,电阻消耗能量,从而减小并网电流"网侧采用LCL滤波技术可以有效地滤除PWM 变换中产生的高频谐波"并网变流器作用(l)晶闸管换相引起网侧电压波形畸变;(2)网侧谐波电流对电网产生谐波污染;(3)深控时功率因数很低;(4)闭环控制时动态响应慢;虽然二极管整流器改善了网侧功率因数,但是仍会产生网侧谐波电流而污染电网,另外二极管整流的不足还在于直流侧电压的稳定性差"针对上述不足,PWM整流器已对传统的相控及二极管整流器进行了全面改进"其关键性的改进在于用全控型功率开关管取代了半控型功率开关管或二极管,以PWM斩控整流取代了相控整流或不控整流,功能上也已经远远超过了最初的整流,所以名称也渐渐演变成变流器"PWM变流器可以取得以下优良性能:(l)网侧电流近似正弦波;(2)网侧功率因数控制(如单位功率因数控制);(3)电能双向传输;(4)较快的动态响应;(5)可进行并网逆变;目前已设计出多种的PWM变流器,电压型和电流型是最基本的分类方法"这两种类型的PWM变流器无论是在主电路结构!PWM信号发生以及控制策略等方面均有着各自的特点,并且两者存在着电路上的对偶性"电压型的PWM变流器研究和应用较多,因此本文主要介绍电压型PWM变流器(VSR)"1.单相半桥!全桥VSR拓扑图2一2分别示出了vsR单相半桥和单相全桥主电路拓扑结构I.4>"两者交流侧具有相同的电路结构,其中交流侧电感主要用以滤除网侧电流谐波"由图2一2(a)可看出,单相半桥VSR拓扑只有一个桥臂采用了功率开关,另一桥臂则由两电容串联组成,同时串联电容又兼作直流侧储能电容;单相全桥VSR拓扑结构则如图2一2(b)所示,它采用了具有4个功率开关的/H0桥结构"值得注意的是:电压型PWM 变流器主电路功率开关必须反并联一个续流二极管以缓冲PWM过程中的无功电能"比较两者,显然半桥电路具有较简单的主电路结构,!1.功率开关数只有全桥电路的一半,因而造价相对较低,常用于低成本!小功率应用场合"进一步研究表明,在相同的交流侧电路参数条件下,要使单相半桥VSR以及单相全桥VSR获得同样的交流侧电流控制特性,半桥电路直流电压应是全桥电路直流电压的两倍,因此单相半桥VSR 的直流侧电压利用率低,功率开关管耐压要求相对提高,另外,为使半桥电路中电容中点电位基本不变,还需引入电容均压控制,可见单相半桥VSR的控制相对复杂"2.三相桥式VSR拓扑结构图2-3为三相桥式VSR拓扑结构,其交流侧采用三相对称的无中线连接方式,采用6个功率开关管,这是一种最常用的三相电压型PWM整流器,广泛应用于电力系统的有源滤波和谐波补偿,以及作为大功率拖动设备的前端整流。

