动态粘弹性_动态力学DMA谱
TMA、DMA
剪切等不同形式的探头。
☺2.用途:
a.软化点温度
b.膨胀系数
c.机械粘弹性参数
d.应力应变
e.蠕变恢复
3.1.1 高聚物的温度-形变曲线
☺一定的力学负荷下,高分子材料的形变量与温 度的关系称为高聚物的温度-形变曲线,或称 热机械曲线。
☺聚合物的T-D曲线(即热-机械曲线,简称 TMA,Thermomechanic Analysis)是研究聚合 物力学性质对温度依赖关系的重要方法之一。
C1(T TS ) C2 T TS
式中Ts——参考温度,当Ts取Tg值时,C1=17.44,C2=51.6
三.热机械分析(TMA)
♫基本定义
在程序控制温度下测量物质的力学性质随温度 或时间变化的关系。它是研究和物质物理形态 相联系的体积、形状、长度和其它性质与温度
关系的方法。 ♫三种方法
☺热膨胀法
♥2、3、4为无定型聚合物,其中PS链柔顺性差,Tg、 Tf很接近,即高弹态很窄,而PIB柔顺性较好,高 弹态平台很宽,PVC介于两者之间。1、5为结晶性 聚合物,由曲线看不到玻璃态向高弹态的转变,高 温温区一定范围内,形变量很小。
四.动态热机械分析(DMA)
☺4.1基本定义
♥在程序温度下,测量物质在振动负荷下的动态模量和力 学损耗与温度的关系的技术。
➢ 3.滞后:聚合物在交变应力作用下,形变落后于应力变 化的现象。
➢ 4.内耗:如果形变落后于应力变化,发生滞后,则每一 循环变化中就要消耗功,称为力学损耗。
1.线形和交联聚合物的蠕变全过程
线形聚合物 交联聚合物
形变随时间增加而增大, 蠕变不能完全回复
t
形变随时间增加而增大, 趋于某一值,蠕变可以完 全回复
(完整版)13.DMA讲解
(5)经过仪器的自动处理,得到储能模量E’、损耗 模量E”、力学损耗tgδ
形变模式
包括拉伸、压缩、剪切、 弯曲(三点、单悬臂、双悬臂梁弯曲)等
有些仪器中还有杆、棒的扭转模式。
Options: Single Cantilever 3 Point Bending Dual Cantilever Tension Shear Compression
损耗模量 黏性性質
E’ – Storage Modulus
E’
储存模量
彈性性質
复数模量与力学损耗
力学损耗
E
E*
E tg E
E
称力学损耗角正切
力学损耗影响因素
分子结构
链段运动阻碍大
损耗大
空间位阻
次价力作用
(侧基体积大、数量多) (氢键、极性基团存在)
链段运动阻碍小
损耗小
外界条件
温度和外力作用频率
样品要求——形状、尺寸随测量系统变化, 要求均匀、平整、无气泡、尺寸精确;
测量扫描模式的选择
(1)温度扫描模式——在固定频率下,测量 动态模量及力学损耗随温度的变化。
T
(2)频率扫描模式——在恒温下,测量动
态模量与力学损耗随频率的变化。
(3)蠕变-回复扫描模式——在恒温下瞬时对试
样施加一恒定应力,测量试样应变随时间的变化 (蠕变曲线);在某一时刻取消应力,测量应变随时 间的变化(蠕变回复曲线);
振簧仪原理图
当改变振动频率与试样的自然频率相 同时,引起试样的共振
试率样称自为由共振端振簧振频仪幅率共将f振r 出曲线现极大值时的频
强迫非共振法
动态力学分析DMA
动态力学分析DMADMA(Dynamic Mechanical Analysis)是一种用于分析材料力学性能的测试方法。
它结合了动态力学和热学测试技术,可以提供关于材料的弹性、刚性、黏弹性和损耗因子等性能参数的信息。
DMA广泛应用于材料科学、化学、工程等领域,对于了解材料的结构与性能之间的关系和材料在不同温度和频率下的行为具有重要意义。
下面将对DMA的原理、应用和测试参数等方面进行详细介绍。
DMA的原理是基于材料在施加周期性外力作用下的应变响应。
它通过施加正弦形的动态应变,测量材料的动态应力响应,进而得到材料的机械性能参数。
根据材料的形变模式,DMA可以测量材料的弹性模量、刚度、阻尼和损耗因子等参数。
同时,DMA还可以通过改变施加的应变振幅、频率和温度等条件来研究材料的线性和非线性行为。
在DMA实验中,一般需要将样品固定在一个夹具上,并施加一个相对运动的动态负载。
通过施加正弦形的变形,例如拉伸或压缩,可以测量样品的应力和应变之间的相位差,进而计算出材料的各种力学性能参数。
此外,还可以通过改变应变振幅、频率和温度等外界条件来获得材料的线性和非线性响应。
DMA的应用十分广泛。
首先,它可以用于材料的性能评估和选择。
通过DMA的测试可以获得关于材料弹性模量、刚度和黏弹性等信息,从而对材料的选择和应用进行优化。
例如,在汽车制造领域,DMA可以帮助选择材料以满足特定应变和温度条件下的要求。
其次,DMA还可以分析材料的老化和损耗行为。
通过跟踪材料的动态性能随时间的变化,可以了解材料的寿命和性能衰减机制。
最后,DMA还可以用于材料的开发和改进。
通过对材料的机械性能进行系统研究,可以提出有针对性的改善方案,增强材料的性能和可靠性。
在进行DMA实验时,一些关键的测试参数需要被考虑。
首先是应变振幅。
在DMA实验中,通常会测试一系列不同的应变振幅,以获得材料的线性和非线性响应。
较小的应变振幅可以用来研究材料的线性弹性行为,而较大的应变振幅可以用来研究材料的非线性行为。
DMA
聚合物材料动态力学分析实验目的了解DMA的测试原理及仪器结构了解影响DMA实验结果的因素,正确选择实验条件掌握DMA的试样制备方法及测试步骤掌握DMA在聚合物分析中的应用实验原理材料的动态力学行为是指材料在振动条件下,即在交变应力作用下作出的力学响应,测定材料在一定温度范围内动态性能的变化即为动态力学热分析。
聚合物都有粘弹性,可用动态力学方法对聚合物的粘弹性进行研究。
聚合物的性质与温度有关,与施加在材料上外力的时间有关,还与外力作用的频率有关。
为了了解聚合物的动态力学性能,有必要在宽广的温度范围内对聚合物进行性能测试,简称温度谱,通称DMA谱。
通常测定的DMA谱图,可以了解到材料在外力作用下动态模量和阻尼随温度和频率变化的情况。
所测得的动态力学参数非常有效的反应了材料分子运动的变化,而分子运动是与聚合物的结构和宏观性能密切联系在一起,所以动态力学分析把了解到的分子运动作为桥梁,进而掌握材料的结构和性能之间的关系。
E’=ζcosδ/ε E=ζsinδ/ε式中 E’贮能模量 E 损耗模量实验仪器DMAQ800动态机械分析仪美国TA公司生产实验条件实验步骤1.仪器校准2.试样制备:试样表面光滑、平整、无气泡,尺寸精确;根据试样模量大小选择测量方式,按照各测量方式,对照试样尺寸要求制备试样。
3.根据测量方法不同选择相应的夹具,将夹具固定在合金柱上,装载试样,在室温进行动态应力—应变扫描,以确定材料粘弹性区域,从而选择正确的测时条件(应力或应变)4.测量试样尺寸,矩形试样测定长、宽、厚;圆形测定直径和厚度5.根据要求编辑试验条件:测量方式(受力方式)、扫描方式(温度、时间、频率扫描等)、测时条件(温度区间、频率、升温速率、应力等)6.上好样品。
合上炉盖,开始实验7.实验结束后,自动温度控制器自动停止工作,处理谱图和实验数据实验结果DMA谱图结果与讨论由DMA谱图可知,材料的玻璃化温度为109.69℃,T=85℃时;E’=E,T<85℃,E’>E;T>85℃时,E’<E,所以材料在低于85℃时主要表现为弹性,随着温度越高,模量减小,弹性减弱,E在93.88℃出现峰值而后迅速下降。
第篇动态力学分析(DMA)_图文
DMA :拉伸模式
固定夹具 试样
运动夹具
评价薄膜、纤维及Tg以上橡胶的最佳模式 按照国际标准,拉伸式样的长度应大于宽度的6倍,可 忽略夹头对式样自 由横向收缩的限制。
DMA :压缩模式
运动夹具
应力
样品 固定夹具
对低中模量材料的最佳评估模式(如凝胶,弹性体及软质泡沫塑料等) 压缩式样一般为厚度大于4mm的圆柱状或立方体、长方体式样,保证式样上 下平面严格平行。 必须具备相当的弹性. 另外可提供膨胀,收缩,针刺穿透等性能测试.
