燃气锅炉智能与优化控制系统的研究样本

燃气锅炉智能与优化控制系统的研究样本
燃气锅炉智能与优化控制系统的研究样本

燃气锅炉智能与优化控制系统的研究

关键词: 燃气锅炉;热负荷预测; 智能与优化控制

1 引言

近几年来, 中国城市燃气结构有了很大变化, 陕北天然气已进入京津, 渤海和东海天然气也已上岸, 川气也将出川, 特别是西气东输工程的加速实施, 为长期受限制的燃气锅炉的应用推广创造了条件。

应该看到: 一方面, 燃气锅炉的燃料价格相对较高, 因此应尽量提高燃料的利用效率; 另一方面, 气体燃料易燃易爆, 燃气锅炉的危险性大, 控制系统的生产保证和安全保障要求严格。

国外, 燃气锅炉的研究历史较长, 燃气燃烧控制技术比较成熟, 发展趋势是采用计算机控制, 实现机电一体化, 并将安全保护与自动控制相结合。可是, 燃气锅炉的计算机控制, 多为单回路常规控制, 如蒸汽压力的上下限控制、汽包液位的控制、燃气量的分挡控制等, 远不能适应中国各地区及各部门条件多变的需要。为了提高燃气锅炉的热效率和安全生产水平, 有必要对燃所锅炉的智能与优化控制技术进行研究。

2 燃气锅炉特点与供热对象分析

2.1 燃气锅炉特点与要求

燃气锅炉是以燃气( 天然气、 LPG、人工煤气等) 为燃料, 与空气按一定比例混合后, 经燃烧器喷入炉膛燃烧, 产生的热量传给水, 以产生水蒸气或热水供给用户。燃气锅炉优点为: 锅炉投资少; 运行、调节、维修、保养方便;对环境的污染小。

近年来, 中小型燃气锅炉的炉型中, 卧式火管锅炉因尺寸小、锅壳结构简单、炉胆形状利于燃气燃烧、螺纹式烟管传热性能好, 水容积大、对负荷变化的适应性强等优点, 因此, 颇受重视。

2.2 供热对象分析

本研究以天津市万辛庄罐站蒸发量2t/h的燃气锅炉为示范装置。供热对象为10万M2湿式储气罐的水槽冬季保暧用。由于湿式储气罐水槽中水量很大, 约2万多吨, 热惰性很大, 温度变化小。经过对储气罐的热平衡得出, 湿式储气罐水槽温度T随大气温度T0变化的动态我可用下式表示:

其中:

由式( 1) , 式( 2) 可知, 因G大, 则K1也大, 当水槽加热用蒸汽出现一个干扰A后, 如果水槽中2万多吨水完全混合, 则所需时间很长, 才能达到新的稳定值。实际上, 水槽内水温并非均匀, 但至少能够说明水槽的热惰性很大。

3 控制方案与实施

3.1控制系统要求

3.1.1程序控制

在燃气锅炉的开停炉过程中, 如果操作不当, 很易造成锅炉爆炸等事故。程序控制的目的, 就是控制燃气锅炉按照安全的程序进行开炉、停炉和正常运行。开炉、停炉程序的每一步都发布进行逻辑判断, 根据条件是否满足, 决定下一步操作, 遇到异常情况时, 应及时报警, 并起动相应的联锁装置, 以保证锅炉安全运行。

3.1.2安全控制

安全控制主要要求如下:

( 1) 高、低水位报警, 超低水位报警, 并关闭电磁阀, 切断燃气气源, 鼓风机30s后停机, 引风仍运行。

( 2) 蒸汽压力高报警, 蒸汽超高压报警, 同时关闭电磁阀, 切断燃气气源,收风仍运行。

( 3) 燃气高、低压报警, 防止火焰脱火、回火。

( 4) 火焰熄火、脱火保护, 关闭电磁阀。

( 5) 鼓、引风机工况( 变频故障、接触器故障等) 保护。

3.1.3智能与优化控制

燃气锅炉智能与优化控制包括空气/燃气比优化调节和燃气负荷预测调节二方面。具体要求如下:

( 1) 空气/燃气比优化调节

燃气锅炉中主要的热损失是炉体散热和排烟热损失, 后者取决于排烟温度和空气系数。降低空气系数可降低排烟热损失。另一方面, 空气系数增加有利于燃料的完全燃烧, 不完全燃烧损失下降。总体来讲, 燃烧热效率与空气系数的关系为非线性的关系, 有一个最佳的空气系数, 这时的锅炉热效率最高。空气系数的调节手段主要是鼓风量。测定烟气中的氧含量或二氧化碳会计师即可得知空气系数的大小。在调节过程需预先摸索出空气系数与热效率的关系曲线, 即可确定最佳的空气系数。

( 2) 燃气负荷预测调节

该燃气锅炉的蒸汽到用户之间, 未设流量控制回路, 原来靠蒸汽压力的高低人

为调节供热量。影响供热量的因素很多, 如水槽水量、环境温度、风力与风向、太阳照射强度( 指云彩多少) 、水槽温度与温度变化趋势、水槽导热性能等。由于各种因素的变化是随机的, 而且影响有延迟效应。要求能根据不幸条件和历史数据, 建立数学模型进行燃气负荷预测控制。

3.2控制系统

3.2.1控制系统方案选择

燃气锅炉系统控制方案有多种, 控制方案的性能比较见表1。

表1 锅炉系统控制方案比较

根据比较, 我们选择用上位机与可编程序控制器( PLC) 相结合的控制方案,液晶触摸屏作为人机对话界面。为确保试验安全可靠, 数据处理与数学模型的建立彩上位机, 在线控制彩可编程序控制器( PLC) 。

3.2.2上位计算机软件构成与功能

燃气优化计算机控制系统是由上位计算机( IPC) 经过PC/PPI通信电缆与P LC进行通讯数据交换, 将PLC从现场采集和各项系统运行参数的信号值实现上传至LPC进行处理和运算, 经过IPC软件实现实时监视系统运行、人机交互和实时控制。上位机软件主要功能包括:

将从LPC采集传来的数据, 经过组态软件制作控制系统各部分不同

显示画面;

( 2) 建立锅炉优化控制系统运行参数的报警和事件记录;

( 3) 建立系统参数的趋势分析和历史数据曲线;

( 4) 对系统运行过程中数据、状态等反映系统实时生产情况的参数建立数据报表;

( 5) 利用WINDOWS的DDE通信协议, 完成组态软件与Visual Basic或EXCEL

等高级语言软件进行在线数据交换和链接, 经过预测模型将采集到的天然气锅炉优化控制系统实时数据进行分析和处理, 预测计算出最新控制参数的优化值,并可用人机交互的方式决定是否将数据下传至PLC进行指导控制。

3.2.3控制系统回路

控制系统主要控制回路有:

( 1) 锅炉热负荷调节

由于该锅炉主要供湿式储气罐供蒸汽, 并兼顾办公室采暖。故采用根据环境温度及储气罐水槽湿度调节燃气量, 以节省燃气。软件还有优化控制系数的设定,以提高控制系统的性能。

