压电陶瓷简介
简述压电陶瓷
简述压电陶瓷压电陶瓷是一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料,是一种具有压电效应的陶瓷材料。
与压电单晶材料相比,具有机电耦合系数高,压电性能可调节性好,化学性质稳定,易于制备且能制得各种形状、尺寸和任意极化方向的产品、价格低廉等优点。
它具有压电效应。
所谓压电效应是正电压效应和负电压效应。
前者是指由应力诱导出极化或电场的现象,后者则是由电场诱导出应力或应变的现象,二者统称为压电效应。
目前为止,压电陶瓷的这种压电效应已被广泛应用于与人们生活息息相关的许多领域,遍及卫星广播、电子设备、生物、航空航天、医疗卫生、日常生活等等。
由此可见压电陶瓷的应用十分广泛,研究意义非常重大。
一些材料在机械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷的现象,称为压电效应。
具有这种性能的陶瓷称为压电陶瓷,它的表面电荷的密度与所受的机械应力成正比。
反之,当这类材料在外电场作用下,其内部正负电荷中心移位,又可导致材料发生机械变形,形变的大小与电场强度成正比。
常用的压电陶瓷有钛酸钡系、锆钛酸铅二元系及在二元系中添加第三种ABO3(A表示二价金属离子,B表示四价金属离子或几种离子总和为正四价)型化合物,如:Pb(Mn1/3Nb2/3)O3和Pb(Co1/3Nb2/3)O3等组成的三元系。
如果在三元系统上再加入第四种或更多的化合物,可组成四元系或多元系压电陶瓷。
此外,还有一种偏铌酸盐系压电陶瓷,如偏铌酸钾钠(Na0.5·K0.5·NbO3)和偏铌酸锶钡(Ba x·Sr1-x·Nb2O5)等,它们不含有毒的铅,对环境保护有利。
目前,我国所使用的压电陶瓷体系主要是铅基压电陶瓷,材料其中含铅化合物PbO(或Pb3O4)约占原料总质量的百分之七十左右。
由于含铅化合物在高温时具有挥发性,这些材料在生产、使用、废弃过程中都会对人类健康和生态环境造成很大的危害。
《压电陶瓷》课件
03
压电陶瓷的制造工艺
配料与混合
配料
根据生产需要,将各种原材料按 照配方准确称量,确保原材料的 质量和稳定性。
混合
将称量好的原材料进行充分混合 ,确保各种原材料均匀分布,以 提高产品的性能和稳定性。
预烧与成型
预烧
在一定温度和气氛下,将混合好的原 料进行预烧结,以促进原料的初步反 应和烧结。
易于加工和集成
压电陶瓷可以通过陶瓷工艺进 行加工和集成,与其他电子元
件实现一体化,方便应用。
压电陶瓷的应用领域
传感器
利用压电陶瓷的压电效应,可以制作 出各种压力、加速度、振动等物理量 的传感器。
换能器
驱动器
利用压电陶瓷的逆压电效应,可以制 作出各种微小位移、微小角度的驱动 器,用于精密定位、光路控制等领域。
压电陶瓷的工作模式
工作模式定义
工作模式是指压电陶瓷在受到机 械力作用时,如何将机械能转换
为电能的过程。
工作模式分类
压电陶瓷的工作模式可以分为直 接模式和逆模式。直接模式是指 陶瓷在受到压力时产生电压,逆 模式是指陶瓷在受到电压作用时
产生形变。
工作模式的应用
不同的工作模式适用于不同的应 用场景,如直接模式适用于传感 器,逆模式适用于超声波发生器
压电陶瓷广泛应用于传感 器、换能器等领域,如超 声波探头、电子点火器等。
压电陶瓷的极化
极化定义
极化是指压电陶瓷在制造过程中,通过施加高电 压使其内部电偶极矩定向排列的过程。
极化原理
在极化过程中,陶瓷内部的电偶极矩会沿着一定 的方向整齐排列,形成一个宏观的电场。
极化过程
极化过程需要在高温和高压环境下进行,通常需 要数千至上万伏的电压。
压电陶瓷及其应用培训资料
超声波发生器
利用压电陶瓷的逆压电效应产生超声波,广泛应用于无损检测、医疗成像等领域 。
麦克风
利用压电陶瓷的压电效应,将声音转化为电信号,用于语音识别、录音等场合。
振动控制
振动隔离
通过控制压电陶瓷的形变,实现精密 仪器的振动隔离,提高测量精度。
振动主动控制
利用压电陶瓷的逆压电效应产生反作 用力,对结构振动进行主动控制,提 高结构的稳定性。
易于加工和集成
压电陶瓷可以通过微加工 技术进行加工和集成,实 现小型化和高精度。
压电陶瓷的发展历程
早期发展
20世纪初,科学家开始研 究压电陶瓷,并逐渐应用 于声呐、无线电等领域。
中期发展
随着科技的发展,压电陶 瓷在传感器、换能器等领 域的应用逐渐增多,性能 也不断提高。
近期发展
随着新材料和加工技术的 发展,压电陶瓷在微纳尺 度、智能传感器等领域的 应用越来越广泛。
电子听诊器
压电陶瓷在电子听诊器中作为传感器,将心跳或呼吸产生的 机械振动转换为电信号,用于医学诊断。
电子听诊器具有操作简便、准确度高、可重复性好等优点, 广泛应用于临床医学和家庭保健领域。
05
压电陶瓷的未来展望
新材料与新工艺的发展
新型压电陶瓷材料
