高中数学选修2-3《排列组合的常见题型及其解法》

合集下载

人教版高中数学选修2-3《排列组合综合应用》

人教版高中数学选修2-3《排列组合综合应用》

上表演,出场安排甲,乙两人都不唱中间两位的 安排方法有多少种?
A C A A A A (种)
6 8 1 2 1 4 5 8 2 4 4 8
(二)有条件限制的组合问题:
例2:已知集合A={1,2,3,4,5,6,7,8,9} 求含有5个元素,且其中至少有两个是偶数的子 集的个数。 下面解法错在哪里? 至少有两个偶数,可先由4个偶数中取2个偶数, 然后再由剩下的7个数中选3个组成5个元素集合且满足至 少有2个是偶数。成以共有子集C42.C73=210(个)
用“具体排”来看一看是否重复,如C42中的一种选法是:选4 个偶数中的2,4,又C73中选剩下的3个元素不6,1,3组成集 合{2,4,6,1,3,};再看另一种选法:由C42 中选4个偶数中 的4,6,又C73中选剩下的3个元素不2,1,3组成集合{4,6, 2,1,3}。显然这是两个相同和子集,所以重复了。重复的原 因是分类不独立。
(三)排列组合混合问题:
例3.九张卡片分别写着数字0,1,2,…,8,从中取出三 张排成一排组成一个三位数,如果6可以当作9使用,问 可以组成多少个三位数?
1 1 1 解:可以分为两类情况:① 若取出6,则有2(A2 + C 8 2 C7C7 A 7 种方法,
解: ⑤ a在e的左边(可不相邻),这表明a,e只有一种顺 序,但a,e间的排列数为A22,所以,可把5个元素全排 列得排列数A55,然后再除以a,e的排列数A22。所以共 有排列总数为A55 / A22(种) 注意:若是3个元素按一定顺序,则必须除以排列数 A33。
1. 高二要从全级10名独唱选手中选出6名在歌咏会
优先法
解: ② 先从b,c,d三个选其中两个 排在首末两位,有A32种,然后把剩下的一个与a,e 排在中间三个位置有A33种,由乘法原理: 共有A32. A33=36种排列.

选修2-3 排列组合的综合应用

选修2-3 排列组合的综合应用
【错解2】 最高的同学必须站在中间,再从其他6位同学 中选取3位同学按从高到矮的顺序站在一边,有C63种;剩下的3 位同学也按从高到矮的顺序站在另一边,有C33种.又两边可以 交换,故共有C63C33·A22=40种.
【剖析】 本题看似排列问题,其实是组合问题. 【正解】 最高的同学必须站在中间,再从其他6位同学中 选取3位同学按从高到矮的顺序站在一边,有C63种,则剩下三位 同学的位置已定.故共有C63=20种.
某一天的课程表要排入 ak(k=1,2,……,n)共 n 节课,n∈N*.
如果第一节不排 ai,最后一节不排 aj,i≠j, 那么共有多少
种不同课程表的排法? [解] n 门课总的排法是 Ann 种, 其中不符合要求的可分为: ai 排在第一节有 An-1n-1 种排法,如图中Ⅰ; aj 排在最后一节有 An-1n-1 种排法,如图中Ⅱ; 但这两种方法,都包括 ai 在第一节, aj 排在最后一节,有 An-2n-2 种排法,如图中Ⅲ. 因此符合条件的排法应是: Ann-2An-1n-1+An-2n-2 (种).
题型一 较复杂的排列组合问题
例1 有4个不同的球,四个不同的盒子,把球全部放入盒 内.
(1)共有多少种做法? (2)恰有一个盒子不放球,有多少种放法? (3)恰有一个盒内放2个球,有多少种放法? (4)恰有两个盒子不放球,有多少种放法?
【解析】 (1)一个球一个球的放到盒子里去,每只球都可 有4种独立的放法,由分步乘法计数原理知,放法共有44= 256(种).
5.连接正三棱柱的顶点,可以组成________个四面体,可 以连成________对异面直线.
答案 12 36 解析 ①从正三棱柱的 6 个顶点中任取 4 个,有 C64 种方法, 其中 4 个点共面的有 3 种,则可以组成 C64-3=12(个)四面体. ②过三棱柱任意 2 个顶点的直线共有 C62=15(条),其中异面 直线分 3 类:三棱柱的底边三角形的边与侧面对角线、侧棱之间 的异面直线,有 6×3=18(对);侧面中,一条棱对应 2 条异面直 线,3 条棱一共就是 6 对;侧面中,面对角线之间有 6 对;上下 底面之间的异面直线共有 6 对.则满足题意的异面直线共有 18 +6+6+6=36(对).