聚合物具有粘弹性,其动态力学性能可 用E’、 E’’、Tanδ等参数表示,而这些参 数与温度、频率、时间、应力/应变水平 等有关,所以用不同的扫描方式来测试 材料的动态力学性能。
聚合物的性质与温度有关,如果所处温度不同, 分子运动状态就不同,材料所表现出来的宏观 性能也大不相同。
温度扫描模式——在固定频率下,测量动态模 量及力学损耗随温度的变化。所得曲线称动态 力学温度谱,为动态力学分析中最常使用的模 式。
第篇动态力学分析(DMA)_图文.pptx
动态力学分析基础
材料的粘弹性
普弹性:外力作用下立即产生形变,外力除去后,形变 立即回复,形变对外力的响应是瞬间的。固体材料都具 有上述弹性。
理想弹性体的应力-应变关系服从虎克定律,即应力与应 变成正比,比例系数为弹性模量: σ=Eε
弹性模量表示材料的刚度,即材料抵抗变形的能力。外 力对材料做的功全部以弹性能的形式储存起来。
ε=ε1+ε2+ε3
静态粘弹性与动态粘弹性
应力松弛(stress relaxation)指高聚物在恒应变下应 力随时间衰减的现象。
应力松弛不仅反映聚合物的结构特征,而且可帮助了 解在实际生产中,塑料制品成型后形状不稳定(翘曲、 变形、应力开裂)的原因及寻求稳定产品质量的工艺 方法。退火过程实际上就是维持固定形状而促进应力 松弛的过程。
动态粘弹谱仪测定聚合物的动态力学性能-高分子物理-实验13-14介绍
这里 J1(ω) =|J |cosδ,
也是应力作用频率ω的函数,所以J1(ω)、J2 (ω)也是频率ω的函数。
J1(ω)
δ
G
G2(ω)
•
|J|
∗
J2(ω)
δ
G1(ω) 图2 在复平面上复数模量 G 与储能模量G1(ω)和损耗模量G2(ω)(左),复数柔量 | J | 与储能柔量J1(ω) 和损耗柔量J2(ω) 的关系(右)
测 试 方 法 频 率 范 围 /H z
σ(t) =
这里,
σ sinωt
是交变应力σ(t)
∧
自 由 振 动衰 减 法 扭 摆 扭 辫 受 迫 振 动共 振 法 振 簧 受 迫 振 动 非共 振 法 粘弹谱 仪 驻波 法 波 传 导 法 0 .1 - 1 0
4
σ
∧
1 0 - 5 x1 0
的峰值, 应变ε(t)将是时间 的什么函数?对虎克弹体,
1
的进步, 已有可能在实验中的任一时刻直接测量该时刻的振幅和相位差, 从而避免了扭摆和 扭辫实验中每一次都必须等待它慢慢衰减和动态振簧法每点必达共振而引起的实验时间过 长的不足。扭摆、扭辫、振簧和粘弹谱仪是一般高分子物理实验室中最常用的动态力学实验 方法,其中尤以动态粘弹谱仪最为人受用。 (2)λ ≈ b, 由于应力波长 λ 与聚合物试样尺寸 b 相近,应力波在聚合物试样中形成 驻波。测量驻波极大、驻波节点位置可计算得到杨氏模量 E 和损耗角正切 tgδ 。驻波法特 别适用于合成纤维力学行为的测定。 (3)λ << b, 是波传导法。由于应力波比聚合物试样小,应力波(通常使用声波)在 试样中传播。测定应力波的传播速度和波长的衰减可求得聚合物材料的模量 E 和损耗角正 切 tanδ 。显然,波传导法也特别适用于合成纤维力学行为的测定。 这里重要的是各种测试方法的频率范围。各种测试方法的频率范围为 维持应力 σ(t) 为正弦 函数
DMA动态力学分析
频率的半高宽有时也用最大振幅的一半时的两个频率之 差表示,如图15-6。
Δfr = f4 – f3
或 Δfr = f2 – f1
E" = E' tanδ (Pa)
振簧仪可以在10~ 10000 Hz 频率范围内 测量,试样尺寸为 (2 ~4) × (10 ~15) × (100 ~200)mm,温 度范围为 – 150 ~ 250℃。
一、动态扭摆仪
扭摆仪的原理见图15-1, 试样两端夹在夹具中,一 端夹具固定,另一端夹具 与自由转动的惯性杆相连 接。若将一给定应力使惯 性杆扭转一小角度,随即 除去外力,试样则将产生 周期性扭转,振幅随时间 不断衰减,直至最后停止。
这 是 扭 摆 仪 的 详 细 结 构 图
P——周期,是试样每摆动一次所需要的时间; Ai ——振幅,是试样每次摆动的距离。 由于聚合物的内耗,使摆动的振幅逐渐衰减。
温度由程序升温 控制。
模量等随温度的 变化如图所示。
频率谱,即频率 扫描模式是在恒 温、恒应力下, 测定动态模量及 损耗随频率变化 的试验,用于研 究材料性能与速 度的依赖性。
2. 频率谱
3. 频率谱与温度的关系
从不同频率下测材 料在相同温度范围内 的温度谱(见图)可 知,当频率变化10 倍 时,随材料活化能不 同其温度谱曲线位移 7~10℃,也就是说, 如果频率变化三个数 量级时相当于温度位 移21~30℃,因此, 用频率谱扫描模式可 以更细致地观察较不 明显的次级松弛转变。
对圆柱型样品:
G 8 IL
r4P2
对矩型样品:
G
64 2IL CD3 P2
式中 L——试样有效部分长度,cm; C——试样宽度,cm; D——试样厚度,cm; I——转动体系的转动惯量,Kg。cm2
理想弹性体理想粘性体高聚物粘弹性
-1.00
-0.95
-4.0
-3.5
-3.0
-2.5
-2.0
Stress, N
Stress
NBR/HNTs纳米复合材料的滞后圈
40
丁腈橡胶复合材料的滞后圈
0.12 0.10
0 2 4 6 8 10 10
8
delta W, J
0.08
6
0.06 0.04 0.02 0.00
0 4
2
0
20
40
60
80
松驰过程是同时存在粘性和弹性的结果
8
松弛时间物理含义
When t =
(t ) (0)e
t /
(t ) (0)e
1
(t ) (0) *1 / e 0.368* (0)
应力松弛到初始应力的 0.368倍时所需的时间称 为松弛时间。 当应力松弛过程完成 63.2% 所需的时间称为 松弛时间。
聚合物的粘弹性 杜明亮 材纺学院材料工程系
1
引言
材料受外力作用时的形变行为: 理想的弹性固体服从虎克定律——形变与时间无关 瞬间形变,瞬间恢复
理想的粘性液体服从牛顿定律——形变与时间成线性关系
高聚物:
分子运动
宏观力学性能
强烈地依赖于温度和外力作用时间
2
虎克定律 Hooke’s law
E
粘弹材料的力学响应介于弹性与粘性之间,应变落后于应 力一个相位角。
0
2
(t ) 0 sin(wt )
δ ——形变落后于应变变化的相位角。 δ 越大,说明滞后现象越严重。 产生滞后的原因:外力作用时,链段运动要受到内摩 擦阻力的作用,外力变化时链段运动跟不上外力的变化, ε 落后于σ 。
基于动态力学分析的改性沥青黏弹性能研究
