11材料力学的任务
(完整版)材料力学重点总结
(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3。
材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。
5。
材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。
材料力学考研复习笔记
材料力学考研复习笔记第一章绪论及基本概念一、材料力学的任务构件正常工作要求:强度、刚度、稳定性;合理选材、降低消耗、节约资金、减轻自重;材料力学要合理解决以上两方面的矛盾。
二、基本假设连续性假设:变形后(正常工作状态下)材料的主要性质不变,仍满足几何相容条件;均匀性假设:可取相应的单元体代替整体;各向同性假设:可以用简单的函数表达所要研究的问题。
材料力学的力学模型应满足以上三个假设。
另外在初级材料力学阶段,还有小变形假设、弹性变形假设。
三、研究的基本方法力的研究:静力学方面的知识运动(变形)的研究:几何学方面力与运动的关系研究:物理学方面四、杆件变形的基本形式轴向拉伸和压缩、剪切变形、扭转变形、弯曲变形。
五、体会绪论是一本书最显层次的部分,要完整地涵盖整本书或学科的最主要内容,虽然看不出什么具体的东西,但是已经讲清楚了学科的各个方面,之后的任何一章都是以此为出发点的。
因此这是全书最重要的三个章节之一,这一章是通过给出该学科的宏观的概念来起作用的,这与第二章不同。
所以对材料力学的学习,建议要从绪论开始再从绪论结束,这样才能使自己的把握具有层次。
第二章轴向拉伸和压缩首先要说明一点,根据前面知识框架的叙述,本章是《材料力学》最重要的章节之一,希望引起读者的重视。
这一章通过最简单的变形形式(轴向拉压)的介绍,给出了材料力学的大部分“微观”概念,这些概念对于其他的变形来说是大同小异的,所以介绍其他几种变形的章节就没有最重要章节的身份。
鉴于本章的重要性,记述时比较详细,以后各种变形大致均可按照这一章的思路进行学习。
一、基本概念及关系1、外力内力(轴力(图))应力强度条件以上公式所涉及的概念也是材料力学各种基本变形所共有的,区别只是计算方法和具体的意义有所不同,但统统可以归为同一种概念。
箭头则表示有已知条件推出未知条件(所求)。
其中所用到的截面法也是材料力学中的重要方法,可以代表一定的材料力学的思想,也可以反映材料力学的精度要求。
材料力学的任务
材料力学的任务
材料力学是研究材料在外力作用下的性能、变形和破坏规律的学科。
它对于材
料的设计、加工和应用具有重要的理论指导和实际应用意义。
在材料力学领域,我们需要完成以下几个主要任务:
1. 研究材料的力学性能。
材料的力学性能包括弹性模量、屈服强度、断裂韧性等指标。
我们需要通过实
验和理论分析,对不同材料的力学性能进行研究和评定,为材料的选择和设计提供依据。
2. 分析材料的变形规律。
在外力作用下,材料会发生各种形式的变形,如拉伸、压缩、弯曲等。
我们需
要通过力学分析和数值模拟,揭示材料在不同载荷下的变形规律,为材料加工和使用提供参考。
3. 预测材料的破坏行为。
材料在受到过大的外力作用时会发生破坏,如断裂、疲劳、蠕变等。
我们需要
通过研究材料的破坏机制和规律,预测材料的寿命和安全性,为工程实践提供支持。
4. 优化材料的设计和应用。
在材料力学的基础上,我们需要对材料的设计和应用进行优化。
通过改变材料
的组织结构、合金配比、热处理工艺等手段,提高材料的性能和可靠性,满足不同工程领域的需求。
5. 探索新型材料和新技术。
随着科技的发展,新型材料和新技术不断涌现。
我们需要不断开拓研究领域,
探索新型材料的力学性能和应用前景,为材料科学的发展做出贡献。
总之,材料力学的任务是多方面的,涉及材料的性能、变形、破坏和应用等多个方面。
通过不懈的努力和研究,我们可以不断提高材料的性能和可靠性,推动材料科学的发展,为人类社会的进步做出贡献。
刘鸿文《材料力学》(第6版)复习笔记和课后习题及考研真题详解-第1~2章【圣才出品】
图 1-2-5 解:(1)应用截面法,叏 1-1 截面以下部分迚行叐力分枂,如图 1-2-6(a)所示。 由平衡条件可得:∑MA=0,FN1lsinα-Fx=0; 解得:FN1=Fx/(lsinα); 故当 x=l 时,1-1 截面内力有最大值:FN1max=F/sinα。 (2)应用截面法,叏 1-1 截面以下,2-2 截面右侧部分迚行叐力分枂,如图 1-2-6(b) 所示。 由平衡条件可得 ∑Fx=0,FN2-FN1cosα=0 ∑Fy=0,FS2-FN1sinα-F=0 ∑MO=0,FN1(l-x)sinα-M2=0 解得 2-2 截面内力:FN2=Fxcotα/l,FS2=(1-x/l)F,M2=xF(l-x)/l。 综上可知,当 x=l 时,FN2 有最大值,且 FN2max=Fcotα;当 x=0 时,FS2 有最大值, 且 FS2max=F;当 x=l/2 时,弯矩 M2 有最大值,且 M2max=Fl/4。