高中数学选修2-3:第三讲组合 含解析 精品

高中数学选修2-3:第三讲组合 含解析 精品

第三讲组合【教材扫描】1.组合的概念从n个不同的元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数的概念、公式、性质【知识运用】题型一组合概念的理解【例1】判断下列问题是组合还是排列,并用组合数或排列数表示出来.(1)若已知集合{1,2,3,4,5,6,7},则集合的子集中有3个元素的有多少?(2)8人相互发一个电子邮件,共写了多少个邮件?(3)8人相互通电话一次,共通了多少次电话?(4)在北京、上海、广州、成都四个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?(1)已知集合的元素具有无序性,因此含3个元素的子集个数与元素的顺序无关,是组合问题,共有C37个.(2)因为发件人与收件人有顺序区别,与顺序有关是排列问题,共写了A28个电子邮件.(3)同时通电话,无顺序,是组合问题,共通了C28次电话.(4)飞机票与起点站、终点站有关,故求飞机票的种数是排列问题,有A24种飞机票;票价只与两站的距离有关,故票价的种数是组合问题,有C24种票价.【变式】1、判断下列各事件是排列问题,还是组合问题,并求出相应的排列数或组合数.(1)10个人相互各写一封信,共写了多少封信?(2)10个人规定相互通一次电话,共通了多少次电话?(3)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?(4)10支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能?(5)从10个人里选3个代表去开会,有多少种选法?(6)从10个人里选3个不同学科的课代表,有多少种选法?(1)是排列问题,因为发信人与收信人是有顺序区别的,排列数为A210=90种.(2)是组合问题,因为甲与乙通了一次电话,也就是乙与甲通了一次电话,没有顺序的区别.组合数为C210=45种.(3)是组合问题,因为每两个队比赛一次,并不需要考虑谁先谁后,没有顺序的区别,组合数为C210=45种.(4)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、乙队得冠军是不一样的,是有顺序区别的,排列数为A210=90种.(5)是组合问题,因为三个代表之间没有顺序的区别,组合数为C310=120种.(6)是排列问题,因为三个人中,担任哪一科的课代表是有顺序区别的,排列数为A310=720种.2、判断下列问题是组合问题还是排列问题.(1)设集合A={a,b,c,d},则集合A的含有3个元素的子集有多少个?(2)某铁路线上有4个车站,则这条铁路线上共需准备多少种车票?(3)从7本不同的书中取出5本给某个同学?(4)3人去干5种不同的工作,每人干一种,有多少种分工方法?【解】(1)因为集合A的任一含3个元素的子集与元素顺序无关,故它是组合问题.(2)因为一种火车票与起点、终点顺序有关.如:甲→乙和乙→甲的车票不同,故它是排列问题.(3)从7本不同的书中,取出5本给某个同学,在每种取法中取出的5本并不考虑书的顺序,故它是组合问题.(4)因为一种分工方法就是从5种不同的工作中,每次取出3种,按一定顺序分给3人去干,故它是排列问题型二组合问题类型一:简单点的组合问题【例2-1】在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件中,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加.[解] (1)C512=792种不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有C29=36种不同的选法.(3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有C59=126种不同的选法.【变式】一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法? 解:(1)从口袋内的8个球中取出3个球, 取法种数是C 38=8×7×63×2×1=56.(2)从口袋内取出3个球有1个是黑球,于是还要从7个白球中再取出2个,取法种数是C 27=7×62×1=21.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是C 37=7×6×53×2×1=35.类型二:无限制条件的组合问题【例2-2】 某次足球赛共12支球队参加,分三个阶段进行.(1)小组赛:经抽签分成甲、乙两组,每组6队进行单循环比赛,以积分及净胜球数取前两名;(2)半决赛:甲组第一名与乙组第二名,乙组第一名与甲组第二名作主客场交叉淘汰赛(每两队主客场各赛一场)决出胜者;(3)决赛:两个胜队参加决赛一场,决出胜负.问全部赛程共需比赛多少场?【解答】 (1)小组赛中每组6队进行单循环比赛,就是6支球队的任两支球队都要比赛一次,所需比赛的场次即为从6个元素中任取2个元素的组合数,所以小组赛共要比赛2C 26=2×6×51×2=30(场).(2)半决赛中甲组第一名与乙组第二名(或乙组第一名与甲组第二名)主客场各赛一场,所需比赛的场次即为从2个元素中任取2个元素的排列数,所以半决赛共要比赛2A 22=2×1×2=4(场).(3)决赛只需比赛1场,即可决出胜负. 所以全部赛程共需比赛30+4+1=35(场). 【变式】现有10名教师,其中男教师6名,女教师4名. (1)现要从中选2名去参加会议,有多少种不同的选法? (2)选出2名男教师或2名女教师去外地学习的选法有多少种?【解】 (1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C 210=10×92×1=45. (2)可把问题分两类:第1类,选出的2名是男教师有C 26种方法;第2类,选出的2 名是女教师有C 24种方法,即C 26+C 24=21(种).类型三:有限制条件的组合问题【例2-3】高二(1)班共有35名同学,其中男生20名,女生15名,今从中选出3名同学参加活动.(1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内,不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?【解析】(1)从余下的34名学生中选取2名,有C234=561(种).∴不同的取法有561种.(2)从34名可选学生中选取3名,有C334种.或者C335-C234=C334=5 984种.∴不同的取法有5 984种.(3)从20名男生中选取1名,从15名女生中选取2名,有C120C215=2 100种.∴不同的取法有2 100种.(4)选取2名女生有C120C215种,选取3名女生有C315种,共有选取方式N=C120C215+C315=2 100+455=2 555种.∴不同的取法有2 555种.(5)选取3名的总数有C335,因此选取方式共有N=C335-C315=6 545-455=6 090种.∴不同的取法有6 090种.拓展:本题条件不变的情况下,选出的3名同学既有男生,又有女生的选法有几种?【解】法一:(直接法)可分两类:第一类:3名同学为2男1女情况共有N1=C220C115=2 850种;第二类:3名同学为1男2女情况共有N2=C120C215=2 100种.根据分类加法计数原理,共有选法N=N1+N2=2 850+2 100=4 950种.法二:(间接法)从35名同学中选3人共有C335种,其中全部为男生的有C320种,全部为女生的共有C315种,所以既有男生又有女生的选法共有C335-C320-C315=6 545-1 140-455=4 950种.【变式】1.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.[解] (1)一名女生,四名男生,故共有C15·C48=350(种)选法.(2)将两队长作为一类,其他11人作为一类,故共有C22·C311=165(种)选法.(3)至少有一名队长当选含有两类:有一名队长当选和两名队长都当选.故共有C12·C411+C22·C311=825(种)选法.或采用间接法:C513-C511=825(种).(4)至多有两名女生含有三类:有两名女生,只有一名女生,没有女生.故共有C25·C38+C15·C48+C58=966(种)选法.2.有4个不同的球, 4个不同的盒子,把球全部放入盒内.(1)恰有1个空盒,有几种放法?(2)恰有2个盒子不放球,有几种放法?解:(1)先从4个小球中取2个放在一起,有C24种不同的取法,再把取出的2个小球与另外2个小球看成三堆,并分别放入4个盒子中的3个盒子里,有A34种放法,根据分步乘法计数原理,共有C24A34=144(种)不同的放法.(2)恰有2个盒子不放球,也就是把4个不同的小球只放入2个盒子中.有两类放法:第一类,1个盒子放3个小球,1个盒子放1个小球,先把小球分组,有C34种,再放到2个盒子中有A24种放法,共有C34A24种放法;第二类,2个盒子中各放2个小球有C24C24种放法.故恰有2个盒子不放球的方法有C34A24+C24C24=84(种).题型四几何中的组合[例4] 平面内有12个点,其中有4个点共线,此外再无任何3点共线.以这些点为顶点,可构成多少个不同的三角形?[解] 法一:以从共线的4个点中取点的多少作为分类的标准.第一类:共线的4个点中有2个点为三角形的顶点,共有C24C18=48个不同的三角形;第二类:共线的4个点中有1个点为三角形的顶点,共有C14C28=112个不同的三角形;第三类:共线的4个点中没有点为三角形的顶点,共有C38=56个不同的三角形.由分类加法计数原理知,不同的三角形共有48+112+56=216个.法二:(间接法):从12个点中任意取3个点,有C312=220种取法,而在共线的4个点中任意取3个均不能构成三角形,即不能构成三角形的情况有C34=4种.故这12个点构成三角形的个数为C312-C34=216个.【变式】正六边形的顶点和中心共7个点,可组成________个三角形.解析:不共线的三个点可组成一个三角形,7个点中共线的是过中心的3条对角线,即共有3种情况,故组成三角形的个数为C37-3=32.答案:32题型五组合数的证明与计算【例5】(1)计算C410-C37·A33;(2)证明:m C m n=n C m-1n-1.(3)计算: C8100-C8101+C7100; C22+C23+C24+…+C210.(4)解方程3C x -7x -3=5A 2x -4; 解不等式C 4n >C 6n .解析: (1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)证明:m C mn =m ·n !m !?n -m ??=n ·?n -1???m -1???n -m ??=n ·?n -1???m -1???n -m ??=n C m -1n -1.(3)C 8100-C 8101+C 7100=C 8100+C 7100-C 8101=C 8101-C 8101=0. ∵C 22=C 33,∴原式=C 33+C 23+C 24+C 25+…+C 210 =C 34+C 24+C 25+C 26+…+C 210=C 310+C 210=C 311=165. (4)由排列数和组合数公式,原方程可化为3·?x -3???x -7??4?=5·?x -4???x -6??,则3?x -3?4!=5x -6,即为(x -3)(x -6)=40.∴x 2-9x -22=0, 解之可得x =11或x =-2.经检验知x =11是原方程的根,x =-2是原方程的增根. ∴方程的根为x =11. 由C 4n >C 6n 得 错误!⇒错误!⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6.又n ∈N *,∴该不等式的解集为{6,7,8,9}.【变式】1.计算:C 38-n3n +C 3nn +21的值.解:∵⎩⎪⎨⎪⎧38-n ≤3n ,3n ≤21+n ,∴9.5≤n ≤10.5.∵n ∈N *,∴n =10.∴C 38-n 3n +C 3n 21+n =C 2830+C 3031=C 230+C 131=30×292×1+31=466.2.求使3C x -7x -3=5A 2x -4成立的x 值.解:根据排列数和组合数公式,原方程可化为 3·?x -3???x -7??4?=5·?x -4???x -6??, 即3?x -3?4!=5x -6,即为(x -3)(x -6)=40.∴x 2-9x -22=0,解得x =11或x =-2. 经检验知x =11时原式成立. 3.证明下列各等式. (1)C mn =m +1n +1C m +1n +1; (2)C 0n +C 1n +1+C 2n +2…+C m -1n +m -1=C m -1n +m .解:(1)右边=m +1n +1·?n +1???m +1??[?n +1???m +1?]?=m +1n +1·?n +1???m +1???n -m ?? =n !m !?n -m ??=C mn =左边,∴原式成立.(2)左边=(C 0n +1+C 1n +1)+C 2n +2+C 3n +3+…+C m -1n +m -1=(C 1n +2+C 2n +2)+C 3n +3+…+C m -1n +m -1=(C 2n +3+C 3n +3)+…+C m -1n +m -1=(C3n +4+C 4n +4)+…+C m -1n +m -1=…=C m -2n +m -1+C m -1n +m -1=C m -1n +m =右边,∴原式成立.4.(1)解关于x 的方程:x C x -3x +A 3x =4C 3x +1;(2)解不等式:C 3x >C 5x .【解】 (1)原方程即x C 3x +A 3x =4C 3x +1, 亦即x ·x ?x -1??x -2?6+x (x -1)(x -2)=4?x +1?x ?x -1?6.整理得:x 2=16,∴x =4(x =-4舍去),经检验满足条件.∴x =4. (2)∵x ?x -1??x -2?3×2×1>x ?x -1??x -2??x -3??x -4?5×4×3×2×1.∴x 2-7x -8<0,∴-1<x <8.又∵⎩⎪⎨⎪⎧x ≥3,x ≥5.∴5≤x <8且x ∈N *.∴x =5,6,7.题型六 排列组合综合运用【例6】 用0到9这10个数字组成没有重复数字的五位数,其中含3个奇数与2个偶数的五位数有多少个?[解] [法一 直接法]把从5个偶数中任取2个分为两类:(1)不含0的:由3个奇数和2个偶数组成的五位数,可分两步进行:第1步,选出3奇2偶的数字,方法有C35C24种;第2步,对选出的5个数字全排列有A55种方法.故所有适合条件的五位数有C35C24A55个.(2)含有0的:这时0只能排在除首位(万位)以外的四个位置中的一个,有A14种排法;再从2,4,6,8中任取一个,有C14种取法,从5个奇数数字中任取3个,有C35种取法,再把取出的4个数全排列有A44种方法,故有A14C14C35A44种排法.根据分类加法计数原理,共有C35C24A55+A14C14C35A44=11 040个符合要求的数.[法二间接法]如果对0不限制,共有C35C25A55种,其中0居首位的有C35C14A44种.故共有C35C25A55-C35C14A44=11 040个符合条件的数.解答排列、组合综合问题的思路及注意点(1)解排列、组合综合问题的一般思路是“先选后排”,也就是先把符合题意的元素都选出来,再对元素或位置进行排列.(2)解排列、组合综合问题时要注意以下几点:①元素是否有序是区分排列与组合的基本方法,无序的问题是组合问题,有序的问题是排列问题.②对于有多个限制条件的复杂问题,应认真分析每个限制条件,然后再考虑是分类还是分步,这是处理排列、组合的综合问题的一般方法.【变式】1.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.解:(1)先选后排,先选可以是2女3男,也可以是1女4男,先选有C35C23+C45C13种,后排有A55种,共(C35C23+C45C13)·A55=5 400种.(2)除去该女生后,先选后排有C47·A44=840种.(3)先选后排,但先安排该男生有C47·C14·A44=3 360种.(4)先从除去该男生该女生的6人中选3人有C36种,再安排该男生有C13种,其余3人全排有A33种,共C36·C13·A33=360种.2.从错误!未找到引用源。

高中数学选修2-3《排列组合的常见题型及其解法》

高中数学选修2-3《排列组合的常见题型及其解法》

排列组合的常见题型及其解法排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。

复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。

一. 特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。

例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法? 分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。

解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A 41种站法;第二步再让其余的5人站在其他5个位置上,有A 55种站法,故站法共有:A A 4155⋅=480(种) 解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有A 52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A 44种,故站法共有:A A 5244480⋅=(种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。

例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?解:把3个女生视为一个元素,与5个男生进行排列,共有A 66种,然后女生内部再进行排列,有A 33种,所以排法共有:A A 66334320⋅=(种)。

三. 相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。

例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先将其余4人排成一排,有A 44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 53种,所以排法共有:A A 44531440⋅=(种)四. 定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。