随着科技的不断进步,新型压电陶瓷材料如纳米压电陶瓷、高温压电陶瓷等将不断涌现,为压电陶瓷 的应用提供更多可能性。
压电陶瓷及其应用培 训资料
目录
• 压电陶瓷简介 • 压电陶瓷的工作原理 • 压电陶瓷的应用领域 • 压电陶瓷的应用实例 • 压电陶瓷的未来展望
01
压电陶瓷简介
压电效应与压电陶瓷
压电效应
某些材料在受到外部压力时会产生电 场,这种现象称为压电效应。利用压 电效应制作的陶瓷称为压电陶瓷。
压电陶瓷ppt课件
感谢您的观看
THANKS
造传感器和换能器。
工作模式二
压电陶瓷可以在交变电场下工作, 产生交变的机械振动,用于制造超 声波设备和振动器。
工作模式三
压电陶瓷可以在高电压、大电流下 工作,产生强烈的机械振动或变形 ,用于制造大型驱动器和执行器。
03
压电陶瓷的制造工艺
配料与混合
配料
按照配方称取适量的原料,如钛 酸钡、二氧化锆、氧化镁等。
04
压电陶瓷的性能参数
电学性能
介电常数
衡量压电陶瓷在电场作用下极化 程度的物理量。介电常数越大, 极化程度越高,压电效应越明显
。
绝缘电阻
反映压电陶瓷内部绝缘性能的参 数。高绝缘电阻表明陶瓷内部缺
陷少,性能稳定。
电致伸缩系数
衡量压电陶瓷在电场作用下产生 的机械应变能力的物理量。电致 伸缩系数越大,机械应变能力越
压电陶瓷的特性
高压电性能
压电陶瓷具有较高的压电常数和机电耦合系 数,能够将微小的机械形变转换为较大的电 能或机械能。
温度稳定性
压电陶瓷具有较好的温度稳定性,可以在较 宽的温度范围内保持稳定的性能。
可靠性高
压电陶瓷具有较高的机械强度和稳定性,不 易疲劳压电陶瓷的振动和换能特性,可以将太阳能转换为电能,提高太阳能利用率 。
压电陶瓷在风能发电中的应用
压电陶瓷可以作为风能发电机的传感器和换能器,实现风能的高效利用。
压电陶瓷在其他领域的应用探索
压电陶瓷在医疗领域的应用
压电陶瓷在医学领域具有广泛的应用前景,如超声成像、药物传递等。
压电陶瓷在环保领域的应用
利用压电陶瓷的振动特性,制造出声 波发生器、超声波探头等声学器件。
压电陶瓷
压电陶瓷压电陶瓷(Piezoelectric ceramics)是一种特殊的陶瓷材料,具有压电效应。
它具有压电效应,能够在外界施加压力或扭转时产生电荷,同时在外加电场下也能产生机械变形。
因此,压电陶瓷广泛应用于传感器、换能器、储能器、振动器等领域。
本文将介绍压电陶瓷的原理、特性以及应用领域。
首先,我们来了解一下压电陶瓷的原理。
压电现象最早是由法国物理学家庞丁(Pierre Curie)和雅克(Jacques Curie)在1880年发现的。
他们发现某些晶体,如石英和长石,在外界施加压力时会产生电荷。
这被称为正压电效应。
而如果在外加电场的作用下,这些晶体会发生机械变形,这被称为反压电效应。
接下来,我们来探讨一下压电陶瓷的特性。
压电陶瓷具有几个主要的特性。
首先,它们具有良好的压电和逆压电效应。
这使得它们成为制造传感器和换能器的理想材料。
其次,压电陶瓷还具有良好的机械强度和稳定性。
它们可以承受高压力和机械应力,并且能够在广泛的温度范围内工作。
此外,压电陶瓷具有较宽的频率范围和较高的输出功率。
这使得它们成为制造振动器和储能器的理想选择。
压电陶瓷具有广泛的应用领域。
其中一个主要应用是在传感器领域。
压电陶瓷可以用于制造压力传感器、加速度传感器、力传感器等。
这些传感器可以广泛应用于自动化、工业控制、医疗设备等领域,实现对压力、加速度、力等参数的测量和监控。
另一个主要应用是在换能器领域。
压电陶瓷可以用于制造超声换能器、声波清洗器、喇叭等。
这些换能器可以将电能转化为机械能,实现声音的放大和传播。
此外,压电陶瓷还可以应用于振动器、储能器、精密电机等领域。
总之,压电陶瓷是一种独特的陶瓷材料,具有压电效应。
它具有压电和逆压电效应、良好的机械强度和稳定性、较宽的频率范围和高输出功率等特性。
压电陶瓷在传感器、换能器、储能器、振动器等领域有广泛的应用。
它们在实际生活中发挥着重要的作用,促进了科技的发展和进步。
希望随着科技的不断发展,压电陶瓷能够在更多领域发挥重要作用,为人们的生活带来更多便利和创新。
压电陶瓷 最大输出位移
压电陶瓷最大输出位移1. 引言1.1 压电陶瓷概述压电陶瓷是一种具有压电效应的陶瓷材料,具有压电效应的陶瓷材料称为压电陶瓷。
压电效应是指某些晶体在受到机械应力或电场刺激时会发生形变或电极化现象。
压电陶瓷具有较高的机械强度、良好的化学稳定性和优良的压电性能,因此被广泛应用于传感器、马达、换能器等领域。
压电陶瓷具有多种规格和型号,可以根据具体的应用需求选择不同的压电陶瓷材料。
在工程领域中,压电陶瓷扮演着重要的角色,其在传感、控制、信号处理等方面都有广泛的应用。
随着科技的不断进步,压电陶瓷的性能和应用领域也在不断扩展和提升。