Δx 的比值为平均正应发,用 εm 表示,即
εm=Δs/Δx 平均正应发的枀限值即为正应发,用 ε 表示,也即
lim s
x0 x
3 / 161
圣才电子书 十万种考研考证电子书、题库规频学习平台
微体相邻棱边所夹直角改发量,称为切应发,用 γ 表示,单位为 rad,若 α 用表示发 形后微体相邻棱边的夹角,则
十万种考研考证电子书、题库规频学习平台
由平衡条件可得
∑Fy=0,F-FS=0
∑MC=0,Fb-M=0
则 n-n 截面内力为:FS=F,M=Fb。
图 1-2-2 1.2 试求图 1-2-3 所示结极 m-m 和 n-n 两截面上的内力,并挃出 AB 和 BC 两杆的 发形属于何类基本发形。
6 / 161
材料力学的任务
材料力学的任务————————————————————————————————作者:————————————————————————————————日期:第一章绪论第一节材料力学的任务人们在改善生活和征服自然、改造自然的活动中,经常要建筑各种各样的建筑物。
任何一座建筑物(水工建筑、工业与民用建筑桥梁隧道等),都是由很多的零部件按一定的规律组合而成的,这些零部件统称为构件..。
根据构件的主要几何特征,可将其分成若干种类型,其中一种叫杆件,它是材料力学研究的主要对象。
杆件的几何特征是长度l远大于横向尺寸(高h,宽b或直径d)。
其轴线(横截面形心的连线)为直线的称为直杆;轴线为曲线的称为曲杆。
截面变化的杆称为变截面杆;截面不变化的直杆简称为等直杆。
等直杆是最简单也是最常见的杆件,如图1-1(a)所示。
工程中的梁、轴、柱均属于杆件。
轴线横截面等直杆图1-1 杆件横截面曲杆轴线当建筑物承受到外力的作用(或其它外在因素的影响)时,组成该建筑物的各杆件都必须能够正常地工作,这样才能保证整个建筑物的正常工作。
为此,要求杆件不发生破坏。
如建筑物的大梁断裂时,整个结构就无法使用。
不破坏并不一定能正常工作,若杆件在外力作用下发生过大的变形,也不能正常工作。
如吊车梁若因荷载过大而发生过度的变形,吊车也就不能正常行驶。
又如机床主轴若发生过大的变形,则引起振动,影响机床的加工质量。
此外,有一些杆件在荷载作用下,其所有的平衡形式可能丧失稳定性。
例如,受压柱如果是细长的,则在压力超过一定限度后,就有可能明显地受弯。
直柱受压突然变弯的现象称为丧失了稳定性。
杆件失稳将造成类似房屋倒塌的严重后果。
总而言之,杆件要能正常工作,必须同时满足以下三方面的要求:(1)不会发生破坏,即杆件必须具有足够的强度..。
(2)不产生过大变形,发生的变形能限制在正常工作许可的范围以内,即杆件必须具有足够的刚度..。
(3)不失稳,杆件在其原有形状下的平衡应保持为稳定的平衡,即杆件必须具有足够的稳定性...。
材料力学的任务、研究对象、基本假设、基本概念
单辉祖:材料力学Ⅰ
30
§2 材料力学的基本假设
单辉祖:材料力学Ⅰ
31
连续性假设
连续性:在构件所占有的空间内处处充满物质
构件内的一些力学量(例如各点的位移) 可用坐标的连续函数表示,也可采用无限小 的数学分析方法。
当空穴或裂纹不能
忽略时,采用断裂力
学方法专门研究。
裂纹
单辉祖:材料力学Ⅰ
33
均匀性假设 均匀性:材料的力学性能与其在构件中的位置无关
材料力学 :
研究在外力的作用下, 1)工程基本构件内部将产生什么力? 2)这些力是怎样分布的? 3)构件将发生什么变形? 4)这些变形对于工程构件的正常工作将会产生什么影响?
事关结构安全,重中之重!!!
单辉祖:材料力学Ⅰ
4
第1章 绪 论
本章主要内容:
(1)材料力学的任务与研究对象 (2)材料力学的基本假设 (3)材料力学的基本概念
➢ 外力与内力 ➢ 杆件变形形式 ➢ 应力、应变、胡克定律
单辉祖:材料力学Ⅰ
17
§1 材料力学的任务与研究对象
工程实例 构件的强度、刚度与稳定性 材料力学的任务 材料力学的研究对象
单辉祖:材料力学Ⅰ
18
构件的强度、刚度与稳定性
失效: 广义破坏,包括断裂与失稳等
强度失效是指构件在外力作用下发生不可恢复 的塑性变形或发生断裂。
G = 80 GPa,求 t = ?
