励磁控制理论简介
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PID控制输出的累加形式
T k TD e(kT ) e(kT T ) u (kT ) K P e(kT ) e( jT ) TI j 0 T K P e(kT ) K I
e( jT ) K D e(kT ) e(kT T )
KPSS=3,T1=0.09s,T2=0.031s,T3=0.3s T4=0.99s,Tw=2.3s
惯性环节
1 x u 1 Ts
的离散化
有x+Ts· x=u, 即dx/dt=(u-x)/T 令控制周期为h, ε =h/2, 离散化得到 xk 1 xk ( xk 1 xk ) (uk 1 uk ) T 化简得到 T xk 1 xk (uk uk 1 ) T T
PID控制的实现
控制规律
U ( s) 1 G( s) Kp 1 TD s E ( s) T s I
传递函数
1 t TDde(t ) u (t ) K P e(t ) e(t )dt 0 TI dt
PID控制的数字实现
励磁控制理论简介
目的
介绍各种在励磁控制中得到应用的理论
部分控制理论的实现 通过实验或现场波形对比PID控制
现有的励磁控制理论
PID
PID+PSS
线性最优控制
自适应最优控制
非线性控制
PID控制
给定值 Ref + - 电压 偏差 微分 积分 比例 励磁电压 Efd 机端电压 Ut
积分参数的作用和影响
对稳态特性的影响
积分控制能消除系统的稳态误差,提高控制系统的 控制精度。但若TI太大,积分作用太弱,将不能减 小稳态误差;
对动态特性的影响
积分时间常数TI偏小,积分作用强,振荡次数较多, TI太大,对系统性能的影响减小。当时间常数TI合 适时,过渡性能比较理想。
微分参数的作用和影响
隔直环节和超前滞后环节
隔直环节
y
Ts u 1 Ts
Ts 1 y u u u ux 1 Ts 1 Ts
yk 1 u k1 xk 1
超前滞后环节
y
1 T1s T1 1 T1 y u (1 ) u u 1 T2 s T2 1 T2 s T2
x5 x6 x7 x8 x9
Pe
sTW 3 1 sTW 3
y3 x3
K2 1 sT7
y4 x4
y6 +
UP SS
y11
K1
y10 x12
1 sT5 1 sT6
y9 x11
1 sT3 1 sT4
y8 x10
1 sT1 1 sT2
y7
-4%阶跃(动模试验)
1.2
P=0.57,
j 0
k
控制偏差的增量形式
u(kT ) KP e(kT ) e(kT T ) KI e(kT ) KD e(kT ) 2e(kT T ) e(kT 2T )
电力系统稳定器(PSS)原理
根据发电机固有频率进行补偿,使之频谱特性与期 Δω 望值一致。
模型参考自适应(续)
参考模型
+ 广义误差e
前馈调节器
u
被控对象
Yr
反馈调节器
自适应机构
自校正控制
通常由辨识器、控制器参数设计部分和控制
器本体三部分组成。这种算法对同步发电机 控制过程进行实时辨识,并将辨识参数代入 离散的Riccati方程,实时求解最优反馈增益, 以得到最优控制输出。理论上该控制器能够 保证被控对象始终保持最优性能。
P.U.