1.2.1排列与组合(排列)(新人教A版选修2-3)解析

1.2.1排列与组合(排列)(新人教A版选修2-3)解析

练习 用0,1,2,3,4,5可组成多少个无重复数字的大于 213045的自然数.
第一类:形如3,4,5, 这样的数都是满足条件的数共有这样的数都是满足条件的数共有: A13·A44
第三类:形如214,215这样的数都是满足
条件的数共有:
A12·A33
(一)
分类加法计数原理
做一件事情,完成它可以有n类办法,在第一类办法 中有m1种不同的方法,在第二类办法中有m2种不同的 方法,……,在第n类办法中有mn种不同的方法。那么 完成这件事共有
N=m1+m2+…+mn .
种不同的方法
分步乘法计数原理
做一件事情,完成它需要分成n个步骤,做第一步
有m1种不同的方法,做第二步有m2种不同的方
从4个不同的元素a,b,c,d 中任取3个,然后按照一定的顺 序排成一列,共有多少种不同的排列方法?
abc,abd,acb,acd,adb,adc; bac,bad,bca,bcd,bda,bdc; cab,cad,cba,cbd,cda,cdb; dab,dac,dba,dbc,dca,dcb.
同样,问题2可以归结为: 从4个不同的元素a,b,c,d中任取3个,然后按 照一定的顺序排成一列,共有多少种不同的排列方法?
分析:把题目转化为从甲、乙、丙3名同学中选2名, 按照参加上午的活动在前,参加下午的活动在后的 顺序排列,求一共有多少种不同的排法?
第一步:确定参加上午活动的同学即从3名中任 选1名,有3种选法. 第二步:确定参加下午活动的同学,有2种方法
根据分步计数原理:3×2=6 即共6种方法。
上午 甲 乙 丙
Aa15 x16
课堂练习
1.计算:(1)5 A53 4 A42 348 (2) A41 A42 A43 A44 64

高中数学选修2-3排列组合

高中数学选修2-3排列组合

计数原理【知识要点】一、分类加法原理与分布乘法计数原理1.加法原理:完成一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。

种不同的方法。

2.乘法原理:完成一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。

种不同的方法。

二、排列与组合1.排列与排列数:从n 个不同元素中,任取m(m m(m≤≤n)n)个元素,按照一定顺序排成一列,叫做从个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m (m≤≤n)n)元素的所有排列个元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用mn A 表示,表示,mn A =n(n-1)=n(n-1)……(n-m+1)=)!(!m n n -,其中m,n m,n∈∈N,m N,m≤≤n,注:一般地0n A =1,0!=1,n n A =n! 。

2.组合与组合数:一般地,从n 个不同元素中,任取m(m m(m≤≤n)n)个元素并成一组,叫做从个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。

从n 个不同元素中取出m(m m(m≤≤n)n)个元素的所有组合的个数,叫做从个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:表示:.)!(!!!)1()1(m n m n m m n n n C mn -=+--=规定:1C 0=n组合数的基本性质:(1)mn n m n C C -=;(2)11--+=n n m n m n C C C ;解决排列与组合的应用题的一般方法有:解决排列与组合的应用题的一般方法有:(1)特殊元素(位置)法)特殊元素(位置)法 (2)相邻问题的“捆绑法”)相邻问题的“捆绑法” (3)不相邻问题“插空法”)不相邻问题“插空法” (4)正难则反)正难则反 “排除法”“排除法”一、两个计数原理1、某人计划按“石家庄—青岛—广州”的路线旅游,从石家庄到青岛可乘坐汽车、火车、飞机3种交通工具,从青岛到广东可以乘坐汽车、火车、飞机、轮船4种交通工具,文此人可选择的旅行方式有 ()选择的旅行方式有A、7 种B、8 种C、10 种D、12种2、从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b 组成复数a+bi,其中虚数有其中虚数有 ()A、30个B、36个C、42个D、35个3、(07全国)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一人参加,则不同的选派方法有 ()天,要求星期五有2人参加,星期六、星期日各1人参加,则不同的选派方法有A、40种B、60种C、100 种D、120种4、有4部机床,需要加工3个不同的零件,其不同的安排方法有个不同的零件,其不同的安排方法有 ()A、43B、34C、3A D、4445、有一项活动,需在3名老师,8名男同学和5名女同学中选人参加。

人教A版选修2-3高考数学轻松搞定排列组合难题二十一种方法 .docx

人教A版选修2-3高考数学轻松搞定排列组合难题二十一种方法 .docx

高中数学学习材料唐玲出品高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =C 14A 34C 13练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高中数学2-3排列组合难题二十一种方法

高中数学2-3排列组合难题二十一种方法

复习巩固1. 分类计数原理(加法原理)完成一件事,有n 类办法,在第 1 类办法中有种不同的方法,在第 2 类办法中有种不同的方法,…,BWC保温沥青泵在第n类办法中有种不同的方法,那么完成这件事共有:种不同的方法.2. 分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有种不同的方法,做第 2 步有种不同的方法,…,做第n步有种不同的方法,那么完成这件事共有:种不同的方法.3. 分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件解决排列组合综合性问题的一般过程如下:1. 认真审题弄清要做什么事。

2. 怎样做才能完成所要做的事, 即采取分步还是分类,或是分步与分类同时进行确定分多少步及多少类。

3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题, 元素总数是多少及取出多少个元素.4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

一.特殊元素和特殊位置优先策略例 1. 由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求, 应该优先安排, 以免不合要求的元素占了这两个位置.先排末位共有然后排首位共有最后排其它位置共有由分步计数原理得二.相邻元素捆绑策略例 2. 7 人站成一排, 其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有种不同的排法。

例 3. 一个晚会的节目有 4 个舞蹈,2 个相声,3 个独唱, 舞蹈节目不能连续出场, 则节目的出场顺序有多少种解: 分两步进行第一步排 2 个相声和 3 个独唱共有种,第二步将 4 舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种不同的方法, 由分步计数原理, 节目的不同顺序共有种四.定序问题倍缩空位插入策略例人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题, 可先把这几个元素与其他元素一起进行排列, 然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7 把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 1 种坐法,则共有种方法。

人教版数学高二选修2-3 1.2排列组合题的常见题型归类分析

人教版数学高二选修2-3 1.2排列组合题的常见题型归类分析

排列、组合题的常见题型归类分析山东省利津县第一中学 胡彬 257400排列组合问题是高考必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,备考有效方法是题型与解法归类、识别模式、熟练运用,本文介绍十二类典型排列组合题的归类分析解答.1.相邻问题并组法题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列.【例1】A 、B 、C 、D 、E 五人并排站成一排,如果A 、B 必须相邻且B 在A 的右边,那么不同的排法种数有 [ ]A .60种B .48种C .36种D .24种分析 把A 、B 视为一人,且B 固定在A 的右边,则本题相当于4人全排列,共有2444=A 种,故选D.2.相离问题插空法元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定相离的几个元素插入上述几个元素间的空位和两端.【例2】七个人并排站成一行,如果甲乙两个必须不相邻,那么不同排法的种数是[ ]A .1440B .3600C .4820D .4800分析 除甲、乙外,其余5个的排列数为55A 种,再用甲、乙去插6个空位有26A 种不同的排法种数是36002655=A A 种,故选B. 3.定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序,可用缩小倍数的方法.【例3】A 、B 、C 、D 、E 五个人并排站成一排,如果 B 必须站A 的右边(A 、B 可不相邻),那么不同的排法种数有[ ]A .24种B .60种C .90种D .120种分析 B 在A 右边与B 在A 左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即602155=A 种, 故选B. 4.标号排位问题分步法把元素排到指定号码的位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.【例4】将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 [ ]A .6种B .9种C .11种D .23种分析 先把1填入方格,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,故选B .5.有序分配问题逐分法有序分配问题是指把元素按要求分成若干组,可用逐步下量分组法.【例5】有甲、乙、丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选出4人承担这三项任务,不同的选法总数有[ ]A .1260种B .2025种C .2520种D .5040种分析 先从10人中选出2个承担甲项任务,再从剩下8个中选1人承担乙项任务,第三步从另外7人中选1个承担两项任务,不同的选法共有:25201718110=C C C 种, 故选C.6.多元素问题分类法元素多,取出的情况也有多种,可按结果要求,分成不相容的几类情况分别计算,最后总计.【例6】由数字 0,1,2,3,4,5组成且没有重复数字的六位数,其中个位数字小于十位数字的共有 [ ]A .210个B .300个C .464个D .600个分析 按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个、331314A A A 个、331313A A A 个、331312A A A 个、3313A A 个,合并总计得300个, 故选B.【例7】从1,2,3,…100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?分析 被取的两个数中至少有一个能被7整除时,它们的乘积就能被7整除,将这100个数组成的集合视为全集Ⅰ,能被7整除的数的集合记作A ,则A ={7,14,…98}共有14个元素,不能被7整除的数的集合{}100,99,2,1⋅⋅⋅=A 共有86个元素.由此可知,从集合A 中任取两个数的取法,共有214C 种; 从集合A 中任取一个数又从集合A 中任取一个数的取法,共有186114C C 种,两种情形共得符合要求的取法有1295186114214=+C C C 种. 【例8】从1,2,…100这100个数中,任取两个数,使其和能被4整除的取法(不计顺序)有多少?分析 将Ⅰ={1,2,…,100}分成四个不相交的子集,能被4整除的数集A ={4,8,…, 100};被4除余1的数集B ={1,5,…,97};被4除余2的数集为C ={2,6,…98};被4除余3的数集为D ={3,7,…99},易见这四个集合,每一个都含25个元素;从A 中任取两个数符合要求;从B 、D 中各取一个数的取法也符合要求;从C 中任取两个数的取法同样符合要求;此外其它取法都不符合要求.由此可得符合要求的取法共有225125125225C C C C ++(种).7.交叉问题集合法某些排列组合问题几部分之间有交集,可用集合中求元素个数公式n(A ∪B)=n(A)+n(B)-n(A ∩B)【例 9】从6名运动员中选出4个参加4×100m 接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同参赛方法?分析 设全集Ⅰ={6人中任取4人参赛的排列},A ={甲第一棒的排列},B ={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()25224353546=+--=⋂+--A A A A B A n B n A n I n (种)8.定位问题优先法某个(或几个)元素要排在指定位置,可先排这个(几个)元素,再排其他元素.【例10】1名老师和4名获奖同学排成一排照像留念,若老师不在两端,则有不同的排法有________种.分析 老师在中间三个位置上任选一个位置,有13P 种;然后4名同学在其余4个位置上有44A 种,共有724413=A A 种. 9.多排问题单排法把元素排成几排的问题,可归结为一排考虑,再分段处理.【例11】6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是[ ]A .36B .120C .720D .1440.分析 前后两排可看成一排的两段,因此本题可视为6个不同元素排成一排,共72066=A 种,故选C.【例12】8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某 1个元素要排在后排,有多少种排法?分析 看成一排,某2个元素在前半段四个位置中选排2个,有24A 种;某1个元素在后半段四个位置中任选一个,有14A 种;其余5个元素任排在剩余的5个位置上有55A 种,故共有5760552414=A A A 种排法. 10.“至少”问题间接法关于“至少”类型组合问题,用间接法较方便.【例13】从4台甲型和5台乙型电视机中任取出3台,其中至少要甲型和乙型电视机各一台,则不同取法共有 [ ]A .140种B .80种C .70种D .35种分析 逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同取法共有70353439=--C C C 种,故选C.11.选排问题先取后排法从几类元素中取出符合题意的几个元素,再安排到一定位置上,可用先取后排法.【例14】9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同分组法?分析 先取男、女运动员各两名,有2425C C 种;这四名运动员混双练习有22A 种排法,故共有222425A C C 种分组法.12.部分合条件问题排除法在选取总数中,只有一部分合条件,可从总数中减去不合条件数,即为所求.【例15】以一个正方体顶点为顶点的四面体共有 [ ]A .70个B .64个C .58个D .52个分析 正方体8个顶点,从中每次取四个点,理论上可构成48C 个四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以四面体实际共有581248=-C 个,故选C.。