解:
注意:g 虽很小,但因 G 很大,切应力 t 不小
单辉祖:材料力学Ⅰ
59
§7 杆件的变形形式
基本变形形式 组合变形形式
单辉祖:材料力学Ⅰ
60
基本变形形式
在外力作用下,杆件变形多种多样,但经分析,其变 形或属于下述基本形式之一,或为其组合
材料力学重点公式复习
1、应力 全应力正应力切应力线应变 的大小; 外力偶矩当功率P 当功率拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N FAσ= 3-1式中N F 为该横截面的轴力,A 为横截面面积;正负号规定 拉应力为正,压应力为负; 公式3-1的适用条件:1杆端外力的合力作用线与杆轴线重合,即只适于轴向拉压杆件; 2适用于离杆件受力区域稍远处的横截面;3杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; 4截面连续变化的直杆,杆件两侧棱边的夹角020α≤时 拉压杆件任意斜截面a 图上的应力为平均分布,其计算公式为全应力 cos p ασα= 3-2正应力 2cos ασσα=3-3切应力1sin 22ατα=3-4 式中σ为横截面上的应力;正负号规定:α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负;ασ 拉应力为正,压应力为负;ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负;两点结论:1当00α=时,即横截面上,ασ达到最大值,即()max ασσ=;当α=090时,即纵截面上,ασ=090=0;2当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αατ=1.2 拉压杆的应变和胡克定律 1变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长;如图3-2;图3-2 轴向变形 1l l l ∆=- 轴向线应变 llε∆= 横向变形 1b b b ∆=- 横向线应变 bbε∆'=正负号规定 伸长为正,缩短为负; 2胡克定律当应力不超过材料的比例极限时,应力与应变成正比;即 E σε= 3-5 或用轴力及杆件的变形量表示为 N F ll EA∆=3-6 式中EA 称为杆件的抗拉压刚度,是表征杆件抵抗拉压弹性变形能力的量;公式3-6的适用条件:a 材料在线弹性范围内工作,即p σσ〈;b 在计算l ∆时,l 长度内其N 、E 、A 均应为常量;如杆件上各段不同,则应分段计算,求其代数和得总变形;即1ni ii i iN l l E A =∆=∑3-7 3泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值;即 ενε'=3-8强度计算许用应力 材料正常工作容许采用的最高应力,由极限应力除以安全系数求得; 塑性材料 σ=s s n σ ; 脆性材料 σ=b bn σ其中,s b n n 称为安全系数,且大于1;强度条件:构件工作时的最大工作应力不得超过材料的许用应力; 对轴向拉伸压缩杆件[]NAσσ=≤ 3-9 按式1-4可进行强度校核、截面设计、确定许克载荷等三类强度计算; 2.1 切应力互等定理受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小相等,方向同时垂直指向或者背离两截面交线,且与截面上存在正应力与否无关;2.2纯剪切单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态; 2.3切应变切应力作用下,单元体两相互垂直边的直角改变量称为切应变或切应变,用τ表示; 2.4 剪切胡克定律在材料的比例极限范围内,切应力与切应变成正比,即 G τγ= 3-10式中G 为材料的切变模量,为材料的又一弹性常数另两个弹性常数为弹性模量E 及泊松比ν,其数值由实验决定;对各向同性材料,E 、 ν、G 有下列关系 2(1)EG ν=+ 3-112.5.2切应力计算公式横截面上某一点切应力大小为 p pT I ρτ=3-12 式中p I 为该截面对圆心的极惯性矩,ρ为欲求的点至圆心的距离;圆截面周边上的切应力为 max tTW τ=3-13 式中p t I W R=称为扭转截面系数,R 为圆截面半径;2.5.3 切应力公式讨论(1) 切应力公式3-12和式3-13适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内; (2) 极惯性矩p I 和扭转截面系数t W 是截面几何特征量,计算公式见表3-3;在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强;因此,设计空心轴比实心轴更为合理;2.5.4强度条件圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏;因此,强度条件为[]max maxt T W ττ⎛⎫=≤⎪⎝⎭ 3-14 对等圆截面直杆 []maxmax tT W ττ=≤ 3-15式中[]τ为材料的许用切应力; 3.1.1中性层的曲率与弯矩的关系1zMEI ρ=3-16 式中,ρ是变形后梁轴线的曲率半径;E 是材料的弹性模量;E I 是横截面对中性轴Z 轴的惯性矩; 3.1.2横截面上各点弯曲正应力计算公式 ZMy I σ=3-17 式中,M 是横截面上的弯矩;Z I 的意义同上;y 是欲求正应力的点到中性轴的距离最大正应力出现在距中性轴最远点处 max max max max z zM My I W σ=•= 3-18 式中,max z z I W y =称为抗弯截面系数;对于h b ⨯的矩形截面,216z W bh =;对于直径为D 的圆形截面,332z W D π=;对于内外径之比为d a D =的环形截面,34(1)32z W D a π=-; 若中性轴是横截面的对称轴,则最大拉应力与最大压应力数值相等,若不是对称轴,则最大拉应力与最大压应力数值不相等;3.2梁的正应力强度条件梁的最大工作应力不得超过材料的容许应力,其表达式为 []maxmax zM W σσ=≤ 