测量激光远场能量分布

合集下载

【doc】强激光远场光束质量参数的测试

【doc】强激光远场光束质量参数的测试

强激光远场光束质量参数的测试第23卷第1期2011年1月强激光与粒子束HIGHPOWERLASERANDPARTICLEBEAMSV o1.23,NO.1Jan.,2011文章编号:lOOl4322(2011)010087—05强激光远场光束质量参数的测试叶征宇,宋海平.,王龙.,王涛涛,于彦明,吕跃广.,王智勇,蒋毅坚(1.北京工业大学激光工程研究院,北京l00124;2.中国北方电子设备研究所,北京100083;3.中国北方车辆研究所,北京100072)摘要:提出漫射红外成像多点标校测量方法,用于测量强激光远场光束质量参数.在激光远场距离处设置漫反射靶板,用成像探测器摄取经靶面漫射的脉冲强激光光斑图像;在靶面中心处挖小孔,孔后放置能量探测器实时测量激光脉宽和峰值功率.同时对整个激光光斑图像进行能量定标,进而得出远场脉冲强激光的实际空间能量/功率分布,总能量,以及相应的光束质量参数.应用该测量方法,对高能TEACO!激光进行测量研究,测得其远场光束截面半径为8o.2mm.发散角为1.55mrad.关键词:红外漫射成像;多点标校;脉冲强激光;光束质量;远场光斑中图分类号:TN24文献标志码:Adoi:10.3788/HPLPB20112301.0087在高能强激光的应用中,激光的作用效果主要取决于传输到目标上的功率密度,而功率密度分布不仅与激光输出功率有关,更与激光光束质量有着密切的关系.常采用的激光束光束质量评价参数有光束远场发散角,焦斑尺寸,衍射极限倍数因子,M.因子,斯特列尔(Streh1)比和环围功率比等.对于高能强激光的应用,实际关心的是激光到达远场时的能量分布状态,即激光远场能量能否尽量多地集中在应用所需的光桶尺度内,这种情况下光束质量的本质是远场焦斑上的能量集中度,因此,以远场光斑半径,发散角,光斑强度分布和总能量作为评价参数是比较客观的.国内外对高功率激光器远场靶目标处光束质量的测量研究较多l2],但这些远场光束质量测量方法都存在光斑捕捉不全,即不能大光斑进行测量的局限,而且对于能量相对较弱的高能激光,对单脉冲能量的响应不够甚至无法响应,要想提高系统测量动态范围,相应的成本将增加很多.综合各方因素考虑,本文提出采用漫射红外成像一多点标校的测量方法来测量远场激光光束质量,利用自主开发的光斑分析处理系统,测量远场靶目标处的激光光束质量参数.该方法对激光光斑测量直径不受限制,可对远场大光斑(m级)进行测量,还可获取光斑图像的细部特征,捕获脉冲激光的瞬态特征,进行动态在线测量,单脉冲总能量测量等.1实验装置研究采用的实验装置图如图1所示,先将激光光斑照射到设立于远场的漫反射靶面,再通过非制冷红外焦平面热像仪(工作波段8~14m)摄取脉冲TEACO.激光光斑图像,并在靶面中心区域挖小孑L,孔后放置快响应能量探测器(HgCdZnTe探测器),实时动态测量激光脉宽和峰值功率,然后对激光光斑图像进行能量定标,进而得出远场靶目标处脉冲CO.激光的实际空间能量/功率分布,总能量以及相应的光束质量参数.采用多晶硅非制冷红外焦平面阵列器件作为成像元件,其等效噪声温差(NETD)≤120mK,像元数为320×240,响应波段为8~14ptm,场频为50Hz.其积分时序图如图2所示,其中MC,TMC,SORTIC,INT,RESET分别是主时钟,主时钟周期,模拟输出信号,积分信号和复位信号.Fig.1Schematicillustrationofexperimentalsetup图1实验装置示意图*收稿日期:20090917;修订日期:2010-0331基金项目:新世纪优秀人才支持计划作者简介:叶征字(1963一),男,高级工程师,博士研究生,研究方向为光电探测,激光探测测量技术;***************.cn.88强激光与粒子束第23卷Ir~IllllTMC≤integrationtime~<320TM一(period>/340TMC_''-rIl^integrationofrow11"6…………IllL若I~LIUIrow3』rowreadoutduration320TMC—I185TMC:】!Lr=1'{,ri.'.…,……+f….,'An一一;…^r1,,—~1一…一一一一rFig.2Timingdiagramofintegrationofuncooledinfraredfocalplanearry图2非制冷红外焦平面探测器积分时序图图3所示为整光斑,半光斑图像.可以看出,这种红外焦平面热像仪不能对高速和瞬态(持续时间<20ms)现象完整成像,为此,采用激光发射同步技术,保证了脉冲CO激光光斑的完整稳定获取.(a)wholelightspot【b)haltlightspotFig.3WholearidhalfspotbitmapsofpulsedCOzlaser图3整光斑和半光斑图像为获得高能激光到达远场时的能量集中度和能量密度分布,测得实际激光脉冲的能量值,必须对光斑图像进行能量定标,即用能量探测器的功率值对整个光斑图像的灰度值进行标定.能量探测器选用探测灵敏度高(探测率3×10cm?Hz"?W),响应速度快(响应时问1ns),可靠性高和可以在室温下工作的HgCdZnTe光电导探测器.HgCdZnTe探测器接收到光脉冲后,经光电转换输出电压信号,电压信号与入射光强之间存在一定的标量关系,即探测器接收到的辐射能量应正比于激光脉冲波形包络面积(比例因子为K),可通过实验测得,实验装置如图4所示.首先,在激光器出光口处放置一可变光阑,通过改变光阑孔径,使得通过光阑的光脉冲接近平面波,近似认为通过光阑的光脉冲为均匀辐照光波.然后,在可变光阑后放置分光镜监测激光脉冲能量值,以获取激光脉冲的实时真实能量值.Fig.4Experimentsetupofdetectorcalibration图4探测器标定实验装置接着,光束经可变衰减后照射到探测器表面,探测器将光脉冲信号转换为电信号,输入虚拟示波器,虚拟示波器与计算机之间通过USB口连接,经软件处理后,最终得出激光脉冲波形,即K一詈一㈩式中:P为探测器表面能量密度;S为激光脉冲波形包络面积;是为分光镜分光比;P.为能量计监测能量值;S.为探测器感光面积;为可变光阑通光孔径;为可变衰减分贝数.对包络中各采样点进行积分求和,可求得第1期叶征字等:强激光远场光束质量参数的测试89激光脉冲波形包络面积'S一∑r(2)i—l式中:r为采样间隔;N为采样数;为各采样点处的电压值.实验中,分光比是一1/17.36,光阑通光孔直径一5.51mm,S.===1mm,采样间隔r一10ns.分别对3个HgCdZnTe探测器进行标定的实验结果如图5所示.(v?ns)5/(v'ns)"v'ns)Fig.5CalibrationresultsofthreeHgCdZnTedetectors图5HgCdZnTe探测器的标定结果采集到激光光斑图像后,采用图像处理技术进行处理分析,得到了光脉冲在空间某个截面的相对光强分布.为了得到实际光强分布,需要对光斑图像进行能量定标.激光辐照后,设光斑图像中点能量探测器位置处的灰度值为H…能量探测器测得的脉冲包络面积为s,若入射光功率与光斑图像中对应位置的灰度值成线性关系,则根据式(3)可以推算出光斑内任意点处的脉冲包络面积,进而得出任意点处的能量值.S===H(3)式中:H,为光斑图像中坐标为(i,)点处的灰度值.然后对整个光斑图像积分,即可得出单个光脉冲的总能量值和实际光强分布,即一Hf4)H在成像器件热像仪设置保持不变,即光圈,焦距,增益一定的前提下,改变激光输出功率,以验证功率/灰度的线性关系.实验结果如图6所示,脉冲包络面积正比于激光功率值,线1和线2分别对应不同光圈,增益条件下,点能量探测点处的灰度值和峰值电压对应关系.由于测量过程的不同时性,必然加入许多复杂的客观因素,如成像器件的增益不同,光圈的微小变化等,这grayvalueFig.6RelationbetweenC()2laserpulseenvelopeareaandgrayvalue图6COz激光脉冲包络面积与图像灰度值关系图也可能带来能量值测量误差.线性关系的成立还需要其它依据,光斑图像中不能出现饱和点或是饱和点尽量很少,最高灰度值应处于亚饱和状态,且不能使最高灰度值过低,若最高灰度值过低,无形中降低成像器件的动态范围.2实验及结果2.1光斑图像处理由于非制冷热像仪自身噪声较强,在对光斑图像处理时,采用中值滤波技术,很好的消除了图像中的孤立噪声点,并保证了滤波后各区域的轮廓仍比较清晰.采用图像增强技术(伪彩色编码显示),突出和增强图像信息,提高人眼对图像的分辨能力.通过这些技术,对光斑图像内部细节进行分析,可以得出激光光斑的相对光强分布,采用边缘检测技术,对每个光斑的轮廓进行提取,可以直观地看出不同的光斑外部形态的变化,如图7所示.9O强激光与粒子束第23卷(a)medianfiltering(b)imageenhancement(c)edgedetectionFig.7Measuredfar—fieldspotimagesandreal—timewaveformofCO2laser图7CO.激光远场测量光斑图及实时波形图2.2光斑质心和半径测量利用计算一阶距算法来描述光斑的质心位置,通过连续时间内光斑质心的计算可得出光束瞄准精度和稳定度.图8是计算给出的TEACO激光器远场47m处光斑质心位置曲线,是连续时间段内的单次触发脉冲的抖动曲线.激光光斑的远场光斑半径采用1/e算法来描述,以光斑质心(一阶距)为原点,以r.为半径选取一个圆形区域,有rf.I(rc.s,,.sin)rdrdO1-——————一一一869.5/(5)?uu\/II(rcosO,rsinO)rdrdOeLJ0J0当满足式(5)时,即定义为远场光斑半径.2.3总能量测量sFig.8MasscentercoordinatesofC()2laser图8COz激光光束质心坐标曲线高能TEACO激光器一般采用非稳腔结构,其工作机制决定了输出光脉冲的不稳定性.在该系统中,采用虚拟示波器,对激光脉冲波形进行实时测量,依据测得的波形包络面积,得出单点对应的功率值,进而解算单脉冲总能量值.图9为经过解算处理后得到的不同时刻的波形图.毛21pulsewidth:680ns一l23●:t/gs123t/ttsFig.9PulsewaveformsofTEAC02laseratdifferenttime图9不同时刻TEACO.激光脉冲波形图实验中,利用中国科学院电子学研究所研制的大功率TEA脉冲CO激光器作为被测激光源.该激光器出光口能量值在1.4~1.6J之间,稳定度优于95.在远场,距离激光器出光口47rn处对直接输出的脉冲激光进行了实际测量,测得光束截面半径约为8O.2mm,远场发散角约为1.55mrad,表1为连续10次测量给出的单脉冲能量值,总能量值在1.O~1.5J之间.3结论本文提出的红外漫射成像多点标校法解决了脉冲强~.123.tius表1在47m处测得TEAC02激光器单脉冲能量值Table1Singlepulseenergymeasuredat47inawayfromTEAC02lasernumberenergy/Jnumberenergy/J11.43861.46721.OO471.40131.44781.1l241.13391.O1551.2191O1.173320A,.∞要oA第1期叶征字等:强激光远场光束质量参数的测试91激光远场大光斑光束质量参数的测试需求,得出了激光束的远场光斑强度分布,光斑质心,光斑半径,发散角和总能量等参数.通过对成像探测器件和标定探测器的扩展,可将测量波长扩展其它波段或者是混合波段,如Y AG激光器或光纤激光器的1m左右波段,高光束质量半导体激光器的808~980m 波段.但是从总测量结果可以看出,本系统对远场光斑总能量的测量存在较大误差.参考文献:[1]杜祥琬.实际强激光远场靶面上光束质量的评价因素EJ].中国激光,1997,24(4):327—332.(DuXiangwan.FactorsforevaluatingbeaITI qualityofarealhighpowerlaseronthetargetsurfaceinfarfield.ChineseJournalofLasers,199 7,24(4):327—332)E2]侯再红,吴毅,汪超.旋转式激光光斑测试仪[J].强激光与粒子束,2002,14(3):334—336.(HouZaihong,WuYi,WangChao.Deviceof rotationalarraydetectorforlaserfacula.HighPowerLaserandParticleBeams,2002,14(3):3 34336)[3][4]宋海平,叶征字,柯常军,等.非制冷焦平面热像仪获取脉冲C02激光光斑研究[J].激光与红外,2004,34(3):203—205.(SongHaiping,Y eZhengyu,KeChangjun,eta1.Studyoncapturinghigh—serandInfrared.2004,34(3):203205)刘泽金,陆启生,赵伊君.高能非稳腔激光器光束质量评价的探讨[J].中国激光,1998,25(3):193—196.(IiuZejin,IuQisheng,ZhaoYi—jun.Studyofevaluatingbeamqualityofhighenergylaserswithunstableresonators.ChineseJ ournalofLasers,1998,25(3):193—196) MeasurementoffarfieldbeamqualityparametersofhighpowerlaserY eZhengyu~,SongHaiping.,WangLong,WangTaotao..YuY anming.L{1Yueguang..WangZhiyong.JiangYijian(1.InstituteofLaserEngineering,BeijingUniversityofTechnology,Beijing100022.China2.NorthChinaInstituteofElectronicEquipment,Beijing100083,China;3.ChinaNorthV ehicleResearchInstitute,Beijing100072,China)Abstract:Thispaperproposesaninfrareddiffusionimagingandmulti—pointcalibrationmethodtomeasurethefar-fieldbeam qualityparametersofthehigh—powerlaser.Thehighenergypulselaserspot'simagesareobtainedwithanimagingdetectorby layingthediffusereflectiontargetinfarfield.Thepulse—widthandpeakpowerofthelaseraremeasuredusinganenergydetector whichisputbehindaholeatthecenterofthetargetplane.Accordingtotheenergycalibrationof thelaserspot'simages,theen—ergyandpowerdistribution,thetotalenergyandthecorrespondingbeamqualityparameterso fthefarfieldhigh—energypulse1a—serbeamareattained.Thismethodhasbeenappliedtomeasuringtheparametersofahigh—energyTEACO2laser.Themeasuredcrosssectionradiusoffar—fieldbeamwas8O.2mmandthedivergenceanglewas1.55mrad. Keywords:infrareddiffusionimaging;multi—pointcalibration;high—energypulsedlaser;beamquality;farfieIdbeamspot。

