材料科学基础第4章固体中原子及分子的运动—扩散.

合集下载

材料科学基础_固体中的扩散

材料科学基础_固体中的扩散

驱动扩散的真实动力是自由能
化学位的定义,某溶质i的化学位为
平衡条件是各处的化学位相等。如果存在一化学位 梯度,表明物质迁移 dx 距离,系统的能量将变化了。 好象有一作用力推动它移动一样,设这个力为 F,所作 的功为 Fdx 作为化学位的变化 。
称为扩散的驱动力,负号表示推动物质流向 化学位较低处
代替 Fick 第一定律的真实法则为:
扩散系数与化学位的关系
如果某组元的浓度提高反而可降低化学位(降低其吉 布斯自由能),则组元会进行上坡扩散。组元的集中降低 吉布斯自由能的原因和原子之间的键结合能来决定。所 以在分析扩散过程时,应该从化学位来分析,不能单从 浓度梯度来分析。
当然在很多情况下,当
菲克定律的表达式是正确的,用它分析可以把 问题简化。 应用那种模式要具体分析。
数又称禀性扩散系数
N1、N2为组元的摩尔浓度(原子百分比)
代位扩散的方程(Darken方程)
扩散方程:
第三节
扩散中的热力学
• 菲克定律的局限性 • 驱动扩散的真实动力是自由能 • 扩散系数与化学位的关系
菲克定律的局限性
分析菲克定律,结论是扩散中物质的流动是从浓度 高处流向浓度低处,如果浓度梯度消失(dC/dx=0),各处 的浓度相等,就不应该再出现物质的传输,在一般的情 况下可以解释许多现象。在固体材料中,还有些现象与 此相矛盾,物质的迁移(扩散)会出现从低浓度向高浓度 处聚集,例如过饱和固溶体的脱溶,从中析出第二相, 此外固体电解质中的带电离子在电场或磁场的作用下, 发生的扩散迁移也不一定是从高浓度处流向低浓度处, 这种反向的扩散称为“上坡扩散”。 为了解释上坡扩散的现象,正确分析扩散规律, 必需用热力学来讨论扩散过程的实质,因为扩散的自发 进行方向也必然是系统吉布斯自由能下降。

上海交通大学 材料科学基础ppt ch4

上海交通大学   材料科学基础ppt ch4

• 考虑三维情况:则扩 ∂ρ ∂2 ρ ∂2 ρ ∂2 ρ 散第二定律的普遍式 = D( 2 + 2 + 2 ) ∂t ∂x ∂y ∂z 为:
上述扩散均是由于浓度梯度引起的,通常称为 上述扩散均是由于浓度梯度引起的, 化学扩散。 化学扩散。 假设扩散是由于热振动而产生的称为自扩散, 假设扩散是由于热振动而产生的称为自扩散, 自扩散系数的表达式为: 自扩散系数的表达式为:
重点与难点
概述
扩散(diffusion) 扩散 (diffusion) (diffusion)——原子或分子的迁移现象 原子或分子的迁移现象 称为扩散。 称为扩散。 物质的迁移可以通过对流和扩散两种方式进行, 物质的迁移可以通过对流和扩散两种方式进行, 气体和液体中物质的迁移一般是通过对流和 扩散来实现的。 扩散来实现的。 扩散的本质是原子依靠热运动从一个位置迁移 到另一个位置。 到另一个位置。 扩散是固体中原子迁移的唯一方式。 扩散是固体中原子迁移的唯一方式。
分析:碳原子从内壁渗入,外壁渗出达到平衡时, 分析:碳原子从内壁渗入,外壁渗出达到平衡时,圆 筒内各处碳浓度不再随时间而变化, 筒内各处碳浓度不再随时间而变化,为稳态扩散 单位面积中碳流量,即扩散通量: 解:单位面积中碳流量,即扩散通量: J=q/(At)=q/( πrlt) J=q/(At)=q/(2πrlt) 圆筒总面积, 园筒半径及长度, A : 圆筒总面积 , r 及 l : 园筒半径及长度 , q : 通过 圆筒的碳量 根据Fick第一定律又有: Fick第一定律又有 根据Fick第一定律又有: J=q/(At)=q/( πrlt) J=q/(At)=q/(2πrlt) /dr) =-D( dρ/dr) 解得: πlt) /dlnr) 解得: q =-D (2πlt) ( dρ/dlnr) 式中, 可在实验中测得, 式中 , q 、 l 、 t 可在实验中测得 , 只要测出碳 含量沿筒径方向分布( 通过剥层法测出不同r 含量沿筒径方向分布 ( 通过剥层法测出不同 r 处的 碳含量) , 则扩散系数D 可由碳的质量浓度ρ 对 lnr 碳含量 ) 则扩散系数 D 可由碳的质量浓度 ρ 作图求得。作图结果见P132- 作图求得。作图结果见P132-4.1.

10《材料科学基础》-第四章固体中原子及分子的运动01表象理论

10《材料科学基础》-第四章固体中原子及分子的运动01表象理论

若D与浓度无关,则: ∂ρ ∂ρ =D ∂t ∂x
2 2
对三维各向同性的情况:
∂ρ ∂ρ ∂ρ ∂ρ = D( + + ) ∂z ∂t ∂x ∂y
2 2 2 2 2 2
菲克定律描述了固体中存在浓度 梯度时发生的扩散,称为化学扩散 当扩散不依赖于浓度梯度,仅由 热振动而引起时,则称为自扩散
定义:自扩散系数 Ds= ∂ρ →0
4.2 扩散的热力学分析
4.2.1 扩散驱动力
菲克第一定律描述了物质从高浓度向低浓度扩散的现象, 菲克第一定律描述了物质从高浓度向低浓度扩散的现象, 扩 散的结果导致浓度梯度的减小,使成份趋于均匀。 散的结果导致浓度梯度的减小,使成份趋于均匀。
有些扩散是由低浓度处向高浓度处进行的, 有些扩散是由低浓度处向高浓度处进行的, 如固溶体中某些 偏聚,这种扩散被称为“上坡扩散” 偏聚,这种扩散被称为“上坡扩散”。
扩散是固体中原子迁移的唯一方式 物质的传输方式
气体: 扩散+对流
固体: 扩散
离 子 键
液体: + 扩散+对流
金属
陶瓷
高分子
扩散机制不同
本章内容
• 扩散的表象理论 • 扩散的原子机制 • 影响扩散的因素 • 陶瓷材料中扩散的主要特征 • 高分子材料中分子运动的规律
4. 1 表象理论
扩散(diffusion): 在一个相内因分子或原子的热激活运动导 致成分混合或均匀化的分子动力学过程
3.空位机制 . 晶体中存在着空位,空位的存在使原子迁移更容易。 晶体中存在着空位,空位的存在使原子迁移更容易。通过 空位,原子从晶格中一个位置迁移到另一个位置实现交换。 空位,原子从晶格中一个位置迁移到另一个位置实现交换。