0.8 0.75 0.7 0.65 0.6 0.55
Vt Pe
0
1
2
3
4
5 t(s)
6
7
8
9
10
非线性鲁棒电力系统稳定器
基于多机励磁系统,该模型考虑瞬态凸极效
应,并计及了系统中存在的各种不确定性因 素的影响;在此基础上将微分几何控制理论 与线性方法有机结合,即采用反馈线性化方 法将非线性系统精确线性化,然后应用线性 控制理论设计其鲁棒控制律,最后代回到所 设计的非线性预反馈律中。
微分控制的作用跟偏差信号的变化趋势有关,
通过微分控制能够预测偏差,产生超前的校 正作用,可以较好地改善动态特性,如超调 量减少,调节时间缩短,允许加大比例控制, 使稳态误差减小,提高控制精度等。但当TD 偏大时,超调量较大,调节时间较长。当TD 偏小时,同样超调量和调节时间也都较大。 只有TD取得合适,才能得到比较满意的效果。
变增益机构
Yref
控制器
u
被控对象
K
KH
KL
PL
PH
P
模型参考自适应
由两个环路组成:内环是调节器和被控对象,
外环为参考模型和自适应机构。参考模型经 过精心设计,性能优良。这样通过自适应机 构使被控对象与参考模型之间的广义误差最 小化,从而达到被控对象性能最优。 能够很快跟踪被控对象的变化。 要求零极点对消,很难保证闭环稳定。 参考模型难以设计。
-0.15 -0.2 -0.25 -0.3 -0.35 -0.4
k1 k2 k3 k4 k5
0
0.5
1
1.5
2
2.5 t(s)
3
3.5
4
4.5
5
0
0.5
1
1.5
2
2.5 t(s)
3
3.5
4
4.5
5
三相短路实验
三相短路实验电压波形 1.1 AOEC PID 1.2 三相短路实验有功功率波形 1 0.9 AOEC PID 1
1.05 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 机端电压 有功功率
0
1
2
3
4
5 t(s)
6
7
8
9
10
自适应控制
变增益自适应
模型参考自适应 自校正控制
变增益自适应
预置几组控制参数,运行时根据一个或多个
辅助变量的大小选取最合适的一组。 具有一定的适应能力,实际仍然是改进的定 点控制方式。 设计简单,容易实现。
Pe(P.U.)
0 0.5 1 1.5 2 2.5 t(s) 3 3.5 4 4.5 5
Vt(P.U.)
0.8
0.8
0.7
0.6 0.6 0.4
0.5
0.4
0.2
0
0.5
1Hale Waihona Puke Baidu
1.5
2
2.5 t(s)
3
3.5
4
4.5
5
AOEC现场实验
寺 坪 水 电 厂 +4%PSS实 验 1.05 1 0.95 0.9 0.85
自校正控制(续)
+ u0
被控对象
+
y
辨识器 控制器参数设计
控制器
自适应与PID控制性能的比较
+5%PSS实 验 电 压 波 形 +5%PSS实 验 有 功 功 率 波 形 1.1 AOEC PID 1.05 0.5 1 0.45 0.55 AOEC PID
Vt(P.U.)
Pe(P.U.)
辨识参数
发电机
比例参数的作用和影响
对稳态特性的影响
加大比例控制KP,在系统稳定的情况下,可以减小 稳态误差,提高控制精度,但加大KP只减小误差, 却不能完全消除稳态误差;
对动态特性的影响
比例控制KP加大,会使系统的动作灵敏、响应速度 快;KP偏大,振荡次数变多,调节时间加长,当KP 太大时,系统会趋于不稳定。若KP太小,又会使系 统的响应缓慢。
0.95
0.4 0.35
0.9 4
2 0.85 0
自适应最优增益
0.3 0.1
0.05 0.25 0 0.2 -0.05 0 -0.1
0.8 -2
-4 -6 -8 -10 -12 -14 -16
0
0.5
1
1.5
2
2.5 t(s)
3
3.5
4
4.5
5
0.5
1
1.5
2
2.5 t(s)
3
3.5
4
4.5
5
a1 a2 a3 b1 b2
1.1
t=1s时给定 值由1.08突 变为1.04
1
0.9
P.U.
