第三讲(脉冲编码调制)

合集下载

脉冲编码调制

脉冲编码调制

脉冲编码调制* 脉码调制(Pulse Code Modulation)。

是一种对模拟信号数字化的取样技术,将模拟语音信号变换为数字信号的编码方式,特别是对于音频信号。

PCM 对信号每秒钟取样8000 次;每次取样为8 个位,总共64 kbps。

取样等级的编码有二种标准。

北美洲及日本使用Mu-Law 标准,而其它大多数国家使用A-Law 标准。

* PCM主要经过3个过程:抽样、量化和编码。

抽样过程将连续时间模拟信号变为离散时间、连续幅度的抽样信号,量化过程将抽样信号变为离散时间、离散幅度的数字信号,编码过程将量化后的信号编码成为一个二进制码组输出。

相关概念:所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。

所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。

所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。

脉冲编码调制(PCM,Pulse Code Modulation)。

)Claude E. Shannon于1948年发表的“通信的数学理论”奠定了现代通信的基础。

同年贝尔实验室的工程人员开发了PCM技术,虽然在当时是革命性的,但今天脉冲编码调制被视为是一种非常单纯的无损耗编码格式,音频在固定间隔内进行采集并量化为频带值,其它采用这种编码方法的应用包括电话和CD。

PCM主要有三种方式:标准PCM、差分脉冲编码调制(DPCM)和自适应D PCM。

在标准PCM中,频带被量化为线性步长的频带,用于存储绝对量值。

在DPCM中存储的是前后电流值之差,因而存储量减少了约25%。

自适应DPCM改变了DPCM的量化步长,在给定的信造比(SNR)下可压缩更多的信息。

希望我的回答对你有用biwaywbdk2009-08-18 23:02:50FANUC数控系统的操作及有关功能(北京发那科机电有限公司王玉琪)发那科有多种数控系统,但其操作方法基本相同。

(优选)第三讲脉冲编码调制

(优选)第三讲脉冲编码调制
信源编码是数字通信系统的重要组成部 分,它有两方面的作用:一个是把信源 消息的冗余信息去掉,降低数字信号的 数据量,提高传输的有效性。一个是把 信源发出的模拟信号转换成离散的数字 信号,实现模拟信号数字化。
脉冲编码调制
脉冲编码调制(Pulse Code Modulation,PCM) 是模拟数据数字化的主要方法。
PCM技术的典型应用是语音数字化。语音、图 像信息必须数字化才能经计算机处理。
脉冲编码调制分的步骤
PCM的过程分为抽样、量化和编码三步。 抽样——把模拟信号在时间上离散化,变为脉 冲幅度调制(PAM)信号。 量化——把PAM信号在幅度上离散化,变为量 化值(共有N个量化值)。 编码——用二进码来表示N个量化值。
量化间隔越小,量 化误差越小,需要 的量化级别越多, 处理和传输就越复 杂,所以,既要尽 量减少量化级数, 又要使量化失真尽 可能的小。
量化误差又称为量 化噪声,用信噪比 来衡量。
均匀量化
采用均匀量化级进行量化的方法称 为均匀量化或线性量化。
缺点:大信号时信噪比大, 但小信号时,信噪比不足。
均匀量化适合信号是均匀分布(如 图像信号)的情况。
非均匀量化
如果使小信号时量化级间宽度小, 而大信号时量化级间宽度大,就可 以使小信号时和大信号时的信噪比 趋于一致,这种非均匀量化级的安 排称为非均匀量化或非线性量化。
数字电视,语音均采取非均匀量化。
编码
把量化后的信号变换成代码的过程 称为编码,其相反的过程称为译码。
PCM通信系统
抽样的概念
抽样是指对模拟 信号在时间域上 的离散化过程, 即把一个时间上 连续、幅度上也 连续的模拟信号 变换成时间上离 散、幅度上连续 的信号。抽样是 由抽样门来完成 的。