( 2) 燃气量控制

基于声波测温的电站锅炉燃烧优化控制系统

基于声波测温的电站锅炉燃烧优化控制系统 项目建议书 华北电力大学

一目前电站锅炉燃烧系统存在的问题 1.1 共性问题 1.1.1 两对矛盾需要解决 ①锅炉效率()与污染排放(NOx)之间的矛盾 当我们追求高的锅炉效率的时候,势必要使煤粉在炉充分燃烧。要达到这一目的,则需要提高炉燃烧温度以及使用较高的过量空气系数,而这两方面都会增加污染的排放。反之,则锅炉效率较低。炉的高温燃烧还会带来水冷壁结渣等事故的发生。因此需要在两者之间做出最佳的折中选择。 ②锅炉排烟热损失()和机械未完全燃烧热损失()之间的矛盾 对于锅炉效率影响最大的两项热损失—排烟热损失()和机械未完全燃烧热损失()—而言,也存在类似的矛盾。提高炉燃烧温度以及使用较高的过量空气系数,可以降低机械未完全燃烧热损失(),但是排烟热损失()则会随之增加。因此也需要在两者之间做出最佳的折中选择。 1.1.2 四个优化问题需要解决 ①锅炉效率()与污染排放(NOx)的联合优化 通过寻找最佳的二次风门和燃尽风门组合,建立良好的炉燃烧空气动力场,可以达到锅炉效率()与污染排放(NOx)的共赢。 ②锅炉排烟热损失()和机械未完全燃烧热损失()的联合优化 通过寻找最佳的烟气含氧量(O2)设定值,可以达到锅炉排烟热损失()和机械未完全燃烧热损失()的共赢。 ③汽温控制方案的优化 联合调节燃烧器和喷水,尽量使用燃烧器摆角等方式来调节汽温而减少减温水的使用量,可以较大幅度的提高机组热效率。 ④防止炉结渣的优化 这可以通过以下方法实现:一是寻找最佳的煤粉和二次风门、燃尽风门的组合,调整均衡燃烧,防治火焰偏斜;二是调节炉膛出口温度目标值;三是组织合理的吹灰优化。 1.1.3 炉膛三个参数的测量需要解决

燃气热水锅炉控制方案要求

燃气热水锅炉控制 方案要求

基于PLC的锅炉供热控制系统及节能管理平台的设计需求 一、需求目的: 一个锅炉监控系统应主要包含以下几个部分: (1)各种设备状态和系统状态的采集; (2)锅炉和各种执行机构的控制。 设备状态的采集主要是锅炉输出的状态点,循环泵和补水泵给出的状态点,以及水箱等设备的状态点。锅炉的状态点主要包括锅炉的运行状态点、水箱的液位状态点、锅炉故障状态点、锅炉出水温度、锅炉回水温度、锅炉排烟温度;循环泵、补水泵以及电动调节阀等辅助其工作的变频设备的状态点。 系统状态的采集主要分为一次侧和二次侧。一次侧是锅炉到换热器之间的水循环系统,二次侧是到末端的水循环系统主要是指换热器循环系统。一次侧采集的状态包括一次侧供水温度、一次侧回水温度、一次侧供水压力、一次侧回水压力、烟温及燃烧机的工作状态及水箱水位、;二次侧采集的状态包括二次侧供水温度、二次侧回水温度、二次侧供水压力、二次侧回水压力;还有室外温度的采集,即可根据室外温度实现锅炉监控系统的自动控制。 锅炉和各种执行机构的控制主要是对锅炉本体的启停控制和

各种电动阀门的控制。将锅炉房内各个设备、仪器仪表、传感器、执行机构及通讯模块组成在线监控系统,经过完成对锅炉房和其它现场设备的数据采集和控制功能从而实现锅炉房的全自动控制,能够安全启停机组,达到无人值守。 供热管网经过控制系统的在线监测应实现以下目的: (1)监控各管网节点的实时数据,为系统管理和科学管理进行调度提供参数数据; (2)系统平衡功能计算,供热管网内的热水流动需要一定的水泵做功来完成,不合理的管网设计和建造将带来极大的能源浪费,经过对管网的相关部位的压力检测、增设压力调节阀,对管网的各部分压力进行合理的平衡分配(水平衡、热平衡等),能够大大地降低管网水泵的能源消耗; (3)异常报警,做到对管网异常及时准确响应; (4)能够监测各个主、支线管网,重要客户的实时用气量、对水、电、气实时采集,以便监管和控制。 二、燃气锅炉供热控制系统硬件部分: 1、PLC是整个控制系统的核心部件,采用西门子系列可编程逻辑控制器; 2、现场数据采集系统由温度传感器、压力传感器、燃气报警器、火焰监视器、水位传感器等组成;

工业锅炉控制系统设计

工业锅炉控制系统设计 The following text is amended on 12 November 2020.

工业锅炉控制方案设计 学生学号: 学生姓名:曹新龙 专业班级:自动化12102班指导老师:赵莹萍 目录

引言 锅炉是国民经济中主要的供热设备之一。电力,机械,冶金,化工,纺织,造纸,食品等工业和民用采暖都需要锅炉供给大量的蒸汽。各种工业的生产性质与规模不同,工业和民用采暖的规模大小也不一样,因此所需的锅炉容量,蒸汽参数,结构,性能方面也不尽相同。锅炉是供热之源,锅炉机器设备的任务在于安全,可靠,有效地把燃料的化学能转化成热能,进而将热能传递给水,以生产热水和蒸汽。为了提高热量及效率,锅炉向着高压,高温和大容量等方向发展。供热锅炉,除了生产工艺有特殊要求外,所生产的热水不需要过高温的压力和温度,容量也无需很大。 随着生产的发展,锅炉日益广泛的应用于工业生产的各个领域,成为发展国民经济的重要热工设备之一。在现代化的建设中,能源的需求是非常大的,然而我国的能源利用率极低,所以提高锅炉的热效率,具有极为重要的实际意义。此外,锅炉是否能应地制宜地有效地燃用地方燃料,并满足环境保护的各项要求而努力解决烟尘污染问题,以提高操作管理水平,减轻劳动强度,保证锅炉额定运行及运行效率,安全可靠地供热等课题。 锅炉微机控制,是近年来开发的一项新技术,它是微型机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物。工业锅炉数量大、分布广,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的1/3,大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。因此,提高热效率,提高自动化水平及防止环境污染, 降低耗煤量与耗电量,均是设计工业锅炉需考虑的重要因素。用微机进行控制是一件具有深远意义的工作。 本课题的主要方向就是采用过程控制对工业锅炉进行控制,采用先进的控制算法,以达到优化技术指标、提高经济效益和社会效益、提高劳动生产率、节约能源、改善劳动条件、保护环境卫生、提高市场竞争能力的作用。

基于DCS的燃气锅炉自动控制系统

基于DCS的燃气锅炉自动控制系统 1 工艺介绍 本锅炉系统主要通过燃烧高炉煤气和焦炉煤气为某钢铁公司1000M3高炉提供动力,并季节性提供工业用暖。锅炉主要包括煤气(高炉煤气、焦炉煤气)系统、炉体部分、对流受热面(汽包及冷却壁,I、II过热器,I、II省煤器,I、II空气预热器)、点火器、送引风设备等组成。 按照各部分的功能大致分为汽水系统、风烟系统、燃烧系统、减温减压及公用系统几个子系统。 本控制系统主要控制锅炉及相关辅助设备的生产过程,使其符合工艺所要求达到的蒸汽温度(450℃)、压力(3.82MPa)、流量(130t/h)、纯度(过热蒸汽)。 1.1 汽水系统 汽水系统是供给锅炉保护和产生蒸汽的除氧水,生成载热的过热蒸汽送到汽机膨胀做功或者经过减温减压后供热。来自除氧给水系统的除氧水经过调节后送到I、II省煤器预热, 12

