山东省青岛市2019届高三第一次模拟考试数学(理)参考答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 k2
(
8k 2 4k 2
) 3
2
4(4k 2 4k 2
12Fra Baidu bibliotek 3
12(k 2 1) 4k 2 3
·································· 11
分
所以 | MF | 1 为定值················································································· 12 分 | PQ | 4
所以,当 a 0 时, g(x) a x 0 ,即 g(x) 在 (0,) 上单调递减···················· 3 分 x
又因为 f (1) g(1) 0 ,所以,当 0 x 1时, f (x) 0 ;当 x 1 时, f (x) 0
所以, f (x) 在 (0,1) 上单调递增,在 (1, ) 上单调递减,
设“任取两件产品,至少有一件合格品”为事件 A
则 A 为“任取两件产品,两件均为不合格品”,且 P( A) p2 0.082 0.0064
所以 P( A) 1 P( A) 1 0.0064 0.9936
所以任取两件产品至少有一件为合格品的概率为 0.9936 ·····································12 分
则
m m
AB BE
x1 x1
3y1 0 3y1 2z1
0
,取
x1
3 ,得 m ( 3, 1, 0)
设平面B ED 的一个法向 量为 n (x2, y2, z2 ) ,
因则所为以nncBoDBBsDEm(,1nxx, 202,2)2,z3Bm2yE2 n02(z21,1053,, 2取··)··x··2·····2··,···得···n······(·2·,··0·,·1··)····························· 11 分
青岛市高三年级教学质量检测 数学(理科)答案 第 3页(共 6页)
20.(本小题满分 12 分)
解: (1)由乙流水线样本的频率分布直方图可知,合格品的个数为100 (1 0.04) 96 所以, 2 2 列联表是:
甲流水线
乙流水线
总计
合格品
92
96
188
不合格品 总计
8
4
12
100
100
200
1 ··········································· 11
分
2
所以 Wn
1 Tn
·····························································································
) 3
令
y
0
得,
M
(
k 4k 2
2
3
,
0)
所以 |
MF
|
3(k 2 4k 2
1) 3
···················································································
9
分
又 | PQ | 1 k 2 (x1 x2)2 4x1x2
,
y1
y2
k (x1
x2 )
2k
6k 4k 2 3
,
设
PQ
的中点为
N
,则
N
(
4k 2 4k 2
, 3
3k 4k 2
) 3
·····················································
7
分
则
MN
的方程为
y
3k 4k 2
3
1 k
(x
4k 2 4k 2
所以 DO 平面 ABC ················ 2 分 E
因为 AE 平面 ABC , 所以 AE / / DO
z D
又因为 DO 2 AE
所以四边形 AODE 为平行四边形
所以 ED / / AO
A
C
因为三角形 ABC 为等边三角形,
所以 AO BC
Oy
又因为
AO
平面
ABC
,平面
所以 f (x) f (1) 0
所以 f (x) 只有一个零点·················································································5 分
青岛市高三年级教学质量检测 数学(理科)答案 第 4页(共 6页)
故存在
1
x1 (e a , a) ,满足
f
( x1 )
0, x (0, x1),
f
(x)
0; x (x1, a),
f
(x)
0;
又 x (a,1), f (x) 0; x (1, ), f (x) 0 ;
所以,此时 x 1 是 f (x) 的唯一极大值点,且 f (1) 0 ,符合题意. ······················ 8 分 ②当 a 1 时,因为 x (0,1), g(x) 0; x (1,), g(x) 0; 且 g(1) 0 , 所以 g(x) 0 ,即 f (x) 在 (0,) 上单调递减无极值点,不合题意························ 9 分 ③当 a 1 时,因为当 x (0, a) 时, g(x) 0 ;当 x (a, ) 时, g(x) 0 ;
则 A(0, 3, 0), B(1, 0, 0), D(0, 0, 2), E(0, 3, 2) ···············································7 分
设平面ABE 的一个法向量为 m (x1, y1, z1) ,
因为AB (1, 3, 0), BE (1, 3, 2)
|m||n| 5
设二面角 A EB D 的平面角为 ,则 cos 15 ···································· 12 分 5
青岛市高三年级教学质量检测 数学(理科)答案 第 2页(共 6页)
19.(本小题满分 12 分)
解:(1)由
x2 a2
y2 b2
1,令 x
设等比数列{bn}的公比为 q ,
因为 b1
4b3
,所以 q2
b3 b1
1 ,q 4
1 2
若q
1 2
,则 b1
b2 q
1 2
b2
,符合题意
若q
1 2
,则 b1
b2 q
1 2
b2
,不符合题意
所以 bn
1 (1)n1 22
(1)n 2
············································································· 6
c 得,
y
b2 a
所以 | PQ | 2b2 , a
S四边形APBQ
1 2
|
AB
||
PQ
|
1 2
2a
2b2 a
2b
2
6
, b2
3 ······························
3
分
又离心率 e c 1 , a2 b2 c2 a2
所以 a2 4
所以椭圆 C 的方程为: x2 y2 1································································· 5 分 43
分
(2)因为
1 an an 1
1 n(n 1)
1 n
1 n 1
所以 Wn
1
1 2
1 2
1 3
......