材料科学基础 第4章 点缺陷和扩散

材料科学基础 第4章 点缺陷和扩散
空位对晶体的物理性能和力学性能有明显的影响。 空位对金属材料的高温蠕变、沉淀析出、回复、表面氧
化、烧结等都产生了重要的影响。
30
二、离子晶体中的空位及间隙原子
肖脱基缺陷:为了保持晶体的电的中性,空位只能 以与晶体相同的正离子:负离子的空位比率小组的 方式产生。这些电中性的正离子-负离子-空位丛簇 称为。 弗兰克缺陷:以空位/间隙对形式存在的缺陷群。
29
关于空位的总结
空位是热力学上稳定的点缺陷,一定的温度对应一定的 平衡浓度,偏高或偏低都不稳定。
不同金属的空位形成能是不同的,一般高熔点金属的形 成能大于低熔点金属的形成能。
空位浓度、空位形成能和加热温度之间的关系密切。在 相同的条件下,空位形成能越大,则空位浓度越低;加 热温度越高,则空位浓度越大。 C平=exp[-Ev/kT+Sc/k]
23
空位迁移也要克服一定的“势垒”,也即空位迁移能Qfv。 迁移速率为: j=zexp(Sc/k)exp(-Qfv/kT)
金属熔点越高,空位形成能和迁移能越大。所以,在相 同条件下,高熔点金属形成的空位数比低熔点金属少。
24
5.材料中空位的实际意义
空位迁移是许多材料加工工艺的基础。
晶体中原子的扩散就是依靠空位迁移而实现的。 在常温下空位迁移所引起的原子热振动动能显著提高,再加上高 温下空位浓度的增多,因此高温下原子的扩散速度十分迅速。
53扩散分类1根据?c?t分类稳态扩散和非稳态扩散2根据?c?x分类?c?x0自扩散在纯金属和均匀合金中进行?c?x?0互扩散上坡扩散和下坡扩散3根据扩散途径分类体扩散晶界扩散表面扩散短程扩散沿位错进行的扩散4根据合金组织分类单相扩散多相扩散54二扩散的物理描述fick第一扩散定律影响原子移动的速率即扩散速率的因素

《材料科学基础》第四章习题.doc

《材料科学基础》第四章习题.doc

《材料科学基础》第四章固体中原子即分子的运动1.名词:扩散扩散互扩散扩散系数互扩散系数扩散激活能扩散通量上坡扩散间隙扩散空位扩散原子迁移界面扩散表面扩散柯肯达尔效应反应扩散稳态扩散2.设有一条内径为30mm的厚壁管道,被厚度为0.1mm的铁膜隔开,通过管子的一端向管内输入氮气,以保持膜片一侧氮气浓度为1200mol/m)而另一侧的I气浓度为100 mol/m3,如在700C下测得通过管道的氮气流量为2.8xl0-8mol/s,求此时氮气在铁中的扩散系数。

解:通过管道中铁膜的氮气通量为J = J* ‘°——=4.4x 10 "mol/(m'・s)jx (0.03)2膜片两侧氮浓度梯度为:一萱二'2()()-l()() = U x]0_7m〃〃秫Ax 0.0001据Fick's First Law : J = -D^- n。

= ------------ -- = 4xl0-,,m2Isox Ac / Ax3.有一-硅单晶片,厚0.5mm,其一端面上每10’个硅原子包含两个像原子,另一个端面经处理后含镣的浓度增高。

试求在该面上每个硅原子须包含儿个像原子,才能使浓度梯度成为2xl°26atoms/m3,硅的点阵常数为0.5407nm。

4. 950°C下对纯铁进行渗碳,并希望在0.1mm的深度得到Wi(C)=0.9%的碳含量。

假设表面碳含量保持在IA/2(C)=1.20%,扩散系数为D -Fe=1010m2/s,计算为达到此要求至少要渗碳多少时间。

5.在-•个富碳的环境中对钢进行渗碳,可以硬化钢的表面。

己知在1000°C下进行这种渗碳热处理,距离钢的表面l-2mm处,碳含量从x= 5%减到x=4%。

估计在近表面区域进入钢的碳原子的流人量J (atoms/m2s)o (y・Fe在1000°C的密度为7.63g/cm',碳在y-Fe • | •的扩散系数D o=2.0xl0'5m2/s,激活能Q= 142kJ/mol)o£> = 2X10-11 折公8.为什么钢铁零件渗碳温度般要选择在Y ・Fe 相区中进行?若不在Y 相区进6.有两种激活能分别为Qi = 83.7kJ/mol 和Q2 = 251kJ/mol 的扩散反应。

《材料科学基础》第四章习题

《材料科学基础》第四章习题

《材料科学基础》第四章 固体中原子即分子的运动1.名词:扩散 自扩散 互扩散 扩散系数 互扩散系数 扩散激活能 扩散通量 上坡扩散 间隙扩散 空位扩散 原子迁移 界面扩散 表面扩散 柯肯达尔效应 反应扩散 稳态扩散2. 设有一条内径为30mm 的厚壁管道,被厚度为0.1mm 的铁膜隔开,通过管子的一端向管内输入氮气,以保持膜片一侧氮气浓度为1200mol/m 3,而另一侧的氮气浓度为100 mol/m 3,如在700℃下测得通过管道的氮气流量为2.8×10-8mol/s ,求此时氮气在铁中的扩散系数。