然后送到锅炉汽包和与汽包相连的锅炉冷却壁中,经过锅炉燃烧生成的高温烟气的加热生成不饱和蒸汽,不饱和蒸汽经过I级过热器、I级过热器蒸汽集箱,经过喷水减温器减温处理后,再经过II级过热器、II级过热器蒸汽集箱后生成饱和的过热蒸汽,然后送到蒸汽母管,一部分送到汽机膨胀做功,一部分进入减温减压系统, 一部分提供除氧汽动给水泵做功给水。 1.2 风烟系统 空气(冷风)经过净化后通过1#、2#送风机送到I、II空气预热器中进行预热成为热风,热风送到热风烧嘴和煤气混合燃烧;高炉煤气和焦炉煤气通过高炉煤气管道和焦炉煤气管道送到燃烧喷嘴和热风混合燃烧,生成高温烟气,加热锅炉汽包中的除氧水使之成为不饱和蒸汽,然后高温烟气依次通过I过热器、II过热器、II省煤器、II空气预热器、I省煤器、I空气预热器将不饱和蒸汽加热成为高温高压的饱和蒸汽,并预热送到锅炉汽包中的除氧水和送到锅炉炉膛中的空气,最后通过引风机引至烟囱中排放。 1.3 燃烧系统 高炉煤气由外部接入,分为4路,分别进入锅炉的4个角(每角4个燃烧喷嘴),参与 12

锅炉APC先进过程优化控制解决方案

专业服务,创造价值 循环流化床锅炉APC先进过程 优化控制解决方案 2013-11-13

1 公司简介 集团(中控)始创于是中国领先的自动化与信息化技术、产品、解决方案供应商,业务涉及工厂自动化、公用工程信息化、装备自动化等领域。公司是中控科技集团的核心成员企业,致力于工厂自动化领域的现场总线与控制系统以及流程模拟仿真系统的研究开发、生产制造、市场营销及工程服务。 2 行业背景 2.1 行业现状 循环流化床(CFB)燃烧技术是最近几十年发展起来的一种新型燃烧技术,由于循环流化床锅炉具有燃料适应性广、燃烧效率高、高效脱硫的特点,因此近年来有了很大的发展,我国的循环流化床也经历了小型、中型、大型三个发展阶段,循环流化床能够解决我国燃烧锅炉存在包括环境问题在内的诸多现实问题,因此中国将成为循环流化床锅炉最大的商业市场。 2.2 行业难点 由于循环流化床锅炉燃料是在流化状态下燃烧,锅炉燃烧系统惯性大,各个变量之间相互影响,加上有飞灰循环等影响因素,因此CFB锅炉燃烧系统是一个大滞后、强耦合,多干扰的复杂非线性系统,自动燃烧优化控制难度较大,是业内公认的控制难点。 鉴于循环流化床锅炉燃烧的复杂性和特殊性,对一般煤粉锅炉和其他过程控制对象行之有效的常规控制方法,已难保证循环流化床锅炉各项控制指标的实现。有别于常规控制,中控锅炉APC先进控制解决方案采用多变量模型预测控制、专家规则控制等智能控制策略,能够更好地结合专家经验的同时克服系统大滞后、强耦合、多干扰等控制难点,可以较好地实现CFB锅炉系统安全高效率的燃烧自动控制,各项指标稳定度大幅提升,经济效益比较可观。

3 项目可行性分析 3.1 现场概述 贵公司炉机系统属中小型循环流化床多炉多机系统,实行母管制运行方式。 一次检测仪表性能良好,风机调节为挡板和变频控制,主汽温度挡板调节,除挡板调节死区稍大外,其余执行器调节死区小于1%,即执行器死区情况基本满足优化控制需求。 流化床控制系统采用中控DCS系统,DCS上配置传统的PID自动控制回路中,汽包水位控制回路、给煤控制、一次风控制、二次风控制、引风控制、减温水控制等大部分回路,现场均由操作人员手动操作。 3.2 优化空间 3.2.1 数据分析 对现场DCS数据进行取样分析,以#炉为例,数据包选取年10月1日至年10月20日,总计20天的数据,进行离线统计分析,主要分析主汽压力、主汽温度、烟氧含量、炉膛负压、床层温度、床层压差六个指标的平均值与平均波动幅度两项特性值。如下表所示: 序号指标平均值平均波动范围备注 1 主汽压力8.3MPa +0.5Mpa 2 主汽温度540℃+0.5℃ 3 烟氧含量 3.5% +1% 氧量较低 4 炉膛负压10Pa +120Pa 5 床层温度955℃+15℃床温较高 6 床层压差8.9KPa +0.3KPa 通过数据统计结果分析可知,由于现场燃煤的挥发分较高,氧量平均值较低,同时床温已经较高,因此燃烧效率本身提高空间就有限了,但各指标的平稳度还是有提升空间的,同时通过综合调整,可适当提高锅炉的传热效率,从而进一步

燃气蒸汽锅炉DCS控制系统

河南xxx工业有限责任公司 锅炉房3台10T蒸汽锅炉自控系统 控 制 方 案 xxxx电气系统有限公司

一:概述 xxxx电气有限公司是暖通、供暖节能、锅炉、热能设备等领域自动化控制的高科技股份制公司,是国内最大的锅炉电脑控制器厂家。 xx公司于1995年在全国率先推出锅炉电脑控制器,至今已发展到全系列燃煤、燃油(气)和电热锅炉的电脑控制、PLC控制、小型和大型DCS控制和供暖节能控制,控制锅炉的吨位达到150t/h,并且始终保持技术领先地位。目前xx公司产品已遍布全国,部分出口国外,近1000家国内锅炉厂和11家外资锅炉厂配套使用,已成为我国锅炉控制的主流产品和著名品牌,是中国锅炉行业“工业锅炉控制标准”起草单位。 公司资质: 中国锅炉行业“工业锅炉控制标准”起草单位 省级高新技术企业 国家级高新区企业 计算机软件企业 中国锅炉行业协会团体会员 二、控制对象和设备 10T燃油气两用饱和蒸汽锅炉3台,每台包括: ●程控器外置式燃烧器1台;风机功率12KW, ●给水泵2台,功率15kw(一主一备); ●循环泵 ●节能泵 由上述设备组成锅炉补水及蒸汽负荷输出系统。 三、关于标准 1、目前尚无锅炉控制器的国家标准或行业标准,我公司执行的是xxxx公司企业标准Q/3201RTG01-2000,是 目前国内唯一具有企业标准的锅炉电脑控制厂家。 2、我国工业锅炉控制装置的行业标准正在制定中,我公司为该标准的第一起草单位。 3、本控制方案依照国家有关标准和规程及xxxx公司企业标准编制,全面满足招标方要求。 四:系统设计原则 我方在进行本控制系统设计时,将严格遵循以下系统设计原则:

锅炉控制系统的组态设计

; 济南铁道职业技术学院 电气工程系 毕业设计指导书 课题名称: 锅炉控制系统的组态设计《 专业电气自动化 班级电气0831 姓名 cmy ~ 设计日期至 指导教师 ly ? 2010、11

济南铁道职业技术学院电气工程系 毕业设计指导书 2010、11 一、设计课题: ! 锅炉控制系统的组态设计 锅炉设备是工业生产中典型的控制对象,而组态控制技术是当今自动化系统应用广泛的技术之一。本课题采用组态王组态软件设计上位机监控画面,实时监控液位参数,并采用实时趋势曲线显示液位的实时变化。由此组成一个简单的液位控制系统。 二、设计目的: 通过本课题的设计,培养学生利用组态软件、PLC设计控制系统的能力,理解、掌握工业中最常用的PID控制算法,有利于进一步加深《自动控制原理》、《组态软件》和《过程控制》等课程的理解,为今后工作打好基础。 三、设计内容: 掌握锅炉生产工艺,实现锅炉自动控制的手段,利用“组态王”软件做出上位机监控程序,具体有主监控画面、实时曲线、历史曲线;掌握PID参数调整方法。 — 四、设计要求及方法步骤: 1.设计要求: (1)监控系统要有主监控画面和各分系统的控制画面,包括实时曲线、历史曲线和报表等。 (2)各控制画面要有手/自动切换。

(3)掌握PID控制算法。 2.运用的相关知识 (1)组态控制技术。 (2)过程控制技术。 ~ 3.设计步骤: (1)熟悉、掌握锅炉的生产工艺。 (2)设计各分系统的控制方案。 (3)构思系统主监控画面和分画面,包括实时曲线、历史曲线和报表等。 (4)编写设计论文。 五、设计时间的安排: 熟悉题目、准备资料 1周 @ 锅炉控制系统的工艺了解 1周 监控画面的设计 2周 控制算法的编制和系统调试 3周 论文的编写 2周 准备毕业设计答辩 1周 六、成绩的考核 在规定时间内,学生完成全部的设计工作,包括相关资料的整理,然后提交给指导教师,指导教师审阅学生设计的全部资料并初步通过后,学生方可进入毕业答辩环节,若不符合设计要求,指导教师有权要求学生重做。 … 答辩时,设计者首先对自己的设计进行10分钟左右的讲解,然后进行答辩,时间一般为30分钟。 成绩根据学生平时的理论基础、设计水平、论文质量和答辩的情况综合考虑而定。 成绩按优秀、良好、中、及格、不及格五个等级进行评定。

#蒸汽锅炉控制系统技术方案

DL-1000燃煤蒸汽锅炉控制系统技术方案 设计依据和原则 1.依据客户北京昌科供暖中心有关45t/h、35t/h、20t/h燃煤蒸汽锅炉控制系统的要求,并按照自控装置系统必须科学、合理、成熟、安全可靠、稳定、可扩展以及性价比高的原则进行设计。 2.符合以下规范与标准: 《蒸汽锅炉安全技术监察规程》1996; 《锅炉房设计规范》GB50041-92; 《工业锅炉监测与控制装置的配置标准》DB31/T72-1999; 《工业锅炉热工试验规范》GB10180-88; 《电气装置安装工程施工及验收规范》GB50303-2002; 《低压电器基本标准》GB1497-93; 《工业自动化仪表工程施工及验收规范》GBJ50093-2003。 1.0系统概述 本系统为DL-1000分散型集中控制系统,是集控制技术,通讯技术于一体,是当今控制系统的主流机型。可完成调节控制,联锁保护,顺序控制,数据采集等任务。人机接口采用触摸屏及上位机进行实时监控。运用多媒体技术,具有3D动画、全中文显示、声光提示等丰富多彩的人机互动界面,能直观地显示锅炉和燃烧的实际情况及燃烧负荷状态,各运行数据实时动感地显示在彩色触摸屏上,使锅炉的运行状态一目了然,操作更直观、更简便。该系统具有良好的互联性和开放性,留有充分的升级和后备功能,满足IEC61158和EN50170标准的要求。并且具有在恶劣工作环境下安全可靠运行和全视角直观显示锅炉系统工作状态的优点。 1.1 硬件 1.1.1 概述 本方案所配置的系统硬件均是有现场运行实绩的,先进可靠的和使用以微处理器为基础的分散型硬件。 1.1.2 处理器模件(PLC CPU226) PLC为可编程逻辑控制器,是一种以微处理器为基础,综合了现代计算机技术、自动控制技术和通讯技术发展起来的一种通用的工业自动控制装置,由于它拥有体积小、功能强、程序设计简单、维护方便等众多优点,特别是它适应恶劣工业环境的能力和它的高可靠性,使它的应用越来越广泛。 其主要负责数字量的数据处理和运行(控制),数据高速公路通讯管理和过程输入/输

基于DCS的燃气锅炉自动控制系统

基于DCS的燃气锅炉自动控制系统 作者:李婕姝杨润清来源:v黑龙江科技信息发布时间:2010-1-26 17:29:14 [收藏] [评论] 基于DCS的燃气锅炉自动控制系统 1 工艺介绍 本锅炉系统主要通过燃烧高炉煤气和焦炉煤气为某钢铁公司1000M3高炉提供动力,并季节性提供工业用暖。锅炉主要包括煤气(高炉煤气、焦炉煤气)系统、炉体部分、对流受热面(汽包及冷却壁,I、II 过热器,I、II省煤器,I、II空气预热器)、点火器、送引风设备等组成。 按照各部分的功能大致分为汽水系统、风烟系统、燃烧系统、减温减压及公用系统几个子系统。 本控制系统主要控制锅炉及相关辅助设备的生产过程,使其符合工艺所要求达到的蒸汽温度(450℃)、压力(3.82MPa)、流量(130t/h)、纯度(过热蒸汽)。 1.1 汽水系统 汽水系统是供给锅炉保护和产生蒸汽的除氧水,生成载热的过热蒸汽送到汽机膨胀做功或者经过减温减压后供热。来自除氧给水系统的除氧水经过调节后送到I、II省煤器预热,然后送到锅炉汽包和与汽包相连的锅炉冷却壁中,经过锅炉燃烧生成的高温烟气的加热生成不饱和蒸汽,不饱和蒸汽经过I级过热器、I级过热器蒸汽集箱,经过喷水减温器减温处理后,再经过II级过热器、II级过热器蒸汽集箱后生成饱和的过热蒸汽,然后送到蒸汽母管,一部分送到汽机膨胀做功,一部分进入减温减压系统, 一部分提供除氧汽动给水泵做功给水。 1.2 风烟系统 空气(冷风)经过净化后通过1#、2#送风机送到I、II空气预热器中进行预热成为热风,热风送到热风烧嘴和煤气混合燃烧;高炉煤气和焦炉煤气通过高炉煤气管道和焦炉煤气管道送到燃烧喷嘴和热风混合 燃烧,生成高温烟气,加热锅炉汽包中的除氧水使之成为不饱和蒸汽,然后高温烟气依次通过I过热器、II过热器、II省煤器、II空气预热器、I省煤器、I空气预热器将不饱和蒸汽加热成为高温高压的饱和蒸汽,并预热送到锅炉汽包中的除氧水和送到锅炉炉膛中的空气,最后通过引风机引至烟囱中排放。 1.3 燃烧系统 高炉煤气由外部接入,分为4路,分别进入锅炉的4个角(每角4个燃烧喷嘴),参与燃烧;进入锅炉和高炉煤气混合燃烧的热风分别进入锅炉的4个角(每角4个燃烧喷嘴),参与燃烧;焦炉煤气由外部接入,分为4路,分别进入锅炉的4个角(每角2个燃烧喷嘴),参与燃烧。正常情况下,燃料为高炉煤气,焦炉煤气只是在点火的时候用到,平时只是作为保安气(作为锅炉燃烧过程中的炉膛温度低时保护气)。 燃烧过程中通过热电偶和火焰观测器来检测炉膛温度变化。通过调节高炉煤气、焦炉煤气、风的配比来调节锅炉炉膛温度(燃料配比一般为100%高炉煤气,另外也有80%——90%高炉煤气加20%——10%焦炉煤气或者50%焦炉煤气)。整个燃烧过程中炉膛温度控制在1100±10℃左右。 1.4 减温减压及公用系统 本锅炉产生的过热蒸汽大部分送到汽机做功给高炉供风,其余的一部分送到中温中压联络管,另一部分送到1#、2#减温减压器经过工业水的减温减压后变为低温低压蒸汽,一部分送到厂区供热,另一部分通过加热蒸汽母管送到除氧器,一部分提供除氧汽动给水泵做功给水。 2.系统配置 2.1 DCS系统 计算机集散控制系统(DCS)由上位系统和下位系统组成。上位系统采用工业控制计算机,用Siemens 组态软件WinCC完成现场数据的实时显示、存储、报警处理、打印及控制参数设定。下位系统由Siemens PLC 构成,与现场设备相连。上位系统和下位系统之间的通讯采用Ethernet方式,其最高传输速率可达 10-100Mbit/s,完全满足对数据实时监控的要求。自动控制系统采用S7 400 系列PLC硬件组成基础自动