第三讲(脉冲编码调制)PPT课件

第三讲(脉冲编码调制)PPT课件
数字通信是未来通信的发展方向。
.
2
数字通信系统的优点
数字传输的抗噪声(或干扰)的能力强,尤其在中继时, 数字信号还可以再生而消除噪声的积累,而模拟通信则 会把噪声干扰和信号一起放大,增大噪声干扰。
传输中的差错可以设法控制,不但可以发现而且还能改 正,因而大大提高了传输质量。
便于同计算机连接,采用现代计算机技术对数字信息进 行处理,以便实现通信现代化、自动化。
量化间隔越小,量 化误差越小,需要 的量化级别越多, 处理和传输就越复 杂,所以,既要尽 量减少量化级数, 又要使量化失真尽 可能的小。
量化误差又称为量 化噪声,用信噪比 来衡量。
.
14
均匀量化
采用均匀量化级进行量化的方法称 为均匀量化或线性量化。
缺点:大信号时信噪比大, 但小信号时,信噪比不足。
fs > 2 fm
.
9
奈奎斯特间隔和奈奎斯特速率
• 所谓奈奎斯特间隔Байду номын сангаас是能唯一确定 信号f(t)的最大抽样间隔。
• 奈奎斯特速率是能够唯一确定信号 f(t)的最小抽样频率。
• 因此,奈奎斯特间隔= 1/2fm • 奈奎斯特速率=2fm
.
10
话音信号的抽样频率
• 话音信号频率范围:300~3400Hz, fm=3400Hz,这时满足抽样定理的最 低的抽样频率应为2×fm=6800Hz, 为了留有一定的防卫带,CCITT (ITU-T)规定话音信号的抽样频率 为=8000Hz,(防卫带为8000- 6800=1200Hz),T=125µs。
PCM技术的典型应用是语音数字化。语音、图 像信息必须数字化才能经计算机处理。
.
5
脉冲编码调制分的步骤

5.10 脉冲编码调制(PCM) 信号系统课件

5.10 脉冲编码调制(PCM) 信号系统课件

的范围内。
•组合多种新源传输时具有灵活性;
•便于实现各种数字信号处理功能。
缺点: PCM信号传输时占用频带加宽,例如
语音信号
300Hz~3400Hz 4kHz
抽样率
8kHz
8位脉冲编码
64kHz
X
在实际的数字通信系统中,除直接传送PAM信 号之外,还有多种传输方式,其中应用最为广泛的一 种调制方式称为脉冲编码调制(PCM)。
在PCM通信系统中,把连续信号转换成数字(编 码)信号进行传输或处理,在转换过程中需要利用 PAM信号。
X
PCM通信系统简化框图
f t
信源
抽样
发送端
fs0 t
量化编码
pt
5.10 脉冲编码调制(PCM)
•PCM通信系统简化框图 •量化 •编码原理示意图 •PCM的优缺点
北京邮电大学电子工程学院 2002.3
引言
第 2

利用脉冲序列对连续信号进行抽样产生的信号成 为脉冲幅度调制(PAM)信号,这一过程的实质是 把连续信号转换为脉冲序列,而每个脉冲的幅度与各 抽样点信号的幅度成正比。
A/D
第 3 页
f D t
至数字信道
fˆD t
D/A
自数字信道
fs0 t
接收端
1 补偿 Sa(x)
f t
终端
X
第 4 页
X
第 5 页
X
PCM的优缺点
第 6

•提高了信噪比:
模拟通信系统——中继器——噪声累加;
PCM——数字通信系统——再生器——噪声不会累加;
合理设计A/D,D/A变换器可将量化噪声限制在相当微弱

简述脉冲编码调制技术

简述脉冲编码调制技术

简述脉冲编码调制技术摘要:一、脉冲编码调制技术简介二、脉冲编码调制的基本原理1.采样2.量化3.编码三、脉冲编码调制的应用领域四、脉冲编码调制的优缺点五、发展趋势与展望正文:脉冲编码调制技术是一种将模拟信号转换为数字信号的调制技术。