数学选修2-3解排列问题的常用技巧2

数学选修2-3解排列问题的常用技巧2

示例(2005·福建·理)从6人中选4人分别到巴黎、
伦敦、悉尼、莫斯科四个城市游览,要求每个城市有 一人游览,每人只游览一个城市,且这6人中甲、乙两
B 人不去巴黎游览,则不同的选择方案共有______
A.300种 B.240种 C.144种 D.96种
分析(直接法)分三种情况: 情况一,不选甲、乙两个去游览 情况二:甲、乙中有一人去游览 情况三:甲、乙两人都去游览
把椅子排成一排. 先在前4个位置排甲乙两 个特殊元素有_A_42__种,再排后4个位置上的
特上殊任元意素排有列_有_A__41__A__55种_种,其,则余共的有5人_A_42_在A_41_5A_个55__位_种置.
好的6个元素中间包含首尾两个空位共有
种 A64不同的方法 由分步计数原理,节目的 不同顺序共有A55 A64 种





不相邻问题——插空法
对于某几个元素不相邻得排列问题,可先将其它元素 排好,然后再将不相邻的元素在已排好的元素之间及 两端的空隙之间插入即可。
例5 7人站成一排照相,要求甲,乙,丙三人不相邻, 分别有多少种站法?
综上不同的选择方案共有 240种
(间接法)A64 A53 A53 240 (个)
练习题 1.从4名男生和3名女生中选出4人参加某个 座谈会,若这4人中必须既有男生又有女生,
则不同的选法共有_3__4_种___;
2.3成人2小孩乘船游玩,1号船最多乘3人,2 号船最多乘2人,3号船只能乘1人,他们任选 2只船或3只船,但小孩不能单独乘一只船, 这5人共有_2_7_种___乘船方法.
种不同的排法
练习题
某人射击8枪,命中4枪,4枪命中恰好 有3枪连在一起的情形的不同种数为_2_0_

人教版高中数学【选修2-3】[知识点整理及重点题型梳理] 排列(理)(基础)

人教版高中数学【选修2-3】[知识点整理及重点题型梳理] 排列(理)(基础)

;人教版高中数学选修 2-3知识点梳理重点题型(常考知识点)巩固练习排 列【学习目标】1.理解排列的概念.2.能利用计数原理推导排列数公式.3.能利用排列数公式解决简单的实际问题. 【要点梳理】要点一、排列的概念1. 排列的定义一般地,从 n 个不同的元素中取出 m (m≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出 m 个元素的一个排列.要点诠释:(1)排列的定义中包括两个基本内容,一是“取出元素”,二是“按照一定的顺序排列”.(2)从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列.(3)如何判断一个具体问题是不是排列问题,就要看从 n 个不同元素中取出 m 个元素后,再安排这 m 个元素时是有顺序还是无顺序,有顺序就是排列,无顺序就不是排列.要点二:排列数1.排列数的定义从 n 个不同元素中,任取 m ( m ≤ n )个元素的所有排列的个数叫做从 n 个元素中取出 m 元素的排列数,用符号 A m 表示.n要点诠释:(1)“排列”和“排列数”是两个不同的概念,一个排列是指“从 n 个不同的元素中,任取 m (m≤n )个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一个排列(也就是具体的一件事)(2)排列数是指“从 n 个不同元素中取出 m (m≤n )个元素的所有不同排列的个数”,它是一个数.比如从 3 个元素 a 、b 、c 中每次取出 2 个元素,按照一定的顺序排成一列,有如下几种:ab ,ac ,ba ,bc ,ca ,cb ,每一种都是一个排列,共有 6 种,而数字 6 就是排列数,符号 A m 表示排列数,在此n题中 A 2 = 6 .32.排列数公式A m = n (n - 1)(n - 2) (n - m + 1) ,其中 n ,m ∈N +,且 m≤n .要点诠释:(1)公式特征:第一个因数是n,后面每一个因数比它前面一个少1,最后一个因数是n-m+1,共有m个因数。