全功率风机变流器介绍

全功率风机变流器介绍

全功率风机变流器介绍一、全功率变流器控制原理全功率风力发电系统主体电路结构,如图1所示。

发电机的输出端连接变流器的机侧,变流器的网侧输出经升压变后,连接电网。

图1全功率风力发电系统主体电路结构。

随着风速的变化,发电机的转速也变化,因此发电机输出的电压幅值和频率是变化的,而电网的电压幅值和频率是恒定的。

为了将发电机输出的频率和幅值变化的交流电送入到电网,变流器起到中间纽带环节的作用。

首先将发电机输出的交流电经机侧变流器部分整流成直流电,再经由网侧变流器部分逆变成交流电送入电网。

图2为全功率风力发电功率控制原理图,风机总控依据当前的风况,通过变桨和偏航控制叶片吸收的机械能,获得发电机的转矩量。

然后将转矩量值下发给变流器。

变流器根据总控下发的转矩指令,控制对发电机电能的抽取,从而控制并网电流大小。

总控依据当前风况,下发发电机转矩指令。

变流器响应转矩指令,控制并网功率。

图2 功率控制原理图对于机侧的变流器部分,在无速度传感器控制技术的基础上,采用基于定子电流定向的复合矢量控制技术,实现最大转矩电流比矢量控制的控制性能。

图3为发电机的控制矢量图。

图3 发电机控制矢量图对于网侧的变流器部分,采用电流解耦控制技术及并网电流对称控制技术。

通过对并网电流的解耦,将并网电流分解为有功电流、无功电流单独控制,实现有功功率和无功功率的控制。

同时为实现三相并网电流的对称控制,将负序的有功电流和无功电流控制为零。

控制结构框图如图4所示。

*dc图4 网侧变流器控制框图根据机侧变流器主体电路及控制策略,进行建模分析。

图5为机侧变流器的主体电路结构,图6为转换为数学模型的机侧控制框图。

V图5 机侧变流器主体电路结构图6机侧变流器控制数学模型框图根据网侧变流器主体电路及控制策略,进行建模分析。

图7为网侧变流器的主体电路机构,图8为为转换为数学模型的网侧控制框图。

V0图7 网侧变流器主体电路结构图8 网侧变流器控制数学模型框图全功率风机变流器网侧、机侧协同控制策略如图9所示。

风电机组变流器介绍

风电机组变流器介绍
1. 检查水冷管接口连接固定是否牢靠 2. 检查水冷管管壁及接口是否变形、破裂 3. 清理热交换器
17
二、变流器运行维护-1/3
2.4 防雷与接地
1. 检查防雷器表面是否有烧灼的痕迹。 2. 检查防雷器的连接导线是否有绝缘破损、热熔及烧灼的
痕迹 3. 检查防雷器的接线端子是否松动 4. 上电后,观察防雷器运行指示灯是否点亮。 5. 检查各接地铜排与线缆连接有无松动。确保接地阻值在
✓ 索引:当前的故障数据组,目前一共25组; ✓ Bit0~7:相应的故障标志位;0—无故障,1—有故障; ✓ 目前一共有:25*8=200个故障; ✓ 故障上传的最长延时时间为:25*20ms=500ms
10
一、变流器概述-1/3
1.4 故障系统
举例:#1单元故障字1:变流器故障、安全链断开
11
3
一、变流器概述-1/3
1.1 变流器结构
4
一、变流器概述-1/3
1.2 变流器网络拓扑图
5
一、变流器概述-1/3
1.2.1 变流器PLC控制
3G1 : 220VAC~24VDC PS电源 3U1 : CPU317-2DP 3U2 : CP 343-1 8U1 : DI32XDC24V 8U2 : D016XRel.AC120V/230V 8U3 : AI8X12Bit
测、开关量信号监测、保护信号输出
✓ MCU实现与DSP数据交互、数据存储、开关量信号监测保护信号输
出、MCU之间的通讯、与主控系统的通讯
7
一、变流器概述-1/3
1.3 后台监控系统
✓ 故障文件、故障数据
✓ 调试、监控控制器
8
一、变流器概述-1/3
1.4 故障系统

风电变流器

风电变流器

技术特征
风电变流器可以优化风力发电系统的运行,实现宽风速范围内的变速恒频发电,改善风机效率和传输链的工 作状况,减少发电机损耗,提高运行效率,提升风能利用率。
风电变流器具有以下一些特点: 优异的控制性能 完备的保护功能 良好的电适应能力 具备高可靠性,适应高低温、高海拔等恶劣地区运行 模块化设计,组合式结构,安装维护便捷
基本原理
变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有快速浮点运算能力的“双DSP的全数字 化控制器”;在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电侧变流器实现电电压定向矢量控制策 略;系统具有输入输出功率因数可调、自动软并和最大功率点跟踪控制功能。功率模块采用高开关频率的IGBT功 率器件,保证良好的输出波形。这种整流逆变装置具有结构简单、谐波含量少等优点,可以明显地改善双馈异步 发电机的运行状态和输出电能质量。这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风 机最大功率点跟踪的发电机有功和无功的解耦控制,是双馈异步风力发电机组的一个代表方向。
我国风电装机容量的快速增长为我国风电变流器产业的发展提供了强大动力。2009年,我国风电变流器的市 场容量为60亿元。其中,直驱风机对于全功率变频器的需求为2202MW,市场容量为14亿元;双馈装机新增容量对 双馈变流器的市场需求为MW,市场容量为46亿元。2010年,直驱风机对于全功率变流器的需求量在3230MW左右, 市场容量约为19亿元;双馈风机对于双馈变流器的需求量在9770MW左右,市场容量约为35亿元。2010年,我国风 电变流器市场总容量约为55亿元。
风电变流器
励磁装置
01 发展
03 基本原理 05 技术特征
目录
02 功能 04 系统构成