其主要过程包括采样、量化和编码三个步骤。

一、脉冲编码调制的基本原理1.采样:采样是脉冲编码调制的第一个步骤。

在采样过程中,根据一定的采样频率,将连续的模拟信号转换为离散的数字信号。

采样频率越高,数字信号的分辨率越高,但同时也意味着更高的传输带宽需求。

2.量化:量化是将采样后的数字信号映射到离散的数值集合中。

量化的过程通常采用均匀量化或非均匀量化两种方法。

均匀量化是将采样值映射到固定长度的整数,而非均匀量化则根据采样值的大小,映射到不同长度的整数。

量化过程中,量化噪声不可避免地引入到数字信号中。

3.编码:量化后的数字信号需要进行编码,以便于传输和存储。

常用的编码方法有努塞尔编码、韦弗编码等。

编码后的数据可以进一步采用信道编码和交织技术,提高传输过程中的抗干扰能力。

二、脉冲编码调制的应用领域脉冲编码调制技术在我国数字通信、数据传输、音频视频处理等领域具有广泛的应用。

例如,在电话通信中,采用PCM技术将语音信号数字化,提高通信质量;在数字电视、高清视频领域,PCM技术用于音频和视频信号的处理,实现高品质的音视频传输。

三、脉冲编码调制的优缺点优点:1.数字信号具有更好的抗干扰能力,有利于信号传输和存储。

2.易于实现信号的加密和压缩,提高信息安全性。

3.便于实现多路信号的复用,提高通信系统的利用率。

缺点:1.量化噪声引入,可能导致信号质量下降。

2.传输带宽需求较高,对信道条件要求较严格。

四、发展趋势与展望随着信息技术的不断发展,脉冲编码调制技术也在不断演进。

未来的发展趋势包括:1.高精度、高速率的采样和量化技术,以满足更高清晰度、更高质量的视频和音频处理需求。

2.更高效的编码和压缩算法,降低传输带宽需求,提高数据传输效率。

脉冲编码调制

脉冲编码调制

脉冲编码调制科技名词定义中文名称:脉冲编码调制英文名称:pulse-code modulation;PCM定义:对信号进行抽样和量化时,将所得的量化值序列进行编码,变换为数字信号的调制过程。

所属学科:通信科技(一级学科);通信原理与基本技术(二级学科)本内容由全国科学技术名词审定委员会审定公布百科名片脉冲编码调制(PulseCodeModulation),简称PCM。

是数字信号是对连续变化的模拟信号进行抽样、量化和编码产生。

PCM的优点就是音质好,缺点就是体积大。

PCM可以提供用户从2M到155M速率的数字数据专线业务,也可以提供话音、图象传送、远程教学等其他业务。

PCM有两个标准(表现形式):E1和T1。

目录简介历史原理编码标准简介历史原理编码标准展开编辑本段简介脉冲编码调制 (Pulse Code Modulation)是一种对模拟信号数字化的取样技术,将模拟语音信号变换为数字信号的编码方式,特别是对于音频信号。

PCM 对信号每秒钟取样 8000 次;每次取样为 8 个位,总共 64脉冲编码调制kbps。

取样等级的编码有二种标准。

北美洲及日本使用 Mu-Law 标准,而其它大多数国家使用 A-Law 标准。

脉冲编码调制主要经过3个过程:抽样、量化和编码。

抽样过程将连续时间模拟信号变为离散时间、连续幅度的抽样信号,量化过程将抽样信号变为离散时间、离散幅度的数字信号,编码过程将量化后的信号编码成为一个二进制码组输出。

所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。

编辑本段历史Claude E. Shannon于1948年发表的“通信的数学理论”奠定了现代通信的基础。

同年贝尔实验室的工程人员开发了PCM技术,虽然在当时是革命性的,但今天脉冲编码调制被视为是一种非常单纯的无损耗编码脉冲编码调制格式,音频在固定间隔内进行采集并量化为频带值,其它采用这种编码方法的应用包括电话和CD。

通信原理实验三 脉冲编码调制与解调实验(PCM)

通信原理实验三 脉冲编码调制与解调实验(PCM)

实验报告学院:计信学院专业:网络工程班级:091 姓名学号实验组实验时间2012-5-24 指导教师成绩实验项目名称实验三脉冲编码调制与解调实验(PCM)实验目的1、掌握抽样信号的量化原理。

2、掌握脉冲编码调制的基本原理。

3、了解PCM系统中噪声的影响。

实验原理PCM原理框图如下图9-1所示。

信号源抽样保持模拟信号时钟信号量化编码PCM编码译码PCM编码时钟信号LPF模拟信号编码部分译码部分图9-1 PCM原理框图上图中,信号源模块提供音频范围内模拟信号及时钟信号,包括工作时钟2048K、位同步时钟64K、帧同步时钟8K,送模拟信号数字化模块,经抽样保持、量化、编码过程,产生64K码速率的PCM编码信号。

译码部分同样将PCM编码与各时钟信号送入,经译码、低通滤波器,还原出模拟信号。

实验仪器1.信号源模块2.模拟信号数字化模块3.20M双踪示波器4.带话筒立体机耳机实验步骤1、将模块小心地固定在主机箱中,确保电源接触良好。

2、插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的电源开关,对应的发光二极管灯亮,两个模块均开始工作。