压电陶瓷是一种具有特殊性能和广泛应用前景的陶瓷材料,其在现代工程中具有重要地位,对于促进科技进步和社会发展具有重要意义。
1.2 压电效应简介压电效应是指在受到外力作用时,物质会产生电荷的分离或聚集,并在晶格结构内部产生电场的现象。
这种效应是由于压电材料的晶格结构具有非中心对称性,因此在受到应力变化时会产生极化现象。
压电效应是压电陶瓷的重要特性之一,也是其广泛应用的基础。
当外界施加压力或扭曲时,压电陶瓷会发生极化现象,即产生正负电荷的分离。
这种极化效应会导致压电陶瓷内部产生电场,从而使其表现出压电性质。
压电效应不仅可以实现电能到机械能的转换,还可以实现相反的机械到电的能量转换。
这种双向转换能力使得压电陶瓷在传感器、执行器等领域具有广泛的应用前景。
压电效应是压电陶瓷材料独特的物理现象之一,其在实际应用中能够为工程领域提供稳定可靠的解决方案,具有重要的意义和价值。
压电效应的简介将有助于深入了解压电陶瓷的特性和应用前景。
2. 正文2.1 压电陶瓷的结构和工作原理压电陶瓷是一种具有压电效应的材料,其结构和工作原理对于理解其性能和应用至关重要。
压电陶瓷通常由铅锆钛酸钠、铅镁铌酸、铅钛锆酸钡等材料构成,具有特殊的晶体结构。
在外加电场的作用下,压电陶瓷会发生形变,从而产生电荷,实现能量的转化与传递。
压电陶瓷
15 材料 李斌 201507060138
压电陶瓷的概述 压电陶瓷的特性 压电陶瓷的制备 压电陶瓷的应用
压电陶瓷的前景
压电陶瓷的概述
什么是压电陶瓷? 压电陶瓷是指把氧化 物混合 ( 氧化锫、氧化铅、 氧化钛等 ) 高温烧结、固相 反应后而成的多晶体.并 通过直流高压极化处理使 其具有压电效应的铁电陶 瓷的统称,是一种能将机 械能和电能互相转换的功 能陶瓷材料。
压电陶瓷的特性
压电陶瓷蠕变特性: 在一定电压下,压电陶瓷的位移快速达到一定值后。 位移继续随时间变化而缓慢变化,在一定时间后达到稳定 的特性称为蠕变特性。 压电陶瓷温度特性: 压电陶瓷受温度的影响而产生的变化的特性,就叫做 温度特性。
压电陶瓷的制备
配料
混合细磨
预烧
二次细磨
造粒
成型
排塑
烧结成瓷
压电陶瓷的应用
压电打火机 煤气灶上用的一种新式电子打火机,就是利用压电陶瓷制成的。只 要用手指压一下打火按钮,打火机上的压电陶瓷就能产生高电压, 形成电火花而点燃煤气,可以长久使用。所以压电打火机不仅使用 方便,安全可靠,而且寿命长,例如一种钛铅酸铅压电陶瓷制成的 打火机可使用 100 万次以上。 防核护目镜 核试验员带上用透明压电陶瓷做成的护目镜后,当核爆炸产生的光 辐射达到危险程度时,护目镜里的压电陶瓷就把它转变成瞬时高压 电,在 1/1000 s 里,能把光强度减弱到只有 1/10000 ,当危险光消 失后,又能恢复到原来的状态。这种护目镜结构简单,只有几十克 重,安装在防核护目头盔上携带十分方便。
压电陶瓷的前景
随着对材料结构的深入认识和应用技术的 研究与拓展,压电陶瓷材料将广泛用于电 子技术、通信技术、激光技术、生物技术 等高科技领域,随着这些领域的飞速发展 和经济社会新的发展需求,对压电陶瓷的 性能会有更高的要求,如高居里温度、高 机电耦合系数和机械品质因数及无铅等性 质。
半导体(压电陶瓷)
压电陶瓷材料在我们的生活中随处可见的物质,材料的发展深深的影响着人们的生活质量,同时也是我们人类社会进步和文明的重要标志。
随着社会的进步和发展,电子陶瓷材料在信息技术中占有非常重要的作用,常常被用来制作一些重要的电子元器件如:传感器、电容器、超声换能器。
因此,高性能的电子陶瓷材料是信息技术发展和研究的重要方向。
压电陶瓷是一种具有压电性能的多晶体,是信息功能陶瓷的重要组成部分。
其具有机电耦合系数高(压电振子在振动过程中,将机械能转变为电能,或将电能转变为机械能的效率)、价格便宜、易于批量生产等优点,已被广泛应用于社会生产的各个领域,尤其是在超声领域及电子科学技术领域中,压电陶瓷材料已逐渐处于绝对的支配地位,如医学及工业超声检测、水声探测、压电换能器、超声马达、显示器件、电控多色滤波器等。
1.压电陶瓷性能1.1压电性压电陶瓷最大的特性是具有正压电性和逆压电性。
正压电性是指某些电介质在机械外力作用下,介质内部正负电荷中心发生相对位移而引起极化,从而导致电介质两端表面内出现符号相反的束缚电荷。
反之,当给具有压电性的电介质加上外电场时,电介质内部正负电荷中心不但发生相对位移而被极化,同时由于此位移而导致电介质发生形变,这种效应称之为逆压电性。
1.2介电性能材料在电场作用下,表现出对静电能的储蓄和损耗的性质,通常用介电常数(ε r )和介质损耗(tanδ)来表示。
当在两平板之间插入一种介质(材料)时,电容C将增加,此时电容 C与真空介质时该电容器的电容量 C0的比即为相对介电常数k:k=C/C= (εA/d)/(ε0A/d)=ε/ε(ε—真空介电常数:8.854×10-12F/m)当一个正弦交变电场V=Vexpiωt施加于一介电体上时,电荷随时间而变化而产生了电流Ic, Ic在无损耗时比 V 超前90°。