激光加工中激光束能量分布分析与监测

激光加工中激光束能量分布分析与监测

激光加工中激光束能量分布分析与监测钢铁、合金钢和其它材料的切割、焊接和打标,过去一直采用接触式加工技术。

高功率(平均功率1kW以上)CO2激光器结构设计的最新进展,节约了这些激光器的购买和使用成本。

因此,高功率CO2激光器在许多原来专门留给其它技术完成的生产过程中获得了认可。

激光焊接与切割提供非接触式加工所具有的优势使之成为可能,例如,激光焊接可以采用遥控焊接头进行大面积处理。

同接触式加工相比,激光加工在工件上产生的热影响区(HAZ)小得多,这减少了被加工材料的尺寸问题,有助于精密零件制造。

只要光束稳定并聚焦在工件上,激光加工相对非激光加工来说就有显著的成本优势。

激光加工过程首先是一个热变化过程,激光器发出的能量聚焦于很小的靶区,并将热量传递给被加工的材料,难怪许多加工过程高度依赖于材料所能吸收的能量。

加工过程的效率往往是辐照度的平方或立方的函数。

因而可以断定,工件上的焦斑总能量和能量空间分布是加工过程的成功关键,而且对激光束空间能量分布形状的变形是非常敏感的。

许多CO2激光器不仅仅输出单横模光束,因此光束模式的质量非常重要。

在激光焊接中,必须完全地保持零件之间的间隙调整,这就需要把激光束的能量始终对准相同的靶区而不发生焦斑漂移。

如果进行高速焊接,不良光束结构可以引起焊缝不良的问题。

在激光切割中,光束的质量和聚焦能力对切口本身的质量非常关键。

质量低劣的光束可以造成零件报废或返修而增加成本。

尽管有这些局限性,激光加工依然具有许多优势,足以成为未来材料加工的主流技术。

空间光束能量分布分析是一种测量方法,它把构成光束的所有变量合成为一目了然的图象。

这个方法适用于一切激光器,而不仅仅是CO2激光器。

CO2激光器最常用的光束能量分布分析方法是丙烯酸模式烧蚀法。

这个方法把未聚焦的光束引向一个丙烯酸靶块,光束能量使丙烯酸材料气化蒸发,而且焦斑轮廓与光束本身的空间能量分布成正比。

材料气化形成的轮廓描述了激光束在照射丙烯酸靶块过程中(一般持续若干秒)的空间能量分布。

激光光束发散角的测量

激光光束发散角的测量

激光光束发散角的测量一、高斯光束由激光器产生的激光束既不是平面光波,也不是均匀的球面光波。

虽然在特定位置,看似一个球面波,但它的振幅和等相位面都在变化。

从理论上来讲,光在稳定的激光谐振腔中进行无限次的反射后,激光器所发出的激光将以高斯光束的形式在空间传输。

而且反射(衍射)次数越多,其光束传输形状越接近高斯光束。

从另一方面讲,形状越接近高斯光束的激光束,在传播、偶合及光束变换过程中,其形状越不易改变,在高斯光束时,不论怎样变换,其形状依然是高斯光束。

在激光器产生的各种模式的激光中,最基本、应用最多的是基模高斯光束。

在以光束传播方向z 轴为对称轴的柱面坐标系中,基模高斯光束的电矢量振动可以表示为222[()arctan ()2()000(,,)()r r z i k z i t w z R z f E E r z t e e e w z ω-+--=⋅⋅ (1)式中,E 0为常数,其余各符号意义表示如下:222r x y =+2k πλ=()w z w =2()f R z z z=+ 20w f πλ= 其中,0(0)w w z ==为基模高斯光束的束腰半径,f 称为高斯光束的共焦参数或瑞利长度,R (z )为与传播轴线交于z 点的基模高斯光束的远场发散角为高斯光束等相位面的曲率半径,w (z ) 是与传播轴线相交于z 点高斯光束等相位面上的光斑半径。

图1 高斯光束的横截面图2 高斯光束的纵剖面,按双曲线的规律扩展基模高斯光束具有以下基本特点:1)基模高斯光束在横截面内的电矢量振幅分布按照高斯函数规律从中心向外平滑下降,如图1所示。