(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)3、PCM编码(1)信号源模块“2K正弦基波”幅度调节至3V左右。

(2)实验连线如下:信号源模块模拟信号数字化模块(模块左下方PCM编解码)2K正弦基波—————S-IN2048K———————2048K-IN64 K————————CLK-IN8K————————FRAM-IN(3)以“FRAM-IN”信号为内触发源,示波器双踪观测“FRAM-IN”、“PCM-OUT”测试点波形,PCM编码能够稳定观测,且每四帧编码为一个周期。

说明:帧信号对应的4位PCM编码的第一位码,是上一帧8位PCM编码的第8位,可能出现半位为0,半位为1的情况,这是由使用的PCM编译码芯片的工作时序决定。

脉冲编码调制

脉冲编码调制

X
(w)
X
s
(w)
H
(w)
x(t) h(t) xs (t)
核函数
1
Ts
x(nTs
)
sin wH (t wH (t
nTs nTs )
)
二、带通抽样定理(频分多路,截波电话)
最高频率f H,最高频率f L ,限带(f L , f H),带宽为B
抽样频率fs 应满足下列关系式:
fH
fS 2( fH fL)(1 M ) 2B(1 M ) 2B B
X sf
( )
A
TS
n
X (
n
s
)
sin( /
/ 2
2)
存在孔径失真
解调时采用的抽样保持电路引入了失真项,为了使输出
信号最大,一般取TS 。接收端必须采用滤波器:
根据输入语音得出模型参数并传输,在收端恢复。 – 编码速率较低,1.2~4.8 kbps – 包括各种线形预测编码(LPC)方法和余弦声码器 – 语音质量中等,不满足商用要求
• 混合编码:波形编码+参量编码 (LPAS)
– 包括GSM的RPE-LPC编码和VSELP编码
语音编码的标准
• G.711 • G.721 • G.722 • G.723 • G.728 • G.729
N
N
fH
B
其中 B
fH
fL ,M
fH B
fH B
fH B
N
(余数),N
fH B
为不超过 fH fH 的最大正整数( N 1 ),必有0≤M<1。
fH fL B
带通信号的抽样频率在2B至4B间变动
1. fH=NB时