风力发电机变流器工作原理

风力发电机变流器工作原理

风力发电机变流器工作原理
风力发电机变流器的工作原理基于电力电子技术,其核心部件是绝缘栅双极型晶体管(IGBT)。

风力发电机产生的电能是交流电,其频率和电压都不稳定,无法直接输送到电网中。

因此,需要将其转换为直流电,再通过逆变器将其转换为稳定的交流电,才能输送到电网中。

这就是风电变流器的主要工作原理。

风电变流器的工作流程如下:首先,风力发电机产生的交流电经过变压器降压,然后通过整流桥将其转换为直流电。

接着,直流电经过滤波电容器进行滤波,去除掉直流电中的脉动成分,使其变得更加稳定。

然后,直流电经过逆变器,通过PWM(脉宽调制)技术将其转换为稳定的交流电,并将其输送到电网中。

以上信息仅供参考,如需了解更多信息,建议查阅相关书籍或咨询专业人士。

风电变流器工作原理

风电变流器工作原理

风电变流器工作原理
1风电变流器概述
风电变流器是将风力发电机产生的交流电信号转换为具有稳定电压、频率和波形的直流电信号输出,在实际风力发电系统中扮演着非常关键的角色。

2风电变流器的组成和工作原理
风电变流器通常由整流器、滤波器和逆变器三部分组成。

整流器将风力发电机产生的交流电转换为直流电,同时进行恒流限制,滤波器主要用来过滤掉直流电中的高谐波和噪声信号,以避免对电网的干扰。

逆变器将经过整流和滤波的直流电信号再次转换为交流电信号,使其具有符合电网要求的电压、频率和波形。

风电变流器的工作原理是:在风力发电机工作的过程中,交流电信号首先经过整流器,被转换为直流电。

经过滤波器过滤后的直流电信号进入逆变器,再次被转化为符合电网标准的交流电信号,最后被输送到电网中。

3风能发电的特点和应用
风能发电是一种非常环保、可持续的能源形式,具有资源分布广泛、环境污染少、成本低廉等优势。

在全球范围内,越来越多的国家开始大力发展风能发电产业,以应对不断增长的能源需求和环境保护的需求。

风能发电在实际应用中需要与电网进行协同,将产生的电能输送到电网中。

因此,风电变流器在风能发电领域中占据着非常关键的地位,其稳定、高效的转换能力,为风能发电的实现提供了可靠保障。

4风电变流器的发展趋势
随着科技的不断发展和创新,风电变流器的技术也在不断进步。

当前,风电变流器的主要发展趋势包括提高转换效率、减少噪声和谐波、增加可靠性和智能化等方面。

未来,风能发电将成为能源领域的一个重要组成部分,而风电变流器作为其核心装置,也将继续发挥其不可替代的作用,为全球能源领域发展做出贡献。

风力发电变流器

风力发电变流器
出。在风力发电机组额定功率以内, 以控制器的控制实现最佳功率点跟踪,尽量最大 利用风能,而当风速超过额定风速时,为使发电 机组和变流器不至于过载运行,此时
应调整桨距角,减小叶尖速比值,让风力发电系 统运行于安全功率区域。 哈尔滨九洲电气拥有该产品技术自主知识产权, 在此领域处于国内领先水平,是国内率先实现 1.5MW
可以根据电网需求进行无功补偿。 5.零冲击并网,自动软并网和软解列控制。 6.随机风速下的电功率平滑控制。 7.在阵风时采用阵风控制,降低了风机载荷。
8.功率因数控制。 9.标准通讯接口,如、、RS485接口等,具有远 程控制功能。 10.具有过流、过压、过温等故障检测与保护功 能和显示功能。 11.电网电
; 海拔高度: 100000h; 18.绝缘标准:GB3859/93。 19.整机可利用率:99.5%; 20.最大过载能力要求: 超过额定功率5%