3-19 对于由拉、压强度不等的材料制成的上下不对称截面梁如T 字形截面、上下不等边的工字形截面等,其强度条件应表达为[]maxmax 1l t z M y I σσ=≤ 3-20a []maxmax 2y c zM y I σσ=≤ 3-20b 式中,[][],t c σσ分别是材料的容许拉应力和容许压应力;12,y y 分别是最大拉应力点和最大压应力点距中性轴的距离;3.3梁的切应力 z z QS I bτ*= 3-21式中,Q 是横截面上的剪力;z S *是距中性轴为y 的横线与外边界所围面积对中性轴的静矩;z I 是整个横截面对中性轴的惯性矩;b 是距中性轴为y 处的横截面宽度; 3.3.1矩形截面梁切应力方向与剪力平行,大小沿截面宽度不变,沿高度呈抛物线分布;切应力计算公式 22364Q h y bh τ⎛⎫=- ⎪⎝⎭3-22最大切应力发生在中性轴各点处,max 32QAτ=; 3.3.2工字形截面梁切应力主要发生在腹板部分,其合力占总剪力的95~97%,因此截面上的剪力主要由腹板部分来承担;切应力沿腹板高度的分布亦为二次曲线;计算公式为 ()2222824z Q B b h H h y I b τ⎡⎤⎛⎫=-+-⎢⎥ ⎪⎝⎭⎣⎦3-23近似计算腹板上的最大切应力:dhFs 1max=τd 为腹板宽度 h 1为上下两翼缘内侧距3.3.3圆形截面梁横截面上同一高度各点的切应力汇交于一点,其竖直分量沿截面宽度相等,沿高度呈抛物线变化;最大切应力发生在中性轴上,其大小为 2max42483364z z d d Q QS Q d I b Adππτπ*⋅⋅===⨯ 3-25 圆环形截面上的切应力分布与圆截面类似;3.4切应力强度条件梁的最大工作切应力不得超过材料的许用切应力,即 []max max maxz z Q S I bττ*=≤ 3-26式中,max Q 是梁上的最大切应力值;max z S *是中性轴一侧面积对中性轴的静矩;z I 是横截面对中性轴的惯性矩;b 是maxτ处截面的宽度;对于等宽度截面,max τ发生在中性轴上,对于宽度变化的截面,max τ不一定发生在中性轴上; 4.2剪切的实用计算名义切应力:假设切应力沿剪切面是均匀分布的 ,则名义切应力为 AQ=τ 3-27 剪切强度条件:剪切面上的工作切应力不得超过材料的 许用切应力[]τ,即 []ττ≤=AQ3-285.2挤压的实用计算名义挤压应力 假设挤压应力在名义挤压面上是均匀分布的,则 []bsbs bs bsP A σσ=≤ 3-29 式中,bs A 表示有效挤压面积,即挤压面面积在垂直于挤压力作用线平面上的投影;当挤压面为平面时为接触面面积,当挤压面为曲面时为设计承压接触面面积在挤压力垂直面上的 投影面积;挤压强度条件挤压面上的工作挤压应力不得超过材料的许用挤压应力 []bs bsbs A Pσσ≤=3-30 1, 变形计算圆轴扭转时,任意两个横截面绕轴线相对转动而产生相对扭转角;相距为l 的两个横截面的相对扭转角为dx GI TlP⎰=0ϕ rad 4.4 若等截面圆轴两截面之间的扭矩为常数,则上式化为PGI Tl=ϕ rad 4.5 图4.2式中P GI 称为圆轴的抗扭刚度;显然,ϕ的正负号与扭矩正负号相同;公式4.4的适用条件:(1) 材料在线弹性范围内的等截面圆轴,即P ττ≤;(2) 在长度l 内,T 、G 、P I 均为常量;当以上参数沿轴线分段变化时,则应分段计算扭转角,然后求代数和得总扭转角;即 ∑==ni P i ii iI G l T 1ϕ rad 4.6 当T 、P I 沿轴线连续变化时,用式4.4计算ϕ; 2, 刚度条件扭转的刚度条件 圆轴最大的单位长度扭转角max 'ϕ不得超过许可的单位长度扭转角[]'ϕ,即[]''maxmax ϕϕ≤=PGI T rad/m 4.7 式 []'180'max max ϕπϕ≤⨯=︒P GI T m /︒ 4.82,挠曲线的近似微分方程及其积分在分析纯弯曲梁的正应力时,得到弯矩与曲率的关系EIM=ρ1对于跨度远大于截面高度的梁,略去剪力对弯曲变形的影响,由上式可得()()EIx M x =ρ1 利用平面曲线的曲率公式,并忽略高阶微量,得挠曲线的近似微分方程,即 ()EIx M =''ω 4.9 将上式积分一次得转角方程为 ()C dx EIx M +==⎰'ωθ 4.10再积分得挠曲线方程 ()D Cx dx dx EI x M ++⎥⎦⎤⎢⎣⎡=⎰⎰ω 4.11 式中,C,D 为积分常数,它们可由梁的边界条件确定;当梁分为若干段积分时,积分常数的确定除需利用边界条件外,还需要利用连续条件; 3,梁的刚度条件限制梁的最大挠度与最大转角不超过规定的许可数值,就得到梁的刚度条件,即 []ωω≤max ,[]θθ≤max 4.12 3,轴向拉伸或压缩杆件的应变能在线弹性范围内,由功能原理得 l F W V ∆==21ε 当杆件的横截面面积A 、轴力F N 为常量时,由胡克定律EAlF l N =∆,可得 EA l F V N 22=ε 4.14杆单位体积内的应变能称为应变能密度,用εV 表示;线弹性范围内,得 σεε21=V 4.15 4,圆截面直杆扭转应变能 在线弹性范围内,由功能原 ϕe r M W V 21== 将T M e =与P GI Tl =ϕ代入上式得 Pr GI lT V 22= 4.16图4.5根据微体内的应变能在数值上等于微体上的内力功,得应变能的密度r V : r V r τ21= 4.175,梁的弯曲应变能在线弹性范围内,纯弯曲时,由功能原理得 将M M e =与EIMl=θ代入上式得 EI l M V 22=ε 4.18图4.6横力弯曲时,梁横截面上的弯矩沿轴线变化,此时,对于微段梁应用式4.18,积分得全梁的弯曲应变能εV ,即()⎰=lEI dxx M V 22ε 4.192.截面几何性质的定义式列表于下:静 矩 惯性矩惯性半径惯性积 极惯性矩3.