华南理工大学学报(自然科学版)第38卷第3期Journa l o f South C hina U niversity o f Techno l o g yV o.l 38 N o.32010年3月(N atura l Science Editi o n)M arch 2010文章编号:1000 565X (2010)03 0037 04收稿日期:2008 10 21*基金项目:国家自然科学基金资助项目(50808087)作者简介:詹小丽(1982 ),女,博士后,主要从事道路工程与材料研究.E ma i:l zhanx @l scut .edu .cn基于动态力学分析的改性沥青黏弹性能研究*詹小丽1,2王端宜1(1.华南理工大学土木与交通学院,广东广州510640;2.浙江工业大学建筑工程学院,浙江杭州310014)摘 要:鉴于目前的沥青黏弹性能评价指标对改性沥青的适用性较差,采用动态力学分析方法对基质沥青和改性沥青进行研究,测定了不同温度和频率下沥青的黏弹性能参数,通过H an 曲线和动态黏弹参数的变化规律分析其黏弹性能.结果表明:改性沥青的H an 曲线在不同温度下具有不同的温度依赖性,由于其相态结构比较复杂,导致其黏弹性能不同于基质沥青;采用动态力学方法能很好地揭示改性沥青的宏观力学性能与微观结构的相关性.关键词:道路工程;改性沥青;黏弹性能;动态力学分析;H an 曲线中图分类号:U 416.217do :i 10.3969/.j issn.1000 565X .2010.03.007美国SHRP (Strateg ic H i g hw ays Research Pro gra m )计划提出的沥青评价指标能很好地评价沥青的低温、高温和疲劳性能,但是对于改性沥青的适用性较差.为此,不少学者提出了各种黏弹性参数作为改性沥青的评价指标,如重复蠕变恢复试验的黏性分量、累计耗散能、零剪切黏度等,但是仍未能很好地描述改性沥青的黏弹性能[1 3].SBS(Sty rene Butad ieneS tyrene)改性沥青是在沥青中加入大分子苯乙烯-丁二烯-苯乙烯嵌段共聚物,通过物理或化学共混与沥青反应生成的共混物.由于沥青和聚合物SBS 在相对分子质量、化学结构、黏度上都有较大的差别,导致SBS 和沥青在热力学上不相容,因此SBS 在改性沥青中的相态、形态和结构组成极其复杂,这也是SBS 改性沥青与基质沥青黏弹性能差距较大的原因.SBS 改性沥青属于高分子聚合物,其黏弹性能与其组分间的相互作用、相形态密切相关,黏弹响应能准确反映其形态结构的变化,而形态结构也在很大程度上决定着它的使用性能,因此,要研究改性沥青的黏弹性能首先要研究其微观结构.目前对改性沥青微观结构的研究主要是采用扫描电镜等微观试验方法研究改性剂在沥青中的分布情况,不能很好地将微观结构与黏弹性能联系起来[4 5].动态力学分析(DMA )研究黏弹性材料在周期性变化的应力(或应变)作用下的力学行为[6 8],测定材料在一定温度范围和频率范围内动态力学性能的变化,它是研究材料黏弹性的重要手段.DMA 方法由于是在小应变条件下进行测定,其过程不会对材料本身结构造成影响或破坏,并且高分子材料呈现的黏弹性响应对相态结构的变化十分敏感.因此,可以采用DMA 方法来研究改性沥青的黏弹性能,并且根据改性沥青的黏弹性能的变化规律分析其微观结构的变化.1 原材料与试验方案本研究选用的材料为PG76 22的SBS 改性沥青和70#沥青,采用的仪器为美国TA 公司生产的Advanced Rheo m eter 2000高级流变仪,AR2000用来测定沥青的动态黏弹性能,施加的荷载为正弦应力,这种加载方式能有效地模拟沥青路面承受车辆行驶时施加的瞬时车轮荷载和重复荷载.DMA 可选用在交变应力的频率不变时,在宽广的温度范围内改变温度,观察沥青的动态模量和相位角等参数随温度的变化,得到沥青的动态力学温度谱,或者维持温度不变来改变应力作用频率而得到沥青的频率谱.在研究沥青材料的各种转变,特别在研究沥青的玻璃化转变温度时,常采用DMA 温度谱,但是当需要了解材料在特定频段内的动态力学参数或深入研究微观结构时,则多用D MA 频率谱.首先进行应变扫描试验,以确定沥青的线性黏弹性范围,根据应变扫描的结果确定频率扫描的应变大小.在线性黏弹性范围内进行频率扫描试验,频率范围为0 001~70H z ,温度范围为20~100 .通过D MA 频率扫描试验,可以得到沥青的储存模量、损失模量和相位角等黏弹性参数,储存模量G 表示交变应力作用下材料储存并可以释放的能量,反映的是沥青的弹性成分;损失模量G !反映变形过程中由于内部摩擦产生的以热的形式散失的能量,体现的是沥青的黏性成分;相位角反映的是沥青的黏弹比例.2 H an 曲线储存模量和损失模量关系曲线是H an 在1982年以均相聚合物的分子黏弹性理论为基础针对均相聚合物提出来的,所以又称为H an 曲线[9].根据不同沥青的频率扫描结果可以得到H an 曲线,如图1所示.图1 70#沥青和改性沥青的H an 曲线F i g.1 H an curves of 70#and m odified aspha lt一般而言,均相聚合物体系与多相聚合物的H an 曲线的明显差异在于:前者不存在温度依赖性,而后者却存在温度依赖性,并且这种温度依赖性与相行为的变化有关.因此,就可以将H an 曲线开始出现温度依赖性的临界温度作为多相聚合物体系的相分离温度.由于多相聚合物体系非均相的存在使得其流变行为复杂化,与均相聚合物体系相比,多相聚合物体系均在低频区域,即所谓的长时松弛区域,呈现出特殊的黏弹响应,表现为弹性显著增加、松弛时间明显增长以及时温等效原则失效等,偏离经典的线性黏弹性理论.从图1(a)可以看出,70#沥青在整个温度范围内均不存在温度依赖性,这表明沥青在测定温度和频率范围内为均相体.从图1(b)可以看出,对于改性沥青,当温度低于60 时,H an 曲线没有温度依赖性,但在60~100 时,H an 曲线已经存在较明显的温度依赖性,表明改性沥青在此温度范围内,相态结构已经出现变化.根据H an 曲线斜率的偏离程度可以看出聚合物的相分离程度,从图1(b)可以看出,在60 时H an 曲线的斜率较小,出现平台区,这表明在60 附近时改性沥青形成网络结构.随着温度的升高,H an 曲线的斜率逐渐增大,在100 时达到1 3190左右,表明改性沥青的相态结构随温度升高而发生变化,逐渐向均相体转变,从不同温度下H an 曲线的变化规律可以很明显地看出改性沥青相结构的变化规律.3 改性沥青黏弹性能研究3.1 损失模量变化规律经典的线性黏弹性理论指出[10],在频率 ∀0的末端区域,单分散均聚物以及一些相容的聚合物共混体系的储存模量和损失模量曲线在低频区呈直线关系,但对多相、粒子填充等非均相聚合物体系而言,非均相的存在使得流变行为复杂化;与均相体系相比较,多相聚合物体系均在低频区域,即所谓的长时区域或终端区域呈现特殊的黏弹响应,偏离经典的线性黏弹理论.通过黏弹性参数随频率的变化规律可以对沥青的黏弹性能进行分析,不同温度下沥青的损失模量曲线如图2所示.从图2可以看出,随着频率增大,损失模量增大,但改性沥青的变化规律与70#沥青不同.对于70#沥青,损失模量与频率的曲线呈直线关系;对于改性沥青,随着温度升高,在60~90 范围内,损失38华南理工大学学报(自然科学版)第38卷图2 70#沥青和改性沥青不同温度下的损失模量曲线F ig .2 Lo ss m odul us curves o f 70#and m odified aspha lt at d ifferent te m perat ures模量在低频区出现平台区,表明改性沥青对频率的依赖性减弱,当温度继续升高时,平台区消失.在低频区出现的平台现象是多相聚合物体系表现的一种特殊的黏弹松弛行为,长时松弛的原因被认为是填充粒子在体系内形成了诸如骨架、网络等三维有序结构,这表明SBS 改性剂的加入在改性沥青中形成了网络结构.从图2(b)可以看出,对于改性沥青,不同温度下出现平台区的频率范围明显不同,在60~90 范围内,随温度升高,其出现平台区的频率范围增大,这也表现了改性沥青的相态结构与温度和频率有关.从改性沥青损失模量与频率曲线的斜率可以看出,在30~60 范围内,曲线在低频区的斜率随温度升高逐渐减小,而当温度继续升高时,曲线斜率逐渐增大,这与H an 曲线得到的结论是一致的,表明在60 附近时,SBS 改性沥青相分离程度增大,随着温度升高,相态结构逐渐恢复.这也表明改性沥青的相态结构极其复杂,随着温度的变化而呈现不同的相态结构.