,可运行1小时; 超过额定功率10%,可运行3分钟; 超过额定功率50%,可运行10秒钟; 21.环境方面参数: 存储温度:-45°C----60°C;
1.1产品原理: 永磁直接驱风力风力发电发电系统是采用永磁同 步电机无齿轮箱直接驱动型的风力风力发电发电 机组。兆瓦级风力发电用全功率风电变流器 1500A在发
电机输出端并上无功补偿电容,提高发电机的功 率因数和利用效率。采用六相不可控整流桥对其 进行12脉波整流。在整流输出端并上电容进行支 撑稳压,减小直流脉动,之后由IG
压异常保护、风机电压异常保护、孤岛保护、防 雷击保护。 12.符合工业现场运行要求。 1.4产品技术指标: 1.装置容量:1500KW; 2.输入输出电压
:690VAC; 3.效率:97; 4.电流畸变率: 100000h; 18.绝缘标准:GB3859/93。 19.整机可利用率:99.5%; 20

风电变流器产品介绍

风电变流器产品介绍

风电变流器产品介绍一、概述风电变流器是一种将风能转换为电能的设备,它将风电机组产生的交流电能转换为适应电网要求的交流电能。

风电变流器在风电系统中具有重要的地位和作用,它不仅可以调节风能发电机的转速,使其在最佳转速范围内工作,还可以提高风能转换效率并实现对电网的并网。

二、工作原理风电变流器主要由整流单元、逆变单元和控制单元组成。

整流单元将风能发电机产生的交流电信号转换为直流电信号,而逆变单元则将这个直流电信号再转换为适应电网要求的交流电信号。

控制单元对整个变流系统进行监视和控制,以确保变流器的可靠性和稳定性。

三、产品特点1.高效率:风电变流器具有高效率的特点,可将风能转换为电能的损耗降低到最低。

通过先进的功率电子器件和优化设计的拓扑结构,可以将损耗降至最小,提高系统的整体效率。

2.大功率密度:风电变流器具有较高的功率密度,可以实现在更小的体积内输出更大的功率。

这对于风电场有限的场地资源来说尤为重要,可以提高整个风电系统的发电效率。

3.高可靠性:风电变流器具有高可靠性的特点,采用了多种保护措施和故障诊断技术,可以有效保护设备的安全运行。

同时,严格的生产工艺和质量控制体系也能够保证产品的稳定性和可靠性。

4.广泛适应性:风电变流器可以适应不同类型的风能发电机并具有较强的适应能力。

无论是永磁同步发电机、感应发电机还是异步发电机,风电变流器都能够进行有效的控制和调节,提高发电系统的性能并实现对电网的并网。

5.高性价比:风电变流器具有较高的性价比,可以在满足性能需求的前提下,以较低的成本实现风能转换。

同时,长期稳定的运行和较低的维护成本也能够降低系统的运营成本。

四、应用领域五、市场前景随着对可再生能源的需求不断增加,风电的发展前景越来越被看好。

而作为风电系统中的关键设备,风电变流器的市场也将迎来新的机遇。

随着技术的不断进步和成本的不断降低,风电变流器将更加普及和广泛应用。

六、结语风电变流器作为风电系统中的核心设备,具有高效率、大功率密度、高可靠性、广泛适应性和高性价比等优点,将为风能转换和电网并网提供可靠的保障。

变流器介绍

变流器介绍

网侧功率柜
主要实现母线能量和电网的能量交互与传输,并实 现功率因数的控制。
机侧功率柜
主要实现发电机能量和母线的能量交互与传输,并实 现对电机转矩的控制。
变流器整机外观
整机内部配置(背面视图)
1 Chopper 电阻 2 Chopper 功率组件 3 网侧功率模块A/B/C(从左到右) 4 网侧电感 5 网侧功率柜换热组件 6 网侧电感换热组件 7 滤波电容器 8 网侧断路器 9 电网防雷保护熔断器开关
加热
并网成功、开 始发电
机侧同步,机 侧隔离开关合