简述脉冲编码调制技术 -回复

简述脉冲编码调制技术 -回复

简述脉冲编码调制技术-回复脉冲编码调制(PCM)是一种用于数字通信系统中的传输技术,它将模拟信号转换为数字信号,并通过对数字信号进行编码和调制来进行传输和解调。

PCM技术被广泛应用于语音通信、数据通信、音频和视频传输等领域。

下面将详细介绍脉冲编码调制技术的原理、应用和优势。

一、脉冲编码调制的原理脉冲编码调制技术基于采样定理,即根据奈奎斯特定理,采样频率应为模拟信号的最高频率的两倍。

PCM技术首先对模拟信号进行采样,将模拟信号离散化为一系列的采样值。

然后,通过量化将采样值映射到离散的数字量级,并编码成二进制码字。

最后,通过调制将二进制码字转换为相应的数字信号进行传输。

在脉冲编码调制技术中,主要有以下几个步骤:1. 采样:将连续的模拟信号在一定的时间段内进行离散采样,得到一系列的采样值。

2. 量化:将采样值映射到离散的量化级别上。

量化级别的数量取决于所使用的量化器的分辨率。

3. 编码:将量化后的采样值转换为二进制码字。

编码可以使用不同的编码方案,如自然二进制编码、格雷码等。

4. 调制:将二进制码字转换为对应的数字信号进行传输。

常用的调制方式包括脉冲幅度调制(PAM)、脉冲位置调制(PPM)和脉冲宽度调制(PWM)等。

脉冲编码调制技术的原理主要包括采样、量化、编码和调制四个步骤。

这些步骤的顺序和参数设置对脉冲编码调制的性能和传输质量起着重要作用。

二、脉冲编码调制的应用脉冲编码调制技术被广泛应用于数字通信系统中,特别是语音和视频通信方面。

下面将介绍一些常见的应用领域。

1. 语音通信:PCM技术是传统电话系统中的基本技术,它将模拟语音信号转换为数字信号进行传输。

通过脉冲编码调制,语音信号可以被准确地表示和传输,从而保证通信质量。

2. 数据通信:在计算机网络和数据通信中,PCM技术通常用于将数据转换为数字信号进行传输。

例如,常见的以太网和无线网络以及串行通信协议等都使用脉冲编码调制技术进行数据传输。

3. 音频和视频传输:脉冲编码调制技术也被广泛应用于音频和视频传输领域。

通信原理第三章脉冲编码调制

通信原理第三章脉冲编码调制

收到的经过压缩后的信号还原成压缩前的信号,完成
这个还原工作的电路就是扩张器,它的特性正好与压
缩器相反,对小信号压缩,对大信号提升。为了保证
信号的不失真,要求压缩特性与扩张特性合成后是一
条直线,也就是说,信号通过压缩再通过扩张实际上
好像通过了一个线性电路。
第3章 脉冲编码调制(PCM)

显然,单独的压缩或扩张对信号进行的是非线
Modulation)。
第3章 脉冲编码调制(PCM)

PCM的概念最早是由法国工程师Alce Reeres于
1937年提出来的。1946年第一台PCM数字电话终端机
在 美 国 Bell 实 验 室 问 世 。 1962 年 后 , 采 用 晶 体 管 的
PCM终端机大量应用于市话网中,使市话电缆传输的
(a) 抽 样 脉 冲
v(t) k(t) 6 5 4 3 2 1 0
Ts 2Ts 3Ts 4Ts 5Ts 6Ts 7Ts 8Ts 9Ts 10Ts t (b) P CM抽 样
m(t)
6
5
4
3
2
1
0
Ts 2Ts 3Ts 4Ts 5Ts 6Ts 7Ts 8Ts 9Ts 10Ts
t
(c) P CM量 化
d(t)
输出
5
扩 张 曲线
4
4
A
3
3
2
2
1
线 性 变换
A′ B′
1
0
0
输入
t
B
输入
t
A
A′
B t
(a) 压 缩 器 输 入 输 出 示 意 图
B′ t
(b) 扩 张 器 输 入 输 出 示 意 图

第3章 脉冲编码调制(PCM)

第3章  脉冲编码调制(PCM)

第3章 脉冲编码调制(PCM)
关于量化的几个概念
量化值(量化电平) 量化后的取值; 量化值(量化电平)----量化后的取值; 量化后的取值
上例中:0,1,2,3,4,5,6共七个量化值 上例中: , , , , , , 共七个量化值
量化级----量化值的个数; 量化值的个数; 量化级 量化值的个数
上例中:7个 上例中: 个
量化间隔----相邻两个量化值之差。 相邻两个量化值之差。 量化间隔 相邻两个量化值之差
上例中:1 上例中:
第3章 脉冲编码调制(PCM)
量化噪声
模拟信号数字化的过程中引入了量化误差 上例中:量化前 上例中: 量化后
k(0)=0.2 m(0)=0 k(1)=0.4 m(1)=0
第3章 脉冲编码调制(PCM)
y 1
压缩特性
−1 0
−1
1 x
扩张特性
第3章 脉冲编码调制(PCM)
对数压缩
压缩特性通常采用对数压缩特性, 压缩特性通常采用对数压缩特性,即压缩 器的输出与输入之间近似呈对数关系
两类对数压缩特性
A律对数压缩特性 律对数压缩特性 μ律对数压缩特性
第3章 脉冲编码调制(PCM)
第3章 脉冲编码调制(PCM)
第3章 脉冲编码调制(PCM)
3.1 3.2 3.3 3.4 3.5 3.6 PCM基本概念 基本概念 抽样 量化 PCM编码 编码 抽样定理 时分复用
第3章 脉冲编码调制(PCM)
3.1 PCM基本概念
模/数变换(A/D) 数/模变换(D/A)
信 信 源 编 码 信 道 编 码 调 信 道 制 噪 声 数字通信系统一般模型 调 解 信 道 解 码 信 源 解 码 信