由中心振幅值下降到1/e 点所对应的宽度,定义为光斑半径,光斑半径是传播位置z 的函数()w z w =(1) 由(1)式可见,光斑半径随着传播位置坐标z 按双曲线的规律展开,即22220()1w z z w f-= (2) 如图2所示,在z =0处,0()w z w =,光斑达到极小值,称为束腰半径。

强激光远场光束质量参数的测试

强激光远场光束质量参数的测试
第 2 3卷 第 1 期
21 0 1年 1月
强 激 光 与 粒 子 束
H I H PO W ER LA SER A N D PA R TI G CLE BEA M S
Vo . 1 23,NO 1 .
J 3 2 2 1 ) 10 8 — 5 O l4 2 ( 0 1 0 0 70
强 激 光 远 场 光 束 质 量 参 数 的 测 试
叶征宇 , 宋海平。 王 龙。 王涛涛 , 于彦明 , , ,
吕跃广。 王智勇 蒋毅坚 , ,
(.北 京 工 业 大 学 激 光 工程 研 究 院 ,北 京 l0 2 ; 2 中 国北 方 电 子 设 备 研 究 所 , 京 1 0 8 ; 1 0 14 . 北 0 0 3
量 探 测 器 实 时 测 量 激 光 脉 宽 和 峰 值 功 率 。 同时 对 整 个 激 光 光 斑 图像 进 行 能 量 定 标 , 而 得 出 远 场 脉 冲 强 激 光 进 的实 际空 间 能 量 / 率 分 布 、 能 量 , 功 总 以及 相 应 的 光束 质 量 参 数 。应 用 该 测 量 方 法 , 高 能 TE O 对 A C !激 光 进 行
在 高能 强激光 的应 用 中 , 光 的作用 效果 主要 取决 于传 输到 目标 上 的功率 密度 , 功率 密度 分布不 仅 与激 激 而 光 输 出功率有 关 , 与激光 光束 质量 有着 密切 的关 系 。常采 用 的激光 束光 束质 量评 价参 数有 光束 远场 发散 角 、 更 焦 斑尺 寸 、 射极 限倍 数 因子 、 衍 M。因子 、 特 列 尔 ( te 1 比和 环 围功 率 比等 。对 于 高 能 强激 光 的应 用 , 斯 S rh) 实 际关 心 的是激 光 到达远 场 时的 能量分 布状 态 , 即激 光远 场能 量能 否尽 量多 地集 中在 应用 所需 的光 桶尺 度 内 , 这 种情况 下 光束质 量 的本质 是 远场 焦斑 上 的能量 集 中度 , 因此 , 以远 场光斑 半 径 、 散 角 、 斑强 度分 布和 总能 发 光 量作 为评 价参 数是 比较 客 观的 。国内外 对高功 率激 光 器远 场 靶 目标 处 光束 质 量 的测 量 研 究 较 多l , 这 些 远 2但 ] 场 光束质 量测 量方 法都 存在 光斑 捕捉 不 全 , 即不 能 大光 斑进 行 测量 的局 限 , 而且 对 于 能 量 相 对较 弱 的高 能 激 光 , 单脉 冲能量 的响应 不够 甚 至无 法 响应 , 想提 高 系统 测 量动 态 范 围 , 应 的 成本 将 增 加 很 多 。综 合 各 方 对 要 相 因素考 虑 , 文提 出采用 漫射 红外 成像 一 本 多点标 校 的测 量 方法 来 测 量 远 场激 光 光 束 质量 , 用 自主 开发 的光斑 利

激光远场发散角测量实验装置

激光远场发散角测量实验装置

KOT-12 激光远场发散角测量实验装置一、实验目的1.掌握测量激光束光斑大小和发散角的方法。

2.深入理解基模激光束横向光场高斯分布的特性及激光束发散角的意义。

二、实验仪器用具氦氖激光器、光功率指示仪、硅光电池接收器、狭缝、微动磁性座。

三、实验原理激光束的发散角和横向光斑大小是激光应用中的两个重要参数,激光束虽有方向性好的特点,但它不是理想的平行光,而具有一定大小的发散角。

在激光准直和激光干涉测长仪中都需要设置扩束望远镜来减小激光束的发散度。

1 激光束的发散角θ激光器发出的激光束在空间的传播如图1-1所示,光束截面最细处成为束腰。

我们将柱坐标(z 、r 、φ)的原点选在束腰截面的中点,z 是光束传播方向。

束腰截面半径为w 0,距束腰为z 处的光斑半径为w(z),则2/12200])(1[)(w z w z w πλ+= 其中λ是激光波长。

上式可改写成双曲线方程1]/[])([22020=λπ-w z w z w 双曲线的形状已画在1-1中。

我们定义双曲线渐近线的夹角θ为激光束的发散角,则有 z z w w /)(2)/(20=πλ=θ(z 很大) (1.1) 由式(1.1)可知,只要我们测得离束腰很远的z 处的光斑大小2 w(z),便可算出激光束发散角。

2 激光束横向光场分布如图1-1,激光束沿z 轴传播,其基模的横向光场振幅00E 随柱坐标值r 的分布为高斯分布的形式)](/exp[)()(220000z w r z E r E -= (1.2)式中)(00z E 是离束腰z 处横截面内中心轴线上的光场振幅,)(z w 是离束腰z 处横截面的光束半径,)(00r E 则是该横截面内离中心r 处的光场振幅。

由于横向光场振幅分布是高斯分布,故这样的激光束称为高斯光束。

当量值)(z w r =时,则)(00r E 为)(00z E 的1/e 倍。

前面的讨论中,我们并未对光束半径下定义。

现在可以将光束半径)(z w 定义为振幅下降到中心振幅1/e 的点离中心的距离。

板条级联式激光能量分布测试系统

板条级联式激光能量分布测试系统

收稿日期:2012-06-15基金项目:国防科工局基础科研资助项目作者简介:胡永宏(1982-),男,博士研究生,助理研究员,主要从事光电探测、弱信号处理和特种脉冲电源方面的研究,E-mail :huyonghong11@ 。

长春理工大学学报(自然科学版)Journal of Changchun University of Science and Technology (Natural Science Edition )第35卷第4期2012年12月Vol.35No.4Dec.2012板条级联式激光能量分布测试系统胡永宏1,张文平2,王铎3(1.长春理工大学理学院,长春130022;2.专利审查协作北京中心,北京100083;3.空军航空大学航理系,长春130022)摘要:报道了一种新型大尺寸激光能量分布测试系统。

测试系统采用板条级联组成线阵探测臂的方式组成大尺寸的测试装置。

设计了板条级联结构,简化了探测系统的设计难度;设计了板条探测器采集电路,解决了多个采样点时间同时性的难题;便携工控机和探测板条间的协同处理采用总线星形拓扑结构,解决了探测器阵列数据的有序读取;中心节点数据处理中引入响应度修正矩阵和温度补偿函数,解决了探测器响应度的个体差异问题和外场温度对测量影响的问题。

测试结果表明,测试系统具有采集时间同步性强、分析时间短、结构简单的优点,具有很高的推广价值。

关键词:光场探测;能量分布;测试系统;光探测器中图分类号:TN365文献标识码:A文章编号:1672-9870(2012)04-0140-03Energy Distribution Detection System with BattensCascade StructureHU Yonghong 1,ZHANG Wenping 2,WANG Duo 3(1.Institute for Laser Technology ,Changchun University of Science and Technology ,Changchun 130022;2.Patent Examination Cooperation Center of The Patent Offic ,SIPO ,Beijing ,100083;3.Aviation Theory Department of Air Force Aviation University ,Changchun 130022Abstract :Reported a new big size energy distribution detection system.The test system used panel cascade composition line array detection arm terms of large size test derice.Designing a battens cascade structure then simplified the design-ing difficulty for measurement system ;Designing the batten detector acquisition circuit ,solving the time synchroneity problem for multiple channel sampling.Cooperative petition processing system using bus star topology structure between the portable industrial PC and detection battens ,making the data of detector array reading orderly.Introducing respon-sivity fixed matrix and temperature compensation function in center node data processing ,solving the problem of individ-ual differences of responsivity of detectors and problem of influence of temperature in out-field measurement.The test results indicates that the detection system has advantages of time synchronicity in sampling ,short analysis time and more simple structure ,it has very high application value.Key words :optical field detection ;energy distribution ;detection system ;photodetector大尺寸的激光能量场不但面积较大,且存在远场激光散斑现象明显、光场能量的分布随机性强且变化迅速的问题。

高能激光光束质量β因子的影响因素分析

高能激光光束质量β因子的影响因素分析

第14卷第2期 2021年3月中国光学Chinese OpticsVol. 14 No. 2Mar. 2021文章编号2095-1531(2021)02-0353-08高能激光光束质量因子的影响因素分析王艳茹,王建忠冉铮惠,丁宇洁(中国工程物理研究院计量测试中心,四川绵阳621900)摘要:采用二维线性调频z变换算法,分析了影响高能激光系统光束质量A因子测量准确性的因素本文详细分析了采 样点数(即衍射极限内的采样点数)和衍射光斑图像的能量损失率对光束质量A因子的影响。