主断路器闭合, 网侧调制
系统进入待机 状态
主控运行 命令
软启接触器 闭合,对直 流母线充电
充电结束, 接触器断开
变流器正常停机流程
主控停机命 令
机侧脱网
机侧隔离开关 断开
网侧停止调 制
主断路器断 开
紧急停机至重新开机过程
紧急停机 (按下急 停按钮)
风电变流器及产业概况
国内风机变流器产业
到目前为止,国内从事变流器生产的厂家有20 多家, 主要有禾望电气、阳光电源、科诺伟业、龙源电气、清能 华福、大全集团、九洲电气、北京能高、海得控制、荣信 股份等,已逐渐形成了一个国产自主品牌风能变流器产品 的竞争群体。
目前,美国超导、ABB、Converteam、Switch 等国 外品牌占有我国大部分的市场份额。在国内风能变流器厂 家中,禾望电气、阳光电源、科诺伟业凭借研发优势处于 竞争的第一梯队。
一期风电变流器参数
整机配置
本变流器为背靠背机型,共有四个柜体,分别是网侧 配电柜、网侧功率柜、机侧配电柜、机侧功率柜。
网侧配电柜 机侧配电柜
背面
网侧功(俯视图)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
690V 电网
框架断路器
定子 电流测量
并网接触器
DFIG
网侧电压 测量
定子电压 测量
滤波器
预充电电阻
主控690V 400V控制电源 供电
电网电压 测量
变流器 网侧电流测量
变流器
转子电流测量
滤波器
Crowbar
当直流侧电压达到交流电网电压有效值的1.2倍时切 出预充电回路,电网侧主接触器闭合,同时投入交流滤波 单元、准备电网侧变流器调制。
二、变流器的分类
根据变速恒频风电机组类型的不同,变流器主要分 为全功率变流器和双馈变流器。
双馈变流器应用在双馈型风电机组,其控制对象为 双馈发电机。
全功率变流器可匹配直驱型风电机组、高速永磁、 高速电励磁等多种风电机组,其控制对象为同步发电机。
2.1双馈型变流器
变流器采用电压源型交直交拓扑结构。其中与网侧相连 AC/DC 的为电网侧变流器,与双馈发电机转子相连的DC/AC 部分为电机侧变流器。电网侧变流器主要控制目标为维持直 流侧电压稳定,并实现能量双向流动。电机侧变流器根据转 子转速的变化动态调节双馈发电机转子侧励磁电流的频率, 以保证定子输出的频率不变;电机侧变流器调整转子电流的 幅值和相位,则实现对风电机组有功功率和无功功率的控制
在放电过程中,开关断开(三极管截止) 时,电感开始给电容充电,电容两端电压升高, 升压完毕。
直接控制发电机转矩,动态响应好, 发电机端电流THD小。
发电机转矩不直接控制,直流侧斩波环 节可采用多重化,动态响应慢,定子电 流谐波大。
全功率变流器电气组成:1、电网侧变流器回路
2、电机侧变流器回路 3、直流侧卸荷单元
风电机组变流器系统
一、变流器的介绍 二、变流器的分类
2.1双馈型变流器 2.2全功率型变流器 三、变流器典型故障处理
一、变流器的介绍
变流器是风电机组中的重要组成部分,其主要作用 为在叶轮转速变化情况下,控制风电机组输出端电压 与电网电压保持幅值和频率一致,达到变速恒频的目 的,并且配合主控完成对风电机组功率的控制,且保 证并网电能满足电能质量的要求。当电网电压发生故 障时,在主控和变桨的配合下,在一定的时间内保持 风电机组与电网连接,并根据电网故障的类型提供无 功功率,支撑电网电压恢复。
转子提供交变励磁电流,控制发电机定子并网,并网后功率 (无功)控制。
定子 DFIG
转子
S1 双馈电 机转子
转子
转子
变流器 电流测量
Crowbar
滤波器
网侧LC滤波单元与箱式变压器漏感构成LCL拓扑结构,有效 地滤除高次谐波,降低变流器对电网的高次谐波污染。