惯性矩的平行移轴公式静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示; 定义式: ⎰=Ay zdA S ,⎰=Az ydA S Ⅰ-1量纲为长度的三次方;由于均质薄板的重心与平面图形的形心有相同的坐标C z 和C y ;则由此可得薄板重心的坐标 C z 为 AS A zdA z yAC==⎰同理有 A S y zC =所以形心坐标 A S z y C =,ASy z C = Ⅰ-2或 C y z A S ⋅=,C z y A S ⋅=由式Ⅰ-2得知,若某坐标轴通过形心轴,则图形对该轴的静矩等于零,即0=C y ,0=z S ;0=C z ,则 0=y S ;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心;静矩与所选坐标轴有关,其值可能为正,负或零;如一个平面图形是由几个简单平面图形组成,称为组合平面图形;设第 I 块分图形的面积为 i A ,形心坐标为Ci Ci z y , ,则其静矩和形心坐标分别为 Ci i n i z y A S 1=∑=,Ci i ni y z A S 1=∑= Ⅰ-3∑∑====ni ini Cii z C AyA AS y 11,∑∑====ni ini cii y C AzA AS z 11 Ⅰ-4§Ⅰ-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示;⎰=Ay dA z I 2,⎰=Az dA y I 2 Ⅰ-5量纲为长度的四次方,恒为正;相应定义AI i y y =,AI i zz =Ⅰ-6 为图形对 y 轴和对 z 轴的惯性半径;组合图形的惯性矩;设 zi yi I I , 为分图形的惯性矩,则总图形对同一轴惯性矩为yi ni y I I 1=∑=,zi ni z I I 1=∑= Ⅰ-7若以ρ表示微面积dA 到坐标原点O 的距离,则定义图形对坐标原点O 的极惯性矩⎰=Ap dA I 2ρ Ⅰ-8因为 222z y +=ρ所以极惯性矩与轴惯性矩有关系 ()z y Ap I I dA z yI +=+=⎰22Ⅰ-9式Ⅰ-9表明,图形对任意两个互相垂直轴的轴惯性矩之和,等于它对该两轴交点的极惯性矩;下式 ⎰=Ayz yzdA I Ⅰ-10定义为图形对一对正交轴 y 、z 轴的惯性积;量纲是长度的四次方; yz I 可能为正,为负或为零;若 y ,z 轴中有一根为对称轴则其惯性积为零;§Ⅰ-3平行移轴公式由于同一平面图形对于相互平行的两对直角坐标轴的惯性矩或惯性积并不相同,如果其中一对轴是图形的形心轴()c cz ,y时,如图Ⅰ-7所示,可得到如下平行移轴公式⎪⎩⎪⎨⎧+=+=+=abA II A b I I Aa I I C C C C z y yzz z y y 22 Ⅰ-13 简单证明之: 其中⎰AC dA z 为图形对形心轴 C y 的静矩,其值应等于零,则得同理可证I-13中的其它两式;结论:同一平面内对所有相互平行的坐标轴的惯性矩,对形心轴的最小;在使用惯性积移轴公式时应注意 a ,b 的正负号;把斜截面上的总应力p 分解成与斜截面垂直的正应力n σ和相切的切应力n τ图222123n l m n σσσσ=++ 2222222123n n l m n τσσσσ=++-在以n σ为横坐标、n τ截面上的正应力n σ和切应力n τ区域图13.2中阴影中的一点;由图13.2显见。
材料力学课件全套
§2 2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F0 FN F
1 截面法求内力
F 1假想沿mm横截面将
杆切开
2留下左半段或右半段
F 3将弃去部分对留下部分
的作用用内力代替
4对留下部分写平衡方程 求出内力即轴力的值
目录
§2 2 轴向拉伸或压缩时横截面上的内力和应力
1kPa=103N/m2 1MPa=106N/m2 1GPa=109N/m2
目录
§1 5 变形与应变
1 位移 MM'
M'
刚性位移; 变形位移
2 变形
M
物体内任意两点的相对位置发生变化
取一微正六面体
y
g
两种基本变形:
线变形
L
—— 线段长度的变化
角变形
——线段间夹角的变化 o
M
x
L'
x+s
M'
N'
N
x
圣 维 南 原 理
目录
§2 2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2 2 轴向拉伸或压缩时横截面上的内力和应力
例题2 2
A 1
图示结构;试求杆件AB CB的应
力 已知 F=20kN;斜杆AB为直径
20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN1
F
y
F N 2 45° B x
建于隋代605年的河北赵州桥桥长64 4米;跨径37.02米,用石2800吨
目录
§1 1 材料力学的任务
绪论材料力学的任务材料力学是研究...
绪论材料力学的任务材料力学是研究构件强度、刚度和稳定性计算的学科。
这些计算是工程师选定既安全而又最经济的构件材料和尺寸的必要基础。
强度是指构件在荷载作用下抵抗破坏的能力。
刚度是指构件在荷载作用下抵抗变形的能力。
稳定性是指构件保持其原有平衡形式的能力。
变形固体的基本假设各种构件均由固体材料制成。
固体在外力作用下将发生变形故称为变形固体。
材料力学中对变形固体所作的基本假设是:(一)连续性假设组成固体的物质毫无空隙地充满了固体的几何空间。
(二)均匀性假设在固体的体积内,各处的力学性能完全相同。
(三)各向同性假设在固体的各个方向上有相同的力学性能。
小变形的概念:构件由荷载引起的变形远小于构件的原始尺寸。
变形远小于构件尺寸,在研究构件的平衡和运动时按变形前的原始尺寸进行计算,以保证问题在几何上是线性的。
杆件的主要几何特征杆件是指长度远大于横向尺寸(高度和宽度)的构件。
这是材料力学研究的主要对象。
杆件的两个主要的几何特征是横截面和轴线。
横截面——垂直于杆件长度方向的截面。
轴线——各横截面形心的连线。
若杆的轴线为直线,称为直杆。
若杆的轴线为曲线,称为曲杆。
低碳钢在拉伸时的力学性能应变曲线上还有如下规律轴向拉伸与压缩轴向拉伸与压缩的概念(一)力学模型轴向拉压杆的力学模型如下图5—2—1所示。
(二)受力特征作用于两端的外力的合力,大小相等、指向相反、沿杆件轴线作用。
(三)变形特征杆件主要产生轴线方向的均匀伸长(缩短)。
轴向拉伸(压缩)杆横截面上的内力内力由外力作用而引起的构件内部各部分之间的相互作用力(二)截面法截面法是求内力的一般方法。