在衍射极限角直径 2 (/1/D)范围内不同采样点数的模拟结果表明:采样点数越高,光斑衍射图像的分辨率越高,进而光束质量A因子计算越 准确。

在一倍衍射极限角2.44 (A/D)范围内应最低不少于10个采样点,即可将#因子的测量误差控制在3%。

同时,不 同像差对光斑图像能量损失率的敏感程度不同,相同能量损失率下,高阶像差的A因子测量误差要高于低阶像差。

特别 是球差类的像差对能量损失最为敏感,约5%的能量损失就可带来15%〜30%的#因子计算误差。

关键词:z变换;光束质量因子;采样点数;能量损失中图分类号:0438 文献标志码:A doi:l 0.37188/C0.2020-0137Analysis of effects on the beam quality p factor of high power laser WANG Yan-ru,WANG Jian-zhong*,RAN Zheng-hui,DING Yu-jie{Metrology and Testing Center,China Academy o f E ngineering Physics,Mianyang621900, China)* Corresponding author.E-mail:WJLZ\999@Abstract:The influencing factors of beam quality P factor of high-energy laser system is analyzed based on two-dimension chirp z transformation.The effects of the sampling number within the diffraction limit and the beam spot's energy loss on the beam quality/?factor are analyzed.The simulation results based on different sampling numbers indicate that a larger sampling number induces higher beam spot diffraction image resolu­tion which is beneficial for more accurate calculation of a beam quality P factor.When the sampling number of the diffraction limit angle is no less than ten,the measurement error can be limited within3%. Meanwhile, different wavefront aberrations have different sensitivities against beam spot energy loss.The beam quality p factor of high order wavefront aberration is larger than that of low order aberration with equal energy loss. Especially,the spherical aberration is most sensitive to energy loss,and about 5%energy loss can induce 15% to30%calculation error of the P factor.Key words:chirp z transformation;beam quality;fi factor;sampling number;energy loss收稿日期:2020-07-27;修订日期:2020-08-15基金项目:国防科工局技术基础项目(No. JS儿2017212B002)Supported by Basic Project of Science Technology and Industry for National Defense (No. JS儿2017212B002)354中国光学第14卷1引言能量输运型的高能激光系统[W1,除了要求高 的输出功率和能量外,对于远场激光系统的能量 集中度也较为关注。

激光光束远场发散角测量方法

激光光束远场发散角测量方法
Gu a n g z h o u . ( Gu a n g z h o u 5 1 0 6 6 3 )
Ab s t r a c t :
Di v e r g e n c e a n g l e o f l a s e r b e a ms wh i c h u s e d i n l a s e r me a s u r e me n t i s a n i mp o r t a n t s i g n i i f c a n c e . Di v e r g e n c e a n g l e o f l a s e r b e a ms i s a n i mp o r t a n t p a r a me t e r o f Me d i c a l l a s e r . T h i s a r t i c l e i n t r o d u c e s t h r e e me a s u r e me n t wa y s o f f a r - ie f l d d i v e r g e n c e a n g l e o f l a s e r b e a ms . F a r - i f e l d d i v e r g e n c e ng a l e o f t h e l a s e r b e a ms i s c a l c u l a t e d b y C CD c a me r a t e c h n i q u e me a s u r i n g s p o t s i z e . T h e s e me a s u r e me n t wa y s a r e v a r i o u s l y a n d s i mp l y u s e d , t h e y c a n h e l p t o c h e c k c o mp l i a n c e s o f d i v e r s e c l a u s e s f r o m d i f f e r e n t l a s e r s t a n d a r d s a n d ma k e t h e t e s t s c o n v e n i e n t or f t e s t i n s t i t u t i o n a n d c o mp a n y .

激光光束远场发散角测量方法

激光光束远场发散角测量方法

激光光束远场发散角测量方法丁罕;王海娟;樊翔【摘要】Divergence angle of laser beams which used in laser measurement is an important signifcance. Divergence angle of laser beams is an important parameter of Medical laser. This article introduces three measurement ways of far-field divergence angle of laser beams. Far-feld divergence angle of the laser beams is calculated by CCD camera technique measuring spot size. These measurement ways are variously and simply used, they can help to check compliances of diverse clauses from different laser standards and make the tests convenient for test institution and company.% 激光光束发散角的测量对于激光测量有着重要的意义。

激光光束发散角是医用激光质量的一个重要参数。

本文介绍了三种激光光束远场发散角的测量方法。

利用CCD相机数据采集,通过测量光斑大小来计算激光光束的远场发散角。

测试方法适用范围广泛,操作简单,可以满足医用激光类产品相关标准的测试要求,为相关企业和检测机构对激光光束发散角的测试提供便利。

【期刊名称】《中国医疗器械信息》【年(卷),期】2013(000)006【总页数】4页(P42-44,69)【关键词】激光;远场发散角;测量方法【作者】丁罕;王海娟;樊翔【作者单位】国家食品药品监督管理局广州医疗器械质量监督检验中心广州510663;国家食品药品监督管理局广州医疗器械质量监督检验中心广州 510663;国家食品药品监督管理局广州医疗器械质量监督检验中心广州 510663【正文语种】中文【中图分类】R454.20.引言光束发散角是指光束宽度或光束直径随着离束腰位置距离的增加而增大的程度。

激光远场能量密度分布测试方法研究的开题报告

激光远场能量密度分布测试方法研究的开题报告

激光远场能量密度分布测试方法研究的开题报告一、选题的背景和意义激光技术在现代工业、军事、医学等领域中具有重要的应用价值。

激光器的输出功率与激光束质量是评价激光器性能的重要指标之一,激光束质量的好坏直接影响到激光的应用效果。

而激光束质量的好坏与激光束的光斑面积及激光束在远场的能量分布密切相关。

因此,研究激光束在远场的能量密度分布具有重要的理论和应用价值。

二、研究内容和方法本课题将研究激光束在远场的能量密度分布测试方法。

主要研究内容包括激光束光斑面积及远场能量密度分布的理论分析和数学模型建立,以及相关实验测试方法的研究。

具体研究步骤如下:1. 理论分析与数学模型建立:通过数学方法分析光学系统发生衍射时产生的光斑面积和光强分布,建立数学模型。

2. 实验测试方法的研究:对已有的广泛应用的实验测试方法进行总结和归纳,综合不同方法的优缺点,研究出适用于不同场景的测试方法。

3. 实验结果数据处理和分析:对实验结果进行数据处理和分析,进一步验证理论分析与数学模型的准确性,并根据实验结果对测试方法进行改进和优化。

三、预期研究成果本课题旨在研究激光束在远场的能量密度分布测试方法,将研究成果应用到实际场景中。

预期研究成果包括:1. 理论模型的建立及对测试方法的指导意义。

2. 实验测试方法的改进和优化。

3. 实验结果的数据处理和分析,验证理论模型的准确性。

4. 推广使用,为激光技术的应用提供可靠的测试方法。

四、参考文献[1] 郑雅思.激光光束传输理论及应用研究[D].浙江工业大学硕士学位论文,2016.[2] 张大治.激光束光斑成形控制研究[D].中国科学技术大学硕士学位论文,2019.[3] Guitchounts G, Senft C A, Spero R E. A transmitance, divergence, and beam profile measurement system for CO2 laser beams[J]. Review of Scientific Instruments, 1985, 56(10): 1957-1965.。

提高外场脉冲激光光斑测量距离的有效方法

提高外场脉冲激光光斑测量距离的有效方法

文章编号 10042924X (2002)0320300204提高外场脉冲激光光斑测量距离的有效方法宋建中1,韩广良1,顾海军1,2(1.中国科学院长春光学精密机械与物理研究所,吉林长春130022;2.吉林大学通信学院,吉林长春130022)摘要:介绍了提高外场脉冲激光光斑测量距离的两个关键技术:CCD 电子快门预测和背景相减技术,并给出了提高白天外场脉冲激光光斑的测量距离的试验效果,在激光制导武器系统和激光告警系统的研制中都有重要的意义。

影响白天外场对脉冲激光光斑的测量距离的主要原因是激光光斑被淹没在阳光照射的背景里,不能提取光斑图像。

设法让电子快门的触发脉冲在每个激光脉冲到来前的固定时间间隔产生,保证CCD 捕捉到光斑的全部能量,从而可以使CCD 输出最亮的光斑图像。

另一方面,在激光没有照射时,采集一帧图像作为背景,让激光照到靶板后的图像与背景图像相减,结果只在光斑照到的位置处有不同。

在相减后的图像中,使激光光斑突出。

试验证明采用本文介绍的技术明显地提高了外场脉冲激光光斑测量距离。

关 键 词:电子快门预测;背景相减;激光光斑测量中图分类号:TN247 文献标识码:A1 引 言 在激光制导武器系统中,导引头实际跟踪的是脉冲激光光斑的能量分布重心。

实际的激光光斑能量分布与激光器的模式和质量有关,再加上大气传输的影响更加剧了光斑能量分布的不均匀性。

因此,精确测量远距离脉冲激光光斑的能量分布重心对研制激光制导武器有重要的意义。

要同时测量激光光斑的照准精度和能量分布,采用电视测量方法对激光光斑图像进行测量是一种较好的办法。

电视测量法采用一台CCD 摄像机配以合适的光学系统,在远距离上以一定的倾角拍摄靶板(或被照目标)及照射到靶板(或被照目标)上的激光光斑的图像,然后用计算机进行图像分析处理,输出测量结果。

这种方法把光斑和目标靶的图像一起摄下来由计算机去处理,操作简单,使用维护方便,可重复使用,具有灵活性和先进性。

一种新型高能激光束能量分布探测器_关有光

一种新型高能激光束能量分布探测器_关有光

第12卷 第2期强激光与粒子束Vol .12,No .2 2000年4月HIGH POW ER LASER AN D PARTICLE BEAM SApr .,2000 文章编号:1001-4322(2000)02-0175-03一种新型高能激光束能量分布探测器关有光,傅淑珍,高学燕,周 山,周殿华,裴春兰,易亨瑜(中国工程物理研究院应用电子学研究所,绵阳919-1016信箱,621900) 摘 要: 介绍用于探测高能激光束空间能量分布的量热器阵列探测器。