2016锅炉优化控制系统项目设计方案

浙江开化合成材料有限公司循环流化床锅炉优化控制项目 实 施 方 :案 2016年5月

浙江开化合成材料有限公司

目录 一、项目背景 (3) 二、锅炉优化控制需求分析 (3) 三、锅炉优化控制方案 (4) (1)锅炉燃烧系统控制的优化 (5) (2)汽水系统控制的优化 (5) (3)面向煤耗的燃烧的优化 (6) (4)炉况智能诊断专家控制优化 (6) 四、项目投资预算 (7) 五、项目实施周期计划 (8) 六、劳动卫生及工业安全 (8) 七、项目建设目标 (9)

八、项目效益评估 (9)

循环流化床锅炉优化控制项目实施方案 一、项目背景 浙江开化合成材料有限公司(以下简称“开化合成”)有两台循环流化床锅炉,设计规模分别为35t/hr、45t/hr,正常运行过程中,一台锅炉运行,另外一台备用,满足全厂所有生产装置的用汽需求。随着能源成本的上升和国家对于节能减排要求的提高,企业对于锅炉的节能技改需求日益迫切。 目前,开化合成循环流化床锅炉已采用中控JX300-XP系统实现了集散控制,但由于 蒸汽锅炉是一个分布参数、非线性、时变、大滞后和多变量耦合的复杂系统,DCS系统中的常规控制策略难以达到理想的控制效果,除减温减压系统实现了自动控制外,绝大多数 控制回路仍处于手动操作状态,自动化水平低,炉膛温度、烟气含氧量、主蒸汽压力、炉膛压力、汽包液位、除氧器液位等关键工艺指标运行平稳性差,能耗偏高。 二、锅炉优化控制需求分析 开化合成锅炉运行调整的任务是根据生产装置用汽的需求,实时的对蒸汽压力、蒸 汽温度、蒸汽流量进行调整。其主要控制系统可分为三大部分:燃烧控制系统、给水控制系统和减温减压控制系统。目前,减温减压控制系统已实现了自动控制,其他各系统均处于手动控制状态。燃烧控制系统的任务是提供适当的燃料量,并辅以适当的送风量,保证燃料和风以适当的比例充分混和燃烧,并维持稳定的炉膛温度、蒸汽压力、烟气含氧量等主要工艺指标,在此基础上平稳控制蒸汽流量,以快速满足蒸汽压力变化需求。另外,为了保证炉膛安全,一般使炉膛压力维持微负压,炉膛压力太高则会向外喷火,影响安全性和经济性,炉膛压力太低,则会使冷空气进入,降低经济性。 鉴于锅炉本身的复杂性,锅炉过程控制存在以下几个难点: (1)系统存在严重耦合,如燃料量的变化不仅影响蒸汽压力和汽包水位,还会影响过热蒸汽温度和烟气含氧量等。 (2)存在不确定时滞,如燃料量的变化对蒸汽温度、压力、汽包水位等的影响有不同的滞后,这些时滞的大小还随着负荷状况的改变而改变。 (3)蒸汽需求量的不确定性变化,由于需要供应蒸汽的生产装置较多,装置内发生 不确定性因素导致装置用汽量的变化频率较高,随机性较高,尤其是合成反应装置用汽系

循环流化床锅炉燃烧过程自动控制的优化方法

循环流化床锅炉燃烧过程自动控制的优化方法循环流化床锅炉CFB的控制系统的现状 目前,国内中、大型循环流化床锅炉CFB(CirculatingFluidizeBed)投运数量越来越多,这些电厂一般采用DCS(DistributedControlSystem:分散控制系统)进行机组运行控制。DCS控制系统应用于煤粉锅炉经验已经很成熟,而且自动化水平、安全性都比较高。对于国内的循环流化床锅炉,目前的DCS控制系统现状基本是套用煤粉炉的DCS控制逻辑,只是稍加改动;另外基于国内电厂基建现状,多数机组都是在抢工期的情况下投运的,所以留给控制系统研究人员的研究时间几乎没有。然而循环流化床锅炉的燃烧机理十分复杂,循环流化床锅炉的设计尚处于经验设计阶段,系统中变量之间的耦合比较紧密,而且具有严重的非线性。循环流化床锅炉热工自动控制,特别是燃烧自动控制方面的问题已成为其进一步推广应用的主要障碍,循环流化床锅炉的运行自动化已成为其走向实用的关键之一。 在机组基建调试期间,大家对于控制系统一般都是只要能保证锅炉正常启动和停运就行了,至于控制系统的优化、逻辑的优化、自动的投入与优化、锅炉保护的设定等都是简单地在煤粉炉的控制理念下做一些简单修改。然而,循环流化床锅炉和煤粉锅炉从燃烧机理上说有很大的区别,这就决定了控制逻辑及理念应该有很大的不同。所以套用煤粉锅炉的控制理念往往不能适合循环流化床锅炉。这也就是目前为什么许多循环流化床锅炉很多自动投不上、许多保护不敢投,从