0.8
机端电压 有功功率
0.7
0.6
0.5
0
1
2
3
4
5 t(s)
6
7
8
9
10
三相接地实验(动模试验)
V=1.05,
1.1 1 0.9 0.8 0.7 机端电压 有功功率
P=0.45, t=1s时 发生三相接地 故障,0.2s后 故障消失。
非线性鲁棒PSS的控制规律
' T T Td' 0 ' ' j d 0 (k k k 0 P ) VNRPSS Eq E i ( x x )( i i i i ) q e 2 3T d qd d q qq iq 1 iq j 0
1 T1s u 1 T 2s
PSS的特点
优点
原理清晰 实现简单 抑制低频振荡效果较好
缺点
抑制振荡频率范围窄 有功功率的反调 多机系统中的配合
PSS2A
ω
sTW 1 1 sTW 1
y1 x1
sTW 2 1 sTW 2
y2 x2
+
y5 +
K3
1 sT8 (1 sT9 ) 5
0
2
4
6 8 Δω (rad/s)
10
12
14
单输入PSS
P e
sT 1 sT
1 sT1 1 sT3 K PSS 1 sT 1 sT 2 4
UPSS
U PSS
1 T1s 1 T3 s Tw s K PSS 1 T2 s 1 T4 s 1 Tw s
ΔPSS θPSS -ΔPe KPΔPe Δδ
K f f
Kf
d TJ
Pe
S 国家电网公司企业标准中电力系统稳定器整定试验 导则要求,需要通过相位补偿,使0.2~2Hz范围内 PSS输出的力矩向量对应轴在超前+10°~-45°。
120 100 80 60 40
PSS补偿特性图
角度
20 0 -20 -40 -60 Kf/Kp环 节 补 偿 特 性 超前滞后环节补偿特性 PSS环 节 补 偿 特 性 补偿后实测特性
P.U.
0.6 0.5 0.4 0.3 0.2 0.1
0
1
2
3
4
5 t(s)
6
7
8
9
10
线性最优励磁控制
一种多变量PID
V P F PID + PID PID + + Ef
△Ef=KV×
△V+KP× △ P+KF× △F
1%阶跃
1.1
P.U.
P=0.7, t=1s时给定 值由1突变为1.01; t=7s给定值由1.01 突变为1.0
与常规控制规律不同,甚至在分母中出现了
状态变量。
300MW机组2%阶跃实验
PID
PID+NrPSS
进相至-13MVar时的稳定实验
谢谢!
T k TD e(kT ) e(kT T ) u (kT ) K P e(kT ) e( jT ) TI j 0 T K P e(kT ) K I
e( jT ) K D e(kT ) e(kT T )
KPSS=3,T1=0.09s,T2=0.031s,T3=0.3s T4=0.99s,Tw=2.3s
惯性环节
1 x u 1 Ts
的离散化
有x+Ts· x=u, 即dx/dt=(u-x)/T 令控制周期为h, ε =h/2, 离散化得到 xk 1 xk ( xk 1 xk ) (uk 1 uk ) T 化简得到 T xk 1 xk (uk uk 1 ) T T
PID控制的实现
控制规律
U ( s) 1 G( s) Kp 1 TD s E ( s) T s I
传递函数
1 t TDde(t ) u (t ) K P e(t ) e(t )dt 0 TI dt
PID控制的数字实现
励磁控制理论简介
目的
介绍各种在励磁控制中得到应用的理论
部分控制理论的实现 通过实验或现场波形对比PID控制
现有的励磁控制理论
PID
PID+PSS
线性最优控制
自适应最优控制
非线性控制
PID控制
给定值 Ref + - 电压 偏差 微分 积分 比例 励磁电压 Efd 机端电压 Ut
积分参数的作用和影响
对稳态特性的影响
积分控制能消除系统的稳态误差,提高控制系统的 控制精度。但若TI太大,积分作用太弱,将不能减 小稳态误差;
对动态特性的影响