但实际是有损耗的。
有损耗时,总电流超前电压不再是90°而是90°-δ。
压电陶瓷是什么
压电陶瓷是什么?压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料。
压电陶瓷到底是一种什么样的材料呢?压电陶瓷属于无机非金属材料。
这是一种具有压电效应的材料。
所谓压电效应是指某些介质在力的作用下,产生形变,引起介质表面带电,这是正压电效应。
反之,施加激励电场,介质将产生机械变形,称逆压电效应。
这种奇妙的效应已经被科学家应用在与人们生活密切相关的许多领域,以实现能量转换、传感、驱动、频率控制等功能。
在能量转换方面,利用压电陶瓷将机械能转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。
电子打火机中就有压电陶瓷制作的火石,打火次数可在100万次以上。
用压电陶瓷把电能转换成超声振动,可以用来探寻水下鱼群的位置和形状,对金属进行无损探伤,以及超声清洗、超声医疗,还可以做成各种超声切割器、焊接装置及烙铁,对塑料甚至金属进行加工。
压电陶瓷具有敏感的特性,可以将极其微弱的机械振动转换成电信号,可用于声纳系统、气象探测、遥测环境保护、家用电器等。
地震是毁灭性的灾害,而且震源始于地壳深处,以前很难预测,使人类陷入了无计可施的尴尬境地。
压电陶瓷对外力的敏感使它甚至可以感应到十几米外飞虫拍打翅膀对空气的扰动,用它来制作压电地震仪,能精确地测出地震强度,指示出地震的方位和距离。
这不能不说是压电陶瓷的一大奇功。
压电陶瓷在电场作用下产生的形变量很小,最多不超过本身尺寸的千万分之一,别小看这微小的变化,基于这个原理制做的精确控制机构--压电驱动器,对于精密仪器和机械的控制、微电子技术、生物工程等领域都是一大福音。
谐振器、滤波器等频率控制装置,是决定通信设备性能的关键器件,压电陶瓷在这方面具有明显的优越性。
它频率稳定性好,精度高及适用频率范围宽,而且体积小、不吸潮、寿命长,特别是在多路通信设备中能提高抗干扰性,使以往的电磁设备无法望其项背而面临着被替代的命运。
我们来看一种新型自行车减震控制器,一般的减振器难以达到平稳的效果,而这种ACX减震控制器,通过使用压电材料,首次提供了连续可变的减震功能。
pzt压电陶瓷晶体结构
pzt压电陶瓷晶体结构
摘要:
1.PZT压电陶瓷简介
2.PZT压电陶瓷的晶体结构
3.PZT压电陶瓷的性能与应用
4.我国在PZT压电陶瓷领域的研究进展
正文:
一、PZT压电陶瓷简介
PZT(lead zirconate titanate,铅锌钛酸盐)压电陶瓷是一种具有优良压电性能的陶瓷材料。
在自然界中,PZT矿物稀少,因此,科学家们通过研究和合成,成功制备出了具有高精度、高性能的PZT压电陶瓷。
二、PZT压电陶瓷的晶体结构
PZT压电陶瓷的晶体结构属于四方对称结构,其化学式为PbZrO3-PbTiO3。
在这种结构中,钛酸铅(PbTiO3)和锆酸铅(PbZrO3)以固溶体的形式存在,共同赋予了PZT压电陶瓷优异的性能。
三、PZT压电陶瓷的性能与应用
1.压电性能:PZT压电陶瓷具有较高的压电常数、较低的介电常数和良好的疲劳稳定性,使其在声学、振动和能量转换等领域具有广泛的应用。
2.铁电性能:PZT压电陶瓷具有较高的铁电储能密度,使其在电磁屏蔽、存储器和传感器等领域具有重要应用。
3.机电转换性能:PZT压电陶瓷具有良好的机电转换效率,广泛应用于超
声波换能器、马达、致动器和机器人等领域。
4.我国在PZT压电陶瓷领域的研究进展:近年来,我国在PZT压电陶瓷材料的研究取得了显著成果,包括制备工艺的优化、性能的提高和新材料的研发。
这些成果为我国在压电陶瓷领域的创新发展奠定了基础。
综上所述,PZT压电陶瓷作为一种高性能的陶瓷材料,在多个领域具有广泛的应用。
压电陶瓷详解
1简介压电陶瓷是一类具有压电特性的电子陶瓷材料。
与典型的不包含铁电成分的压电石英晶体的主要区别是:构成其主要成分的晶相都是具有铁电性的晶粒。
由于陶瓷是晶粒随机取向的多晶聚集体,因此其中各个铁电晶粒的自发极化矢量也是混乱取向的。
为了使陶瓷能表现出宏观的压电特性,就必须在压电陶瓷烧成并于端面被复电极之后,将其置于强直流电场下进行极化处理,以使原来混乱取向的各自发极化矢量沿电场方向择优取向。
经过极化处理后的压电陶瓷,在电场取消之后,会保留一定的宏观剩余极化强度,从而使陶瓷具有了一定的压电性质。
2物质组成常用的压电陶瓷有钛酸钡系、锆钛酸铅二元系及在二元系中添加第三种ABO3(A 表示二价金属离子,B表示四价金属离子或几种离子总和为正四价)型化合物,如:Pb(Mn1/3Nb2/3)O3和Pb(Co1/3Nb2/3)O3等组成的三元系。