解:通过管道中铁膜的氮气通量为 )/(104.4)03.0(4108.22424s m mol J ⋅⨯=⨯⨯=--π膜片两侧氮浓度梯度为:m mol x c /101.10001.010012007-⨯=-=∆∆- 据Fick ’s First Law : s m xc J D x c D J /104/211-⨯=∆∆-=⇒∂∂-=3. 有一硅单晶片,厚0.5mm ,其一端面上每107个硅原子包含两个镓原子,另一个端面经处理后含镓的浓度增高。

试求在该面上每107个硅原子须包含几个镓原子,才能使浓度梯度成为2×1026 atoms/m 3,硅的点阵常数为0.5407nm 。

4. 950℃下对纯铁进行渗碳,并希望在0.1mm 的深度得到w 1(C)=0.9%的碳含量。

假设表面碳含量保持在w 2(C)=1.20%,扩散系数 为D ɤ−Fe=10-10m 2/s ,计算为达到此要求至少要渗碳多少时间。

5. 在一个富碳的环境中对钢进行渗碳,可以硬化钢的表面。

已知在1000℃下进行这种渗碳热处理,距离钢的表面1-2mm 处,碳含量从x = 5%减到x =4%。

估计在近表面区域进入钢的碳原子的流人量J (atoms/m 2s )。

(γ-Fe 在1000℃的密度为7.63g/cm 3,碳在γ-Fe 中的扩散系数D o =2.0×10-5 m 2/s ,激活能Q =142kJ/mol)。

南昌大学材料科学基础复习题与部分答案-2012

南昌大学材料科学基础复习题与部分答案-2012

单项选择题:第 1 章 原子结构与键合1. 高分子材料中的 C-H 化学键属于。

(A )氢键 (B )离子键 ( C )共价键2. 属于物理键的是 。

( A )共价键 (B )范德华力 ( C )离子键3. 化学键中通过共用电子对形成的是。

( A )共价键 (B )离子键 ( C )金属键第 2章固体结构4. 以下不具有多晶型性的金属是。

(A )铜 (B )锰 (C )铁5. fcc 、bcc 、hcp 三种单晶材料中,形变时各向异性行为最显著的是 。

( A )fcc (B )bcc (C )hcp6. 与过渡金属最容易形成间隙化合物的元素是。

(A )氮 (B )碳 (C )硼7. 面心立方晶体的孪晶面是。

( A ){112} (B ){110} ( C ) {111} 8. 以下属于正常价化合物的是( 。

( A )Mg 2( B )5 C ) 3PbCu Sn Fe C第 3章晶体缺陷9. 在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为 。

( A )肖特基缺陷 (B )弗仑克尔缺陷 (C )线缺陷10. 原子迁移到间隙中形成空位 -间隙对的点缺陷称为 。

( A )肖脱基缺陷 (B ) Frank 缺陷 (C )堆垛层错11. 刃型位错的滑移方向与位错线之间的几何关系是? (A )垂直 (B )平行 (C )交叉 12. 能进行攀移的位错必然是 。

( A )刃型位错 (B )螺型位错(C )混合位错13. 以下材料中既存在晶界、又存在相界的是 ( A )孪晶铜 (B )中碳钢 (C )亚共晶铝硅合金 14. 大角度晶界具有 ____________个自由度。

(A )3 (B )4 (C )5 第 4 章 固体中原子及分子的运动15. 菲克第一定律描述了稳态扩散的特征,即浓度不随 变化。

(A )距离 (B )时间 (C )温度 16. 在置换型固溶体中,原子扩散的方式一般为 。

( A )原子互换机制 ( B )间隙机制 (C )空位机制17. 固体中原子和分子迁移运动的各种机制中,得到实验充分验证的是( A )间隙机制(B )空位机制(C )交换机制18. 原子扩散的驱动力是。

胡赓祥《材料科学基础》(第3版)配套题库【名校考研真题】第4章~第6章 【圣才出品】

胡赓祥《材料科学基础》(第3版)配套题库【名校考研真题】第4章~第6章 【圣才出品】

第4章固体中原子及分子的运动一、选择题1.由纯A 和A-B 固溶体形成的互扩散偶(柯肯达尔效应),以下表述正确的是()。

[上海交通大学2005研]A.俣野面两侧的扩散原子其化学势相等:A A A A B μμ-=,B B A A B μμ-=B.该扩散为上坡扩散C.空位迁移方向与标记面漂移方向一致【答案】C2.有一级稀的fcc 结构的间隙固溶体,设a 0为晶格常数,ν为间隙原子延扩散方向的振动频率,rn G ∆为从平衡位置到势垒顶点的自由能改变量,则扩散系数可与表示为()。

[浙江大学2007研]A.2rn 0exp G D a RT ν∆⎛⎫=- ⎪⎝⎭B.2rn 01exp 6G D a RT ν∆⎛⎫=- ⎪⎝⎭C.2rn 02exp G D a RT ν∆⎛⎫=- ⎪⎝⎭【答案】A3.下列有关固体中扩散的说法中,正确的是()。

[东南大学2006研]A.原子扩散的驱动力是存在着浓度梯度B.空位扩散是指间隙固溶体中的溶质原子从一个间隙跳到另一个间隙C.晶界上点阵畸变较大,因而原子迁移阻力较大,所以比晶内的扩散系数要小D.成分均匀的材料中也存在着扩散【答案】D4.912℃下Fe α-的晶胞体积为0.02464nm,而转变为Fe γ-晶胞晶体为0.0486nm,在该温度单位质量Fe γ-转变为Fe α-时,其体积()。

[哈尔滨工业大学2007研]A.膨胀B.收缩C.不变D.不能确定【答案】A二、填空题1.扩散系数与温度的关系式是_________。

在高温阶段和低温阶段,扩散系数较大的是_________。

[天津大学2010研]【答案】0exp(/)D D Q RT =-;低温阶段2.线性高分子可反复使用,称为________塑料;交联高分子不能反复使用,称为________塑料。