而造成循环流化床锅炉的运行人员数量多,劳动强度高,效率低下等,而且锅炉的运行也极为不稳定。这就给我们的制造厂、电厂及试验研究人员提出了一个课题:如何使DCS控制系统更加适合循环流化床锅炉。 循环流化床锅炉燃烧过程自动控制的特点 循环流化床锅炉不同于煤粉炉,其控制回路多,系统比较复杂,控制系统一般包括以下主要回路:汽包水位控制;过热汽温控制;燃料控制;风量及烟气含氧量控制;炉膛负压控制;床层温度控制;料层高度控制;循环灰控制。对于汽包水位控制和过热汽温控制特性与通常的煤粉炉相同,在此不予以分析,只对与循环流化床锅炉燃烧相关的控制系统的特点进行分析。循环流化床锅炉燃烧过程自动控制的基本任务是使送入锅炉内的燃煤燃烧所提供的热量适应锅炉蒸汽负荷的需要,同时还要保证锅炉安全经济运行,燃烧控制系统的任务归纳起来有如下几个方面: 2.1.维持主蒸汽压力稳定。汽压的变化表示锅炉的蒸汽量与负荷的耗汽量不匹配,需要相应地改变燃料的供给量,以改变锅炉的蒸发量。 2.2.保证锅炉燃烧过程的经济性。改变燃料量的同时,相应地调节送风量,使之与燃料量匹配,保证锅炉燃烧的经济性. 2.3.引风量与送风量相配合以保证炉膛压力在正常的范围内,保证炉膛的安全运行;

燃煤锅炉控制系统

燃煤锅炉智能控制系统 系统简介 MBCS-8000锅炉控制系统是我公司结合多年锅炉控制经验开发而成,可完成各种类型锅炉及其公用部分的热工、电气部分的监视、控制、联锁保护等,实现负荷分配、经济燃烧、节能降耗,达到锅炉生产过程自动化的目的,这套系统具有良好的可靠性、开放性、先进性和易于维护等优点;现场运行效果证明,它是一套非常完善、先进、可靠、实用的系统,经多年来不断的优化与提升,融合多项创新技术并独创自动寻优控制算法,使其更加成熟与完善,已形成规格化、系列化产品。MBCS-8000锅炉控制系统,它由操作员站、现场PLC控制站及现场仪表组成。具有硬件系统可靠性高、稳定性好、故障率低及维修量少等特点。 系统主要功能 ● 检测功能:由PLC对锅炉各种模拟量信号以及开关量信号进行巡检和显示,并自动进行各种信号的故障判断和抗干扰保护。 ● 控制功能:能组成各种复杂的控制调节方式。可对多台锅炉的给水泵、鼓风、引风、给煤、锅炉给水、减温水等调节回路及水处理、热力除氧、减温减压等公用部分进行全面综合控制,并选择最佳参数进行自动调节。 ● 显示功能:实时数据显示、历史数据查询、工艺流程、超限报警、棒状图等。数据处理功能:可进行复杂的算术运算,数据自动存盘,并能随时和定时自动打印班报、日报和月报。 ● 蒸汽炉报警:给水泵、蒸汽压力、炉膛负压、炉膛温度、排烟温度、给水压力、汽包水位、过热蒸汽温度等主要参数根据需要发出声、光信号,进行自动记录。 ● 热水炉报警:补水泵、锅炉进出口温度、炉膛负压、炉膛温度、排烟温度等主要参数根据需要发出声、光信号,进行自动记录。 ● 强电后备功能:电机启/停联锁功能并有系统校验保护功能。本系统配有强电后备柜,装有水位、汽压、炉温、蒸汽流量、炉膛负压等重要参数指示仪表,各回路手自动无扰切换开关,主要电机的负荷电流表、电机启停操作按钮及各种指示灯,安全报警装置等。

范例-PLC在工业锅炉自动控制系统中的应用

PLC在工业锅炉自动控制系统中的应用 1 引言 锅炉是发电厂及其它工业企业中最普遍的动力设备之一,它的功能是把燃料中的贮能,通过燃烧转化成热能,以蒸汽或热水的形式输向各种设备。目前,国内大多数工业锅炉都是人工控制的,或简单的仪表单回路调节系统,燃料浪费很大。工业锅炉作为一个设备总体,有许多被控制量与控制量,扰动因数也很多,许多参数之间明显地存在着复杂的耦合关系。对于工业锅炉这个复杂的系统,由于其内部能量转换机理过于复杂,采用常规的方式进行控制,难以达到理想的控制效果,因此,必须采用智能控制方式控制,才能获得最佳控制效果。 2 系统的组成 系统运行的示意图如图1所示。 图1 系统运行示意图 由图1可知,燃料和空气按一定比例进入燃烧室燃烧,产生的热量传递给蒸汽发生系统,产生饱和蒸汽,经负荷设备调节阀供给负荷设备使用。与此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱排入大气。

锅炉是个较复杂的调节对象,为保证提供合格的蒸汽以适应负荷的需要,生产过程各主要工艺参数必须加以严格控制。主要调节项目有;负荷、锅炉给水、燃烧量、减温水、送风等。主要输出量是:汽包水位、蒸汽压力、过热蒸汽温度、炉膛负压、过剩空气等。这些输入量与输出量之间是互相制约的,例如,蒸汽负荷变化时,必然会引起汽包水位、蒸汽压力和过热蒸汽温度的变化;燃料量的变化不仅影响蒸汽压力,同时还会影响汽包水位、过热蒸汽温度、空气量和炉膛负压等。对于这样复杂的对象,工程处理上作了一些简化,将锅炉控制系统划分为若干个调节系统。主要的调节系统有: (1) 汽包水位调节系统 被调量是汽包水位,调节量是给水流量,它主要考虑汽包内部物料平衡,使给水量适应锅炉的蒸发量,维持汽包水位在工艺允许范围内。 (2) 过热蒸汽温度调节系统 维持过热器出口温度在允许范围之内,并保证管壁温度不超过允许工作温度。 (3) 燃烧调节系统 使燃料燃烧所产生的热量适应蒸汽负荷的需要;使燃料量与空气量之间保持一定比例,以保证经济燃烧;使引风量与送风量相适应,以保持炉膛负压稳定。 这里将讨论锅炉汽包水位调节系统、燃烧调节系统及蒸汽温度调节系统。 2.1 系统的检测信号及锅炉的控制任务 锅炉设备的检测信号包括:蒸汽流量、汽包水位、汽包蒸汽压力、加水量、炉膛负压、鼓风量、烟气含氧量、当已知检测信号的情况下,锅炉的控制任务是:在用户蒸汽机需要的情况下,PLC控制加水阀、输煤量、鼓风量与引风量,使保持锅炉汽包水位稳定,蒸汽压力稳定,炉膛负压稳定,烟气稳定,使燃料能量最充分地燃烧,以取得最大的热效率。 2.2锅炉的主要控制流程 (1) 锅炉水位控制流程 水位自动控制的主信号为水位差压变送器输出的信号。前馈信号可以

燃气锅炉的工作原理

燃气锅炉的工作原理 燃气锅炉是一种供暖、提供工业用途的特种设备。在家用供暖方面,主要有提供热水和蒸汽两种,例如家用生活热水、洗浴用水。工业主要提供蒸汽为其他设备提供制冷、动力等服务,例如船舶、机车、矿场等场所。锅炉工作原理比较复杂,主要有燃料系统、烟风系统、汽水系统等构成。不同类型的锅炉其工作原理也是不同的。下面就为您介绍燃气锅炉的工作原理。图1-1给出了燃气锅炉系统的原理图。水通过进水口进入锅炉,经过锅炉加热后的符合供热标准的水质通过循环水泵送入室内散热器,通过辐射和对流换热来供暖。流过散热器的水重新回到锅炉里面进行加热,然后重新流入散热器,如此循环往复的进行。用户还可以根据供热范围的大小,选择合适的循环水泵,比较经济方便。而且锅炉系统还可以供给用户热水,满足用户基本的热水需求,损失的水量可以通过进水口自动添加。锅炉内水质的温度和室内温度经过温度传感器处理后,把温度信号传送给单片机,通过相应的驱动电路来调节相应管道阀门的大小,进而通过控制水量来控制水温,达到供暖的目的。