这种探测器具有承受激光束能量密度高、探测面积大和能量测试误差小等特点,主要由保护板、量热器阵列和热沉积构成。

也给出了探测器的标定和性能测试。

该探测器为高能激光束绝对空间能量分布的测量提供了有效的诊断手段。

关键词: 高能激光束;空间能量分布;探测器 中图分类号:TN 247 文献标识码:A 高能激光束(High Energy Laser Beam,HELB),一般具有较高的总能量和能量密度,即较高的平均功率密度(千瓦以上)和一定的持续时间(几秒量级甚至更长),能对一定硬材料产生硬破坏效应,不同于峰值功率较高的高功率激光。

对这类激光束的诊断,需要测得激光束的绝对空间能量分布,以得到激光束的总能量、光斑尺寸、能量密度分布等多种参数,以综合判断其光束质量等特性。

直接定量测量有很大的难度。

目前一般通过对材料进行破坏,观察烧蚀深度、形状来定性分析激光束,但得不到定量结果[1]。

较好的做法是把强激光大幅度衰减进行测量,但衰减以后只能是相对的强度分布,不利于高能激光束光束质量的评价[2]。

本文介绍了一种用于探测高能激光束绝对空间能量分布和总能量的量热器阵列探测器。

1 探测器构成和工作原理1.1 探测器的构成Fig.1 Picture of HELB detector 图1 强激光阵列探测器实物图 量热器列阵探测器主要由保护板、252个小量热器阵列和热沉组成,四周安装光电探测器,对强激光束的激光波形进行探测,如图1所示。

激光远距离供能方式及其原理

激光远距离供能方式及其原理

激光远距离供能方式及其原理1激光标准白板散射原理 (1)2激光小角度散射原理 (5)3激光激励荧光粉原理 (6)1激光标准白板散射原理激光经标准白板散射,散射过程中,激光的损耗最小,而且得到的光场是标准的朗伯分布。

此时的白板为一个余弦辐射体。

单位面积上的同光量:Ω=ΦId d (1)立体角:2cos l dS d θ=Ω (2) 代入上式得到:2cos l dS I d θ=Φ (3) 根据光照度公式得到:2cos lI dS d E θ=Φ= (4) 余弦辐射体一般发光面在各个方向的亮度值不等,即亮度L 本身是空间方位角i 和ϕ的复杂函数。

但某些发光面的发光强度与空间方向的关系按下列简单规律变化:i I I N i cos = (5)图2中,dS 是发光面,N I 是dS 法线方向的发光强度,i I 是与法线成i 角方向的发光强度。

如果用矢径表示发光强度,则各方向发光强度矢径的终点轨迹在一球面上。

符合式()规律的发光体称为“余弦辐射体”或“朗伯辐射体”。

余弦辐射体的光亮度为常数Lo O N i L dSI L == (6) 余弦辐射体各方向的光亮度相同,与方向角i 无关。

注意:此时各方向的发光强度不同。

余弦辐射表面可以是本身发光的表面,也可以是本身不发光,而由外来光照明后担透射成漫反射的表面,如图2a表示乳白玻璃的漫透射情况;图2b表示漫反射性能较好的表面授反射情况;图2c则是漫反射性能较差的情况。

入射光乳白玻璃漫透射光(a)漫反射光入射光漫反射面(b)入射光漫反射光漫反射面(b )图2几种典型的漫反射一般的漫反射表面都具有近似于余弦辐射的特性。

在完全镜面反射(定向反射)中,反射光方向的亮度f L 最大,其余方向为零,不具有余弦辐射性质。

绝对黑体是理想的余弦辐射体。

有些光源很接近于余弦辐射体,例如图3中平面状钨灯的发光强度曲线很接近于双向的余弦发光体。

发光面d S图3 余弦辐射体余弦辐射表面向π2立体角空间投出的总光通量、光亮度和光出射度的关系 由光通量和光亮度关系:ωφidSd L d i i cos = (7)可得知在微立体角ω内发射的光通量:⎰=ωφidSd L i cos (8)余弦发光体光亮度为常数可提到积分号外面,则⎰=ωφidSd L cos (9)可得到dS L πφ= (10)就是余弦发光而向π2立体角半球空间发出的全部光通量。