用截面法求内力的步骤为1.截开在需求内力的截面处,假想地沿该截面将构件截分为二。
2.代替任取一部分为研究对象,称为脱离体。
用内力代替弃去部分对脱离体的作用。
3.平衡对脱离体列写平衡条件,求解未知内力。
截面法的图示如图5-2-2。
(三)轴力轴向拉压杆横截面上的内力,其作用线必定与杆轴线相重合,称为轴力。
理工类专业课复习资料-材料力学基本概念和公式
第一章 绪论第一节 材料力学的任务1、组成机械与结构的各组成部分,统称为构件。
2、保证构件正常或安全工作的基本要求:a)强度,即抵抗破坏的能力;b)刚度,即抵抗变形的能力;c)稳定性,即保持原有平衡状态的能力。
3、材料力学的任务:研究构件在外力作用下的变形与破坏的规律,为合理设计构件提供强度、刚度和稳定性分析的基本理论与计算方法。
第二节 材料力学的基本假设1、连续性假设:材料无空隙地充满整个构件。
2、均匀性假设:构件内每一处的力学性能都相同3、各向同性假设:构件某一处材料沿各个方向的力学性能相同。
木材是各向异性材料。
第三节 内力1、内力:构件内部各部分之间因受力后变形而引起的相互作用力。
2、截面法:用假想的截面把构件分成两部分,以显示并确定内力的方法。
3、截面法求内力的步骤:①用假想截面将杆件切开,一分为二;②取一部分,得到分离体;③对分离体建立平衡方程,求得内力。
4、内力的分类:轴力N F ;剪力S F ;扭矩T ;弯矩M第四节 应力1、一点的应力: 一点处内力的集(中程)度。
全应力0limA Fp A∆→∆=∆;正应力σ;切应力τ;p =2、应力单位:Pa (1Pa=1N/m 2,1MPa=1×106 Pa ,1GPa=1×109 Pa )第五节 变形与应变1、变形:构件尺寸与形状的变化称为变形。
除特别声明的以外,材料力学所研究的对象均为变形体。
2、弹性变形:外力解除后能消失的变形成为弹性变形。
3、塑性变形:外力解除后不能消失的变形,称为塑性变形或残余变形。
4、小变形条件:材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸。
对构件进行受力分析时可忽略其变形。
5、线应变:ll ∆=ε。
线应变是无量纲量,在同一点不同方向线应变一般不同。
6、切应变:tan γγ≈。
切应变为无量纲量,切应变单位为rad 。
第六节 杆件变形的基本形式1、材料力学的研究对象:等截面直杆。
(完整版)材料力学必备知识点
材料力学必备知识点1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。
2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。
3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。
4、 低碳钢:含碳量在0.3%以下的碳素钢。
5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。
>5%的材料称为塑性材料: <5%的材料称为脆性材料8、 失效:断裂和出现塑性变形统称为失效9、 应变能:弹性固体在外力作用下,因变形而储存的能量10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。
12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力13、三种形式的梁:简支梁、外伸梁、悬臂梁14、组合变形:由两种或两种以上基本变形组合的变形15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。
16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。
17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。
18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。
材料力学基本概念(最新整理)
材料力学基本概念一、基本概念1 材料力学的任务是:研究构件的强度、刚度、稳定性的问题,解决安全与经济的矛盾。
2 强度:构件抵抗破坏的能力。
3 刚度:构件抵抗变形的能力。
4 稳定性:构件保持初始直线平衡形式的能力。
5 连续均匀假设:构件内均匀地充满物质。
6 各项同性假设:各个方向力学性质相同。
7 内力:以某个截面为分界,构件一部分与另一部分的相互作用力。
8 截面法:计算内力的方法,共四个步骤:截、留、代、平。
9 应力:在某面积上,内力分布的集度(或单位面积的内力值)、单位Pa。
10 正应力:垂直于截面的应力(σ)11 剪应力:平行于截面的应力( )12 弹性变形:去掉外力后,能够恢复的那部分变形。
13 塑性变形:去掉外力后,不能够恢复的那部分变形。
14 四种基本变形:拉伸或压缩、剪切、扭转、弯曲。
二、拉压变形15 当外力的作用线与构件轴线重合时产生拉压变形。
16 轴力:拉压变形时产生的内力。
17 计算某个截面上轴力的方法是:某个截面上轴力的大小等于该截面的一侧各个轴向外力的代数和,其中离开该截面的外力取正。
18 画轴力图的步骤是:①画水平线,为X轴,代表各截面位置;②以外力的作用点为界,将轴线分段;③计算各段上的轴力;④在水平线上画出对应的轴力值。
(包括正负和单位)19 平面假设:变形后横截面仍保持在一个平面上。
20 拉(压)时横截面的应力是正应力,σ=N/A21 斜截面上的正应力:σα=σcos²α22 斜截面上的切应力: α=σSin2α/223 胡克定律:杆件的变形时与其轴力和长度成正比,与其截面面积成反比,计算式△L=NL/EA(适用范围σ≤σp)24 胡克定律的微观表达式是σ=Eε。
25 弹性模量(E)代表材料抵抗变形的能力(单位P a)。
26 应变:变形量与原长度的比值ε=△L/L(无单位),表示变形的程度。
27 泊松比(横向变形与轴向变形之比)μ=∣ε1/ε∣28 钢(塑)材拉伸试验的四个过程:比例阶段、屈服阶段、强化阶段、劲缩阶段。
材料力学(全套483页PPT课件)-精选全文