脉冲编码调制PCM

脉冲编码调制PCM

2.3 脉冲编码调制(PCM)
PCM调制系统
1
信号的压缩与扩张
2
PCM编码器和译码器
3
PCM系统的噪声性能
4
差分脉冲编码调制
5
PCM编码器和译码器
编码器 译码器 PCM编码和译码器集成电路
码位的选择和安排
13折线编码采用8位二进制码,对应256个量化级,即正、负输入幅度范围内各有128个量化级 需要将13折线中的每个折线段再均匀划分16个量化级 正、负输入的8个段落被划分成128个不均匀量化级 8位码的安排
脉冲编码调制系统
30/32PCM端机每帧共有32个时隙,传30路数字话音信号和2时隙的勤务信息。 30/32PCM端机输出的信号称为一次群信号。实际应用中,还可将多个一次群进行准同步复接(PDH):即四个基群 (一次群)复接组成二次群,四个二次群组成三次群,四个三次群组成四次群,四个四次群组成五次群,或进行同步复接(SDH)。
脉冲编码调制系统
以30/32PCM端机为例,介绍PCM的系统组成 话音信号的抽样频率为8000Hz,抽样的间隔时间Ts=1/fs=125s 为了时分复用将125 s分为32个时隙,即每个时隙为125 s /32=3.9 s 每个抽样脉冲用8bit编码,即8位二进制脉冲作一个码组,一次放入各个时隙。 为保证通信的正常进行,每帧的起始时刻由帧定时信号决定,收端也应有相应的帧定时信号,收发两端的帧定时信号必须同频同相,即实现帧同步。
目前用得较多
逐次比较编码器原理框图
全波整流
参考电源
PAM信号
US
|US|
UR
极性判决
D1
比较码 形成
或 门
a2-a8
a1
PCM 编码输出

第3章脉冲编码调制与增量调制

第3章脉冲编码调制与增量调制

■对于带通模拟信号最高频率fH不是带宽B的整数倍情况,设
fH = nB+kB n是 fH/B 的最大整数,0<k<1.
(3.10)
可以证明,最小抽样频率只须满足
即可。
fs = 2B+2( fH –nB)/n = 2B(1+k/n)
Ms(ω)
(3.11) (3.12)
-3fs
-2fs
-fs
0
fs
2fs
则最小抽样频率只须满足 fs = 2B ,便可得到如下抽样后信号
ms(t)的频谱
Ms(ω)
-3fs
-2fs
-fs
0
Байду номын сангаас
fs
2fs
3fs
f
从频谱可见,只要将抽样后信号ms(t)通过一与原连续模拟信 号频带相应的带通滤波器,便可恢复原连续模拟信号m(t) 。
第3章 脉冲编码调制与增量调制
3.2 抽样定理
3.2.2 带通抽样定理
第3章 脉冲编码调制与增量调制
本章内容简介
3.1 PCM基本概念 3.2 抽样定理 3.3 量化 3.4 PCM编码 3.5 时分复用 3.6 简单增量调制 3.7 增量总和调制
第3章 脉冲编码调制与增量调制
3.0 引言 一.模拟信号与数字信号 ■模拟信号
声强
炭精送话器
炭精
电压VR
t
R VR
t
(a) 声信号
第3章 脉冲编码调制与增量调制
3.3 量化
3.3.2 非均匀量化
均匀量化较易于实现,但均匀量化的量化误差(如0.5⊿v) 不随被量化信号的幅度变化。这意味着,当信号幅度很小时, 量化信噪比很小。这对于小数值概率比大数值概率要大得多的 话音抽样信号来说及为不利,解决的办法是非均匀量化。

脉冲编码调制

脉冲编码调制
CM通信系统一般采用
折叠二进制码进行编码。
区别:
普通二进码如果任何码字错了第一位码造成的幅度差值相 同。 例: 由0111错为1111,则由第7级错为第15级,差8级; 由0010错为1010,则由第2级错为第10级,差8级。
折叠二进码的误差与信号的大小成正比。
例:
8位码码位安排:
a 1 a 2a a 4 a a a a
3
5
6 7
8
极 性 码
段 落 码
段 内 码
a 1=1 a 1=0

负 幅度码(电平码)
段落序号=段落码的二进制数加1,表示属于哪个量化大段。
例:
段落码为001,其段落序号为2,表示在第2 量化段 段落码确定后可确定段落起始电平、段落差和量化级差。
由0001错为1001,则由第6级错为第9级,差3级;
由0111错为1111,则由第0级错为第15级,差15级。
由于话音信号中小信号出现的概率大,就平均来看,
折叠码比普通二进码造成误差小,故常采用折叠二进码编码。 定义:编码就是用二进制码来表示量化值的过程。 根据量化级与码数的关系,通常用八位码进行编码。
编码:对某个样值,即可确定出一个码字的八位码。 解码:知道一个码字的八位码,即可还原为一个量化值。
码电字电平:发端量化后的电平
解码平:收端解码后的电平
编码
编码
模拟话音信号经过抽样、量化后变成时 间和幅度上都离散的样值序列。其中,每个 样值都可以用有限位数的二进制代码来表示, 这个过程即为编码。 对于量化后的样值,我们可以分别用下 面的方式表示:
(1)1位二进制数字码能表示样值的2种状态 1表示极性为正,0表示极性为负。 或者0表示极性为正,1表示极性为负 (2)2位二进制数字码能表示样值的四种状态 目前使用的二进制码组的编码关系有3种: 一般二进制码编码