3d结构光质量标准

3d结构光质量标准

3D结构光质量标准
一、聚焦光斑尺寸ωf和远场发散角θ
聚焦光斑尺寸ωf是指激光聚焦后光斑的最小直径。

如果聚焦光斑尺寸越小,则说明激光的聚焦能力越强,3D结构光的分辨率也就越高。

远场发散角θ是指激光在远场发散时的角度。

在一定的范围内,远场发散角越小,说明激光的光束质量越好。

二、激光能量分布
激光能量分布是指激光在空间中分布的能量密度。

理想的激光能量分布应该是均匀的,以确保3D结构光的均匀性和稳定性。

如果激光能量分布不均匀,则会导致3D结构光的质量下降。

三、激光光束质量因子M²
激光光束质量因子M²是评价激光光束质量的重要参数之一。

M²越接近1,说明激光光束的质量越好。

M²越偏离1,则说明激光光束的质量越差。

四、激光束直径和发散角
激光束直径是指激光光束在垂直于传播方向的最大尺寸。

发散角是指激光光束在垂直于传播方向上的发散程度。

在一定的范围内,激光束直径越小,发散角越小,说明激光的光束质量越好。

五、激光束相干性
激光束相干性是指激光光束在时间上和空间上的相干程度。

如果激光束相干性不好,则会导致3D结构光的稳定性和分辨率下降。

六、激光束稳定性
激光束稳定性是指激光光束在时间上保持稳定的程度。

如果激光束稳定性不好,则会导致3D结构光的波动和不稳定性。

测量激光远场能量分布

测量激光远场能量分布

Detector Array for Measuring Far-field Energy Density Distribution ofRepetitively Pulsed LaserYANG Pengling a,b, FENG Guobin a, WANG Qunshu a, WANG Jingjin b, CHENG Jianping ba Northwest Institute of Nuclear Technology, Xi’an, China, 710024b Department of Engineering Physics, Tsinghua University, Beijing, China,100084ABSTRACTA system based on detector array is developed to measure the far-field temporal and spatial distribution and absolute pulse energy density of the laser beam. In this experiment, the duration of the laser pulse is about 15ns, the repetition rate is 400Hz, and the diameter of the far-field beam is about 60cm. The detector array is composed of 112 Si-PIN photodiode detectors and arranged to be a disk with spatial sample rate of 0.4cm-1. Charge sensitive amplifiers and baseline restoration circuits are used to collect photocurrent of the detectors, and current-input AD converters with integrator front-end are used to digitalize the multi channel signals. The far-field laser beam profile is reconstructed with the spatial sample data using special arithmetic of spatial interpolation. The system is capable for absolutely measuring far-field energy density distribution of repetitively pulsed laser, with response wavelength between 400nm and 1100nm, minimal detectable pulse duration of about 10ns, and energy density of 0.1-100µJ/cm2.Keywords: Pulsed laser, Energy density distribution, Absolute pulse energy, Beam profile, Detector array, Charge sensitive amplifier, Analog-to-digital converter1. INTRODUCTIONBeam quality and intensity are critical characters of high power laser system. Accurately measuring the far-field laser irradiance distribution is an effective way to diagnose laser beam quality and study the atmospheric transmission effects for a high power laser system[1],[2]. Traditionally, witness plates and CCD cameras are used to fulfill this measurement. These methods can only give a relative intensity distribution. Thermopile detectors based on batteries of thermocouples are frequently employed for pulse energy determination, especially for high-energy lasers. However, such detectors are not accurate for low energy levels and have no spatial resolution. Thermopiles are also inadequate to perform direct energy determination at repetition rates exceeding few pulses per second. Pyroelectric ceramics are another important class of energy detector based on the temperature increment produced by the absorption of the laser radiation. Pyroelectric ceramics are more sensible than thermopile detectors. They can reliably determine pulse energies as low as few tens µJ without amplification electronics. In addition, the pulse repetition frequencies allowed by pyroelectric ceramics are also higher than those permitted by thermopiles. AtInternational Symposium on Photoelectronic Detection and Imaging 2007: Laser, Ultraviolet, and Terahertz Technology, edited by Liwei Zhou, Proc. of SPIE Vol. 6622, 66220T, (2008) · 0277-786X/08/$18 · doi: 10.1117/12.790808Proc. of SPIE Vol. 6622 66220T-1present, ceramics for energy determination capable of working at repetition rates of up to 400 Hz are commercially available. However, common ceramics are accurate only at repetition rates below 20 Hz[3], and they haven’t good thermo-stability and uniformity. So they are insufficient for far-field laser energy measuring. Semiconductor Si-PIN photodiode detector with response spectrum from 400nm to 1100nm, having high response speed, acceptable uniformity and thermo-stability, are appropriate in high repetition pulsed laser energy density measuring. Moreover, with the size of about several millimeters, a Si-PIN detector cell is sufficient for arranging to be a compact detector array, which is capable to absolutely measure energy density distribution of a high repetition pulsed laser. In this paper, we developed a measurement system based on Si-PIN photodiode detector array for this purpose.2. PRINCIPLE OF THE MEASUREMENT SYSTEMIn detector array systems for laser beam profile measuring, hundreds of detectors are arranged in a plane to sample the laser beam profile with fixed interval. Thus the beam profile is converted to multi channel electric signals and digitalized. The beam profile is reconstructed with the sample data in the processing end. In the system, each detector cell has an amplifier and analog-to-digital(AD) converter. Particularly in a pulsed laser measurement system, output signals of the photodiode detectors have very high frequency, which has a high electromagnetic compatibility demand for amplifiers and speed demand for AD converters. Peak detect circuits are usually used to decrease the frequency of output signals [4]. The multi channel amplifiers, peak detect circuits, and converters make the system complicated and fallible, with low spatial resolution. In our system, charge sensitive amplifiers and current-input AD converters with integrator front-end are used to displace the traditional peak detect circuits and converters. A schematic block diagram of the system is shown in Fig.1.Ch112Fig.1 Schematic block diagram of the measurement systemProc. of SPIE Vol. 6622 66220T-2In all 112 Si-PIN detectors are used to sample the beam profile, and convert the pulsed laser energy density distribution to 112 channel of electronic signals. The photodiode detectors are arranged to be a disk with the spatial sample rate of 0.4cm-1. Fig.2 shows the schematic diagram of the detector array arrangement. The Si-PIN detectors have response spectrum from 400nm to 1100nm, response time of less than 1ns, and active area of 0.8mm2. The peak responsivity of the photodiode detectors is 0.45A/W at the wavelength of about 700nm, and the responsivity at 532nm is about 0.3A/W. In order to suppress interference of the sunlight, band-pass filters(BPF) are used in front of the Si-PIN detectors according to the measured laser wavelength. Charge sensitive amplifiers are used to amplify the pulsed signals of the Si-PIN detectors, and the output pulse duration of the amplifiers are also broadened from 15ns to about 100µs, thus frequency of the signals are reduced and speed demand of AD converters are decreased. Baseline restoration circuits are used to decrease the background noise of the amplifiers. To make the system more compact, 28 quad-input AD converters DDC114 are adopted to make the 112 channel of analog pulsed signals integrated and digitalized. The converters are controlled by a single chip microprocessor. The data are transmitted to the computer end using asynchronous RS-422 series interface and reserved at the same time by the data memory unit. The far-field laser beam is reconstructed in real time with the spatial sample data using special arithmetic of spatial interpolation. The system is calibrated using a standard pulsed laser, making the absolute energy density of the pulsed laser enable to be measured at the same time.Fig.2 Schematic diagram of the detectors arrangementThe simplified charge sensitive amplifier and baseline restoration circuit diagram is shown in Fig.3. The current signal I D of the detector is amplified by the charge sensitive amplifier A1. The amplifier A2 is used as a baseline restoration circuitto depress the DC voltage at the output of A1. The DC voltage of A1 could be produced by the dark current of the Si-PINdetector, or the leakage sunlight incident to the active area of the detector.Proc. of SPIE Vol. 6622 66220T-3Fig.3 Simplified charge sensitive amplifier and baseline restoration circuit diagramThe impulse response from the output current of Si-PIN detector I D to the output current of the charge sensitive amplifier I T is()F F 11-/-/F 2F F 11()=e -e -t R C t R C R R h t R C R C (1) And the current I T isT D ()=()*()I t h t I t (2)Adjust R F C F to be 100µs, which is much shorter than the integration time of AD converter, and set R 1C 1 to be 1µs, so that the rise edge of the current signal of the amplifier output is much quicker than the fall edge. Knowing that the pulse duration of the current input is about 15ns, which is several orders shorter