[北京工业大学2009研]【答案】热塑性;热固性3.从F -R 源模型考虑,金属沉淀强化后的屈服强度s σ与沉淀相粒子平均间距L 的关系为_______。

材料科学基础(上海交大)_第4章解析

材料科学基础(上海交大)_第4章解析

学习方法指导
本章重点阐述了固体中物质扩散过程的规律及其应用, 内容较为抽象,理论性强,概念、公式多。根据这一特点, 在学习方法上应注意以下几点: 充分掌握相关公式建立的前提条件及推导过程,深入理 解公式及各参数的物理意义,掌握各公式的应用范围及必需 条件,切忌死记硬背。 从宏观规律和微观机理两方面深入理解扩散过程的本质, 掌握固体中原子(或分子)因热运动而迁移的规律及影响因 素,建立宏观规律与微观机理之间的有机联系。 学习时注意掌握以下主要内容:菲克第一,第二定律的 物理意义和各参数的量纲,能运用扩散定律求解较简单的扩 散问题;扩散驱动力及扩散机制:间隙扩散、置换扩散、空 位扩散;扩散系数、扩散激活能、影响扩散的因素。
4.0.1 扩散现象(Diffusion)
当外界提供能量时,固体金属中原子或分子偏离平衡 位置的周期性振动,作或长或短距离的跃迁的现象。 (原子或离子迁移的微观过程以及由此引起的宏观现象。) ( 热激活的原子通过自身的热振动克服束缚而迁移它处的 过程。)
扩散
半导体掺杂 固溶体的形成 离子晶体的导电 固相反应 相变 烧结 材料表面处理
©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
Figure 4.3 The flux during diffusion is defined as the number of atoms passing through a plane of unit area per unit time
材料与化学化工学院
第四章 固体中原子及分子的运动—扩散

材料科学基础课件-Ch4-作业答案

材料科学基础课件-Ch4-作业答案

第四章 固体中原子及分子的运动 作业及答案1. 在一个富碳的环境中对钢进行渗碳,可以硬化钢的表面。

已知在1000℃下进行这种渗碳热处理,距离钢的表面1mm 处到2mm 处,碳含量从5at%减到4at%。

估计在近表面区域进入钢的碳原子的流入量J(atoms/m2s)。

(γ-Fe 在1000℃的密度为7.63g/cm3,碳在γ-Fe 中的扩散常数D0=2.0×10-5m2/s,激活能Q=142kJ/mol )解:首先,应把溶质碳原子的含量从原子分数转换为体积分数,故必须先求出溶剂铁原子的单位体积原子数236.023⨯10ρ=7.63⨯=55.858.232210⨯原子数(个)/cm 3 近似认为碳原子与铁原子共同占据铁的晶格,则121211203131812(/)ln(/)121203(8.314/158980)ln 0.5T T K T R Q x x ===--⨯⨯ 298.2310=-⨯原子数(个)/m 4D c in r-Fe 1000o C =611201420002.010exp() 2.9810/8.3141273Q RT D em s ----=⨯⨯=⨯⨯ 根据菲克第一定律:J D D x xρρ∂∆=-=-∂∆ 1129192(2.9810)(8.2310)2.4510()/()m s -=⨯⨯-⨯=⨯原子数个2. 在950℃下对纯铁进行渗碳,并希望在0.1mm 的深度得到0.9wt%的碳含量。

假设表面碳含量保持在1.20wt% ,扩散系数D γ-Fe=10-10m2/s 。

计算为达到此要求至少要渗碳多少时间。

解: 一维半无限长扩散初始条件 t=0 x>0, 00ρρ==x=0, t>0. 1.2s ρρ== ,0x ρ=∞=2120erf ωωωω-=-31.20.91.90erf --=-0.25erf =查表得0.2763= 所以 t=327(s)3. 已知Al 在Al2O3中扩散常数D0=2.8×10-3(m2/s),激活能477(KJ/mol ),而O (氧)在Al2O3中的D0=0.19(m2/s),Q=636(KJ/mol)。

《材料科学基础》第四章 固体中的扩散

《材料科学基础》第四章 固体中的扩散

第四章固体中的扩散物质传输的方式:1、对流--由内部压力或密度差引起的2、扩散--由原子性运动引起的固体中物质传输的方式是扩散扩散:物质中的原子或分子由于热运动而进行的迁移过程本章主要内容:扩散的宏观规律:扩散物质的浓度分布与时间的关系扩散的微观机制:扩散过程中原子或分子迁移的机制一、扩散现象原子除在其点阵的平衡位置作不断的振动外,某些具有高能量的单个原子可以通过无规则的跳动而脱离其周围的约束,在一定条件下,按大量原子运动的统计规律,有可能形成原子定向迁移的扩散流。

将两根含有不同溶质浓度的固溶体合金棒对焊起来,形成扩散偶,扩散偶沿长度方向存在浓度梯度时,将其加热并长时间保温,溶质原子必然从左端向右端迁移→扩散。

沿长度方向浓度梯时逐渐减少,最后整个园棒溶质原子浓度趋于一致二、扩散第一定律(Fick第一定律)Fick在1855年指出:在单位时间内通过垂直于扩散方向某一单位截面积的扩散物质流量(扩散通量)与该处的浓度梯度成正比。

数学表达式(扩散第一方程)式中 J:扩散通量:物质流通过单位截面积的速度,常用量钢kg·m-2·s-1D:扩散系数,反映扩散能力,m2/S:扩散物质沿x轴方向的浓度梯度负号:扩散方向与浓度梯度方向相反可见:1), 就会有扩散2)扩散方向通常与浓度方向相反,但并非完全如此。

适用:扩散第一定律没有考虑时间因素对扩散的影响,即J和dc/dx不随时间变化。

故Fick第一定律仅适用于dc/dt=0时稳态扩散。

实际中的扩散大多数属于非稳态扩散。

三、扩散第二定律(Fick第二定律)扩散第二定律的数学表达式表示浓度-位置-时间的相互关系推导:在具有一定溶质浓度梯度时固溶体合金棒中(截面积为A)沿扩散方向的X轴垂截取一个微体积元A·dx,J1,J2分别表示流入和流出该微体积元的扩散通量,根据扩散物质的质量平衡关系,流经微体积的质量变化为:流入的物质量—流出的物质量=积存的物质量物质量用单位时间扩散物质的流动速度表示,则流入速率为,流出速率为∴积存率为积存速度也可以用体质C的变化率表示为比较上述两式,得将Fick第一定律代入得=(D) ——扩散第二方程若扩散系统D与浓度无关,则对三维扩散,扩散第二方程为:(D与浓度,方向无关)1、晶体中原子的跳动与扩散晶体中的扩散是大量原子无规则跳动的宏观统计结果。