积分时间常数TI偏小,积分作用强,振荡次数较多, TI太大,对系统性能的影响减小。当时间常数TI合 适时,过渡性能比较理想。
微分参数的作用和影响
隔直环节和超前滞后环节
隔直环节
y
Ts u 1 Ts
Ts 1 y u u u ux 1 Ts 1 Ts
yk 1 u k1 xk 1
超前滞后环节
y
1 T1s T1 1 T1 y u (1 ) u u 1 T2 s T2 1 T2 s T2
x5 x6 x7 x8 x9
Pe
sTW 3 1 sTW 3
y3 x3
K2 1 sT7
y4 x4
y6 +
UP SS
y11
K1
y10 x12
1 sT5 1 sT6
y9 x11
1 sT3 1 sT4
y8 x10
1 sT1 1 sT2
y7
-4%阶跃(动模试验)
1.2
P=0.57,
j 0
k
控制偏差的增量形式
u(kT ) KP e(kT ) e(kT T ) KI e(kT ) KD e(kT ) 2e(kT T ) e(kT 2T )
电力系统稳定器(PSS)原理
根据发电机固有频率进行补偿,使之频谱特性与期 Δω 望值一致。
模型参考自适应(续)
参考模型
+ 广义误差e
前馈调节器
u
被控对象
Yr
反馈调节器
自适应机构
自校正控制
通常由辨识器、控制器参数设计部分和控制
器本体三部分组成。这种算法对同步发电机 控制过程进行实时辨识,并将辨识参数代入 离散的Riccati方程,实时求解最优反馈增益, 以得到最优控制输出。理论上该控制器能够 保证被控对象始终保持最优性能。
P.U.
0.8 0.75 0.7 0.65 0.6 0.55
Vt Pe
0
1
2
3
4
5 t(s)
6
7
8
9
10
非线性鲁棒电力系统稳定器
基于多机励磁系统,该模型考虑瞬态凸极效
应,并计及了系统中存在的各种不确定性因 素的影响;在此基础上将微分几何控制理论 与线性方法有机结合,即采用反馈线性化方 法将非线性系统精确线性化,然后应用线性 控制理论设计其鲁棒控制律,最后代回到所 设计的非线性预反馈律中。
微分控制的作用跟偏差信号的变化趋势有关,
通过微分控制能够预测偏差,产生超前的校 正作用,可以较好地改善动态特性,如超调 量减少,调节时间缩短,允许加大比例控制, 使稳态误差减小,提高控制精度等。但当TD 偏大时,超调量较大,调节时间较长。当TD 偏小时,同样超调量和调节时间也都较大。 只有TD取得合适,才能得到比较满意的效果。
变增益机构
Yref
控制器
u
被控对象
K
KH
KL
PL
PH
P
模型参考自适应
由两个环路组成:内环是调节器和被控对象,
外环为参考模型和自适应机构。参考模型经 过精心设计,性能优良。这样通过自适应机 构使被控对象与参考模型之间的广义误差最 小化,从而达到被控对象性能最优。 能够很快跟踪被控对象的变化。 要求零极点对消,很难保证闭环稳定。 参考模型难以设计。
-0.15 -0.2 -0.25 -0.3 -0.35 -0.4
k1 k2 k3 k4 k5
0
0.5
1
1.5
2
2.5 t(s)
3
3.5
4
4.5
5
0
0.5
1
1.5
2
2.5 t(s)
3
3.5
4
4.5
5
三相短路实验
三相短路实验电压波形 1.1 AOEC PID 1.2 三相短路实验有功功率波形 1 0.9 AOEC PID 1
1.05 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 机端电压 有功功率
0
1
2
3
4
5 t(s)
6
7
8
9
10
自适应控制
变增益自适应
模型参考自适应 自校正控制
变增益自适应
预置几组控制参数,运行时根据一个或多个
辅助变量的大小选取最合适的一组。 具有一定的适应能力,实际仍然是改进的定 点控制方式。 设计简单,容易实现。
Pe(P.U.)
0 0.5 1 1.5 2 2.5 t(s) 3 3.5 4 4.5 5
Vt(P.U.)