机侧通过由LCR所组成的du/dt网络,有效降低发电机终端的 电压尖峰,减少对发电机绝缘的损坏,提高发电机使用寿命。
到母线额定电压0.8倍时,闭合主回路开关,切出预充电开关, PWM变换器开始调制,建立稳定的直流母线电压。
平波电抗器
NPR 2
MPR 2
Du/dt 接触器 2
熔断器
G2
S2
断路器
MPR 1 S1
Chopper
Du/dt 接触器 1
定子
发电机
定子电压 PWM
电机侧变流器回路:由电压源型PWM变流器、电机侧du/dt
4、电励磁单元(电励磁机组)
平波电抗器
NPR 2
MPR 2
Du/dt 接触器 2
熔断器
G2
S2
断路器
MPR 1 S1
Chopper
Du/dt
接ห้องสมุดไป่ตู้器 1
定子
发电机
定子电压 PWM
电网侧变流回路:由预充电回路、电网侧主开关、RC滤波
单元、熔断器、平波电抗器及三相电压源型PWM变流器构成。
启动时首先闭环预充电开关,为直流侧充电,待电压达
电网电压 测量
变流器 网侧电流测量
变流器
转子电流测量
滤波器
Crowbar
双馈型变流器控制原理
由交流异步发电机的原理可得下面关系式:
f1
fr
fs
np 60
fs
其中f1为定子电流频率,n为转速,p为电机极对 数,fs为转子励磁电流频率,由该公式可知,当发 电机 转速变化时,若控制转子供电频率fs相应变化 ,可使f1保持不变,与电网电压保持一致,这就是 交流励磁发电机变速恒频运行的基本原理。
网侧入口 电流测量
690V 电网
框架断路器
定子 电流测量
并网接触器
网侧电压 测量
定子电压 测量
DFIG
滤波器
主控690V 400V控制电源 供电
预充电电阻
电网电压 测量
变流器 网侧电流测量
变流器 转子电流测量
滤波器
Crowbar
当电网侧变流器建立起稳定的直流母线电压后,且发
电机转速在运行范围内,电机侧变流器调试运行,为发电机
2.2全功率型变流器
同双馈型变流器一样,全功率变流器采用AC/DC/AC 的电压源型拓扑结构。与双馈变流器通过控制发电机转 子间接控制定子相比,全功率变流器直接将发电机定子 输出的电能经过变流器馈入电网,且仅有定子回路一条 功率通道(双馈型机组发电机转子及定子均可发电)。
在充电过程中,开关闭合(三极管导通), 开关(三极管)处用导线代替。这时,输入电 压流过电感。二极管防止电容对地放电。电感 电流增加,电感里储存了一些能量。
双馈型风电机组能量流向
上图中,no代表同步速。n代表当前转速。当n>no时, 双馈发电机工作在超同步状态,此时双馈发电机吸收机械 能,转换的电能Pm一部分Ps通过定子输送至电网,一部分 Pr通过转子输送至变流器,由变流器经过频率幅值变换后 输送至电网;Pm=Ps+Pr;
当n<no时,双馈发电机工作在亚同步状态,此时双馈 发电机通过轴上吸收机械能,转子侧吸收电能,二者能量 之和转换为电能,输送至电网。Pm=Ps-Pr;
由变流器向发电机转子提供励磁电流,定子侧感应出交 流电压,当定子电压与电网电压一致时,闭合并网开关,机 组并网运行,开始功率调节和最大功率跟踪。
网侧入口 电流测量
690V 电网
框架断路器
定子 电流测量
并网接触器
DFIG
网侧电压 测量
定子电压 测量
滤波器
预充电电阻
主控690V 400V控制电源 供电
双馈型变流器拓扑图
网侧入口 电流测量
690V 电网
框架断路器
定子 电流测量
并网接触器
DFIG
网侧电压 测量
定子电压 测量
滤波器
预充电电阻
主控690V 400V控制电源 供电
电网电压 测量
变流器 网侧电流测量
变流器
转子电流测量
滤波器
Crowbar
预充电:电网侧变流器启动时,先闭合预充电回路
网侧入口 电流测量
相关文档
最新文档