如果在三元系统上再加入第四种或更多的化合物,可组成四元系或多元系压电陶瓷。
此外,还有一种偏铌酸盐系压电陶瓷,如偏铌酸钾钠(Na0.5·K0.5·NbO3)和偏铌酸锶钡(Bax·Sr1-x·Nb2O5)等,它们不含有毒的铅,对环境保护有利。
3特性介电性及弹性性质压电陶瓷的介电性是反映陶瓷材料对外电场的响应程度,通常用介电常数ε0来表示。
压电陶瓷的弹性系数是反映陶瓷的形变与作用力之间关系的参数。
压电陶瓷材料同其它弹性体一样,遵循胡克定律。
压电陶瓷的压电性压电陶瓷最大的特性是具有压电性,包括正压电性和逆压电性。
正压电性是指某些电介质在机械外力作用下,介质内部正负电荷中心发生相对位移而引起极化,从而导致电介质两端表面内出现符号相反的束缚电荷。
4制作工艺工艺流程图如下:配料--混合磨细--预烧--二次磨细--造粒--成型--排塑--烧结成瓷--外形加工--被电极--高压极化--老化测试。
压电陶瓷的制造特点是在直流电场下对铁电陶瓷进行极化处理,使之具有压电效应。
压电陶瓷的工作原理及其应用
压电陶瓷的工作原理及其应用1. 什么是压电陶瓷嘿,朋友们,今天咱们就聊聊一个神奇的材料——压电陶瓷。
乍一听这个名字,可能会让你觉得有点高大上,但其实它可比你想的要简单有趣多了!压电陶瓷是一种能够把机械压力转化为电能的陶瓷材料。
听着是不是感觉像魔法?其实,这就是科学的魅力所在!它们就像是“电力小精灵”,无论我们是用手一碰,还是给它施加点压力,它们就能乖乖地输出电流,太神奇了吧!1.1 工作原理说到工作原理,咱们就要提到“压电效应”了。
简单来说,压电效应就是那些陶瓷在受到压缩时,内部的分子结构发生了变动,从而产生电荷。
这种原理就像我们玩橡皮泥,捏捏搓搓后,形状有了变化,当然,压电陶瓷一旦受到力的作用,电流便会流动起来!所以乍一看,这可不是一个传统的电池,但说它是一个“力”的发电机,应该是无可厚非的。
同样,它也能反向运作——当施加电压时,陶瓷会发生微小的形变,变得扭来扭去,宛如小舞者一样,摸起来可是特别有趣哦。
1.2 材料构成说到这里,有人可能会好奇,压电陶瓷到底是什么“做”的呢?实际上,它们一般是由一种叫做钛酸铅或锆钛酸铅的化合物制成的。
这些材料在高温下经过特殊处理,就能形成压电特性。
嘿,这听起来是不是好像科学实验室里那些复杂的步骤?别担心,这只是为我们赠送了这些神奇小玩意的“开机”密码!而且,压电陶瓷的种类也很多,像是单晶压电材料、陶瓷复合材料等等,各种各样的人才齐上阵,因为不同的应用需求,各有所长嘛。
2. 压电陶瓷的应用说完了原理,咱们再聊聊这些压电陶瓷到底能在哪儿派上用场。
其实,咱们的日常生活中,很多地方都藏着它们的身影哦。
比如说——声纳和麦克风,这些小玩意能把声波转化成电信号,或者把电信号转化为声波,而其中的关键材料就是压电陶瓷。
是不是感觉涨知识了呢?此外,在医疗器械中,超声波诊断仪也是用得上压电陶瓷,通过振动产生声波图像,助医生“大显神通”呢!2.1 家庭中的应用你还知道吗,在咱们的家庭中,压电陶瓷其实也贡献了不少力量呢!比如常见的点火器,尤其是在烧烤的时候,叮的一声,火就起来了,这可全靠压电陶瓷的的“点石成金”之功。
压电陶瓷
BACK
配料
成型
排塑
老化 测试
混合 磨细
造粒
烧结 成瓷
高压 极化
预烧
二次 磨细
外形 加工
被电 极
BACK
进行料前处理,除杂去潮,然后按配方比例称量各种原材料, 注意少量的添加剂要放在大料的中间。 目的是将各种原料混匀磨细,为预烧进行完全的固相反应准 备条件.一般采取干磨或湿磨的方法。小批量可采取干磨, 大批量可采取搅拌球磨或气流粉碎的方法,效率较高。 目的是在高温下,各原料进行固相反应,合成压电陶瓷.此 道工序很重要。会直接影响烧结条件及最终产品的性能。 目的是将预烧过的压电陶瓷粉末再细振混匀磨细,为成瓷均匀 性能一致打好基础。
• 适用于用于超声波焊接设备以及超声波清洗设备,主要采 用大功率发射型压电陶瓷制作,超声波换能器是一种能把 高频电能转化为机械能的装置,超声波换能器作为能量转 换器件,它的功能是将输入的电功率转换成机械功率(即 超声波)再传递出去,而它自身消耗很少的一部分功率。
BACK
声纳
• 在海战中,最难对付的是潜艇,它能长期在海下潜航,神 不知鬼不觉地偷袭港口、舰艇,使敌方大伤脑筋。如何寻 找敌潜艇?靠眼睛不行,用雷达也不行,因为电磁波在海 水里会急剧衰减,不能有效地传递信号,探测潜艇靠的是 声纳。压电陶瓷就是制造声纳的材料,它发出超声波,遇 到潜艇便反射回来,被接收后经过处理,就可测出敌潜艇 的方位、距离等。
BACK
高压发生器
声音转换器
声纳
谐振器
滤波器
超声波
其他运用
BACK
声音转换器