燃气锅炉的进水口的阀门是单向阀,是为了避免锅炉内的热水倒流回自来水管道,影响经济效率。

炉温和室温的测量都采用集成的温度传感器,集成温度传感器测量比较方便,精确度也比较高,测温范围也符合本次设计的要求。燃烧器里的进气量由控制器发出的控制信号通过固体继电器的动作来控制进气阀门的大小来保证天然气充分的燃烧。散热器可以根据自己个人的喜好选择,选择外形美观便于清扫的散热器,一般为了三个效果比较好可以选择铝制的散热器,散热器的入水口的强制循环水泵保证了散热器内的水压,从而也保证了散热片的散热效果。

锅炉APC先进过程优化控制解决方案

锅炉燃烧过程优化控制方 专业服务,创造价 循环流化床锅先进过AP 优化控制解决方

2013-11-1 1锅炉燃烧过程优化控制方 公司简 集团(中控)始创于是中国领先的自动化与信息化技术、产品、解决方案 应商,业务涉及工厂自动化、公用工程信息化、装备自动化等领域。公司是中科技集团的核心成员企业,致力于工厂自动化领域的现场总线与控制系统以及程模拟仿真系统的研究开发、生产制造、市场营销及工程服务 行业背 行业现2. 循环流化(CFB燃烧技术是最近几十年发展起来的一种新型燃烧技术,

于循环流化床锅炉具有燃料适应性广、燃烧效率高、高效脱硫的特点,因此近来有了很大的发展,我国的循环流化床也经历了小型、中型、大型三个发展阶段循环流化床能够解决我国燃烧锅炉存在包括环境问题在内的诸多现实问题,因中国将成为循环流化床锅炉最大的商业市场 行业难2. 由于循环流化床锅炉燃料是在流化状态下燃烧,锅炉燃烧系统惯性大,各 变量之间相互影响,加上有飞灰循环等影响因素,因CF锅炉燃烧系统是 个大滞后、强耦合,多干扰的复杂非线性系统,自动燃烧优化控制难度较大,业内公认的控制难点 鉴于循环流化床锅炉燃烧的复杂性和特殊性,对一般煤粉锅炉和其他过程 制对象行之有效的常规控制方法,已难保证循环流化床锅炉各项控制指标的实现有别于常规控制,中控锅AP先进控制解决方案采用多变量模型预测控制 专家规则控制等智能控制策略,能够更好地结合专家经验的同时克服系统大滞后强耦合、多干扰等控制难点,可以较好地实CF锅炉系统安全高效率的燃 自动控制,各项指标稳定度大幅提升,经济效益比较可观 1第

锅炉燃烧过程优化控制方 提升锅炉的燃烧效率 优化空3.2. 通过现场数据分析,包括与领导、相关技术人员DC技术人员的技术交 沟通,评估现场发现存在如下可提升的空间 )各指标的稳定性可进一步提升,波动幅度可减30以上 )各指标的经济运行匹配有待于进一步优化,提高锅炉效率降低煤耗 实现经济运行之目的 即,贵方现场锅炉燃烧系统存在可观的优化空间 项目可行性分3. 现场的现有设备,仪表,控制系统条件是否满足优化控制系统需求呢?通 现场考察分析发现,一次检测元件的性能良好,保证了测量信号的质量,在改风量挡板调节精度后,可为优化控制提供了良好的控制手段DC系统可以提 实时运行数据库 综上所述,我们可以得出如下结论 )现场存在较大的优化空间,具备经济效益挖潜空间 )现场设备、仪表、系统条件良好,满足优化控制系统需求条件 暨在对现场外围硬件设备不进行大幅改造或追加投资的情况下,现场满足 施锅炉自动燃烧控制技术的条件,能够通过对控制系统的优化提升,使得循环化床能够全自动运行,降低运行人员劳动强度的同时,又能提高机组的经济运能力,达到节能降耗的目的

基于PLC的锅炉燃烧控制系统

专业英语 项目作业 指导教师 班级 姓名 学号 齐齐哈尔工程学院电气工程及其自动化专业 2016年12月29日

基于PLC的锅炉燃烧控制系统 1 引言 燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制系统、炉膛压力控制系统。目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通过不同的测量、控制手段来保证经济燃烧和安全燃烧。 2 控制方案 锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的要求,同时还要保证锅炉安全经济运行。一台锅炉的燃料量、送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控制变量,但彼此之间应互相协调,才能可靠工作。对给定出水温度的情况,则需要调节鼓风量与给煤量的比例,使锅炉运行在最佳燃烧状态。同时应使炉膛内存在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的安全和环境卫生。 2.1 控制系统总体框架设计 燃烧过程自动控制系统的方案,与锅炉设备的类型、运行方式及控制要求有关,对不同的情况与要求,控制系统的设计方案不一样。将单元机组燃烧过程被控对象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符合运行人员的操作习惯,又要最大限度的实施燃烧优化控制。控制系统的总体框架如图1所示。 图1单元机组燃烧过程控制原理图1 1徐亚飞,温箱温度PID与预测控测控制.2004,28(4):554-5572

P为机组负荷热量信号。控制系统包括:滑压运行主汽压力设定值计算模块(由热力系统实验获得数据,再拟合成可用DCS折线功能块实现的曲线)、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。主蒸汽压力控制系统采用常规串级PID控制结构。 2.2 燃料量控制系统 当外界对锅炉蒸汽负荷的要求变化时,必须相应的改变锅炉燃烧的燃料量。燃料量控制是锅炉控制中最基本也是最主要的一个系统。因为给煤量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制对锅炉运行有重大影响。燃料控制可用图2简单表示。 图2 燃料量控制策略 其中:NB为锅炉负荷要求;B为燃料量;F(x)为执行机构。 设置燃料量控制子系统的目的之一就是利用它来消除燃料侧内部的自发扰动,改善系统的调节品质。另外,由于大型机组容量大,各部分之间联系密切,相互影响不可忽略。特别是燃料品种的变化、投入的燃料供给装置的台数不同等因素都会给控制系统带来影响。燃料量控制子系统的设置也为解决这些问题提供了手段。 2.3 送风量控制系统 为了实现经济燃烧,当燃料量改变时,必须相应的改变送风量,使送风量与燃料量相适应。燃料量与送风量的关系见图3。2 刘官敏,温箱温度PID与预测控测控制.2004,28(4):554-5572