通过对H an 曲线和损失模量曲线进行分析,结果表明损失模量出现平台区的频率值与H an 曲线存在温度依赖性的频率值是相同的,H an 曲线出现温度依赖性即表明改性沥青的相态结果出现变化,相态结构发生分离,因此,可以从改性沥青的相态结构来分析改性沥青的黏弹性能,当改性沥青出现相态分离时,改性沥青的黏弹性能的变化规律比较复杂.3.2 相位角变化规律相位角是由于黏弹性材料黏性成分的影响,对材料输入正弦应力与产生的正弦的应变响应不同步,滞后一个角度.对于纯黏性流体 为90#,对于纯弹性材料, 为0#,对于大多数黏弹性材料0#< <90#,因而相位角反映了沥青材料的黏弹比例,相位角越大,沥青的黏性成分越大,不同沥青相位角曲线如图3所示.图3 70#沥青和改性沥青不同温度下的相位角曲线F i g .3 Phase ang le curves o f 70#and m odified aspha lt a t different te m peratures从图3可以看出,对于70#沥青,当温度较高时,相位角在频率较低时接近于90#,表明70#沥青在此频率和温度下接近于黏性体,在高温时沥青的相位角的频率依赖性较弱,频率增加,相位角变化较小.当温度为30和40 时,相位角的频率依赖性较强,39第3期詹小丽等:基于动态力学分析的改性沥青黏弹性能研究随着频率增加,相位角降低较明显,这表明在低温时,沥青的黏弹性成分变化受频率的影响很大.在同一频率下,70#沥青的相位角随温度增加而增加,这表明70#沥青的损失模量与储存模量的比例随温度增加而增加,黏性成分逐渐增大,同时体现了沥青在所测温度和频率范围内为均相聚合物,没有出现相态分离.对于改性沥青,在30 时,相位角随频率先增加后减小,且在3H z附近出现峰值;在40~60 范围内,相位角随频率增加而增大,在高频处出现平台区,表明当频率较高时,相位角的频率依赖性减弱;在70~90 之间,相位角随频率增加先减小再增大,在低频区出现峰值,温度越高,峰值对应的频率值越大;当温度达到100 时,相位角随频率增大而减小,此时改性沥青相位角变化规律与沥青相位角变化规律相同.从沥青和改性沥青相位角随温度变化规律可以看出,在相同频率下,沥青的相位角随温度升高而增大,而改性沥青的相位角随温度的变化规律较复杂.在30~70 范围内,当频率较低时,温度越高,相位角越小,这表明改性沥青在此范围内网络结构较强,改性沥青的黏性流动能力减弱;当频率较高时,改性沥青的相位角随着温度升高而增大,当温度高于80 时,改性沥青的相位角变化规律与沥青相同.从改性沥青相位角随温度和频率的变化规律也可以得出改性沥青的相态结构的复杂性,这也表明改性沥青的相态结构对黏弹性能的影响较多,改性沥青结构的多相性导致了改性沥青的黏弹性能的复杂性.4 结论采用D MA对70#沥青及改性沥青的黏弹性能进行了研究,根据H an曲线、不同温度下的损失模量和相位角与频率的关系,对70#沥青及改性沥青的微观结构和黏弹性能进行分析.对于70#沥青,H an曲线不存在温度依赖性,这表明沥青在所测温度范围内为均相聚合物.对于改性沥青,在30~60 时,H an曲线不存在温度依赖性,但是在温度高于60 时,H an曲线存在温度依赖性,这也体现出改性沥青的相态结构的复杂性,因此,改性沥青属于多相聚合物.从改性沥青损失模量和相位角的变化规律可以得出,当改性沥青的相态结构出现分离时,损失模量的频率依赖性减弱,出现平台区,且相位角的变化规律与沥青不同,这也表明改性沥青的相态结构对其黏弹性能影响较大.改性沥青和沥青的相态结构不同也体现了它们的黏弹性能的区别.参考文献:[1] Bah i a H U,H anson D L,Zeng M,et a.l Charac teriza tion ofmod ified aspha lt bi nde rs in superpave m i x des i gn[R].W ashing t on D C:N ati onal Cooperati ve H i gh w ay R esea rchP rog ra m,N ationa lA cade m y P ress,2001:46 49.[2] Dongre,A ngelo D,R e i nke G erry.A ne w criter i on for s upe rpave h i gh temperature b i nde r specifica ti on[R].W ashing t on D C:TRB,T ranspo rtati on R esearch Board oft he N ati onal A cadem ies,2004:25 41.[3] Anderson D A,P lanche J,M a rtin D.Zero shear v i scosity ofasphalt b i nders[R].W ash i ng ton D C:TRB,T ranspo rtati onR esearch Board of t he N ati ona lA cadem ies,2002:2 19. [4] 袁燕,肖云,张肖宁.SBS改性沥青剪切发育过程的动态力学热分析[J].中国公路学报,2006,19(3):29 33.Yuan Y an,X iao Y un,Zhang X iao n i ng.D yna m i c mechanical t her m a l ana l ysis of shea ri ng and deve l opi ng processof SBS m odified aspha lt[J].Chi na Journal o f H i gh w ayand T ransport,2006,19(3):29 33.[5] W eg an V,B rule B.T he structure o f poly m er mod ifi edbinders and co rrespond i ng asphalt m i x t ure[J].AA PT,1999,68:64 88.[6] 张肖宁.沥青与沥青混合料的黏弹力学的原理及应用[M].北京:人民交通出版社,2006:31 46.[7] 詹小丽.基于DMA方法对沥青粘弹性能的研究[D].哈尔滨:哈尔滨工业大学交通科学与工程学院,2007:35 80.[8] 詹小丽,张肖宁,王端宜,等.基于动态蠕变性能的沥青延迟时间谱研究[J].中国公路学报,2008,21(2):34 38.Zhan X i ao l,i Zhang X iao n i ng,W ang D uan y,i et a.l Studyof retardation ti m e spec tru m of asphalt based on dyna m iccreep performance[J].Ch i na Journa l of H i gh w ay andT ransport,2008,21(2):34 38.[9] H an C D,Baek D H,K i m J K.Effect of vo lu m e fracti on ont he order diso rder transiti on i n low mo lecu lar w eigh t po l ystyrene block po ly i soprene copo ly m ers[J].M acro m o l ecules,1995,28(14):5043 5062.