than the characteristic time of the impulse response h (t ), we can consider the input signal as a Dirac delta function, and the amplitude of the impulse function can be described as+D D 0=()d Q I t t ∞∫(3) Here Q D represents the charge output of the Si-PIN detector, which is in proportion to the energy of the laser pulseincident to the active area of the detector.The output charge of the amplifier A 1 can be described as +T T 0=()d Q I t t ∞∫ (4)Here Q T represents the charge output of the charge sensitive amplifier A 1. The gain from Q D to Q T isT D F 2=/=/A Q Q R R (5)The output pulse duration of amplifier A 1 is broadened to R F C F , which is about 100µs. The output pulse duration is limited by integration time of the AD converter, and also limited by the output pulse duration and charge output of the Si-PIN detector. The amplifier has a wide bandwidth of 200MHz, enough for the 15ns pulse width of the input signal. The schematic shape of input signal and output signal of the charge sensitive amplifier are plotted in Fig.4.Proc. of SPIE Vol. 6622 66220T-4Fig.4 Schematic shape of input and output signal of the charge sensitive amplifierThe DDC114 converter is a 20-bit quad channel, current-input AD converter. It combines both current-to-voltage and AD conversion so that the photodiodes can be directly connected to its inputs and digitized. For each of the four inputs, the DDC114 provides a dual-switched integrator front-end. This allows for continuous current integration: while one integrator is being digitized by the onboard AD converter, the other is integrating the input current. The integration time of AD converter is set to 600µs, which is much shorter than the interval of pulsed signals (2.5ms), so there is at large one pulse coming in every two integration intervals of DDC114. For a system without a synchronization clock, there are two cases for the signals coming time. One is that when the signal lies in one integration clock, the energy of the laser pulse will be in proportion to the output of AD converter. The other is that when the signal lies on the boundary of the integration clock, the energy of the laser will be in proportion to the sum of the two adjacent integration periods output. The sketch is plotted in Fig.5.Fig.5 Scheduling sketch of pulse signals and AD converterAdd the output digital signals of the two adjacent integration clocks in the chip microprocessor program if both of them exceed the threshold of the amplifier noise output, then the output data of the single chip microprocessor represents the digitalized single pulse energy. The experiment result shows that the digital error of the system is less than 1%. The data are shown in Table.1.integrate transform transform tranform integrate integrateIntegrator B600µs 600µs600µs Integrator A R 1C 1=1 µs R F C F =100µsQ T I D (t ) Q DI T (t )Proc. of SPIE Vol. 6622 66220T-5Table.1 The experimental results of AD converterInput amplitude0.4V 0.3V 0.2V0.1V 11010 1010 0110 1000 0000 0001 0101 0110 0001 0010 1011 1111 21010 1010 0100 1000 0000 0010 0101 0110 00100010 1100 0000 31010 1010 0111 1000 0000 0100 0101 0110 0011 0010 1100 0001 41010 1010 0110 1000 0000 0110 0101 0110 0010 0010 1100 0001 51010 1010 0101 1000 0000 0001 0101 0110 0101 0010 1011 1111 61010 1010 0010 1000 0000 0011 0101 0110 0011 0010 1100 0000 71010 1010 0100 1000 0000 0110 0101 0110 0110 0010 1100 0000 Digitalized output data 81010 1010 0011 1000 0000 0011 0101 0110 0100 0010 1011 1110 average 2724.6 2051.3 1379.3 703.8Standard deviation0.138% 0.113% 0.09% 0.058% Nonlinear deviation±0.047% Each channel of the system is calibrated with a standard pulsed laser. The pulse energy of the standard laser is 2µJ, the wavelength is 532nm, the pulse duration is 10ns, and the repetition is 400Hz. The diameter of the laser is restricted by a tunable diaphragm. So the incident laser after the diaphragm can be completely collected by the active area of the detector. Adjust the energy incident to the active area of the photodiode detector with a series of attenuation filters and measure the output laser energy with a calibrated thermal-electric energy detector, and read the output data of the AD converter. The calibration curves of typical channels are shown in Fig.6. They are the calibration results of No.1, No.25, No.78, and No.107 channel. The x-axis is the incident energy of the pulsed laser, and the y-axis is the output unit of the AD converter. Fit results show that the nonlinearity of the energy density measuring is less than 0.1%. The response of each channel is uniformed by processing program in the computer end.A D o u t p u t (u n i t )Energy density(µJ/cm )A D o u t p u t (u n i t )Energy density(µJ/cm )Proc. of SPIE Vol. 6622 66220T-6A D o u t p u t (u n i t )Energy density(µJ/cm)A D o u t p u t (u n i t )Energy density(µJ/cm )Fig.6 Detector calibration curve of typical channelsThe system has a spatial resolution of 2.5cm. Cubic spline interpolation is used to reconstruct the whole laser beam profile with the spatial sample data. The refresh rate of the reconstructed image is 25Hz. It is limited by the transmission rate of asynchronous RS-422 series interface, and can be increased through displacing asynchronous series interface to synchronous series interface if needed. The beam quality and track of the beam center can also be calculated through the sample data. To improve the beam image quality, more sample photodiode detectors should be adopted to increase the spatial resolution. Ordinarily, the sample frequency should exceed two times of spatial frequency of the beam profile.3. APPLICATION OF THE SYSTEMWe measured the far-field beam profile and absolute energy density of the repetitively pulsed laser with the detector array system. In the experiment, the wavelength of the laser is 532nm, the repetition frequency is 400Hz, and the pulse duration is about 15ns. The measuring results are shown in Fig.7. We select six representative frames of the measured far-field laser beam profile. The time interval of the adjacent frame is 5 seconds. From the measured results, the energy density distribution evolvement of the far-field beam can be easily obtained. Using the system, other wavelength of 400nm to 1100nm, repetition frequency of 1Hz to 800Hz pulsed laser can also be measured.Proc. of SPIE Vol. 6622 66220T-7Fig.7 Representative frames of far-field repetitively pulsed laser beam profile4. CONCLUSIONIn this paper, we introduced a detector array system for measuring far-field energy density distribution of repetitively pulsed laser in real time. The measurement system has a dynamic amplitude range of above 103, a spatial resolution of 2.5cm, a refresh rate of 25Hz for the far-field laser beam image, along with a measurement uncertainty of less than 10% for energy density distribution. The system can absolutely measure far-field beam profile of repetitively pulsed laser, with response wavelength between 400nm and 1100nm, minimal detectable pulse width of about 10ns, repetition frequency of 1Hz to 800Hz, and energy density of 0.1-100µJ/cm2. The measuring repetition frequency can be broadened up to 1.25kHz through adjusting characters of AD converter. Near infrared pulsed laser with the wavelength up to 1700nm can also be measured with the system if displacing the Si-PIN detectors with InGaAs photodiode detectors. The spatial sample rate and the refresh rate of the frame should increase in the future according to the demand of laser measurement.5. ACKNOWLEGMENTSThe authors thank Mr. Wang Jianguo of the Risehood company for circuits design of high speed amplifier, Doctor Lin Yong for useful advice on the image processing software, Doctor Xue Tao of Tsinghua University for the single chip microprocessor and program supply, Wang Zhenbao, Shao Bibo and Yan Yan of the Northwest Institute of Nuclear Technology for their generous supports on system debugging and calibration experiments.REFERENCES1.Su Yi and Wan Min, High Energy Laser System, National Defense Technology Press, Beijing, 2004Proc. of SPIE Vol. 6622 66220T-82.Lv Baida, Propagation and Control of High-Power Lasers, National Defense Technology Press, Beijing, 19993.L. Baly Et al. Sensor for energy determination of nanosecond pulses of ultraviolet radiation, Sensors and ActuatorsA 102 (2003) 255–2604.M. W. Kruiskamp and D. M. W. Leenaerts, A CMOS Peak Detect Sample and Hold Circuit, IEEE Transactions onNuclear Science, Vol. 41, No. 1, February, 19945.G. Bertuccio, L. Fasoli, C. Fiorini, and M. Sampietro, Spectroscopy Charge Amplifier for Detectorswith IntegratedFront-End FET, IEEE Transcations on Nuclear Science, Vol. 42, No. 4, August, 1995Proc. of SPIE Vol. 6622 66220T-9。