0.8
0.8
0.7
0.6 0.6 0.4
0.5
0.4
0.2
0
0.5
1Hale Waihona Puke Baidu
1.5
2
2.5 t(s)
3
3.5
4
4.5
5
AOEC现场实验
寺 坪 水 电 厂 +4%PSS实 验 1.05 1 0.95 0.9 0.85
自校正控制(续)
+ u0
被控对象
+
y
辨识器 控制器参数设计
控制器
自适应与PID控制性能的比较
+5%PSS实 验 电 压 波 形 +5%PSS实 验 有 功 功 率 波 形 1.1 AOEC PID 1.05 0.5 1 0.45 0.55 AOEC PID
Vt(P.U.)
Pe(P.U.)
辨识参数
发电机
比例参数的作用和影响
对稳态特性的影响
加大比例控制KP,在系统稳定的情况下,可以减小 稳态误差,提高控制精度,但加大KP只减小误差, 却不能完全消除稳态误差;
对动态特性的影响
比例控制KP加大,会使系统的动作灵敏、响应速度 快;KP偏大,振荡次数变多,调节时间加长,当KP 太大时,系统会趋于不稳定。若KP太小,又会使系 统的响应缓慢。
0.95
0.4 0.35
0.9 4
2 0.85 0
自适应最优增益
0.3 0.1
0.05 0.25 0 0.2 -0.05 0 -0.1
0.8 -2
-4 -6 -8 -10 -12 -14 -16
0
0.5
1
1.5
2
2.5 t(s)
3
3.5
4
4.5
5
0.5
1
1.5
2
2.5 t(s)
3
3.5
4
4.5
5
a1 a2 a3 b1 b2
1.1
t=1s时给定 值由1.08突 变为1.04
1
0.9
P.U.
0.8
机端电压 有功功率
0.7
0.6
0.5
0
1
2
3
4
5 t(s)
6
7
8
9
10
三相接地实验(动模试验)
V=1.05,
1.1 1 0.9 0.8 0.7 机端电压 有功功率
P=0.45, t=1s时 发生三相接地 故障,0.2s后 故障消失。
非线性鲁棒PSS的控制规律
' T T Td' 0 ' ' j d 0 (k k k 0 P ) VNRPSS Eq E i ( x x )( i i i i ) q e 2 3T d qd d q qq iq 1 iq j 0
1 T1s u 1 T 2s
PSS的特点
优点
原理清晰 实现简单 抑制低频振荡效果较好
缺点
抑制振荡频率范围窄 有功功率的反调 多机系统中的配合
PSS2A
ω
sTW 1 1 sTW 1
y1 x1
sTW 2 1 sTW 2
y2 x2
+
y5 +
K3
1 sT8 (1 sT9 ) 5
0
2
4
6 8 Δω (rad/s)
10
12
14
单输入PSS
P e
sT 1 sT
1 sT1 1 sT3 K PSS 1 sT 1 sT 2 4
UPSS
U PSS
1 T1s 1 T3 s Tw s K PSS 1 T2 s 1 T4 s 1 Tw s
ΔPSS θPSS -ΔPe KPΔPe Δδ
K f f
Kf
d TJ
Pe
S 国家电网公司企业标准中电力系统稳定器整定试验 导则要求,需要通过相位补偿,使0.2~2Hz范围内 PSS输出的力矩向量对应轴在超前+10°~-45°。
120 100 80 60 40
PSS补偿特性图
角度
20 0 -20 -40 -60 Kf/Kp环 节 补 偿 特 性 超前滞后环节补偿特性 PSS环 节 补 偿 特 性 补偿后实测特性
P.U.
0.6 0.5 0.4 0.3 0.2 0.1
0
1
2
3
4
5 t(s)
6
7
8
9
10
线性最优励磁控制
一种多变量PID
V P F PID + PID PID + + Ef
△Ef=KV×
△V+KP× △ P+KF× △F
1%阶跃
1.1
P.U.
P=0.7, t=1s时给定 值由1突变为1.01; t=7s给定值由1.01 突变为1.0
与常规控制规律不同,甚至在分母中出现了
状态变量。
300MW机组2%阶跃实验
PID
PID+NrPSS
进相至-13MVar时的稳定实验
谢谢!