[10] K honakdar H A,W agenknech t U,Jafar i S H.Dyna m icm echanical properties and m orpho logy of po lyethy lene/ethy lene v i ny l acetate copo l ym er blends[J].Advancesi n Po ly m er T echno l ogy,2004,23(4):307 315.(下转第52页)U n i versity o f T echno l ogy:N atural Sc ience Editi on,1999,27(8):5 8.[8] 张枭雄.高速公路入口匝道控制算法的仿真评价与优化[D].长春:吉林大学交通学院,2005.[9] 谭满春.面向I T S的高速公路网交通分配与入口匝道控制方法研究[D].广州:华南理工大学电信学院,2000.[10] 周商吾,郭冠英,徐慰慈.交通工程[M].上海:同济大学出版社,1987.[11] 荆便顺,赵永进.高速公路最大运行流率稳态入口控制策略的研究[J].西安公路学院学报,1994,14(3):36 43.Ji n B i an shun,Z hao Y ong ji n.S t udy on sta tic on ra m pcontro l stra tegy of freew ay traffic for trav el rate m ax i m um[J].Journa l o f X i an H i ghway T ransportation U nivers ity,1994,14(3):36 43.Control of On Ra mp of Annular Express ways Based on Pri orit y Entrance T ian Sheng1 X u Lun hui1 L iao Ran kun1 Yang Ya zao2(1.Schoo l o f C i v il Eng i neering and T ransporta tion,South Chi na U niversit y of T echno logy,G uang zhou510640,G uangdong,China;2.Schoo l of Business A d m i nistrati on,South China U niversity of T echno l ogy,G uangzhou510640,G uangdong,Ch i na)Abst ract:In order to overco m e the traffic congestion due to t h e traffic de m and for urban express w ays that exceeds t h e tra ffic supply,the benefit o f priority entrance i s ana l y zed by fu lly consideri n g the requ ire m ents o f vehicles for pr i o rity entrance on the on ra m p o f ur ban express w ays,and an on ra m p con tro l strategy based on the priority en trance is proposed,wh ich per m its veh icles w ith top priority to drive i n to urban express w ays i n a peak traffic condi ti o n.M oreover,an a l g orit h m of pri o rity entrance for the annu lar road sections of urban express w ays is presen ted, and the corresponding num erica l exa m ple is conducted.The resu lts i n d icate that the proposed strategy is applicable to on ra m p contro l and he l p s to ra ise the use effi c iency of roads because it can prevent veh iclesw ith l o w er pri o rity fro m entering urban express w ays.K ey w ords:ur ban expressw ay;priority entrance;annu lar r oad secti o n;on ra m p(上接第40页)Analysis of V iscoelastic Properties ofM odifie d As phalt viaDyna m icM ec hanicalM et hodZhan X iao li1,2 Wang Duan y i1(1.Schoo l o f C i v il Eng i neering and T ransporta tion,South Chi na U niversit y of T echno logy,G uang zhou510640,G uangdong,China;2.Co llege of C i v il Eng ineer i ng and A rch itect ure,Zhejiang U n i ve rsity o f T echno l ogy,H ang z hou310014,Zheji ang,Ch i na)Abst ract:As the ex isti n g eva l u ation index of v iscoelastic properties of aspha lt i s inapplicable to m odified aspha l,t t h e v iscoelastic properties o f both base asphalt and modified asphalt are analyzed by using the dyna m ic m echan ica l m ethod.In the investi g ati o n,the para m eters descri b i n g the viscoe lastic properti e s at different te m peratures and fre quencies are m easured,and the variation la w s o f bo t h H an curves and dyna m ic v i s coe lastic para m eters are ana l y zed.The resu lts ind icate that t h e te mperature dependence ofH an curves o f m od ified asphalt varies at d ifferent te mperatures,that there ex ists a g reat difference i n v iscoe lasitc properties bet w een base aspha lt and m odified as pha lt due to the co mp lex m orpho l o g ica l struct u re o fm od ifi e d asphal,t and that the dyna m ic m echanical analysis is effective i n reveali n g the relati v ity bet w een the m acroscop ic m echanical pr operties and the m icrostr ucture o fm odi fied asphal.tK ey w ords:road eng i n eering;m od ified asphal;t v iscoe lastic property;dyna m ic m echan ica l analysis;H an curve。