ZGK智能化锅炉控制系统

ZGK智能化锅炉控制系统 由南京英吉诚能源技术开发有限公司自行开发研制的ZGK智能化锅炉控制系统是一个集节能、环保、自动控制于一体的智能化控制系统。 该系统能根据在线用汽负荷自动调节鼓、引风机的风量和炉排的速度,全程记录运行数据和故障状况,还能对多台锅炉进行远程异地集散控制。该系统通过实时采集蒸汽的实际用量建立一套给煤量、风量、水量和用汽负荷之间的能量优化运行数学模型。根据负荷的不同及时调整炉排速度及鼓、引风机的风量配比。根据锅炉水位的高低及时调节给水量,保持气压、热量的稳定。该系统既能通过总线上的上位机集中监控操作,又能在上位机休眠时多台锅炉在分散状态下自动检测各项实时运行和指令,执行各自的全自动运行程序,实现系统的集散控制。 众所周知,锅炉在燃烧过程中,当炉膛内空气不足时,会造成燃料不完全燃烧损失,不仅浪费了能源,而且排放到空气中去后还会污染环境;而当炉膛内空气量过多时,又使热量被过剩空气带走,造成排烟损失,同样,极大地浪费了能源。通常根据蒸汽压力的变化来控制给煤机的给煤量和调节炉排转速以达到控制炉膛中燃烧时间的目的.当给煤量变化时,送风机、引风机的风量也应相应地变化,使不完全燃烧损失和排烟损失之和为最小,使锅炉的热效率最高。为达此目的,传统的做法是用阀门开度调节的方法,即用风门来调节送(引)风的风量,用水阀门来调节给水量。这不仅造成了能量的损失,而且,由于天长日久阀门锈化损坏,使得无法调节。而由南京超能士科技有限公司自行研制开发的ZGK智能化锅炉控制系统能有效地消除上述的弊病,它通过锅炉燃烧过程的自寻最优化控制,对被控参数的实时变化曲线进行即时跟踪,自动地进行分析和计算,找出最佳的控制参数和最佳的风煤比,继而对给煤量、风量、水量进行协调控制,使锅炉的热效率始终处于最佳值的燃烧区,从而达到节约电能、节约燃料、环保的目的。 该系统性能稳定,运行可靠。其不仅有效地降低锅炉排烟热损失和燃料不完全燃烧热损失,而且还减少了对环境的污染排放,减轻了操作者的劳动强度。 一、系统的控制原理和节能机理 1.1系统的控制原理 ZGK智能锅炉控制系统通过实时采集蒸汽的实际用量,建立一套给煤量、风量、水量和用汽负荷之间的能量优化运行数学模型。根据用汽量的多少实时地调整给煤速度及鼓风、引风之间的风量比,在进行水位控制时,不仅根据锅炉水位的高低,而且还根据蒸汽的流量,给水的压力等参数来进行综合控制。在建立“能量优化运行数学模型”软件的基础上,其控制算法不仅采用了PID控制,而且还采用了智能控制、模糊逻辑控制、参数自整定控制和锅炉热效率寻优控制,在系统的硬件方面,采用了DSP和RISC多微数字处理器系统,在运算方法上采用了快速浮点法,从而,使整个实时控制系统在处理信息方面的速度可达每秒三百万次以上。 1.2系统的节煤机理 ZGK智能锅炉控制系统解决了锅炉运行不稳定所造成的燃煤浪费,它完全实时地根据蒸汽用量和锅炉实际运行参数所编制的运行优化程序,自行调节给煤量和鼓、引风量,使锅炉炉膛的燃烧稳定,减少了炉膛内由于空气过多所造成的排烟换失和炉膛内由于空气过少而造成的燃料不完全燃烧损失。 1.3系统节电机理

FGR的循环型工业锅炉节能控制系统设计分析

FGR的循环型工业锅炉节能控制系统设计分析 摘要:氮氧化物是雾霾产生的一大成因,也是燃气锅炉排放的主要污染物。已颁布的《北京市锅炉大气污染物排放标准》将工业锅炉氮氧化物的排放标准大幅提高。 关键词:FGR循环型工业锅炉;节能控制系统设计; 工业锅炉是重要的热能动力设备,我国是当今世界锅炉生产和使用最多的国家。我国锅炉制造业特别是改革开放以来随着国民经济的蓬勃发展,全国有千余家持有各级锅炉制造许可证的企业可以生产各种不同等级的锅炉。由于节能环保日益严格,而工业锅炉又处于能耗高、浪费大、环境污染严重的生产运行状态,因此对工业锅炉推广应用各种新技术、新工艺、新管理是实现节能降耗、减少污染的重要途径。随着工业生产规模的不断扩大,生产过程不断强化。 一、烟气循环FGR的主要原理 烟气循环参与再燃烧有两种方式:烟气内部循环和烟气外部再循环。烟气内部循环一般用于普通低氮应用,利用燃烧器喷嘴流速产生卷吸烟气的效应,使少量烟气再次参与燃烧,降低火焰温度,排放目标值为80 mg/m3;而烟气外部再循环是通过风机的机械力量大幅度增加再循环烟气的流量,再循环烟气量可占总烟气量的25%,大幅度降低火焰温度,更低的氮氧化物排放。 二、FGR的循环型工业锅炉节能控制系统设计分析 1.物料出口温度控制。经过分析可知,影响锅炉物料出口温度的因素包括物料流量、燃烧工况以及空气量与燃料量比值等,在控制系统中,物料出口温度是通过改变燃料流量来控制的,但受到燃烧工况、风量的跟随作用以及风量与燃料量的比值影响。为了使物料出口温度稳定在目标温度,必须保证燃料能够充分燃烧,释放出足够的能量,因此选择采用串级控制系统。该控制系统中,物料出口温度控制回路为串级控制系统的主回路。在控制方案中,当物料出口温度由于某种干扰变化时,通过物料出口温度控制器的输出来改变燃料控制器的给定值,使燃料量随之变化。然后通过比值控制器使空气量也发生改变,保持燃料量和空气量的流量比不变。但从动态角度看,因蒸汽出口温度变化首先反应到燃料量给定值的变化,使燃料量随之变化,再经过燃料量测量变送器、比值器,改变空气量控制器的给定值,空气量才发生变化。显然,空气量的变化滞后于燃料量,即动态比值不能得到保证。在实际工业生产中,为了使燃料完全燃烧,在提升负荷时要求先提升空气量,后提升燃料量;在降低负荷时,要求先降低燃料量,后降低空气量,即所谓具有逻辑提降量的比值控制系统。通过增加两个选择器HS、LS 组成具有逻辑提降功能的燃烧过程控制系统,空气量与燃料量的比值。燃烧系统要减少稳态误差,同时由于流量噪声比较大,不能采用微分作用。因此,燃料流量控制器和空气流量控制器均采用控制器。如有微分作用时,一旦主控制器和输出稍有变化,调节阀将大幅度变化,不利于控制,所以副控制器选用控制器,主控制器采用PID 控制器。 2.烟气含氧量闭环控制。烟气含氧量是指燃料燃烧之后排出的烟气中氧气的含量,它主要与燃料的燃烧状况有关。烟气含氧量的影响因素是燃烧工况。燃烧过程的燃料量与空气量比值控制系统存在一个不足,即不能保证两者是最优比,这是由于流量测量的误差以及燃料质量的变化所造成的。为此,文中方案采用烟气氧含量作为送风量的校正信号。锅炉燃烧过程中烟气含氧量的闭环控制方案,烟气含氧量作为被控变量,其设定值是锅炉燃烧效率最高情况下的最优烟气含氧

相关文档
最新文档