1 n
1 n 1
1
1 n 1
1········································8
分
又 Tn
1 (1 (1)n ) 22
1 1
1 (1)n 2
(0,1) ,所以 1 Tn
1 P( z ) 1 P( z 2 )
2
2
1 (0.6826 0.9544) 0.8185 2
即: P(200 12.2 z 200 12.2 2) P(187.8 z 224.4) 0.8185
所以质量指标落在 (187.8, 224.4) 的概率为 0.8185 ·············································· 9 分 (3)若以频率作概率,则从甲流水线任取一件产品是不合格品的概率 p 0.08
(2)由(1)知:当 a 0 时, f (x) 的极大值等于 0 ,符合题意··························· 6 分 ①当 0 a 1时,因为当 x (0, a) 时, g(x) 0 ;当 x (a, ) 时, g(x) 0 ;
1
1
1
且 g(1) 0 , g(e a ) 1 e a 1 e a 0
21.(本小题满分 12 分)
解:(1)由题知: f (x) 1 x a ln x ······························································ 1 分
令 g(x) 1 x a ln x, g(x) a x (x 0) ······················································2 分 x
考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求解答.
(一)必考题:共 60 分.
17. (本小题满分 12 分)
解:(1)因为在数列{an}中, Sn1 1 Sn an ,所以 Sn1 Sn an 1, 所以 an1 an 1 ,数列{an}是公差为1的等差数列 又 a1 1, an 1 (n 1)1 n ·································································· 3 分
(2)由题知, F (1, 0) ,直线 l 的方程为 y k (x 1)
由
x2 4
y2 3
1 得, (4k 2
3)x2
8k 2x 4k 2
12
0
y k (x 1)
设 P(x1, y1) , Q(x2, y2 )
则
x1
x2
8k 2 4k 2 3
,
x1x2
4k 2 12 4k 2 3
BCD
平面
ABC
xB BC
,平面
BCD
平面
ABC
所以 AO 平面 BCD ,················································································ 5 分
所以 ED 平面 BCD ,
又因为 ED 平面 EBD
································································ 2 分
所以 K 2
n(ad bc)2
200 (92 4 96 8)2 1.418 2.072 ···· 4 分
(a b)(a c)(b d )(c d ) 100 100 18812
所以平面 EBD 平面 BCD ;········································································ 6 分
(2)由(1)得, AO 平面 BCD , AO DO ,又 DO BC , AO BC ,分别
以 OB, AO,OD 所在的直线为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系 O xyz ,
12
分
青岛市高三年级教学质量检测 数学(理科)答案 第 1页(共 6页)
18.(本小题满分 12 分)
证明:(1)取 BC 的中点 O ,连结 AO , DO
因为 BD CD 5 ,
所以 DO BC , DO CD2 OC 2 2 又因为 DO 平面 BCD ,平面 DBC 平面 ABC BC ,平面 BCD 平面 ABC
2019 年青岛市高三年级教学质量检测
数学(理科)参考答案及评分标准
一、选择题:本大题共 12 小题.每小题 5 分,共 60 分.
CAAD C
C BAB B
BD
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
13. 3 5
14. 4
15. (14 6 5)
16. 3
三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第 17 题~21 题为必
所以,在犯错误的概率不超过 0.15 的前提下,不能认为产品的包装合格与两条自动包装流
水线的选择有关····························································································5 分
(2)乙流水线的产品生产质量指标 z 服从正态分布 N (200,12.22) 所以生产质量指标的数学期望为 200 ,数值波动的标准差为 12.2 因为 P( z ) 0.6826 , P( 2 z 2 ) 0.9544 所以 P( z 2 ) P( z 0) P(0 z 2 )