动态力学分析DMA
在每一种形变模式下,不仅可以 在固定频率下测定宽阔温度范围 内的动态力学性能温度谱或在固 定温度下测定宽频率范围内的频 率谱,而且还允许多种变量组合 在一起的复杂试验模式。
3.实验技术
01
01 3.1 制样要求
02
02
要求样品的材质必须均匀、 无气泡、无杂质、加工平整;
03
03
样品的尺寸没有统一规定, 但要求测量准确。
粘弹性材料的流变行为存在时温等效原则,即材料在低温下的行为相 当于高频(相当于短时间)下的行为;而材料在高温下的行为像低频(相
当于长时间)下的行为。
玻璃化转 变
温度(内因) ω。
W
链段的运动形态 外力的作用频率
一.1测量方式/模式
主要有拉伸、剪切、压缩、双悬臂和三点
弯曲5种模式 。
2.2 测量仪器分类
强迫非共振法
1
2
强迫非共振法是指强迫试样以设定 频率振动,测定试样在振动时的应 力、应变幅值以及应力与应变之间 的相位差。
强迫非共振仪的商品型号很多,可 分为两大类: 一类主要适合于测 试固体,一类适合于测试流体,后 者称为动态流变仪。
强迫非共振法
所有的先进强迫非共振仪都包含 有多种形变模式,如拉伸、压缩、 剪切、弯曲(包括三点弯曲、单悬 臂梁与双悬臂梁弯曲)等,有些仪 器中还有杆、棒的扭转模式。
测定动态力学性能的仪器 有三类:
自由衰减振动,如扭摆法、 扭辫法;
受迫振动的共振类型,如 振簧法;
受迫振动的非共振类型, 如粘弹性仪。
目前大多数动态力学分析仪都可以用来测 定试样的动态力学性能温度谱、频率谱和 时间谱,因此仪器的织成部分中一般都包 括温控炉、温度控制与记录仪。
自由哀减振动法
高分子材料的黏弹性与流变行为分析
高分子材料的黏弹性与流变行为分析高分子材料的黏弹性和流变行为是研究材料性能和应用的重要方面。
黏弹性是指材料在受力作用下既有黏性(固体的弹性和液体的粘性)又有弹性(恢复力)的特性。
而流变行为则是指材料在外界施加剪切应力下的变形特性。
本文将通过分析高分子材料的黏弹性和流变行为,探讨其对材料性能和应用的影响。
一、黏弹性的基本概念黏弹性是高分子材料独有的特性,是其与传统材料的重要区别之一。
黏弹性指材料在受力作用下,在一定的应力和应变条件下既具有固体的弹性特性,又具有液体的粘性特性。
黏弹性是由高分子链的内聚力和外聚力共同作用引起的。
高分子链的内聚力使得材料具有弹性,能够在受力后恢复原始形状;而外聚力则会导致材料的黏性,使材料随时间推移而发生流动。
黏弹性具有时间依赖性和应力依赖性,即材料的黏弹性特性会随着时间和应力的变化而变化。
二、黏弹性的测试和分析方法为了研究和评估高分子材料的黏弹性,常用的测试和分析方法包括动态力学分析(DMA)、旋转粘度测量、流变学等。
1. 动态力学分析(DMA)DMA是一种常用的测试黏弹性的方法,通过在一定频率范围内施加小振幅的力,测量材料的应力应变响应,以及通过应力松弛测试得到的弛豫模量和弛豫时间。
DMA可以提供材料的弹性模量、损耗模量、内摩擦角等重要参数,从而评估材料的黏弹性特性。
2. 旋转粘度测量旋转粘度测量是通过在材料中施加旋转剪切力,测量材料对流动的阻力来评估黏滞性能。
旋转粘度是描述材料黏滞特性的重要参数,可用于判断材料流动性能的好坏。
3. 流变学流变学是研究材料在剪切应力下的变形特性的学科,主要包括剪切应力-剪切速率曲线的测定、黏度与切变速率的关系等。
通过流变学的研究,可以分析材料的流变行为及其对黏弹性的影响。
三、高分子材料的黏弹性与应用高分子材料广泛应用于各个领域,其黏弹性特性对材料的性能和应用有着重要的影响。
1. 弹性体高分子材料的黏弹性使其成为理想的弹性体,可用于制造弹簧、悬挂系统等需要回弹力的产品。
基于DMA方法对沥青粘弹性能的研究
基于DMA方法对沥青粘弹性能的研究沥青是一种常见的道路材料,其粘弹性能对于道路的安全性和耐久性至关重要。
沥青粘弹性能的研究对于改善道路质量、延长使用寿命具有重要意义。
本文基于DMA(动态力学分析)方法开展了对沥青粘弹性能的研究。
首先,我们需要了解DMA方法和其原理。
DMA是一种通过施加不同频率、应变幅度和温度条件下的振动负载来测量材料力学性能的方法。
在DMA实验中,沥青样品通常以平行板形式放置在DMA仪器上,施加力和振动负载来测量其力学性能。
DMA可以通过测量沥青在不同应变振幅和温度条件下的储能和耗散能力来评估其粘弹性能。
在进行DMA实验前,我们需要准备沥青样品。
通常采用在实际道路中使用的沥青材料,并通过标准化的试验方法制备沥青样品。
制备过程包括将沥青样品加热至固化点以上温度,均匀混合,并将其倾倒在铝制容器中,然后在室温下固化至沥青样品形成。
实验过程中,首先我们可以通过DMA仪器进行频率扫描实验,即在不同频率下测量沥青的动态模量和损耗模量。
通过这些模量的测量结果,我们可以了解沥青在不同频率下的弹性和粘性特性。
其次,我们也可以进行应变扫描实验,即在不同应变振幅下测量沥青的动态模量和损耗模量。
通过这些实验结果,我们可以了解沥青的线性和非线性粘弹性能。
此外,温度对沥青粘弹性能的影响也是一个重要的研究方向。
通过在不同温度条件下进行DMA实验,我们可以评估沥青在不同温度下的粘弹性能变化。
通过以上实验和分析,我们可以得出一系列关于沥青粘弹性能的结论。
例如,我们可以得到沥青的复合模量-频率、复合模量-应变和复合模量-温度关系曲线。
这些关系曲线可以帮助我们理解沥青的力学性能特征,为道路设计及维护提供科学依据。
总之,基于DMA方法对沥青粘弹性能的研究是一个重要的研究方向。
通过DMA实验和分析,我们可以了解沥青在不同频率、应变和温度条件下的粘弹性能特性。
这些研究结果对于改进道路材料的性能和道路的安全性具有重要的意义。
DMA
动态力学分析性质:利用动态力学试验求取材料在周期性外力作用下的模量和损耗,并把模量和损耗作为温度、频率或时间的函数来考察材料的黏弹性能的方法。
对试样施加随时间交变的应力或应变,求取作为温度、频率或时间函数关系的模量和损耗的关系曲线,以研究材料的黏弹行为,这就是动态力学分析的主要内容。
其中,模量和损耗与时间的关系曲线,即是动态力学分析时间分布曲线。
Dynamic thermomechanical analysis 动态热机械分析动态热机械分析(DMA)是通过对材料样品施加一个已知振幅和频率的振动,测量施加的位移和产生的力,用以精确测定材料的粘弹性,杨氏模量(E*)或剪切模量(G*)。
动态粘弹分析方法的分类和特征:DMA技术依测试方法的不同,可分为四类: (前三种常用)(1)自由振动法(如扭摆和扭辨仪) (0.1--10Hz)(2)共振法(50--5000Hz)(3)强迫非共振法(0.001--1000Hz)(4)声波传播法。