人教版数学高二A版选修2-3例题与探究1.2排列与组合

人教版数学高二A版选修2-3例题与探究1.2排列与组合

典题精讲【例1】 用1、2、3、4、5、6这六个数字可组成多少个无重复数字且不能被5整除的五位数?思路分析:组成符合条件的五位数可分两步,首先确定个位数字,然后再确定其他各位数字;或按是否含有5这个特殊的数字,分为两类;或由所有1—6这6个数组成的五位数,去掉1—6这6个数组成可被5整除的五位数.解法一:不能被5整除,末位只能从1、2、3、4、6五个数字中选1个,有15A 种方法;再从余下5个数字中选4个放在其他数位,有45A 种方法.由乘法原理,所求五位数有15A 45A =600(个). 解法二:不含有数字5的五位数有55A 个;含有数字5的五位数,末位不选5有14A 种方法,其余数位有45A 种选法,含有5的五位数有14A 45A 个.因此可组成不能被5整除的无重复数字的五位数有55A +14A 45A =600(个). 解法三:由1—6组成的无重复数字的五位数有56A 个,其中能被5整除的有45A 个.因此,所求的五位数共有56A -45A =720-120=600(个).绿色通道:若从最高位数字开始考虑,则问题就无法解决.被5整除的数,个位数字必须是0或5,因此,被5整除的问题,一般从个位数字开始考虑.变式训练1 用0、1、2、3、4、5这六个数字可组成多少个无重复数字且能被5整除的五位数?思路解析:分为两类:一类是个位数字为0,再从余下的5个数字中选4个放在其余数位上有45A 种方法;另一类是个位数字为5,由于0不能放在首位,所以在1、2、3、4中选一个数放在首位有4种方法,然后从余下的4个数中选3个放在中间三个数位上有34A 种方法,此时有434A 种方法.故由加法原理可得能被5整除的五位数有45A +434A =216(个).答案:216.变式训练2 用0、1、2、3、4、5这六个数字可组成多少个无重复数字的五位偶数?思路解析:分为两类:一类是个位数字为0,再从余下的5个数字中选4个放在其余数位上有45A 种方法;另一类是个位数字为2或4,由于0不能放在首位,所以余下4个数中选一个数放在首位有4种方法,然后余下的4个数选3个放在中间三个数位上有34A ,此时有2×4×34A 种方法.故由加法原理可得五位偶数有45A +2×4×34A =312(个).答案:312.【例2】 从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各一台,则不同的取法共有( )A.140种B.84种C.70种D.35种思路解析:取出的3台电视机中要求至少有甲型与乙型各1台,它包括两种可能:2台甲型与1台乙型、1台甲型与2台乙型,所以可用分类原理和分步原理来解决,另外也可以用间接法解决.方法一:从4台甲型电视机中取2台和5台乙型电视机中取1台有24C ·15C 种取法;从4台甲型电视机中取1台和5台乙型电视机中取2台有14C ·25C 种取法.所以共有24C ·15C +14C ·25C =70(种),故应选C.方法二:从所有的9台电视机中取3台有39C 种取法,其中全部为甲型的有34C 种取法,全部为乙型的有35C 种取法,则至少有甲型与乙型各1台的取法共有39C -34C -35C =70(种),故应选C.答案:C黑色陷阱:解决这类问题最容易出现的错误就是产生重复,比如首先从4台甲型电视机与乙型电视机中各取1台,有14C ·15C 种取法,再在剩下的7台电视机中任取1台,有17C 种取法,所以不同的取法共有14C ·15C ·17C =140种.这种看起来很不错的解法实际上是错误的,因为它产生了重复.避免产生重复的方法就是“先分类后分步”.变式训练1 假设200件产品中有3件次品,现在从中任意抽取5件,其中至少有2件次品的抽法有( )A.319723C C 种B.(4197135200C C C -)种C.319823C C 种D.(319723C C +219733C C )种思路解析:已知200件产品中有3件次品,197件合格品,则至少有2件次品的抽法为2件次品、3件合格品或3件次品、2件合格品,所以其抽法有219733319723C C C C +. 答案:D变式训练2 某计算机商店有6台不同的品牌机和5台不同的兼容机,从中选购5台,且至少有品牌机和兼容机各2台,则不同的选购方法有( )A.1 050种B.700种C.350种D.200种思路解析:分两类:(1)从6台不同的品牌机中选3台和从5台不同的兼容机中选2台;(2)从6台不同的品牌机中选2台和从5台不同的兼容机中选3台.所以不同的选购方法有36C 25C +26C 35C =350(种).答案:C【例3】(1)写出从5个元素a,b,c,d,e 中任取三个元素的所有组合,并求出其组合数. 思路分析:考虑画出如下树形图,注意按给出字母从左到右的顺序来考虑.C=10(个). 解:根据树形图,所有组合为abc,abd,abe,acd,ace,ade,bcd,bce,bde,cde.组合数为35(2)将A,B,C,D四名同学按一定顺序排成一行,要求自左向右,且A不排在第一,B 不排在第二,C不排在第三,D不排在第四.试写出他们四人所有不同的排法.思路分析:由于A不排在第一,所以第一只能排B,C,D中的一个.据此可分为三类,作树图可得解:所有的排法为BADC,BCDA,BDAC,CADB,CDAB,CDBA,DABC,DCAB,DCBA. 绿色通道:写符合条件的组合或排列要运用树图,利用它可以具体列出各种情况,从而避免重复或遗漏,能把抽象问题具体化,使解题思路明朗.其中排列的树形图与组合的树形图是有区别的,排列的树形图中其元素不能重复出现但可任意排列,而组合的树形图中其元素也不能重复出现,但元素出现的次序一般按照从左到右的顺序来考虑,否则容易出现重复或遗漏.变式训练1 a,b,c,d四人排成一列,a不在排头,d不在排尾,写出所有的排列.思路分析:作出树图.图中,有4层分枝的树叶,对应一个合要求的排列,共有14个.解:badc,bcda,bdac,bdca,cadb,cbda,cdab,cdba,dabc,dacb,dbac,dbca,dcab,dcba.变式训练2 利用树图,写出用数字1、2组成的所有四位数.(数字可以重复)思路分析:因为每个数位上的数字只可能是1或2,所以在树图中,每个分枝都只有两个分叉,左边写1右边写2,经过四次分叉即可写出全部的四位数.图中,共有16片“树叶”,对应着16个四位数.解:1 111,1 112,1 121,1 122,1 211,1 212,1 221,1 222,2 111,2 112,2 121,2 122,2 211,2 212,2 221,2 222.【例4】 三个女生和五个男生排成一排,(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?思路分析:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,排成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 种不同的排法,因此共有66A ·33A =4 320(种)不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空当.这样共有4个空当,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有55A ·36A =14 400(种)不同的排法.(3)方法一:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有25A ·66A =14 400(种)不同的排法.方法二:(间接法)3个女生和5个男生排成一排共有88A 种不同的排法,从中扣除女生排在首位的13A ·77A 种排法和女生排在末位的13A ·77A 种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有23A ·66A 种不同的排法,所以共有88A -213A ·77A +23A ·66A =14 400种不同的排法. 方法三:(元素分析法)从中间6个位置中挑选出3个来让3个女生排入,有36A 种不同的排法,对于其中的任意一种排法,其余5个位置又都有55A 种不同的排法,所以共有36A ·55A =14 400种不同的排法. (4)方法一:因为只要求两端不都排女生,所以如果首位排了男生,则末位就不再受条件限制了,这样可有15A ·77A 种不同的排法;如果首位排女生,有13A 种排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有66A 种不同的排法,这样可有13A ·15A ·66A 种不同排法.因此共有15A ·77A +13A ·15A ·66A =36 000种不同的排法.方法二:3个女生和5个男生排成一排有88A 种排法,从中减去两端都是女生排法23A ·66A 种,就能得到两端不都是女生的排法种数.因此共有88A -23A ·66A =36 000种不同的排法. 解:(1)66A ·33A =4 320(种).(2)55A ·36A =14 400(种).(3)25A ·66A =14 400(种)或88A -213A ·77A +23A ·66A =14 400(种)或55A ·36A =14 400(种).(4)15A ·77A +13A ·15A ·66A =36 000(种)或88A -23A ·66A =36 000(种).绿色通道:解决排列、组合应用问题最常用也是最基本的方法是位置分析法和元素分析法. 若以位置为主,需先满足特殊位置的要求,再处理其他位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其他条件.若以元素为主,需先满足特殊元素要求再处理其他的元素.间接法也称做排除法或排异法,有时用这种方法解决问题来得简单、明快.捆绑法、插入法对于有的问题的确是适用的好方法,要认真搞清在什么条件下使用. 变式训练1 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中有3名男生3名女生,且男生不能相邻,有多少种不同的排法?解:(1)分两排照相实际上与排成一排照相一样,只不过把第3—6个位子看成是第二排而已,所以实际上是6个元素的全排列问题.故有66A =720种.先确定甲的排法,有12A 种;再确定乙的排法,有14A 种;最后确定其他人的排法,有44A 种,因为这是分步的问题,所以用乘法原理,有12A ·14A ·44A =2×4×24=192种不同排法.采用“捆绑法”,即先把甲、乙两人看成一人,这样有55A 种不同排法,然后甲、乙两人之间再排队,有22A 种排法,因为是分步问题,应当用分步计数原理,所以有55A ·22A =120×2=240种排法.(4)采用“插入法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如___________女___________女___________女___________,再将3个男生放到这4个位子上,就保证任何两个男生都不会相邻了.这样,男生有34A 种排法,女生有33A 种排法,因为是分步问题,应当用乘法原理,所以共有34A ·33A =24×6=144种排法.变式训练2 5名男生、2名女生站成一排照相.(1)两名女生要在两端,有多少种不同的站法?(2)两名女生都不站在两端,有多少不同的站法?(3)两名女生不相邻,有多少种不同的站法? (4)女生甲要在女生乙的右方,有多少种不同的站法?解:(1)两端的两个位置,女生任意排,中间的五个位置男生任意排:22A ·55A =240(种).(2)中间的五个位置任选两个排女生,其余五个位置任意排男生:25A ·55A =2 400(种).(3)把男生任意全排列,然后在六个空中(包括两端)有顺序地插入两名女生:26A ·55A =3 600(种).(4)七个位置中任选五个排男生,问题就已解决,因为留下两个位置女生排法是既定的:57A =2 520(种).【例5】 解方程:(1)3A x 8=4·19-x A ;(2)x x C C 751071=. 思路分析:利用排列数公式和组合数公式,消掉m n m n C A ,,转化为x 的代数方程再求解;同时注意排列数或组合数的方程或不等式中未知数的取值范围;对于排列数或组合数公式的两种形式能合理运用:一般连乘形式用于求值,而阶乘形式常用于化简和证明.解:(1)由排列数公式,原方程可化为)!10(!94)!8(!83x x -⨯=-⨯, 化简得x 2-19x+78=0,解得x 1=6,x 2=13.因为x≤8且x-1≤9,x ∈N *,所以原方程的解是x=6.(2)由组合数公式,原方程可化为!710)!7(!7!6)!6(!!5)!5(!•-=---x x x x x x . 化简得6-(6-x)=10)6)(7(x x --,解得x 1=2,x 2=21. 因为x≤5且x≤6,x≤7,x ∈N *,所以原方程的解是x=2.变式训练1 解方程:2213623x x x A A A +=+.解:由排列数公式,得3x(x-1)(x-2)=2(x+1)x+6x(x-1).因为x≥3,所以3(x-1)(x-2)=2(x+1)+6(x-1),3x 2-17x+10=0.解之,得x=5,x=32,所以x=5. 变式训练2 解不等式:64n n C C >.解:由组合数公式,原方程可化为)!6(!6!)!4(!4!->-n n n n . 化简得n 2-9n-10<0,解得-1<n <10.因为n≥6,n ∈N *,所以不等式的解集为{6,7,8,9}.问题探究问题1:在解决排列和组合问题中都用到“树图”,它起到什么作用?导思:树图法虽然在解决排列和组合问题中不是用的很多或许有时根本不去理会它,但是它在教材中还是占有一定的比例去介绍,对教材前后内容的联系起着铺垫的作用,是解决排列和组合问题的基础方法.虽然解决排列和组合问题的方法很多,但都是一些技巧性较强、适用性很窄的方法,从而会让学生感到做题无从选择、举棋不定.树图法虽操作啰嗦,但适应性很广泛,思路明确清晰,有利于我们打开困惑,找出规律,为解题开拓新的局面.对此我们应不能低估其作用,而片面追求各种各样的技巧性方法.探究: “树”是图论中的一个概念,它指的是一个连通的无圈图.“树图”就是“数”的图形,好象一颗树一样,从树干上长出几个主枝,主枝又可分叉长出分枝,分枝再分叉成小分枝……最后一次分枝出的小分枝我们称为“树叶”.利用树图可以把排列组合问题直观化、形象化、具体化,起到了“数形结合”中“形”的作用,从而很容易不遗漏、不重复地写出所有的排列或组合,一般适用于数字不太大的情况.若对于数字较大的排列组合问题,先缩减数字,用树图帮助我们思考,找出规律,也不失为一种较好的方法.问题2:计数原理中学过两种方法:加法与乘法原理,但是在解决排列组合过程中发现有些计数问题中会出现除法,这是何故呢?导思:由此启发我们想到:对于某些比较生疏或困难的问题,可以采用这种补充一个步骤,使它变为已学过的熟悉的问题,反过来再用除法求原问题的解,即原问题+补充一个步骤=熟悉的问题,若原问题方法数为x ,补充步骤的方法数为y,熟悉的问题方法数为z,根据乘法原理:x·y=z,所以x=yz ,即原问题的方法数=补充步骤的方法数熟悉问题的方法数. 探究: 其实在组合数mn C 的计算中就出现了除法:m n m mm n C A A =.这是因为把组合问题补充上一个排序步骤后,就变成了排列问题.根据分步乘法计数法m n A =m n C ·m mA ,所以m n m m m n C A A =.。

数学选修2-3解排列问题的常用技巧2资料

数学选修2-3解排列问题的常用技巧2资料
4 4 5 5 1 3 1 3 3 3 3 3
练习题
(1)(2005 · 北京· 文)五个工程队承建某项工程的5 个不同的子项目,每个工程队承建1项,其中甲 工程队不能承建1号子项目,则不同的承建方案 1 4 共有( A A )种。
4 4
(2)(2005 · 全国II · 理)在由数字0,1,2,3,4, 5所组成的没有重复数字的四位数中,不能被5 整除的数共有_____________ 个. 192
1 3
1 4
3 A4
4
4
3
=288Biblioteka 殊元素(或位置)优先安排示例 将 5 列车停在 5 条不同的轨道上,其中 a 列 车不停在第一轨道上,b列车不停在第二轨道上, 则不同的停放方法有_____
(A)120种 (B)96种 (C)78种 (D)72种
解:
A A A A 78 4 A 2 A4 A 78
m Cn
Anm n(n 1) (n m 1)
n! n A (n m)! n n !
m Cn
0! 1
m n
m Cn
性质
A C m An nA
m n m1 n1
A
m n
m!(n m )! m m
n m n
C C
m m m 1 C C C ,n1 n n
排列组合问题总的原则—合理分类和准确分步 示例 6个同学和2个老师排成一排照相, 2个老 师站中间,学生甲不站排头,学生乙不站排尾,问共 有多少种不同的排法?
解法分析:先安排甲,按照要求对其进行分类,分两类:
5 1)若甲在排尾上,则剩下的5人可自由安排,有 A5 种方法.
A4 A4 A4 不同的站法有 种。 3)再安排老师,有2种方法。 根据分步及分类计数原理,不同的站法共有: 5 1 1 4 2( A5 A4 A4 A4 ) 1008(种) .