上海交大-材料科学基础-第四章

上海交大-材料科学基础-第四章

在材料科学中多种过程与扩散有关
形成固溶体
半导体掺杂
如相变、固相反应、烧结工艺
渗碳和渗氮工艺
氧化过程
高温蠕变等
4.1 扩散的基本规律
▪ 微观角度,固体扩散由于彼此结构差异存在不同 ▪ 宏观角度,
大量扩散质点看作作无规布朗运动; 介质中质点的扩散均遵循相同的统计规律——著 名的菲克定律:描述浓度场下物质扩散的动力学方程 扩散过程与热传导过程的相似
4.2 扩散的微观理论 (一)扩散的布朗运动理论
菲克第一定律和菲克第二定律定量地描述了质点扩散 的宏观行为,然而菲克定律仅仅是一种现象的描述, 它将除浓度以外的所有影响扩散的因素都包括在扩散 系数当中,而又未能赋予其明确的物理意义。
宏观的扩散流是大量原子无数次微观过程的总和
1905年,爱因斯坦在研究大量质点作无规则布朗运 动的过程中,首先用统计学的方法得到扩散方程, 并使宏观扩散系数与扩散质点的微观运动得到联系。
(2)固体中原子或离子依一定方式所堆积成的结构有一定的对称性 和周期性,这也限制着质点每一步迁移的方向和自由行程迁移的自 由程则只相当于晶格常数大小,且质点扩散往往具有各向异性。
三、扩散的应用
原子或离子的扩散是众多工程材料如金属 材料、无机非金属材料、有机高分子等材料的制备、 使用中很多重要的物理、化学以及物理化学过程得 以实现的基础。因此,理解和掌握固体中扩散的基 本规律对认识材料的性质、制备和生产具有一定性 能的固体材料均有十分重大的意义。
2、恒定量扩散
扩散方程:
C t
D
2C x 2
边界条件为:
t 0, x 0, C 0
t 0, x 0, C M
t 0, C(x)dx M
把总质量M的扩散元素沉淀成非 常薄的薄层,夹在两个厚度为无 限的全同式样之间进行扩散

材料科学基础-第4章-扩散

材料科学基础-第4章-扩散

利用波尔茨曼-吴野平面求D。(略)
25
第二章
固体结构
第二节
一、扩散驱动力
扩散的热力学分析
发现“上坡扩散”(物质从低浓度区向高浓度区扩散), 提出扩散驱动力是化学势梯度。 设原子i的自由能为μi,存在化学势梯度时,原子受力:
Fi
μi x
式中负号表示驱动力方向与化学位梯度方向相反,即物质 向着化学位下降的方向扩散。 结论:扩散驱动力是化学位梯度。若△μ=0,则扩散不引 起扩散物质的浓度分布改变。
观察者
19
第二章
固体结构
因为式(1)、(2)相等,所以有:
(DA ∂ρA/∂x-D ∂ρA/∂x)/ρA=(DB ∂ρB/∂x-D ∂ρB/∂x)/ρB (DAρB-DρB)∂ρA/∂x=(DBρA-DρA)∂ρB/∂x
假设扩散时晶体密度不变,有:ρA+ρB =常数 因此: ∂ρA/∂x+ ∂ρB/∂x=0, 即:∂ρA/∂x =-∂ρB/∂x 故:(DAρB-DρB)∂ρA/∂x=(DρA-DBρA)∂ρA/∂x
14
第二章
固体结构
2、高斯解 在B 金属长棒一端沉积一极薄层A金属(质量为M),在A金 属薄层一端再连接B 金属长棒。加热扩散偶。A原子向两侧金属 棒B 中扩散。 ρ 2ρ D 对于方程 t x 2
B A B
初始及边界条件为: t=0 时,x=0,ρ=∞;x≠0,ρ=0 t>0 时,x=±∞,ρ=0 若D为常数,方程的解为: M x2 t) (x, exp( ) 4Dt 2 πDt
固体结构
2、柯肯达尔效应
Mo丝标记
Cu
JCu
JNi
Ni
钼丝标记位移表明向左和向 右越过标记面的扩散原子数目不 等。此现象称为柯肯达尔效应。 原因:Cu和Ni原子具有不同 的扩散系数。其反映了置换固溶 体中的互扩散现象。

材料科学基础之金属学原理扩散习题及答案

材料科学基础之金属学原理扩散习题及答案

《材料结构》习题:固体中原子及分子的运动1. 已知Zn在Cu中扩散时D0=2.1×10-5m2/s,Q=171×103J/mol。

试求815℃时Zn在Cu中的扩散系数。

2. 已知C在γ铁中扩散时D0=2.0×10-5m2/s,Q=140×103J/mol; γ铁中Fe自扩散时D0=1.8×10-5m2/s,Q=270×103J/mol。

试分别求出927℃时奥氏体铁中Fe的自扩散系数和碳的扩散系数。

若已知1%Cr可使碳在奥氏体铁中的扩散激活能增加为Q=143×103J/mol,试求其扩散系数的变化和对比分析以上计算结果。

3. 若将铁棒置于一端渗碳的介质中,其表面碳浓度达到相应温度下奥氏体的平衡浓度C S。

试求(1)结合铁-碳相图,试分别示意绘出930℃和800℃经不同保温时间(t1<t2<t3)碳浓度沿试棒纵向的分布曲线;(2)若渗碳温度低于727℃,试分析能否达到渗碳目的。