原理:(1) 自由振动法中的扭摆法其装置的结构原理如图所示。
外力使扭摆中的试样扭转变形,外力除去后,惯性体作固定周期地衰减运动,这是由于高聚物的粘性所产生的力学内耗所致。
在不考虑系统的附加阻尼情况下,振幅的衰减速率是由试样的损耗因子决定的,可以通过测量振动的周期和振幅衰减来获得动态剪切复模量及阻尼。
(a)--扭摆仪原理图, (b)--阻尼振动曲线扭辨法是由扭摆法演变出来的,扭摆和扭辫之间的主要差别在于试样,后者系用玻璃纤维或其它惰性纤维织成的辫子作为基底,把高聚物试样的溶液(5--100%)或熔体涂覆在辫子上进行实验。
由于这种方法使用的试样系复合体,听以测不出试样切模量的绝对值,仅为相对值,一般以周期P平方的倒数1/P2表示,另外扭辫的频率范围小,对固化的难熔物不宜测定,但由于它试样用量小,(100mg以下),且灵敏度高,所以乐于被采用。
动态粘弹谱仪测定聚合物的动态力学性能-高分子物理-实验13-14
3
由复数的指数表达式 ei t = cosωt + isinωt
ω
iei t = icosωt - sinωt
ω
可见sinωt是复数ei t的虚数部分 ,记作 Im(ei t) = sinωt;cosωt是复数 iei t的虚数部分,
ω ω ω
记作 Im(iei t) = cosωt。则
ω
ε(t) =
σ
= Im[ = Im[
∧
[J1(ω)Im(ei t) -J2(ω)Im(iei t) ]
ω
ω
σ σe
∧ ∧
∧
( J1(ω)ei t- iJ2(ω)ei t ) ]
ω ω
iωt
(J1(ω)-iJ2(ω) )
因为
σ
∧
Im(ei t) =
ω
σ sinωt = σ(t),并记
*
J 则
=
J1(ω)-iJ2(ω)
ε ε
∧
∧
ei t,则dε(t)/t
ω
= iω ei
ωt
ε
∧
ei t,代入得
ω
ei t = iωη
ω
ε
∧
* G = iωη * 这里复数模量G 只有虚数部分,可见在流动时没有能量的储存,储能模量G1(ω)=0,只有 能量的损耗G2(ω) = ωη。动态粘度就定义为
η动态 = G2(ω)/ω
它表示在阻尼振动时聚合物自身的内耗。 在交变应力作用下聚合物粘弹性行为的特征性状可由图 3、4 一目了然。取lgJ1(ω)和 lgJ2(ω)对lgω作图,在频率ω很高时,储能柔量是一常数,但值很小。此时材料就象一块 弹性固体。当频率降低时,储能柔量逐渐增大到另一个比较大的常数值,材料表现为高弹 性,像橡胶一样。中间的转变区域复盖了好几个数量级的频率ω。当频率进一步降低时, 线性聚合物由于有流动,其储能柔量继续增大,材料就像粘性液体。对交联聚合物,由于不 可能出现流动仍保持在高弹态。
动态粘弹性_动态力学DMA谱
动态力学性能与温度频率的关系
动态力学DMA(D ymamic M echanical A nalysis)谱
温度谱
频率谱
22
24
温度的影响:(固定频率下)
Tg 以下,形变主要由键长、键角的变化引
起,形变速率快,几乎完全跟得上应力的变化,tg δ小
Tg 附近时,链段开始运动,而体系粘度很大,
链段运动很难,内摩擦阻力大,形变显著落后于应力的变化,tg δ大(转变区)
链段运动较自由、容易,受力时形变大,tg δ
小,内摩擦阻力大于玻璃态。
向粘流态过度,分子间的相互滑移,内摩擦
大,内耗急剧增加,tg δ大
T <Tg :T ≈Tg :T ≈Tf :T >Tg :
频率的影响:(温度恒定)
(1)交变应力的频率小时:(相当于高弹态)
链段完全跟得上交变应力的变化,内耗小,E’小,E”
和tgδ都比较低.
(2)交变应力的频率大时:(相当于玻璃态)
链段完全跟不上外力的变化,不损耗能量,E’大,
E”和tgδ≈0
(3)频率在一定范围内时:
链段可运动,但又跟不上外力的变化,表现出明显的
能量损耗,因此E”和tgδ在某一频率下有一极大值
26
49
50。
聚合物的动态粘弹性
ε
滞后圈的面积大小为单位体积内材料在每一次 拉伸-回缩循环中所消耗的能量
(3) 内耗 Internal friction (力学损耗)
滞后圈的面积: σ ( t ) = σ 0 sin ωt
ΔW = ∫
2π
ε ( t ) = ε 0 sin(ωt − δ )
ω
ω
0
σ ( t )d ε ( t ) = σ 0ε 0ω ∫
回缩时也滞后
滞后造成的后果—能量的损耗
σ
f l0 → l A0
应力-应变曲线下面积表示外 力对单位体积试样所做的功
εb
ε
σ
滞后圈
dW = fdl = fl0 d ε =
εb
f A0l0 d ε = σ A0l0 d ε A0
εb
0
W = A0l0 ∫ σ ( t ) d ε = V0 ∫ σ ( t ) d ε第7章 聚合 Nhomakorabea的粘弹性
动态粘弹性 Dynamic viscoelasticity
7.1.2 动态粘弹性 Dynamic viscoelasticity
交变应力(应力大小呈周期性变化)或交变应变
(1) 用简单三角函数来表示
σ = σ 0 sin ωt
σ ε
σ0 ε0
0
ε = ε 0 sin ωt
弹性响应
2π
0
sin ωt cos (ωt − δ )dt
ΔW = πσ 0ε 0 sin δ
单位体积试样在一个循环过程中 所消耗的能量
聚合物在交变应力作用下, 应变落后于应力的变化, 在每个 循环中都要消耗能量, 这种现象称为内耗或力学损耗
拉伸时 回缩时
外力对材料作功 = 分子链构象伸展 + 克服链段运动内摩擦 材料对外界作功 = 分子链构象卷曲 + 克服链段运动内摩擦
dma动态力学原理
dma动态力学原理
DMA(Dynamic(Mechanical(Analysis,动态力学分析)是一种材
料测试方法,用于测量材料在受到振动或周期性应力加载时的动态力学性能。
DMA(能够提供关于材料的弹性、刚性、黏弹性、损耗等信息,并允许工程师和研究人员了解材料在不同温度、频率和应变条件下的行为。
DMA(基于施加周期性变形 例如正弦或方波形变形)到材料上,并测量材料的响应。
其原理基于震动力学和弹性理论。
关键原理包括:
1.(应变施加:(DMA(使用精确的机械装置施加周期性变形或应变到样品上,例如正弦形变,使材料在一定范围内产生可控的应变。
2.(响应测量:(在施加应变的同时,DMA(测量材料的响应。
这通常包括测量力、位移或应变的变化。
根据施加的应变和材料的响应,可以得出材料的力学特性。
3.(温度和频率控制:(DMA(可以在不同的温度下进行测试,从室温到高温,以研究材料性能随温度变化的情况。
同时,还可以在不同的频率下进行测试,研究材料在不同应变速率下的响应。
4.(分析数据:(通过收集并分析施加应变和材料响应的数据,可以得出诸如弹性模量、刚度、损耗因子(损耗模量)等参数,以了解材料的动态力学性能。
DMA(在材料科学、工程领域以及产品研发中具有广泛的应用,特别是在聚合物、橡胶、复合材料等方面。
它能够帮助研究人员理解材料的变形行为和性能,在材料设计、工程应用和质量控制方面提供重
要的信息。
1/ 1。
第20讲动态粘弹性ppt课件
0 sin t cos 0 cost sin
类似于Hooke’s solid, 类似于Newton Liquid,
相当于弹性
相当于粘性
——链段间发生移动,磨察生热, 消耗能量,所以称为内耗
内耗的定义
内耗:运滞后的相角
W sin 决定内耗
If 0 W 0
介电松弛 Dielectric relaxation
诱导 极化 偶极 极化
tg " '
损耗因子 介电常数
/ E / E sint