人教A版选修2-3排列组合问题的常见模型.docx

人教A版选修2-3排列组合问题的常见模型.docx

高中数学学习材料唐玲出品排列组合问题的常见模型一、相异元素不许重复的排列组合问题这类问题有两个条件限制,一是给出的元素是不同的,即不允许有相同的元素;二是取出的元素也是不同的,即不允许重复使用元素。

这类问题有如下一些常见的模型。

模型1:从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定某k 个元素都包含在内,则:组合数:1m k n k N C --= 排列数:2m m k m n k N A C --=例1.全组有12个同学,其中有3个女同学,现要选出5个,如果3个女同学都必须当选,试问在下列情形中,各有多种不同的选法?(1)组成一个文娱小组;(2)分别担任不同的工作.解:(1)由于要选出的5人中,3个女同学都必须当选,因此还需要选2人.这可从9个男同学中选出,故不同的选法有:53112336(N C --==种)(2)在上述组合的基础上,因为还需要考虑选出5人的顺序关系,故不同的选法有:553522512359120364320(N A C A C --===⨯=种)模型2.从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定某k 个元素都不包含在内,则: 组合数:1m n k N C -= 排列数:2m m m m n k n k N A C A --==例2.某青年突击队有15名成员,其中有5名女队员,现在选出7人,如果5名女队员都不当选,试问下列情形中,各有多少种不同的选法?(1)组成一个抢修小组;(2)分别但任不同的抢修工作.解:(1)由于5名女队员都不当选,因此只能从10名男同学选出,故不同的选法有:77311551010120N C C C -====(种)(2)由于还需考虑选出的7个人的顺序问题,故不同的选法有:7721551010987654604800N A A -===⨯⨯⨯⨯⨯⨯=(种)模型3.从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定每一个排列或组合,都只包含某k 个元素中的某s 个元素。

数学人教A版选修2-3教材梳理:1.2排列与组合 含解析 精品

数学人教A版选修2-3教材梳理:1.2排列与组合 含解析 精品

庖丁巧解牛知识·巧学一、排列、排列数公式1.排列一般地,从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(1)“一定的顺序”说明如果两个排列相同,那么不但所有元素相同,而且排列的顺序也要相同.如三个数的排列123与132虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.(2)“n个不同的元素”,所给的n个元素不同,所取出的元素也就各不相同,也就是说如果某个元素被取出,就不能再取了,即无重复的排列.深化升华 判断一个具体问题是不是排列问题,就看从n个不同元素中取出m个元素后,再安排这m个元素时是有序还是无序,有序就是排列,无序就不是排列.也就是说,排列问题与元素的顺序有关,与顺序无关的不是排列.如取出两个数做乘法就与顺序无关,就不是排列,做除法就与顺序有关,就是排列.2.排列数从n个不同的元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号A m n 表示.排列数概念可以从集合的角度进行解释.例如:从a、b、c这三个不同的元素中任取两个元素的排列数的问题,就是集合A={ab,bc,ca,ba,cb,ac}的元素个数问题,显然card(A)=6.这里,由排列的定义知,集合A 中的元素ab与ba应视为不同的元素.辨析比较 “排列”与“排列数”是两个不同的概念,排列是一个具体的排法,不是数;排列数是所有排列的个数.它是一个数.在写具体排列时,要按一定规律写,以免造成重复或遗漏.3.排列数公式(1)排列数公式:①连乘表示式:m n A =n(n-1)(n-2)…(n -m+1).其中,n ,m ∈N *,且m≤n;②阶乘表示式:)!(!m n n A m n -=,其中n,m ∈N *,且m≤n. (2)全排列:n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.(3)阶乘:n个不同元素全部取出的排列数,等于正整数1到n的连乘积,叫做n的阶乘,用n!表示,即n n A =n!.规定0!=1.(4)排列数性质:①m n A =n 11--m n A ;②m n A =m n m n A A 111---+.记忆要诀 排列数的连乘表示式的右边是m个数的连乘积,其特点是:第一个因数是n,后面的每一个因数都比它前面的因数少1;最后一个因数是n-m+1,一共有m个连续自然数的连乘积.方法归纳 对于排列数的两个形式的公式,连乘表示式常用于计算具体的含有数字的排列数的值;阶乘表示式则常用于含字母的排列数的变形和证明有关等式.二、组合、组合数公式1.组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.组合定义中包含了两点:一是“取出元素”,二是“并成一组”.即与元素的顺序无关.如果两个组合中的元素完全相同,不管它们的顺序如何都是相同的组合.当两个组合中的元素不完全相同,即使只有一个元素不相同,就不是相同的组合.疑点突破 组合与排列的共同点是都要“从n个不同元素中取出m(m≤n)个元素”.不同点是前者是“不管顺序并成一组”,而后者要“按照一定顺序排成一列”.区分某一个问题是排列问题还是组合问题,关键看选出的元素与顺序是否有关,若交换某两个元素的位置对结果产生影响,则是排列问题;若交换任意两个元素的位置对结果没有影响,则是组合问题,也就是说排列问题与选取元素的顺序有关,组合问题与选取元素的顺序无关.在写出某个排列问题的所有排列时,采用“树形图”的写法较好;在写出某个组合问题的所有组合时,设计好程序,一般采用递进式的写法比较好,在书写时,要做到不重不漏.2.组合数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m 个元素的组合数,用符号m n C 表示.“组合”与“组合数”是两个不同的概念,组合是一个具体的事件,不是一个数;而“组合数”是符合条件的所有组合的个数,它是一个数.方法归纳 处理排列组合应用题常用的方法有:①相邻元素归并法(捆绑法);②相离元素插空法;③定位元素优先安排法;④有序分配依次分组法;⑤多元素不相容情况分类法;⑥交叉问题集合法;⑦混合问题先组合后排列法;⑧“至少”“至多”问题间接排除法.3.组合数公式(1)组合数的连乘表示式:由于m mm n m n A C A ∙=,因此, !)1()2)(1(m m n n n n A A C m m m n m n+---== ,这里,n,m ∈N *,并且m≤n. (2)组合数的阶乘表示式:)!(!!m n m n C m n -=,这里,n,m ∈N *,并且m≤n.可得1=n n C ,10=n C . (3)组合数的两个性质:①m n n m n C C -=;②11-+=m nm n m n C C C 深化升华 利用排列数公式和组合数公式进行计算、证明时,要正确地选用公式,同时注意m nm n C A ,中m≤n这个隐含条件.在利用组合数公式计算、化简时,要灵活运用组合数的性质,一般地,计算m n C 时,若m比较大,可利用性质①,不计算m n C 而改为计算m n n C -,在计算组合数之和时,常利用性质②.问题·探究问题1 某年中国足球超级联赛共有12个队参加,每队都要与其他各队在主客场分别比赛一次,共进行多少场比赛?思路:将参加比赛的12个队看作12个元素,每一场比赛即为从12个不同元素中任取2个元素的一个排列,其中设排在前面的队为主场比赛.总共比赛的场次,就是从12个不同元素中任取2个元素的排列数,则212A =12×11=132场.探究:在解排列、组合应用问题时,要注意三点:①仔细审题,判断是排列问题还是组合问题,或者是二者的混合;要按元素的性质分类,按事件发生的过程分步;②深入分析,严密周详,注意分清是乘还是加,不重不漏,要多角度分析,分类考虑;③对于有限制条件的比较复杂的排列组合问题,要通过分析设计出合理的方案,把复杂问题分解成若干简单问题后运用分类加法或分步乘法计数原理来解决.问题2A 、B 、C 三地之间都有直达的汽车,某客运公司独家经营三地之间的客运直达业务,三地之间距离各不相同,而车票价格取决与路程的远近,并且任意两地之间的来回票价相同,问客运公司需要准备多少种票价的车票?需要准备多少种车票?思路:汽车票的种数与起点站、终点站有关,从A 地到B 地和从B 地到A 地是不同的,所以车票也不相同,也就是票的种数与顺序有关.而无论从哪儿到哪儿,票价不变,如从A 地到B 地和从B 地到A 地的票价相同,也就是票价与顺序无关.所以多少票价的车票,是从三个不同的元素A 、B 、C 中任取两个,不管怎样的顺序并成一组,是一个组合问题,种数为22323⨯=C =3种.