• 声音转换器声音转换器是最常见的应用之一。像拾音器、 传声器、耳机、蜂鸣器、超声波探深仪、声纳、材料的超 声波探伤仪等都可以用压电陶瓷做声音转换器。如儿童玩 具上的蜂鸣器就是电流通过压电陶瓷的逆压电效应产生振 动,而发出人耳可以听得到的声音。压电陶瓷通过电子线 路的控制,可产生不同频率的振动,从而发出各种不同的 声音。例如电子音乐贺卡,就是通过逆压电效应把交流音 频电信号转换为声音信号。
压电陶瓷材料
压电陶瓷材料湖南工学院学院:材料与化学工程专业:无机非金属材料工程学号:09701540130姓名:姜庭燕时间:2012年5月16日压电陶瓷材料—PZT陶瓷一、压电陶瓷材料简介压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料。
这是一种具有压电效应的材料。
它在工业生产和日常生活中得到了广泛的应用。
由压电陶瓷构成的超高精度、低能耗、控制简便的驱动器,在精密工程中起到了非常重要的作用。
1、压电陶瓷材料的基本原理压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。
如果压力是一种高频震动,则产生的就是高频电流。
而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。
也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。
压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。
例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。
二、PZT压电陶瓷的发展压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料。
当在某些各向异性的晶体材料上施加机械应力时,在晶体的某些表面上会有电荷出现。
这一效应称为正压电效应,晶体的这一性质,称为压电性。
1880年,居里兄弟最早发现电气石具有压电效应,1881年,居里兄弟实验发现,在晶体上施加电压时,则晶体会产生几何形变。
这一效应被称为逆压电效应,并给出石英相同的正逆压电常数。
1894年沃伊特(Voigt)指出,仅无对称中心的20种点群的晶体才可能具有压电效应。
石英是压电晶体的代表,它一直被广泛应用至今。
利用石英的压电效应可制成振荡器和滤波器等频控元件。
空气用 压电陶瓷
空气用压电陶瓷
空气用压电陶瓷是一种可以将空气中的振动或压力转换成电能的陶瓷材料。
它通常由铅酸锆(PZT)等压电陶瓷材料制成,具有良好的压电性能。
空气用压电陶瓷可以应用于一些特定的领域和场合,例如实时监测环境中的空气质量,测量和监测空气中的声音、振动等。
它可以应用于气体流量计、空气质量监测仪器、声音传感器等设备中,用于收集和转换空气中的信号。
此外,空气用压电陶瓷还可以应用于能量收集和转换领域。
通过将其装置在机械设备或结构的表面,当空气中的振动或压力作用于陶瓷材料时,它能够产生电能,并用于供电或存储。
这种技术可以应用于自供能传感器、智能结构监测等领域。
空气用压电陶瓷在环境感知、能量收集等领域具有广泛的应用前景,但也面临着一些挑战,例如对材料的制备工艺和性能的要求较高,对材料的稳定性和耐久性有一定要求等。
因此,需要不断研究和改进压电陶瓷的制备技术和性能,以满足不同应用需求。
压电陶瓷特点
压电陶瓷特点
压电陶瓷是一种特殊的陶瓷材料,具有压电效应,即在施加或取消机械压力时会产生电荷分布的变化。
以下是压电陶瓷的一些特点:
1. 压电效应:压电陶瓷的最显著特点是具有压电效应。
当施加压力或拉伸力时,其晶格结构发生变化,导致正电荷和负电荷在陶瓷内部的分布发生变化,从而产生电荷。
这个电荷分布的变化产生的电场使得压电陶瓷呈现出电荷的极性。
2. 压电材料应用广泛:压电陶瓷广泛应用于传感器、换能器、声波器件等领域。
例如,压电陶瓷可以用于制造压电传感器,用于检测和测量压力、力、温度等物理量。
3. 高频响应:压电陶瓷具有较高的频率响应能力,因此常被应用于声波器件,如扬声器、超声波发生器等。
4. 机械刚性好:压电陶瓷具有较好的机械刚性,可以在较大的压力范围内保持其稳定性,这使得它在一些需要耐高压力环境的应用中具有优势。
5. 温度稳定性:压电陶瓷具有相对较好的温度稳定性,能够在一定温度范围内保持压电效应的稳定性。
6. 易加工:压电陶瓷易于制备和加工,可以通过陶瓷成型和烧结等工艺进行制造,使其形成不同形状和尺寸的器件。
7. 良好的电机械能换能性能:压电陶瓷具有良好的电机械能换能性能,即可以将电能转换为机械能,也可以将机械能转换为电能。
8. 耐腐蚀性:压电陶瓷具有较好的耐腐蚀性,可以在一些特殊环境下使用。
总体而言,压电陶瓷以其独特的压电性能在多个领域有广泛的应用,从传感器到声学器件等,都发挥着重要的作用。
压电陶瓷的压电原理及制作工艺
压电陶瓷的压电原理及制作工艺压电陶瓷是一种能够通过外加电压变形的材料,具有压电效应,即在外加电场的作用下,材料会产生机械变形;同时,当材料产生机械应力时,也会在其表面产生电荷分布。