0.5
0 0
-0.5
90
180
t degree
最大值 完
全
270
360
同
步
粘性响应
d
dt
sin t
d
sin t
dt
sin udu cosu C
/ cost /
/ d sintdt
1.5
1
/() cost
0.5
Strain
0 -0.5 0
•频率很慢,分子运动时间很充分, 应变跟上应力的变化, 小,内耗
小。
•频率适中时,分子可以运动但跟
不上应力频率变化,增大,内耗 大。
log
aT =t/t0= 0/
DMA result- for frequency
D’ D’’
(3) 次级运动的影响
Tg Tg 以下的转变称为次级松弛
用来分析分子结构运动的特点
tan
•温度很低,分子运动很弱, 不运动,从而磨察消耗的能 量小,内耗小
•温度适中时,分子可以运动
但跟不上应力变化,增大,
内耗大
Tg
Tf T
车用PVB薄膜材料动态黏弹性的实验研究
车用PVB薄膜材料动态黏弹性的实验研究刘博涵;周嘉;孙岳霆;王岩;许骏;李一兵【摘要】The dynamic viscoelasticity parameters of Poly vinyl Butyral ( PVB) film, the interlayer material of automotive windshield) are measured based on dynamic mechanical analysis (DMA) method, and the effects of frequency, temperature, production process and thickness of PVB film onits viscoelasticity are systematically investigated. The results show that as frequency increases and temperature falls, the PVB film will gradually change from high-elastic state to glassy state, and with the rise in frequency the glass transition temperature of PVB film will increase basically linearly. The production process and thickness of PVB film also have certain influence on its viscoelasticity. Finally the constants of Williams-Landel-Ferry equation for PVB film are obtained by curve-fitting.%基于动态力学分析法,对汽车风窗玻璃的中间膜——聚乙烯醇缩丁醛(PVB)薄膜材料的动态黏弹性参数进行了测试.系统研究了频率、温度、生产工艺和薄膜厚度对材料黏弹性的影响.结果表明,随着频率的升高和温度的降低,PVB薄膜逐渐从高弹态向玻璃态转变;且随着频率的升高,PVB薄膜玻璃化温度基本上呈线性关系增高.另外,生产工艺和试件厚度对PVB薄膜黏弹性都有一定的影响.最后拟合得到该材料WLF 方程的系数.【期刊名称】《汽车工程》【年(卷),期】2012(034)010【总页数】8页(P898-904,927)【关键词】PVB薄膜;黏弹性;动态力学分析;玻璃化温度【作者】刘博涵;周嘉;孙岳霆;王岩;许骏;李一兵【作者单位】清华大学,汽车安全与节能国家重点实验室,北京100084;清华大学,汽车安全与节能国家重点实验室,北京100084;清华大学,汽车安全与节能国家重点实验室,北京100084;清华大学,汽车安全与节能国家重点实验室,北京100084;清华大学,汽车安全与节能国家重点实验室,北京100084;清华大学,汽车安全与节能国家重点实验室,北京100084【正文语种】中文前言交通事故中对于弱势道路使用者的保护已经成为国内外研究的热点问题[1]。
DMA实验报告
动态热机械分析测试实验报告实验目的1•了解动态力学分析仪(DMA的测量原理及仪器结构;2•了解影响动态力学分析仪(DMA实验结果的因素,正确选择实验条件;3 •通过聚合物PP动态模量和力学损耗与温度关系曲线的测定,了解线性非结晶聚合物不同的力学状态;4•学会使用DMA来测试聚合物的Tg,并会分析材料的热力学性质。
二、实验原理在外力作用下,对样品的应变和应力关系随温度等条件的变化进行分析,即为动态力学分析。
动态力学分析能得到聚合物的动态模量(E')、损耗模量(E 〃)和力学损耗(tan S )。
这些物理量是决定聚合物使用特性的重要参数。
同时,动态力学分析对聚合物分子运动状态的反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件的变化的特性可得到聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等。
高聚物是黏弹性材料之一,具有黏性和弹性固体的特性。
它一方面像弹性材料具有贮存械能的特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下的黏液,会损耗能量而不能贮存能量。
当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗。
能量的损耗可由力学阻尼或内摩擦生成的热得到证明。
材料的内耗是很重要的,它不仅是性能的标志,而且也是确定它在工业上的应用和使用环境的条件。
如果一个外应力作用于一个弹性体,产生的应变正比于应力,根据虎克定律,比例常数就是该固体的弹性模量。
形变时产生的能量由物体贮存起来,除去外力物体恢复原状,贮存的能量又释放出来。
如果所用应力是一个周期性变化的力,产生的应变与应力同位相,过程也没有能量损耗。
假如外应力作用于完全黏性的液体,液体产生永久形变,在这个过程中消耗的能量正比于液体的黏度,应变落后于应力900,所示。
聚合物对外力的响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量的构象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态力学性能与温度频率的关系
动态力学DMA(D ymamic M echanical A nalysis)谱
温度谱
频率谱
22
24
温度的影响:(固定频率下)
Tg 以下,形变主要由键长、键角的变化引
起,形变速率快,几乎完全跟得上应力的变化,tg δ小
Tg 附近时,链段开始运动,而体系粘度很大,
链段运动很难,内摩擦阻力大,形变显著落后于应力的变化,tg δ大(转变区)
链段运动较自由、容易,受力时形变大,tg δ
小,内摩擦阻力大于玻璃态。
向粘流态过度,分子间的相互滑移,内摩擦
大,内耗急剧增加,tg δ大
T <Tg :T ≈Tg :T ≈Tf :T >Tg :
频率的影响:(温度恒定)
(1)交变应力的频率小时:(相当于高弹态)
链段完全跟得上交变应力的变化,内耗小,E’小,E”
和tgδ都比较低.
(2)交变应力的频率大时:(相当于玻璃态)
链段完全跟不上外力的变化,不损耗能量,E’大,
E”和tgδ≈0
(3)频率在一定范围内时:
链段可运动,但又跟不上外力的变化,表现出明显的
能量损耗,因此E”和tgδ在某一频率下有一极大值
26
49
50。