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。
材料力学(东华理工大学)智慧树知到答案章节测试2023年
第一章测试1.强度问题为构件抵抗破坏的能力。
A:对B:错答案:A2.材料力学的基本任务为强度、刚度和稳定性。
A:对B:错答案:A3.杆件的四种基本变形为轴向受拉、轴向受压、扭转和弯曲。
A:对B:错答案:B4.外力作用在杆件轴线上时发生轴向拉压变形。
A:对B:错答案:A5.材料力学的研究对象为?A:质点系B:可变形固体C:刚体D:质点答案:B6.在荷载作用下,构件应不至于破坏(断裂或失效),即具有抵抗破坏的能力。
这一问题属于?A:刚度问题B:稳定性问题C:强度问题答案:C7.在荷载作用下,构件所产生的变形应不超过工程上允许的范围,即具有抵抗变形的能力。
这一问题属于?A:稳定性问题B:强度问题C:刚度问题答案:C8.承受荷载作用时,构件在其原有形态下的平衡应保持为稳定的平衡。
这一问题属于?A:强度问题B:刚度问题C:稳定性问题答案:C9.构件的强度、刚度和稳定性问题均与所用材料的什么有关?A:力学性能B:受力状态C:构件体系特点答案:A10.材料力学的基本任务为?A:刚度问题B:强度问题C:稳定性问题答案:ABC第二章测试1.杆件轴力图的绘制方法可采用截面法,截面法步骤可分为一截二代三平衡,其中平衡方程中力的正负号与轴力正负号规定准则一致。
A:错B:对答案:A2.轴力图可以清晰展示轴力沿着杆件各个横截面内力的分布规律。
A:对B:错答案:A3.弹性模量的单位为帕A:错B:对答案:B4.拉压超静定问题求解过程中需补充变形协调方程。
A:对B:错答案:A5.静定结构构件体系在温度作用下也会产生温度内力和应力。
A:错B:对答案:A6.轴向拉压变形时,哪个截面上的切应力最大。
A:60度斜截面上B:横截面C:30度斜截面上D:45度斜截面上答案:D7.屈服阶段的强度指标为?A:屈服应力B:比例极限C:强度极限D:弹性极限答案:A8.轴向拉压变形会在横截面上产生何种应力分量?A:正应力B:切应力C:全应力答案:A9.轴向拉压变形时,斜截面应力分量包含有?A:正应力B:切应力答案:AB10.低碳钢单轴拉伸时,应力应变关系曲线的弹性阶段包含?A:颈缩阶段B:强化阶段C:非比例阶段D:线性比例阶段答案:CD第三章测试1.薄壁圆筒扭转时横截面形状与大小均发生变化A:错B:对答案:A2.圆轴扭转时,圆周线大小、形状和间距均保持不变。
材料力学的任务
材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。
变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。
外力分类: 表面力、体积力;静载荷、动载荷。
内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。
(3)根据平衡条件,列平衡方程,求解截面上和内力。
应力: dA dPA P p A =∆∆=→∆lim 0正应力、切应力。
变形与应变:线应变、切应变。
杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。
静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。
失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。
二者统称为极限应力理想情形。
塑性材料、脆性材料的许用应力分别为:[]3n s σσ=,[]b bn σσ=,强度条件:[]σσ≤⎪⎭⎫⎝⎛=max max A N ,等截面杆 []σ≤A N m a x轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=∆1,沿轴线方向的应变和横截面上的应力分别为:l l ∆=ε,AP A N ==σ。
横向应变为:b bb b b -=∆=1'ε,横向应变与轴向应变的关系为:μεε-='。
胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。
E 为弹性模量。
将应力与应变的表达式带入得:EANl l =∆ 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。
圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dxd φργρ=。
材料力学的主要任务
材料力学的主要任务材料力学是研究材料内部结构、性能和变形规律的一门学科,其主要任务包括材料的强度、刚度、韧性、疲劳、断裂等力学性能的研究,以及材料的变形、应力、应变等力学行为的分析。
在工程实践中,材料力学的研究对于材料的设计、选择和加工具有重要意义。
首先,材料力学的主要任务之一是研究材料的强度。
材料的强度是指材料在受力作用下所能承受的最大应力,通过对材料的强度进行研究,可以评估材料在工程实践中的可靠性和安全性,为工程设计提供依据。
材料的强度研究还能帮助人们了解材料在受力作用下的变形规律,为材料的应用提供理论指导。
其次,材料力学的主要任务还包括研究材料的刚度和韧性。
材料的刚度是指材料在受力作用下的变形程度,而韧性则是材料在受力作用下的抗破坏能力。
通过对材料的刚度和韧性进行研究,可以评估材料在受力作用下的性能表现,为材料的选择和设计提供参考依据。
同时,了解材料的刚度和韧性也有助于优化材料的加工工艺,提高材料的使用效率。
此外,材料力学的主要任务还包括研究材料的疲劳和断裂性能。
材料在长期受到交变载荷作用时会发生疲劳现象,而断裂则是材料在受到极限载荷作用下的破坏行为。
通过对材料的疲劳和断裂性能进行研究,可以评估材料在实际使用中的寿命和安全性,为工程设计和材料选择提供依据。
同时,研究材料的疲劳和断裂性能也有助于改进材料的制备工艺,提高材料的使用寿命和可靠性。
综上所述,材料力学的主要任务包括研究材料的强度、刚度、韧性、疲劳和断裂等力学性能,以及分析材料的变形、应力、应变等力学行为。
这些任务的完成对于材料的设计、选择和加工具有重要意义,有助于提高材料的使用效率和安全性,推动工程技术的发展。