压电陶瓷的压电效应是通过压电晶体的极化现象实现的。
压电陶瓷的制作工艺包括成分设计、制备、成型、烧结和极化等环节。
压电陶瓷的压电原理是基于压电效应的。
压电效应是指在应力作用下,晶体的分子结构发生改变,电荷重新排列,从而产生电荷的分布。
压电陶瓷的分子结构中,锆、钛、铁等离子在晶体中反复摆动,使得晶体的极性发生改变,从而引起电荷的分布。
当外加电场存在时,电场作用下的电荷摆动会增强压电效应。
1.成分设计:根据所需的电特性和机械特性,选择适当的无机氧化物材料组成压电陶瓷的成分。
通常采用的材料有PZT(铅锆钛)、PZN(铅锆钛酸钠)和PMN(铅镁钼酸钠)等。
2.制备:以合适的方式将所需的材料按照一定比例混合,形成混合物。
通常可以采用球磨或干法混合等方式进行材料的制备。
3.成型:将混合物进行成形,常用的方法有注塑成型、挤出成型和压制成型等。
在成型过程中,可以加入适量的添加剂,以调整材料的流动性和成型性能。
4.烧结:将成型后的陶瓷坯体进行烧结,使其在高温下形成致密的结构。
烧结的温度和时间会对陶瓷的性能产生重要影响。
5.极化:将烧结后的陶瓷材料放入极化装置中,施加高强度的电场进行极化处理。
极化可以增强材料的压电效应,提高其性能。
除了以上几个主要的制作步骤,还有一些其他的辅助工艺,比如表面处理、切割和电极连接等,以满足具体的应用需求。
总之,压电陶瓷是一种利用压电效应实现机械变形和电能转换的材料。
其制作工艺包括成分设计、制备、成型、烧结和极化等步骤。
压电陶瓷在各个领域都有广泛的应用,如声波和超声波发生器、压电换能器、压电陶瓷驱动器等。
压电陶瓷简介介绍
02
压电陶瓷具有高灵敏度、高可靠性、高稳定性等优点,因此在
声纳、医学成像、雷达、电子乐器等领域得到广泛应用。
压电陶瓷在军事、航空航天、环境监测等领域也有着不可替代
03
的作用。
目前存在的问题及解决方案
01
02
03
压电陶瓷的机电转换效 率较低,且在高温、高 湿等恶劣环境下性能不 稳定,影响了其应用范
围。
压电陶瓷的主要类型
根据材料组成和晶体结构,压电陶瓷主要分为以下几类
1. 钙钛矿结构压电陶瓷:如钛酸钡(BaTiO3)和锆钛酸 铅(Pb(Zr,Ti)O3)等。
2. 钨青铜结构压电陶瓷:如铌镁酸铅(Pb( Mg1/3,Nb2/3)O3)和铅锌酸铅(Pb(Zn1/3,Nb2/3 )O3)等。
3. 铋层状结构压电陶瓷:如铋镁酸铅(Pb( Bi1/2,Mg1/2)O3)和铋锌酸铅(Pb(Bi1/2,Zn1/2) O3)等。
表面涂层
通过涂层技术对压电陶瓷 表面进行改性处理,以提 高其耐腐蚀性和机械强度 等性能。
04
压电陶瓷的性能参数及测试方法
压电陶瓷的性能参数及测试方法
• 压电陶瓷是一类具有压电效应的功能陶瓷材料。压电陶瓷的特 性在于其能够将机械能转换为电能,或者将电能转换为机械能 。这种材料在制造传感器、换能器、发电机等方面具有广泛的 应用。
广泛应用于清洗精密零件、光学 元件、电子元件等。
超声波探伤
压电陶瓷作为换能器,将电能 转换为超声波,通过检测反射 回来的超声波判断物体内部的 缺陷。
可用于检测金属、非金属等材 料内部缺陷。
检测结果受物体表面状态、材 料性质、缺陷类型等多种因素 影响。
医学诊断
压电陶瓷制成的超声波探头,可 用于医学诊断,如B超、彩超等
压电陶瓷基本知识培训材料
机械品质因数
反映压电陶瓷在振动过程 中能量损耗的大小,影响 压电器件的工作效率。
化学稳定性及耐腐蚀性
化学稳定性
压电陶瓷在常温下具有良 好的化学稳定性,不易与 酸碱等化学物质发生反应。
耐腐蚀性
压电陶瓷能够抵抗一定程 度的腐蚀,但在强酸强碱 等极端环境下可能会受到 损坏。
温度稳定性
在一定温度范围内,压电 陶瓷的性能保持稳定,超 出该范围可能会导致性能 下降。
技术水平
国内压电陶瓷技术水平不断提升,部分产品性能已接近或 达到国际先进水平,但高端产品研发和生产能力仍有差距。
产业链完整性
国内压电陶瓷产业链相对完整,涵盖了原料、生产设备、 产品研发、生产及应用等环节,但部分关键原材料和高端 生产设备仍依赖进口。
政策法规影响因素分析
产业政策
国家出台了一系列支持新材料产业发展的政策,为压电陶瓷产业 提供了良好的政策环境。
换能器领域
压电陶瓷可将电能转换为声能或机 械能,用于制作扬声器、超声换能 器等音频设备,以及超声清洗、超 声焊接等工业应用。
市场需求及前景
市场需求
随着智能化、自动化技术的不断发展,压电陶瓷在传感器、 驱动器等领域的需求不断增长。同时,新能源、环保等领域 的快速发展也为压电陶瓷的应用提供了新的机遇。
成型设备包括压力机、注浆机、流延机等,用于将原料加工成所需形状的坯体。
烧结过程控制要点
温度控制
精确控制烧结温度,避免温度过 高或过低导致陶瓷性能下降。