而车票的种数相当于从三个元素中任取两个,然后按一定顺序排列,即23A =3×2=6种.探究:对于有附加条件的排列组合问题应遵循两个原则:一是按元素的性质分类,二是按事件发生的过程进行分步.解决此类的实际应用题,通常从三个途径考虑:一是以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.二是以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.三是先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列或组合数.典题·热题例1(2005辽宁高考)用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有________个(用数字作答)思路分析:组成这样的八位数可以分成三步:第一步是把1与2、3与4、5与6捆绑看作三个整体排成一列,共有33A 种排法;第二步是把7与8插入第一步中的三个整体之间,共有24A 种排法;第三步是第一步当中的1与2、3与4、5与6之间的位置可以交换,共有222222A A A ∙∙种排法.所以组成这样的八位数共有2222222433A A A A A ∙∙∙∙=576个. 答案:576方法归纳 元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列,而元素不相邻问题,一般用“插空法”,先将不相邻元素以外的元素的普通元素全排列,然后在普通元素之间及两端插入不相邻元素.上述方法可归纳为:元素要相邻,看成一整体;元素不相邻,见缝插进去.例2(2005浙江高考)从集合{P ,Q ,R ,S}与{0,1,2,3,4,5,6,7,8,9}中各任限2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________________.(用数字作答)思路分析:本题若直接求解,则“每排中字母Q 和数字0至多只能出现一个”要分“每排中字母Q 和数字0都不出现、只出现字母Q 、只出现数字0”三类考虑;若间接求解,则只须将总数4421024A C C ∙∙减去字母Q 和数字0都出现的排法种数441913A C C ,即不同的排法种数是4419134421024A C C A C C -∙∙=5 832答案:5 832拓展延伸 (2005福建高考)从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有( )A.300种B.240种C.144种D.96种思路分析:若直接求解,则“6人中甲、乙两人不去巴黎游览”要分为“甲、乙没有被选中;被选中一人但是去其他三个城市游览;被选中2人但是去其他三个城市游览”三类来考虑,显然较为复杂.若间接求解,则只须将总数46A 中减去甲、乙中有1人去巴黎游览的方案种数352A ,即不同的选择方案共有46A -235A =240种. 答案:B方法归纳 对排列问题或组合问题,当正面考虑较繁或难以下手时,不妨从反面入手,即用间接法.用间接法求解的常见题型有:至少型、至多型、否定型、重复型等.例3判断下列各事件是排列问题,还是组合问题,并求出相应的排列数或组合数.(1)10个人相互各写一封信,共写多少封信?(2)10个人规定相互通一次电话,共通了多少次电话?(3)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?(4)从10个人里选3个代表去开会,有多少种选法?(5)从10个人里选出3个不同学科的科代表,有多少种选法?思路分析:根据排列与组合的定义进行判断,问题的关键是看这一事件有没有顺序.解:(1)是排列问题.因为发信人与收信人是有区别的.排列数为210A =90种.(2)是组合问题.因为甲与乙通了一次电话,也就是乙与甲通了一次电话,没有顺序的区别.组合数为210C =45种.(3)是组合问题.因为每两个队比赛一次,并不需要考虑谁先谁后,没有顺序的区别.组合数为210C =45种.(4)是组合问题.因为三个代表之间没有顺序的区别.组合数为310C =120种.(5)是排列问题.因为三个人中,担任哪一科的课代表是有顺序区别的.排列数为310A =720种.方法归纳 区别排列与组合问题,先确定完成的是什么事件,然后看问题是否与顺序有关,与顺序有关的是排列,与顺序无关的是组合.例4用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个比1 325大的四位数?思路分析:该例中的每一个小题都是有限制条件的排列问题,除了应注意题目中要求的明显条件外,还应注意隐含条件“0不能排在首位”.我们采取先特殊后一般的原则,将问题分解为几个易求解的简单问题.解:(1)符合条件的四位偶数可以分为三类:第一类:0在个位时有35A 个;第二类:2在个位时,首位从1,3,4,5中选定1个,有14A 种.十位和百位从余下的数字中选,有24A 种,于是共有14A ·24A 个.第三类:4在个位时,与第二类同理,也有14A ·24A 个.由分类加法计数原理知,共有四位偶数的个数为35A +14A ·24A +14A ·24A =156个.(2)五位数中5的倍数可分为两类:个位数上的数字是0的五位数有54A 个;个位数上的数字是5的五位数有3414A A ∙个.故满足条件的五位数的个数共有54A +3414A A ∙=216个. (3)比1 325大的四位数可分为三类:第一类:形如2□□□,3□□□,4□□□,5□□□,共3514A A ∙个; 第二类:形如14□□,15□□,共有2412A A ∙个;第三类:形如134□,135□,共有2312A A ∙个.由分类加法计数原理知,比1 325大的四位数共有:3514A A ∙+2412A A ∙+2312A A ∙=270个. 深化升华 不同数字的无重复排列是排列问题中的一类典型问题,其常见的附加条件有:奇偶数、位数关系、大小关系等,也可以有相邻问题、插空问题,也可以与数列等知识相联系等.解决这类问题的关键是搞清事件是什么,元素是什么,位置是什么,给出了什么样的附加条件;然后按特殊元素(位置)的性质分类(每一类的各种方法都能保证事件的完成),按事件发生的连续过程合理分步来解决.例5有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法?(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端;(3)男、女生分别排在一起;(4)男女相间;(5)甲、乙、丙三人从左到右顺序保持一定.思路分析:本例集排列组合多种类型于一题,应充分利用元素分析法(优先考虑特殊元素)、位置分析法(优先考虑特殊位置)、直接法、间接法、捆绑法、插空法、等机会法等常见的解题思路.解:(1)方法一:元素分析法先排甲有6种,其余有88A 种.故共有6×88A =241 920种排法.方法二:位置分析法中间和两端有38A 种排法,包括甲在内的其余6人有66A 种排法,故共有38A ·66A =336×720=241 920种排法.方法三:等机会法9个人的全排列有99A 种,甲排在每一个位置的机会都是均等的,依题意,甲不在中间及两端的排法总数是99A ×96=241 920种.方法四:间接法99A -3×88A =688A =241 920种.(2)先排甲、乙,再排其余7人,共有7722A A ∙=10 080种排法. (3)捆绑法:554422A A A ∙∙=5 760种. (4)插空法:先排4名男生有44A 种方法,再将5名女生插空,有55A 种方法,故共有44A ·55A =5 760种.(5)方法一:9人共有99A 种排法,其中甲、乙、丙三人有33A 种排法,因而在99A 种排法中每33A 种对应一种符合条件的排法,故共有3399A A =60 480种排法. 方法二:6639A C ∙=60 480种. 深化升华 解决排列、组合综合问题要遵循两个原则:(1)按事情发生的过程进行分步;(2)按元素的性质进行分类,具体地说,解排列组合的应用题,通常有以下途径: ①以元素为主体,即先满足特殊元素的要求,再考虑其他元素;②以位置为主体,即先满足特殊位置的要求,再考虑其他位置;③先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列或组合数.例6求证:!111321443322n A n A A A n n-=-++++ 思路分析:等式左边是n-1项的和,右边是两项的差,联想数列求和,与数列求和类似,考虑把它的一般项)!1(+m m 进行拆项,使中间的很多项相消,以求得它们的和. 解:!1!43!32!211321443322n n A n A A A n n-++++=-++++ ∵)!1(1!1)!1(1)1()!1(+-=+-+=+m m m m m m .所以左边=!11]!1)!1(1[)!41!31()!31!21()!211(n n n -=--++-+-+- 方法归纳 关于排列数的恒等式证明,一般都要选用排列数的阶乘表示式n n A =n!和)!(!m n n A m n -=.。