4. 含碳0.2%的低碳钢进行870℃渗碳较930℃渗碳具有晶粒细小的优点,则(1)试计算以上两种温度下碳在γ-Fe中的扩散系数;(2)试计算870℃渗碳需多少时间可达到930℃渗碳10小时的渗层厚度(忽略C在γ-Fe 中的溶解度差异);(3)若渗层厚度测至含碳量0.4%处,计算870℃渗碳10小时后的渗层厚度及其与930℃同样时间渗层厚度的比值。

(表面碳浓度取1.2)FeDγCDγCDγ习题4答案:1.解:根据扩散激活能公式得3-5132017110e x p () 2.110e x p 1.2610m /s8.314(815273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭CuZn Q D D RT 2.解:根据扩散激活能公式得3γ-5172027010e x p () 1.810e x p 3.1810m /s 8.314(927273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭Fe Q D D RT 3γ-5112014010e x p () 2.010e x p 1.6110m /s 8.314(927273)-⎛⎫⨯=-=⨯⨯-=⨯ ⎪⨯+⎝⎭C Q D D RT 已知1%Cr 可使碳在奥氏体铁中的扩散激活能增加为Q =143×103J/mol , 所以,3γ-51120143.310exp() 2.010exp 1.1610m /s 8.314(927273)-⎛⎫⨯'=-=⨯⨯-=⨯ ⎪⨯+⎝⎭CQ D D RT 由此可见,1%Cr 使碳在奥氏体铁中的扩散系数下降,因为Cr 是形成碳化物的元素,与碳的亲和力较大,具有降低碳原子的活度和阻碍碳原子的扩散的作用。

第4章固体材料中的原子扩散

第4章固体材料中的原子扩散

一、 无规则行走扩散
模型: 1、 无外场推动力,浓度差极小;
2、 质点由于热运动获得活化能,从而引起迁移;
3、 就一个质点来说,其迁移是无序的,随机的,各方面几率相同, 迁移结果不引起宏观物质流,而且每次迁移与前次无关。
在晶格中取两个相邻的点阵面,
n1--第一点阵面密度 ; n2--第二点阵面密度; --两原子间距;
第一定律仅适用于稳态扩散,即 在扩散过程中,合金各处的浓度 及浓度梯度都不随时间改变的。
当固体中存在着成分差异时,原子将从浓度高处向浓度低处扩散。如何描 述原子的迁移速率,阿道夫·菲克(Adolf Fick)对此进行了研究,并在1855 年就得出:扩散中原子的通量与质量浓度梯度成正比,即
J D d
3.空位机制
晶体中存在着空位。这些空位的存在使原子迁移更容易,故 大多数情况下,原子扩散是借助空位机制。空位机制产生 Kirkendall效应。
由于原始界面的移动,界面移向原子扩散速率 较大的一方,这种现象称为柯肯达尔效应。
4.晶界扩散及表面扩散 对于多晶材料,扩散物质可沿三种不同路径进行,即晶体
内扩散(或称体扩散),晶界扩散和样品自由表面扩散,并分 别用DL和DB和DS表示三者的扩散系数。
晶体内扩散DL < 晶界扩散Db < 表面扩散Ds 5. 位错扩散
原子通过位错扩散。温度越低,原子在位错中的时间越长, 在点阵中跳动的时间越短。
把 原 子 在 缺 陷 中 的 扩 散 称 为 短 路 扩 散 ( short-circuit diffusion)。固态金属或合金中的扩散主要依靠晶体缺陷来进 行。
大的电场或温度场也促使晶体中原子按一定方向扩散,造成 扩散原子的不均匀性。
4.3 扩散的原子理论

材料科学基础固体中原子及分子的运动

材料科学基础固体中原子及分子的运动

§ 4. 1 表象理论(Phenomenological laws)
扩散(diffusion): 在一个相内因分子或原子的热激活运动导 致成分混合或均匀化Fra bibliotek分子动力学过程。
当外界提供能量时,固体金属中原子或分子偏离平衡位置的周 期性振动,作或长或短距离的跃迁的现象。

加入染料
部分混合
时间
完全混合
碳的扩散方向 Fe-C合金
高碳含量区域
低碳含量区域
4.1.1 菲克第一定律(Fick’s first law)
稳态扩散 (d = 0)
dt
dx
1
2
(1>2)
J
=
d -D

dx
J
J: 扩散通量(mass flux), kg/(m2s) D: 扩散系数(diffusivity), m2/s : 质量浓度,kg/m3
• 描述非稳态扩散(non—steady state diffusion)。在扩 散过程中各处的浓度都随时间变化而变化,因而通过各 处的扩散流量不再相等而随距离和时间发生变化。
• 表达式: = (D )
t x x
• ※ 若D与浓度无关,则表达式: 4.3式(P130)
※ 三维扩散情况且D是各向同性,则表达式: 4.4式
解微分方程 → 引入中间变量和误差函数 → 求通解(式 4.6) → 边界条件和初始条件 → 求特解(式4.7、4.8)
• 2.一端成分不受扩散影响的扩散体--表面热处理过程 。 相当于无限大情况下半边的扩散情况
求解方法同上,特解为(式4.9、4.10 简化式4.11) 初始条件: t=0时,x≥0, = 0 边界条件:t>0时,x=0, = s,x=∞, = o 可解得方程的解 = s [1-erf(x/(4Dt)1/2)]

814材料科学基础-第四章 扩散知识点讲解

814材料科学基础-第四章 扩散知识点讲解

北京科技大学材料科学与工程专业814 材料科学基础主讲人:薛老师第四章扩散本章主要内容1.菲克第一定律2.菲克第二定律3.菲克定律的应用4.原子扩散中的热力学5.扩散的微观机制6.影响扩散系数的因素7.反应扩散本章主要要求1.掌握菲克定律的内容2.熟练运用菲克定律3.掌握扩散系数的影响因素4.了解扩散的微观机制5.掌握反应扩散知识点1 扩散定义:由构成物质的微粒(原子、分子、离子)的热运动而产生的物质迁移的现象称为扩散。