气氛控制
根据陶瓷材料特性,选择合适的 烧结气氛,如空气、氧气或还原
气氛等。
时间控制
控制烧结时间,确保陶瓷坯体充 分致密化,同时避免过度烧结导
致性能劣化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使压电材料的压电效应消失的温度。
压电材料的主要特性
转换性能:要求具有较大的压电常数。
机械性能:机械强度高、刚度大。 电性能:高电阻率和大介电常数。
环境适应性:温度和湿度稳定性要好,要求具
有较高的居里点,获得较宽的工作温度范围。 时间稳定性:要求压电性能不随时间变化。
表示压电材料机械能(声能)与电能之间的转换效率。
E贮 机械品质因子Qm : Qm E损
压电晶片在谐振时贮存的机械能E贮与在一个周期内损耗的能 量E损之比称为机械品质因子Qm。
压电材料的主要性能参数
cL (常数) 频率常数Nt: N t tf 0 2
压电晶片的厚度与固有频率的乘积是一个常数, 这个常数叫做频率常数。
奥迪威公司压电蜂鸣片
电声元件
开放式超声波传感器
超声波雾化片
奥迪威其它压电产品
超声波马达
C-171微型旋转陶瓷电机
超声波压电陶瓷电机
液晶电视用模组
压电陶ห้องสมุดไป่ตู้点火器
谢谢
压电陶瓷历史
1916年 朗之万(Langevin)用压电石英晶体作成水
下发射和接收 换能器,这是最早的压电换能器, 并用于探测水下的物体。 1918 年 卡迪(Cady)研究了罗息盐晶体在机械 谐振频率特有的电性能,导致罗息盐电声组件问 世。 1921年 相继研制成功石英谐振器和滤波器,开创 了压电效应在稳频、计时和电子技术方面 的应用。
压电材料应用
压电陶瓷按照应用分类共分为七大类: 压电振荡器及材料 压电声电组件:蜂鸣器、送话器、受话器、压电喇叭 压电超音波换能器:超音波清洗、超音波雾化、超音波美容、 超音波探测 信息处理组件:滤波器、谐振器、检波器、监频器、表面声波、 延迟线 动力装置:点火器、超音波切割、超音波粘接、压电马达、压 电变压器 压电传感器:速度、加速度计、角速度计、微位移器 光电组件:光调节器、光调节阀、光电显示、光信息储存、影 象储存和显示 目前市场容量最大的组件是频率组件,主要包括滤波器和谐振器。
压电陶瓷历史
1947年 采用BaTiO3压电陶瓷制成了拾音器,这
对压电材料的应用具有重大意义,极大地刺激了 压电陶瓷材料的研究与应用开发。 1969年 发现聚偏氟乙烯薄膜制程的驻极体具有 优良的压电性后,聚合物驻极体的研究和应用迅 速发展起来。
常见的压电陶瓷材料
1 、钛酸钡( BaTiO3 )压电陶瓷具有较高的压电系数
自然界中的压电材料——石英
压电陶瓷
高分子压电材料(压电薄膜)
压电陶瓷历史
1880年 法国的P.Curie和J. Curie兄弟在研究热电
性与晶体对称 性的关系时发现了正压电效应这一 物理现象,他们所 报导的这些晶体中就有后来广 为研究的罗息盐(NaKC4H4O6.4H2O—酒石酸钾 钠) 。 1881年 李普曼(G. Lippman)根据能量守恒和电荷 量守恒的 原理,推测逆压电效应(Converse piezoelectric effect) 的存在,这一预言很快就被 居里兄弟用实验所证实。后来 发现了磷酸二氢钾、 硫酸锂单水化合物和BaTiO3等重要压电晶体。
(PMN)具有较高的压电系数,在压力大至700kg/cm2 仍能继续工作,可作为高温下的力传感器。
压电原理
石英的晶体结构
Y X Y +
+
+ (b)
X
(a)
硅氧离子的排列示意图
(a) 硅氧离子在Z平面上的投影 (b)等效为正六边形排列的投影
石英的压电机制
压电陶瓷的极化
直流电场E 剩余极化强度
电场作用下的伸长
压电应变常数d33:
表示在压电晶体上施加单位电压时所产生的应变大小。
d 33 t (m / V ) U
压电电压常数g33:
表示作用在压电晶体上单位应力所产生的电压梯度大小。
g 33 UP (V m / N ) P
压电材料的主要性能参数
t 介电常数ε: C A
转换的能量 机电耦合系数K: K 输入的能量
和介电常数,机械强度不如石英。
2、锆钛酸铅Pb(Zr·Ti)O3系压电陶瓷(PZT)压电
系数较高,各项机电参数随温度、时间等外界条件的 变化小,在锆钛酸铅的基方中添加一两种微量元素, 可以获得不同性能的PZT材料。
3 、 铌 镁 酸 铅 Pb(MgNb)O3-PbTiO3-PbZrO3 压 电 陶 瓷
剩余伸长
(a)极化处理前
(b)极化处理中
(c)极化处理后
极化后的压电陶瓷
电极
----- +++++ 极化方向
自由电荷
束缚电荷
----- 电极 + + + + + 陶瓷片内束缚电荷与电极上吸附 的自由电荷示意图
压电效应
压电效应
逆压电效应
压电陶瓷等效模拟电路
并联模拟电路
串联模拟电路
压电材料的主要性能参数