高中数学_2-3_排列组合典型例题__第二节解析

高中数学_2-3_排列组合典型例题__第二节解析

高中数学_2-3_排列组合典型例题__第二节解析排列P------和顺序有关组合C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

高中数学排列组合题讲义和答案(分难易程度)

高中数学排列组合题讲义和答案(分难易程度)

选修2-3第一章第二节和第三节 排列组合一、排列.1. 排列定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.2. 排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号表示.3. 排列数公式:注意: 规定0! = 1规定 二、组合.2. 组合定义:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2. 组合数公式:3. 两个公式:① ②①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有一类是不含红球的选法有)②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C ,如果不取这一元素,则需从剩余n个元素中取出m 个元素,所以共有C 种,依分类原理有.三、排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.四、几个常用组合数公式m n A ),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=Λ!)!1(!n n n n -+=⋅111--++=⋅+=m nm n m n m m m n m n mA A C A A A 11--=m n m n nA A 10==n n n C C )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n-=+--==Λ;m n n m n C C -=m n m n m n C C C 11+-=+1m n 111m n C C C --=⋅m n C 1-m n m n m n m n m n C C C 11+-=+n n nn n n C C C 2210=+++Λλ五、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型:①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有.⑦隔板法:常用于解正整数解组数的问题.II. 排列组合常见解题策略:①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(线组合再排列);④间接法;⑤相邻问题插空处理策略;⑥不相邻问题插空处理策略;⑦ “小集团”排列问题中先整体后局部的策略;2. 组合问题中分组问题和分配问题.①均匀不编号分组:将n 个不同元素分成不编号的m 组,假定其中r 组元素个数相等,不管是否分尽,其分法种数为(其中A 为非均匀不编号分组中分法数).如果再有K 组均匀分组应再除以. ②非均匀编号分组: n 个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为 ③均匀编号分组:n 个不同元素分成m 组,其中r 组元素个数相同且考虑各组间的顺序,其分法种数为. 例题(简单)例1. 5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C ΛΛΛkk n nn n k n kn A C C C Λ)1(-⋅rr A A /k kA m mA A ⋅m mrr A A A ⋅/不同的报名方法共有( )A.10种B.20种C.25种D.32种例2.用数字1,2,3,4,5可以组成的无重复数字的四位偶数的个数为( ) A.8 B.24 C.48 D.120例3. 6名同学排成1排照相,要求同学甲既不站在最左边又不站在最右边,共有种站法.例题(稍难)例1. 某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为()A.85 B.86 C.91 D.90例2. 在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为 .例3. 将7个相同的小球放入4个不同的盒子中.(1)不出现空盒子时放入方式共有种.(2)可出现空盒时的放入方法共有种.例题(难)例1. 从0,1,2,3,4,5,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300 B.216 C.180 D.162例2. 用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个.例题(很难)例1. 国家教育部为了发展贫困地区的教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有种不同的分派方法. 例2. 将6本不同的书分给甲、乙、丙、丁4个人,每人至少1本的不同分法共有种.例3. 将6名教师分到3所学校任教,一所1名,一所2名,一所3名,则有种不同的分法.例4. 有甲、乙、丙3项任务,任务甲需要2人承担,任务乙、丙各需要1人承担,从10人中选派4人承担这3项任务,不同的选法共有种. 例5. 4个不同的小球放入编号为1,2,3,4的4个盒子中,恰好有1个空盒子的放法有种.例6. 如图所示的花圃中的5个区域中种入4种不同颜色的花,要求相邻区域不同色,有________种不同的种法.同步基础排列1.用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )A.48个B.36个C.24个D.18个2.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1440种 B.960种 C.720种 D.480种3.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( )A.24种 B.36种 C.48种 D.72种4.某次文艺汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,如下表:如果A、B排序方式有( )A.192种B.144种C.96种D.72种5.某中学一天的课表有6节课,其中上午4节,下午2节,要排语文、数学、英语、信息技术、体育、地理6节课,要求上午第一节课不排体育,数学必须排在上午,则不同排法共有( )A.600种B.480种C.408种D.384种6.5人排成一排照相,要求甲不排在两端,不同的排法共有________种.(用数字作答)7.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标的数字之和等于10,则不同的排法共有________种(用数字作答).8.由0,1,2,3,4,5六个数字可以组成________个数字不重复含2,3且2,3相邻的四位数.9.用数字0、1、2、3、4、5组成没有重复数字的四位数,(1)可组成多少个不同的四位数?(2)可组成多少个四位偶数?(3)将(1)中的四位数按从小到大的顺序排成一数列,问第85项是什么?10.用0、1、2、3、4、5这六个数字组成无重复数字的六位数,其中个位数字小于十位数字的六位数的个数是多少个?组合1.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为( )A.50B.45 C.40 D.352.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )A.70种 B.80种 C.100种 D.140种3.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.14 B.24 C.28 D.484.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A.10种 B.20种 C.36种 D.52种5.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A和一般项目B至少有一个被选中的不同选法种数是( )A.15 B.45 C.60 D.756.从0,1,2,3,4,5中任取3个数字,组成没有重复数字的三位数,其中能被5整除的三位数共有________个.(用数字作答)7.从甲、乙等10名同学中挑选4名参加某校公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________种.8.某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有________种.(以数字作答)9.有5个男生和3个女生,从中选取5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生.(2)某女生一定要担任语文科代表.(3)某男生必须包括在内,但不担任数学科代表.(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.10.一个口袋里有4个不同的红球,6个不同的白球(球的大小均一样)(1)从中任取3个球,恰好为同色球的不同取法有多少种?(2)取得一个红球记为2分,一个白球记为1分.从口袋中取出五个球,使总分不小于7分的不同取法共有多少种?过关训练1.从5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为( )A.24 B.48 C.120 D.72 2.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36 3.从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有( )A.120种 B.96种 C.60种 D.48种4.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种5.某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )A.16种 B.36种 C.42种 D.60种6.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植.不同的种植方法共有________种.7.安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有________种.8.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有________种.(用数字作答)9.某小组学生举行毕业联欢会,人员到齐后大家彼此握手,其中有2名学生各握了3次手后提前离开,其他学生都彼此握了手.若知握手的总次数为83次,试问该小组共有多少名学生?10.在一张节目表上原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,求共有多少种安排方法?自我超越1. 12名同学合影,站成了前排4人,后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同的调整方法的种数是( )A. 168B. 20 160C. 840D. 5602. 将4名司机和8名售票员分配到四辆公共汽车上,每辆车上分别有1名司机和2名售票员,则可能的分配方案种数是( )A. C28C26C24A44A44B. A28A26A24A44C. C28C26C24A44D. C28C26C243. 五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )A. C14C44种 B. C14A44种 C. C44种 D. A44种4. 从45名男生和15名女生中按分层抽样的方法,选出8人参加国庆活动.若此8人站在同一排,则不同的排法种数为( )A. C645C215B. C645C215A88C. C545C315D. C545C315A885. 某校在高二年级开设选修课,其中数学选修课开三个班.选课结束后,有四名学生要求改修数学,但每班至多可再接收两名学生,那么不同的分配方案有( )A. 72种B. 54种C. 36种D. 18种6. 从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有________种(用数字作答).7. 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是________.8. (创新题)在一次文艺演出中,需要给舞台上方安装一排完全相同的彩灯15只,以不同的点亮方式增加舞台效果,设计要求如下:恰好有6只是关的,且相邻的灯不能同时被关掉,两端的灯必须点亮,则不同的点亮方式为________种.9. 甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答).10. 将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).11. 现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是( )A. 54B. 90C. 126D. 15212.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是()A.136B.19C.536D.1613. 两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A. 10种B.15种C. 20种D. 30种超级挑战1. 把1个圆分成4个扇形,依次记为D1,D2,D3,D4,每个扇形都可以用3种不同颜色中任何1种涂色,要求相邻的扇形颜色不同,则共有 种不同涂色方法.2. 某城市在中心广场建造一个花圃,花圃分为6个部分,如图,现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同颜样色的花,不同的栽种方法有3. 集合A ∪B ∪C={a 1,a 2,a 3,a 4,a 5},且A ∩B={ a 1,a 2},求,A ,B ,C 的所有可能组合的个数.4. 如图,ABCD 为海上的四个小岛,要建三座桥将这四个小岛连接起来,则不同的剑桥方案共有( ).A .8种 B.12种 C .16种 D .20种5. 甲、乙、丙、丁四个做互相传球练习,第一次传给除甲外其他三人中的一人,第二次由拿球者再传给其他三人中的一人,这样共传了4次,则第四次仍传回到甲的概率是( ).A.277B. 275C. 87D. 6421 6. 一楼梯共12级,每步可以向上跨1级或2级,共有 种上楼梯方法.。

高中数学选修2-3《排列与组合》全部课件

高中数学选修2-3《排列与组合》全部课件
从n个不同元素中取出m(m≤n)个元素的所 有组合的个数,叫做从n个不同元素中取出m个
元素的组合数,用符号Cnm表示。
注意:1.m个元素必须从这n个元素中取出;
2.组合问题,哪些是排列问题?
1、从a,b,c,d四名学生中选2名学生完成一件工作,
1.排列 定义:一般地,从 n 个不同元素中,任取 m (m≤n) 个元素,按照一定的顺序排成一列, 叫做从 n 个不同元素中取出 m 个元素的 一个排列.
说明:①一次性取出m个元素;②将这m个
元素按一定的顺序排成一列.③ m≤n
注:(相同排列:元素相同,顺序相同.)
例1.下列问题是不是排列问题? 1.某学校的高二(1)班有50名同学,从 中选出5人组成班委会,共有多少种选法?
有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。
4)甲不排头,也不排尾,共有几种排法?

5)甲只能排头或排尾,共有几种排法?
有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。
6)甲不排头,乙不排尾,共有多少种排法?
有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩,三 家是女孩,现将这七个小孩站成一排照相留念。
1)甲站在正中间的排法有几种?

有条件的排列问题
七个家庭一起外出旅游,若其中四家是男孩, 三家是女孩,现将这七个小孩站成一排照相留念。
2)甲乙两人必须站在两端的排法有几种?


3)甲乙两人不能站在两端的排法有几种?
有多少种不同的选法?
组合
2、从a,b,c,d四名学生中选2名学生完成两件不同的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合的常见题型及其解法
排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清
楚是否与元素的顺序有关。

复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。

一. 特殊元素(位置)用优先法
把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。

例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法? 分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。

解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右
两端之间的任一位置上,有A 41种站法;第二步再让其余的5人站在其他5个位置上,有A 55种站法,故站法共有:A A 4
1
55⋅=480(种) 解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有A 52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A 44种,故站法共有:A A 5244480⋅=(种)
二. 相邻问题用捆绑法
对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。

例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?
解:把3个女生视为一个元素,与5个男生进行排列,共有A 66种,然后女生内部再进行排列,有A 33种,所以排法共有:A A 66334320⋅=(种)。

三. 相离问题用插空法
元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。

例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?
解:先将其余4人排成一排,有A 44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 53种,所以排法共有:A A 44531440⋅=(种)
四. 定序问题用除法
对于在排列中,当某些元素次序一定时,可用此法。

解题方法是:先将n
个元素进行全排列有A n n 种,m m n ()≤个元素的全排列有A m m
种,由于要求m 个
元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,
即若n 个元素排成一列,其中m 个元素次序一定,则有A A n n
m m 种排列方法。

例4. 由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字的六位数有多少个?
解:不考虑限制条件,组成的六位数有A A 5
1
55⋅种,其中个位与十位上的数字一定,所以所求的六位数有:
A A A 515
5
2
2
300⋅=(个)
五. 分排问题用直排法
对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。

例5. 9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种?
解:9个人可以在三排中随意就坐,无其他限制条件,所以三排可以看作一排来处理,不同的坐标共有A 99种。

六. 复杂问题用排除法
对于某些比较复杂的或抽象的排列问题,可以采用转化思想,从问题的反面去考虑,先求出无限制条件的方法种数,然后去掉不符合条件的方法种数。

在应用此法时要注意做到不重不漏。

例6. 四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有( ) A. 150种
B. 147种
C. 144种
D. 141种
解:从10个点中任取4个点有C 104
种取法,其中4点共面的情况有三类。

第一类,取出的4个点位于四面体的同一个面内,有464C 种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个点共面,有3种。

以上三类情况不合要求应减掉,所以不同的取法共有:
C C 10464463141---=(种)。

七. 多元问题用分类法
按题目条件,把符合条件的排列、组合问题分成互不重复的若干类,分别计算,最后计算总数。

例7. 已知直线ax by c ++=0中的a ,b ,c 是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。

解:设倾斜角为θ,由θ为锐角,得tan θ=-
>a
b
0,即a ,b 异号。

(1)若c =0,a ,b 各有3种取法,排除2个重复(330x y -=,220x y -=,
x y -=0),故有:3×3-2=7(条)。

(2)若c ≠0,a 有3种取法,b 有3种取法,而同时c 还有4种取法,且其中任意两条直线均不相同,故这样的直线有:3×3×4=36(条)。

从而符合要求的直线共有:7+36=43(条)
八. 排列、组合综合问题用先选后排的策略
处理排列、组合综合性问题一般是先选元素,后排列。

例8. 将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有多少种?
解:可分两步进行:第一步先将4名教师分为三组(1,1,2),(2,1,
1),(1,2,1),共有:C C C A 42211
1
2
2
6⋅⋅=(种),第二步将这三组教师分派到3种中学任教有A 33种方法。

由分步计数原理得不同的分派方案共有:
C C C A A 4221112
2
33
36⋅⋅⋅=(种)。

因此共有36种方案。

九. 隔板模型法
常用于解决整数分解型排列、组合的问题。

例9. 有10个三好学生名额,分配到6个班,每班至少1个名额,共有多少种不同的分配方案?
解:6个班,可用5个隔板,将10个名额并排成一排,名额之间有9个空,
将5个隔板插入9个空,每一种插法,对应一种分配方案,故方案有:C 9
5
126=(种)。

相关文档
最新文档