扩散的宏观表现形式是物质的定向输送。

研究扩散主要有两种方法:(1)表象理论:根据所测量的参数描述物质传输的速率和数量;(2)原子理论:扩散过程中原子是如何迁移的。

扩散是固体中物质传输的唯一方式,液体或气体还有对流的方式可以通过参入放射性同位素可以证明。

知识点2 菲克第一定律当固体中存在着成分差异时,原子将从高浓度处向低浓度处扩散。

为了描述原子迁移的速率,提出了菲克第一定律。

数学表达式:1. J 为扩散通量,表示单位时间内通过垂直于扩散方向x 的单位面积的扩散物质的质量,单位为kg/(m 2*s)2. 表示溶质原子的浓度梯度3. D 为扩散系数,其单位为m 2/s ,ρ是扩散物质的质量浓度,单位为kg/m 34. 负号表示物质的扩散方向与质量浓度梯度方向相反,即表示物质从高浓度区向低浓度区方向迁移。

菲克第一定律表示了一种质量浓度不随时间变化而变化的现象。

dxdc d D J )(ρ-=dx d ρ扩散第一定律的注意点(1)扩散第一定律与经典力学相同,是被实验所证明的公理;(2)浓度梯度一定,扩散取决于扩散系数。

扩散系数与很多因素有关,但是与浓度梯度无关;(3)当浓度梯度为0时,J=0,说明在浓度均匀的系统中,不会产生扩散现象,这一结论仅仅适用于下坡扩散;(4)扩散第一定律的不足之处就是仅仅提出了扩散与距离的关系,并没有提出扩散与时间的关系;知识点3 菲克第二定律扩散第一定律只适用于稳态扩散,即在扩散的过程中各处的浓度不因为扩散过程的发生而随时间的变化而改变。