激光热通量分布

激光热通量分布

激光热通量分布
激光热通量分布是指激光束在材料表面上的热能量分布。

激光束的能量分布通常是不均匀的,因为激光束的形状、大小和强度可能会随着时间和空间的变化而变化。

因此,激光热通量分布也是不均匀的。

激光热通量分布受到多种因素的影响,包括激光束的波长、功率、聚焦方式、材料的光学特性等。

例如,不同波长的激光束对材料的吸收和反射能力不同,这会影响激光热通量的分布。

此外,激光束的聚焦方式也会影响热通量的分布,因为聚焦方式决定了激光束在材料表面上的光斑大小和能量密度。

在激光加工过程中,激光热通量分布对材料的热效应和加工质量有着重要影响。

因此,了解激光热通量分布的特点和规律,对于优化激光加工过程、提高加工质量和效率具有重要意义。

为了研究激光热通量分布,可以采用实验和数值模拟等方法。

实验方法可以通过测量激光束在材料表面上的热效应,如温度分布、熔化深度等,来间接推算激光热通量分布。

数值模拟方法可以通过建立激光束与材料相互作用的数学模型,计算激光热通量分布及其对材料热效应的影响。

总之,激光热通量分布是激光加工过程中的一个重要参数,对于理解和优化激光加工过程具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Detector Array for Measuring Far-field Energy Density Distribution ofRepetitively Pulsed LaserYANG Pengling a,b, FENG Guobin a, WANG Qunshu a, WANG Jingjin b, CHENG Jianping ba Northwest Institute of Nuclear Technology, Xi’an, China, 710024b Department of Engineering Physics, Tsinghua University, Beijing, China,100084ABSTRACTA system based on detector array is developed to measure the far-field temporal and spatial distribution and absolute pulse energy density of the laser beam. In this experiment, the duration of the laser pulse is about 15ns, the repetition rate is 400Hz, and the diameter of the far-field beam is about 60cm. The detector array is composed of 112 Si-PIN photodiode detectors and arranged to be a disk with spatial sample rate of 0.4cm-1. Charge sensitive amplifiers and baseline restoration circuits are used to collect photocurrent of the detectors, and current-input AD converters with integrator front-end are used to digitalize the multi channel signals. The far-field laser beam profile is reconstructed with the spatial sample data using special arithmetic of spatial interpolation. The system is capable for absolutely measuring far-field energy density distribution of repetitively pulsed laser, with response wavelength between 400nm and 1100nm, minimal detectable pulse duration of about 10ns, and energy density of 0.1-100µJ/cm2.Keywords: Pulsed laser, Energy density distribution, Absolute pulse energy, Beam profile, Detector array, Charge sensitive amplifier, Analog-to-digital converter1. INTRODUCTIONBeam quality and intensity are critical characters of high power laser system. Accurately measuring the far-field laser irradiance distribution is an effective way to diagnose laser beam quality and study the atmospheric transmission effects for a high power laser system[1],[2]. Traditionally, witness plates and CCD cameras are used to fulfill this measurement. These methods can only give a relative intensity distribution. Thermopile detectors based on batteries of thermocouples are frequently employed for pulse energy determination, especially for high-energy lasers. However, such detectors are not accurate for low energy levels and have no spatial resolution. Thermopiles are also inadequate to perform direct energy determination at repetition rates exceeding few pulses per second. Pyroelectric ceramics are another important class of energy detector based on the temperature increment produced by the absorption of the laser radiation. Pyroelectric ceramics are more sensible than thermopile detectors. They can reliably determine pulse energies as low as few tens µJ without amplification electronics. In addition, the pulse repetition frequencies allowed by pyroelectric ceramics are also higher than those permitted by thermopiles. AtInternational Symposium on Photoelectronic Detection and Imaging 2007: Laser, Ultraviolet, and Terahertz Technology, edited by Liwei Zhou, Proc. of SPIE Vol. 6622, 66220T, (2008) · 0277-786X/08/$18 · doi: 10.1117/12.790808Proc. of SPIE Vol. 6622 66220T-1present, ceramics for energy determination capable of working at repetition rates of up to 400 Hz are commercially available. However, common ceramics are accurate only at repetition rates below 20 Hz[3], and they haven’t good thermo-stability and uniformity. So they are insufficient for far-field laser energy measuring. Semiconductor Si-PIN photodiode detector with response spectrum from 400nm to 1100nm, having high response speed, acceptable uniformity and thermo-stability, are appropriate in high repetition pulsed laser energy density measuring. Moreover, with the size of about several millimeters, a Si-PIN detector cell is sufficient for arranging to be a compact detector array, which is capable to absolutely measure energy density distribution of a high repetition pulsed laser. In this paper, we developed a measurement system based on Si-PIN photodiode detector array for this purpose.2. PRINCIPLE OF THE MEASUREMENT SYSTEMIn detector array systems for laser beam profile measuring, hundreds of detectors are arranged in a plane to sample the laser beam profile with fixed interval. Thus the beam profile is converted to multi channel electric signals and digitalized. The beam profile is reconstructed with the sample data in the processing end. In the system, each detector cell has an amplifier and analog-to-digital(AD) converter. Particularly in a pulsed laser measurement system, output signals of the photodiode detectors have very high frequency, which has a high electromagnetic compatibility demand for amplifiers and speed demand for AD converters. Peak detect circuits are usually used to decrease the frequency of output signals [4]. The multi channel amplifiers, peak detect circuits, and converters make the system complicated and fallible, with low spatial resolution. In our system, charge sensitive amplifiers and current-input AD converters with integrator front-end are used to displace the traditional peak detect circuits and converters. A schematic block diagram of the system is shown in Fig.1.Ch112Fig.1 Schematic block diagram of the measurement systemProc. of SPIE Vol. 6622 66220T-2In all 112 Si-PIN detectors are used to sample the beam profile, and convert the pulsed laser energy density distribution to 112 channel of electronic signals. The photodiode detectors are arranged to be a disk with the spatial sample rate of 0.4cm-1. Fig.2 shows the schematic diagram of the detector array arrangement. The Si-PIN detectors have response spectrum from 400nm to 1100nm, response time of less than 1ns, and active area of 0.8mm2. The peak responsivity of the photodiode detectors is 0.45A/W at the wavelength of about 700nm, and the responsivity at 532nm is about 0.3A/W. In order to suppress interference of the sunlight, band-pass filters(BPF) are used in front of the Si-PIN detectors according to the measured laser wavelength. Charge sensitive amplifiers are used to amplify the pulsed signals of the Si-PIN detectors, and the output pulse duration of the amplifiers are also broadened from 15ns to about 100µs, thus frequency of the signals are reduced and speed demand of AD converters are decreased. Baseline restoration circuits are used to decrease the background noise of the amplifiers. To make the system more compact, 28 quad-input AD converters DDC114 are adopted to make the 112 channel of analog pulsed signals integrated and digitalized. The converters are controlled by a single chip microprocessor. The data are transmitted to the computer end using asynchronous RS-422 series interface and reserved at the same time by the data memory unit. The far-field laser beam is reconstructed in real time with the spatial sample data using special arithmetic of spatial interpolation. The system is calibrated using a standard pulsed laser, making the absolute energy density of the pulsed laser enable to be measured at the same time.Fig.2 Schematic diagram of the detectors arrangementThe simplified charge sensitive amplifier and baseline restoration circuit diagram is shown in Fig.3. The current signal I D of the detector is amplified by the charge sensitive amplifier A1. The amplifier A2 is used as a baseline restoration circuitto depress the DC voltage at the output of A1. The DC voltage of A1 could be produced by the dark current of the Si-PINdetector, or the leakage sunlight incident to the active area of the detector.Proc. of SPIE Vol. 6622 66220T-3Fig.3 Simplified charge sensitive amplifier and baseline restoration circuit diagramThe impulse response from the output current of Si-PIN detector I D to the output current of the charge sensitive amplifier I T is()F F 11-/-/F 2F F 11()=e -e -t R C t R C R R h t R C R C (1) And the current I T isT D ()=()*()I t h t I t (2)Adjust R F C F to be 100µs, which is much shorter than the integration time of AD converter, and set R 1C 1 to be 1µs, so that the rise edge of the current signal of the amplifier output is much quicker than the fall edge. Knowing that the pulse duration of the current input is about 15ns, which is several orders shorter than the characteristic time of the impulse response h (t ), we can consider the input signal as a Dirac delta function, and the amplitude of the impulse function can be described as+D D 0=()d Q I t t ∞∫(3) Here Q D represents the charge output of the Si-PIN detector, which is in proportion to the energy of the laser pulseincident to the active area of the detector.The output charge of the amplifier A 1 can be described as +T T 0=()d Q I t t ∞∫ (4)Here Q T represents the charge output of the charge sensitive amplifier A 1. The gain from Q D to Q T isT D F 2=/=/A Q Q R R (5)The output pulse duration of amplifier A 1 is broadened to R F C F , which is about 100µs. The output pulse duration is limited by integration time of the AD converter, and also limited by the output pulse duration and charge output of the Si-PIN detector. The amplifier has a wide bandwidth of 200MHz, enough for the 15ns pulse width of the input signal. The schematic shape of input signal and output signal of the charge sensitive amplifier are plotted in Fig.4.Proc. of SPIE Vol. 6622 66220T-4Fig.4 Schematic shape of input and output signal of the charge sensitive amplifierThe DDC114 converter is a 20-bit quad channel, current-input AD converter. It combines both current-to-voltage and AD conversion so that the photodiodes can be directly connected to its inputs and digitized. For each of the four inputs, the DDC114 provides a dual-switched integrator front-end. This allows for continuous current integration: while one integrator is being digitized by the onboard AD converter, the other is integrating the input current. The integration time of AD converter is set to 600µs, which is much shorter than the interval of pulsed signals (2.5ms), so there is at large one pulse coming in every two integration intervals of DDC114. For a system without a synchronization clock, there are two cases for the signals coming time. One is that when the signal lies in one integration clock, the energy of the laser pulse will be in proportion to the output of AD converter. The other is that when the signal lies on the boundary of the integration clock, the energy of the laser will be in proportion to the sum of the two adjacent integration periods output. The sketch is plotted in Fig.5.Fig.5 Scheduling sketch of pulse signals and AD converterAdd the output digital signals of the two adjacent integration clocks in the chip microprocessor program if both of them exceed the threshold of the amplifier noise output, then the output data of the single chip microprocessor represents the digitalized single pulse energy. The experiment result shows that the digital error of the system is less than 1%. The data are shown in Table.1.integrate transform transform tranform integrate integrateIntegrator B600µs 600µs600µs Integrator A R 1C 1=1 µs R F C F =100µsQ T I D (t ) Q DI T (t )Proc. of SPIE Vol. 6622 66220T-5Table.1 The experimental results of AD converterInput amplitude0.4V 0.3V 0.2V0.1V 11010 1010 0110 1000 0000 0001 0101 0110 0001 0010 1011 1111 21010 1010 0100 1000 0000 0010 0101 0110 00100010 1100 0000 31010 1010 0111 1000 0000 0100 0101 0110 0011 0010 1100 0001 41010 1010 0110 1000 0000 0110 0101 0110 0010 0010 1100 0001 51010 1010 0101 1000 0000 0001 0101 0110 0101 0010 1011 1111 61010 1010 0010 1000 0000 0011 0101 0110 0011 0010 1100 0000 71010 1010 0100 1000 0000 0110 0101 0110 0110 0010 1100 0000 Digitalized output data 81010 1010 0011 1000 0000 0011 0101 0110 0100 0010 1011 1110 average 2724.6 2051.3 1379.3 703.8Standard deviation0.138% 0.113% 0.09% 0.058% Nonlinear deviation±0.047% Each channel of the system is calibrated with a standard pulsed laser. The pulse energy of the standard laser is 2µJ, the wavelength is 532nm, the pulse duration is 10ns, and the repetition is 400Hz. The diameter of the laser is restricted by a tunable diaphragm. So the incident laser after the diaphragm can be completely collected by the active area of the detector. Adjust the energy incident to the active area of the photodiode detector with a series of attenuation filters and measure the output laser energy with a calibrated thermal-electric energy detector, and read the output data of the AD converter. The calibration curves of typical channels are shown in Fig.6. They are the calibration results of No.1, No.25, No.78, and No.107 channel. The x-axis is the incident energy of the pulsed laser, and the y-axis is the output unit of the AD converter. Fit results show that the nonlinearity of the energy density measuring is less than 0.1%. The response of each channel is uniformed by processing program in the computer end.A D o u t p u t (u n i t )Energy density(µJ/cm )A D o u t p u t (u n i t )Energy density(µJ/cm )Proc. of SPIE Vol. 6622 66220T-6A D o u t p u t (u n i t )Energy density(µJ/cm)A D o u t p u t (u n i t )Energy density(µJ/cm )Fig.6 Detector calibration curve of typical channelsThe system has a spatial resolution of 2.5cm. Cubic spline interpolation is used to reconstruct the whole laser beam profile with the spatial sample data. The refresh rate of the reconstructed image is 25Hz. It is limited by the transmission rate of asynchronous RS-422 series interface, and can be increased through displacing asynchronous series interface to synchronous series interface if needed. The beam quality and track of the beam center can also be calculated through the sample data. To improve the beam image quality, more sample photodiode detectors should be adopted to increase the spatial resolution. Ordinarily, the sample frequency should exceed two times of spatial frequency of the beam profile.3. APPLICATION OF THE SYSTEMWe measured the far-field beam profile and absolute energy density of the repetitively pulsed laser with the detector array system. In the experiment, the wavelength of the laser is 532nm, the repetition frequency is 400Hz, and the pulse duration is about 15ns. The measuring results are shown in Fig.7. We select six representative frames of the measured far-field laser beam profile. The time interval of the adjacent frame is 5 seconds. From the measured results, the energy density distribution evolvement of the far-field beam can be easily obtained. Using the system, other wavelength of 400nm to 1100nm, repetition frequency of 1Hz to 800Hz pulsed laser can also be measured.Proc. of SPIE Vol. 6622 66220T-7Fig.7 Representative frames of far-field repetitively pulsed laser beam profile4. CONCLUSIONIn this paper, we introduced a detector array system for measuring far-field energy density distribution of repetitively pulsed laser in real time. The measurement system has a dynamic amplitude range of above 103, a spatial resolution of 2.5cm, a refresh rate of 25Hz for the far-field laser beam image, along with a measurement uncertainty of less than 10% for energy density distribution. The system can absolutely measure far-field beam profile of repetitively pulsed laser, with response wavelength between 400nm and 1100nm, minimal detectable pulse width of about 10ns, repetition frequency of 1Hz to 800Hz, and energy density of 0.1-100µJ/cm2. The measuring repetition frequency can be broadened up to 1.25kHz through adjusting characters of AD converter. Near infrared pulsed laser with the wavelength up to 1700nm can also be measured with the system if displacing the Si-PIN detectors with InGaAs photodiode detectors. The spatial sample rate and the refresh rate of the frame should increase in the future according to the demand of laser measurement.5. ACKNOWLEGMENTSThe authors thank Mr. Wang Jianguo of the Risehood company for circuits design of high speed amplifier, Doctor Lin Yong for useful advice on the image processing software, Doctor Xue Tao of Tsinghua University for the single chip microprocessor and program supply, Wang Zhenbao, Shao Bibo and Yan Yan of the Northwest Institute of Nuclear Technology for their generous supports on system debugging and calibration experiments.REFERENCES1.Su Yi and Wan Min, High Energy Laser System, National Defense Technology Press, Beijing, 2004Proc. of SPIE Vol. 6622 66220T-82.Lv Baida, Propagation and Control of High-Power Lasers, National Defense Technology Press, Beijing, 19993.L. Baly Et al. Sensor for energy determination of nanosecond pulses of ultraviolet radiation, Sensors and ActuatorsA 102 (2003) 255–2604.M. W. Kruiskamp and D. M. W. Leenaerts, A CMOS Peak Detect Sample and Hold Circuit, IEEE Transactions onNuclear Science, Vol. 41, No. 1, February, 19945.G. Bertuccio, L. Fasoli, C. Fiorini, and M. Sampietro, Spectroscopy Charge Amplifier for Detectorswith IntegratedFront-End FET, IEEE Transcations on Nuclear Science, Vol. 42, No. 4, August, 1995Proc. of SPIE Vol. 6622 66220T-9。

相关文档
最新文档