因此,加强对材料力学的研究,不断提升材料力学的理论水平和实践应用,对于推动材料科学的发展和促进工程技术的进步具有重要意义。
材料力学优质题库-知识归纳整理
知识归纳整理材料力学基本知识复习要点1.材料力学的任务材料力学的主要任务算是在满足刚度、强度和稳定性的基础上,以最经济的代价,为构件确定合理的截面形状和尺寸,挑选合适的材料,为合理设计构件提供必要的理论基础和计算想法。
2.变形固体及其基本假设延续性假设:以为组成物体的物质密实地充满物体所在的空间,毫无空隙。
均匀性假设:以为物体内各处的力学性能彻底相同。
各向同性假设:以为组成物体的材料沿各方向的力学性质彻底相同。
小变形假设:以为构件在荷载作用下的变形与构件原始尺寸相比非常小。
3.外力与内力的概念外力:施加在结构上的外部荷载及支座反力。
内力:在外力作用下,构件内部各质点间相互作用力的改变量,即附加相互作用力。
内力成对闪现,等值、反向,分别作用在构件的两部分上。
4.应力、正应力与切应力应力:截面上任一点内力的集度。
正应力:垂直于截面的应力分量。
切应力:和截面相切的应力分量。
5.截面法分二留一,内力代替。
可概括为四个字:截、弃、代、平。
即:欲求某点处内力,假想用截面把构件截开为两部分,保留其中一部分,舍弃另一部分,用内力代替弃去部分对保留部分的作用力,并举行受力平衡分析,求出内力。
6.变形与线应变切应变变形:变形固体形状的改变。
线应变:单位长度的伸缩量。
练习题一.单选题1、工程构件要正常安全的工作,必须满足一定的条件。
下列除()项,其他各项是必须满足的条件。
A、强度条件B、刚度条件C、稳定性条件D、硬度条件求知若饥,虚心若愚。
2、各向同性假设以为,材料内部各点的()是相同的。
A.力学性质B.外力C.变形D.位移3、根据小变形条件,可以以为()A.构件不变形B.结构不变形C.构件仅发生弹性变形D.构件变形远小于其原始尺寸4、构件的强度、刚度和稳定性()A.只与材料的力学性质有关B.只与构件的形状尺寸有关C.与二者都有关D.与二者都无关5、在下列各工程材料中,()不可应用各向同性假设。
6、A.铸铁 B.玻璃 C.松木 D.铸铜物体受力作用而发生变形,当外力去掉后又能恢复原来形状和尺寸的性质称为()A.弹性B.塑性C.刚性D.稳定性7、结构的超静定次数等于()。
材料力学的任务
材料力学的任务
材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学
和工程技术的重要基础学科。
材料力学的任务是研究材料的本构关系、破坏规律和变形机理,为材料的设计、制备和应用提供理论指导和技术支持。
首先,材料力学的任务之一是研究材料的本构关系。
材料的本构关系是材料在
外力作用下的应力-应变关系,是材料力学研究的核心内容。
通过研究材料的本构
关系,可以揭示材料的力学性能,如弹性模量、屈服强度、断裂韧性等,为材料的选用和设计提供依据。
其次,材料力学的任务还包括研究材料的破坏规律。
材料在外力作用下会发生
破坏,研究材料的破坏规律可以揭示材料的破坏机理和破坏形式,为材料的安全设计和可靠应用提供依据。
例如,通过研究材料的疲劳破坏规律,可以预测材料的寿命,为材料的使用和维护提供指导。
此外,材料力学的任务还包括研究材料的变形机理。
材料在外力作用下会发生
变形,研究材料的变形机理可以揭示材料的塑性行为和变形规律,为材料的加工和成形提供依据。
例如,通过研究材料的冷加工变形机理,可以优化材料的加工工艺,提高材料的力学性能。
综上所述,材料力学的任务是研究材料的本构关系、破坏规律和变形机理,为
材料的设计、制备和应用提供理论指导和技术支持。
通过开展材料力学的研究工作,可以不断提高材料的性能和品质,推动材料科学和工程技术的发展。
希望通过不懈努力,能够在材料力学领域取得更多的研究成果,为社会经济发展和人类福祉做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-1 材料力学的任务
1. 几个术语
构件与杆件:
组成机械的零部件或工程结构中的构件统称为构件。
如图1-1所示桥式起重机的主梁、吊钩、钢丝绳;图1-2所示悬臂吊车架的横梁AB,斜杆CD都是构件。
图1-1 桥式起重机
实际构件有各种不同的形状,所以根据形状的不同将构件分为:杆件、板和壳、块体。
杆件:
为长度远大于横向尺寸的构件,
其几何要素是横截面和轴线,如图
1-3a
的截面;轴线是横截面形心的连线。
按横截面和轴线两个因素可将杆
件分为:等截面直杆,如图1-3a,d;
变截面直杆,如图1-3c,等截面曲杆
和变截面曲杆如图1-3b。
板和壳:
构件一个方向的尺寸(厚度)远小于其它两个方向的尺寸,如图1-4a和b所示。
块体:
三个方向(长、宽、高)的尺寸相差不多的构件,如图1-4c所示。
变形与小变形:
在载荷作用下,构件的形状或尺寸发生变化称为变形,如图1-2所示悬臂吊车架的横梁AB,受力后将由原来的位置弯曲到AB′位置,即产生了变形。
小变形:
绝大多数工程构件的变形都极其微小,比构件本身尺寸要小得多,以至在分析构件所受外力(写出静力平衡方程)时,通常不考虑变形的影响,而仍可以用变形前的尺寸,此即所谓“原始尺寸原理”。
如图1-1a所示桥式起重机主架,变形后简图如图1-1b所示,截面最大垂直位移f一般仅为跨度的1/1500~1/700,B支撑的水平位移Δ则更微小,在求解支承反力R A、R B 时,不考虑这些微小变形的影响。
2. 对构件的三项基本要求
强度:
构件在外载作用下,具有足够的抵抗断裂破坏的能力。
例如储气罐不应爆破;机器中的齿轮轴不应断裂失效等。
刚度:
构件在外载作用下,具有足够的抵抗变形的能力。
如机床主轴变形不应过大,否则影响加工精度。
稳定性:
某些构件在特定外载,如压力作用下,具有足够的保持其原有平衡状态的能力。
例如千斤顶的螺杆,内燃机的挺杆等。
构件的强度、刚度和稳定性问题是材料力学所要研究的主要内容。
3. 材料力学的任务
1).研究构件的强度、刚度和稳定性;
2).研究材料的力学性能;
3).为合理解决工程构件设计中安全与经济之间的矛盾提供力学方面的依据。
构件的强度、刚度和稳定性问题均与所用材料的力学性能有关,因此实验研究和理论分析是完成材料力学的任务所必需的手段。