材料科学基础-第四章 晶态固体中的扩散

材料科学基础-第四章 晶态固体中的扩散

2 r i r i j 0
i 1 j 1
n 1 n i
当存在相关效应时,可用一种简便的方法 定量表示这些相关,即求实际的<R2实际>和完全 无规行走的< R2无规行走>之比。由式4.11和4.12 可得
n 1 n i 2 r i r i j 1 i 1 j 1 f lim n n 2 ri i 1
(4.4)
若沉积物是臵于试样表面的薄层, 只向x﹥0处扩散,则其解应为
x2 M C x, t exp 4 Dt Dt
(4.5)
适用于薄膜材料的扩散问题。
2. 误差函数解
在t时间内,试样表面扩散组元i的浓度Cs 被维持为常数,试样中i组元的原始浓度为Co, 则方程(4.2)的 初始条件 t=0时 x﹥0 C=Co 边界条件 t≥0时 x=0 C=Cs x=∞ C=Co 其解为
空位扩散机制
在纯金属和臵换式固溶体中,组元的原 子直径比间隙位臵要大的多,这时主要通过 溶质原子与空位交换位臵进行扩散。
4.其他机制 在直接换位机制ห้องสมุดไป่ตู้, 两个邻近原子直接交换位
臵。这会引起很大的点阵
瞬间畸变,需克服很高的 势垒,只能在一些非晶态 合金中出现。
直接换位机制
环形换位机制具
有较低的势垒,不过
二、菲克第二定律
大多数扩散过程是非稳态扩散,即在扩散过程 中任一点的浓度随时间而变化( dc/dt≠0 )。
解决这类扩散问题,可由第一定律结合质量守 恒条件,推导出菲克第二定律来处理。 如图表示在垂至于物质运动的方向x上,取一个 截面积均为A, 长度为dx的体积元,设流入及流出此 体积元的扩散物质通量J1和J2,由质量平衡可得: 流入速率-流出速率=积存速率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本章重点阐述了固体中物质扩散过程的规律及其应用,
内容较为抽象,理论性强,概念、公式多。根据这一特点, 在学习方法上应注意以下几点: 充分掌握相关公式建立的前提条件及推导过程,深入理 解公式及各参数的物理意义,掌握各公式的应用范围及必需 条件,切忌死记硬背。 从宏观规律和微观机理两方面深入理解扩散过程的本质, 掌握固体中原子(或分子)因热运动而迁移的规律及影响因 素,建立宏观规律与微观机理之间的有机联系。 学习时注意掌握以下主要内容:菲克第一,第二定律的 物理意义和各参数的量纲,能运用扩散定律求解较简单的扩 散问题;扩散驱动力及扩散机制:间隙扩散、置换扩散、空 位扩散;扩散系数、扩散激活能、影响扩散的因素。
--Example of interstitial diffusion is a case hardened gear(图4.10).
Figure 4.4 Illustration of the concentration gradient
©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
• 无规则行走的,扩散距离与步长的关系。 • 响扩散的主要因素。
• 反应扩散的特点和能应用相图确定反应扩 散出现相类型。
• 运用电荷中性原理确定不同情况下出现的 缺陷类型。
• 高分子链柔韧性的表征及其结构影响因素。
• 线型非晶高分子、结晶高分子和非完全结 晶高分子力学状态的差异和起因。
学习方法指导
2. 根据扩散方向 下坡扩散:原子由高浓度处向低浓度处进行的扩散。 上坡扩散:原子由低浓度处向高浓度处进行的扩散。
4.0.3 固态扩散的条件
1、温度足够高; 2、时间足够长; 3、扩散原子能固溶; 4、具有驱动力: 5、化学位梯度。
4.1 表象理论
Adolf Fick, a German physiologist and inventor, was born on August 3rd, 1829, in Germany.
图4.5 “-”号表示扩散方向 为浓度梯度的反方向,即 扩散由高浓度向低浓度区 进行。
EXAMPLE PROBLEM 4.1
SOLUTION
例2:没有一条内径为30mm的厚壁管道,被厚 度为0.1mm铁膜隔开。通过向管子的一端向管 内输人氮气,以保持膜片一侧氮气浓度为1200 mol/m2,而另一侧的氮气浓度为100mol/m2 。 如在700℃下测得通过管道的氮气流量为 2.8×10-4mol/s,求此时氮气在铁中的分散系数。
4.0 概述
扩散(Diffusion)是物质中原子(分子或离子) 的迁移现象,是物质传输的一种方式。扩散是一 种由热运动引起的物质传递过程。扩散的本质是 原子依靠热运动从一个位置迁移到另一个位置。 扩散是体中原子迁移的唯一方式。
扩散会造成物质的迁移,会使浓度均匀化, 而且温度越高,扩散进行得越快(图4.1)。
两个相距dx垂直x轴的平面 组成的微体积,J1、J2为进入、 流出两平面间的扩散通量。 单位时间内物质流入体积元的速率应为: 在dx距离内,物质流动速 率的变化应为:
所以在平面2物质流出的速率应为:
物质在体积元中的积存速率为:
积存的物质必然使体积元内的浓度变化,因此 可以用体积元内浓度C旳dx随时间变化率来表示 积存速率,即
浓度为0.0025mol/m3,并且薄膜的厚度为100μm。假设
氢通过薄膜的扩散通量为2.25×10-6mol/(m2s),求氢
的扩散系数。
2 扩散第二方程的解
解析解通常有高斯解、误差函数解和正弦解等
(1)误差函数解 在t时间内,试样表面扩散组元i的浓度Cs被
维持为常数,试样中i组元的原始浓度为C0, 试样的厚度认为是“无限”厚,则此问题称为 半无限长物体的扩散问题。
解:此时通过管子中铁膜的氮气通量为 膜片两侧的氮浓度梯度为: 根据Fick第一定律
4.1.2 菲克第二定律
(1)非稳态扩散(No steady State diffusion):
各处的浓度和浓度梯度随时间发生变化的扩 散过程(əC/ət≠0, əJ/əx≠0)(图4.6)。
大多数扩散过程是非稳态扩散过程,某一点 的浓度是随时间而变化的,这类过程可由Fick第 一定律结合质量守恒条件进行分析。
金属、陶瓷和高分子化合物三类固体材料 中的原子结合方式不同,这就导致了三种类型 固体中原子或分子扩散的方式不同。
4.0.1 扩散现象(Diffusion)
当外界提供能量时,固体金属中原子或分子偏离平衡
位置的周期性振动,作或长或短距离的跃迁的现象。
(原子或离子迁移的微观过程以及由此引起的宏观现象。)
扩散第一方程可直接用于 描述稳定扩散过程。
J D d C DC2 C1
dx
x
假设D与浓度无关。
参见右图4.8
图4.8 扩散第一方程 示意图
c1
H2
c2
例4.3:
x 图4.9 例4.3示意图
如上图4.9,利用一薄膜从气流中分离氢气。在稳定
状态时,薄膜一侧的氢浓度为0.025mol/m3,另一侧的氢
此时,扩散方程的初始条件和边界条件应 为:
t = 0,x > 0 C = C0 t≥0, x = 0 C = Cs
x =∞ C = C0
适用条件:无限长棒和半无限长棒.(恒定扩散源) 表达式:
c(x,t)cs(csc0)er2 fxDt
例:在渗碳条件下: C:x,t处的浓度; Cs:表面含碳量; C0:钢的原始含碳量。
条件和边界条件。运用菲克第二定律求 解。 • 柯肯达耳效应的起因,以及标记面漂移 方向与扩散偶中两组元扩散系数大小的 关系。
• 互扩散系数的图解方法。
• “下坡扩散”和“上坡扩散”的热力学 因子判别条件。
• 扩散的几种机制,着重是间隙机制和空 位机制。
• 间隙原子扩散比置换原子扩散容易的原 因。
• 计算和求解扩散系数及扩散激活能的方 法。
扩散第二定律的偏微分方程是X与t的函数, 适用于分析浓度分布随扩散距离及时间而变的非 稳态扩散。
• To conserve matter:
• Fick's First Law:
• Governing Eqn.:
图4.7 Fick第二定律表 达式的推导示意图
4.1.3 扩散方程的求解
1.扩散第一方程
图4.2 Fick的经典实验 浓度为0
Solid NaCl
饱和溶液
4.1.1 菲克第一定律
(1)稳态扩散(Steady State Diffusion):扩散过 程中各处的浓度及浓度梯度(Concentiontration Gradient)不随时间变化(əC/ət=0,əJ/əx=0), 见图4.3,浓度梯度证明见图4.4。
Fig. 4.6 Concentration profiles for no steady state diffusion taken at three different times, t1 , t2 , t3 .
(2)Fick第二定律(Fick’s Second Law)
Fick第二定律解决溶质浓度随时间变化的情 况,即 dc/dt≠0。
由上两式可得:
在将D近似为常数时:
它反映扩散物质的浓度、通量和时间、空间的关 系。这是Fick第二定律一维表达式。 对于三维方向的体扩散:
若Dx=Dy=Dz且与浓度无关时,Fick第二定律 普遍式为:
Fick第二定律的物理概念:
(图4.7)
扩散过程中,扩散物质浓度随时间的变化率, 与沿扩散方向上物质浓度梯度随扩散距离的变化 率成正比。
c(x,t)cs(csc0)er2 fxDt
上式称为误差函数解(表4.1)。
e(r)f ( x /2 (D ))t
高斯误差函数:
erf(z) 2 zey2dy
0
表4.1
实际应用时
csc(x,t)erf x
csc0
2 Dt

c(x,t)c01erf x
csc0
2 Dt
例4.4:含0.20%碳的碳钢在927 ℃进行气体渗碳。假 定表面C含量增加到0.9%,试求距表面0.5mm处的C 含量达0.4%所需的时间。已知D (927 ℃) =1.28 ×10-
time
图4.1 扩散示意图
water
adding dye
partial mixing
半导体掺杂 固溶体的形成 离子晶体的导电
固相反应
扩散
homogenization
相变 烧结 材料表面处理
研究扩散一般有两种方法:
• 表象理论 — 根据所测量的参数描述物质 传输的速率和数量等;
• 原子理论 — 扩散过程中原子是如何迁移 的。
In 1855, he introduced “Fick’s Law of Diffusion” which described the dispersal of gas as it passes through a fluid membrane. (Figure 4.2) An astigmatism in his eyes led Fick to explore the idea of a contact lens, which he successfully created in 1887. His other research resulted in the development of a technique to measure cardiac output. Adolf Fick’s work served as a vital precursor in the studies of biophysics, cardiology, and vision.
相关文档
最新文档