3-3脉冲编码调制解读

3-3脉冲编码调制解读

7/11逻辑变换电路将7位非线性码转换成11位线
性码,其实质就是完成非线性和线性之间的变换。
19
例:设输入信号抽样值Is=+1260Δ(Δ为一个量化单位, 表示
输入信号归一化值的 1/2048),采用逐次比较型编码器 , 按A
律13折线编成8位码C1C2C3C4C5C6C7C8。 解 编码过程如下: (1)确定极性码C1:由于输入信号抽样值Is为正,故极性
5
任务二:PCM编码的原理

首先,在发送端进行波形编码(主要包括抽样、量化和编码三个
过程),把模拟信号变换为二进制码组。

编码后的PCM码组的数字传输方式可以是直接的基带传输,也
可以是对微波、光波等载波调制后的调制传输。

在接收端,二进制码组经译码后还原为量化后的样值脉冲序列,
然后经低通滤波器滤除高频分量,便可得到重建信号 。
二进码和格雷二进码(反射二进码)。
8
任务三:码字和码型

自然二进码:就是一般的十进制正整数的二进制表示。
9
任务三:码字和码型

折叠二进码:是一种符号幅度码。左边第一位表示信号的
极性,正用“1”表示,负用“0”表示;第二位至最后一位表示 信号的幅度。

特点:对于语音这样的双极性信号,编码过程大大简化;
可,若增至7~8位时,通信质量就比较理想了。

在13折线编码中,普遍采用8位二进制码,
对应有M=28=256个量化级,即正、负输入幅度 范围内各有128个量化级。
12
任务四:码位的选择与安排

按折叠二进码的码型,这8位码的安排如下:

极性码:第1位码C1的数值“1”或“0”分别表示信号的

脉冲编码调制的基本原理介绍

脉冲编码调制的基本原理介绍

下面主要以语音信号为例,介绍PCM 原理:一、语音信号的数字化大家都知道,语音信号是模拟信号,而数字程控交换机内部交换的却是数字信号,那么如何使模拟的语音信号数字化,可采用脉冲编码调制的方法,即PCM 。

我们知道,模拟信号数字化称为模/数(A/D )变换,而把数字信号还原成模拟信号称为数/模(D/A )变换,综合A/D 和D/A 的一般步骤,图1给出了PCM 通信的简单模型。

图1 PCM 通信的简单模型 (一)抽样语音信号在时间上是连续的,经过抽样后变成时间上离散的信号。

简单的说,抽样就是将模拟信号在时间上离散的过程。

抽样上每隔一定的时间间隔T ,在抽样器上接发送端接收端A/D 变换 D/A 变换入一个抽样脉冲,通过抽样的脉冲去控制抽样器的开关电路,取出话音信号的瞬间电压值,即样值。

如图2所示,抽样后的信号称为抽样信号,显然,它可以看作按幅度调制的脉冲信号,即PAM 信号,其幅度的取值仍是连续的,不能用有限个数字来表示,因此抽样值仍是模拟信号。

图2 语音信号的抽样语音信号抽样后信号所占用的时间被压缩了,这是时分复用技术的必要条件。

关于这一点将在本节课第三个内容讲解,但是,用抽样信号代替原信号必须要满足抽样定理,否则样值不能够完全表征原信号。

f(t)t tt抽样脉冲抽样定理:对于一个具有有限带宽的模拟信号f(t),其最高频率分量为fm ,则当抽样频率fs ≥2fm 时,样值可以完全表征原信号。

我们的语音信号频率在300-3400HZ之间,根据抽样定理,抽样频率fs=2x3400=6800HZ,为了留一定的防卫带,ITU(International Telecommunications Union,国际电信联)盟规定的抽样频率为:fs=8000HZ,抽样周期为T=1/8000=125μs。

(二)量化抽样后的信号,其幅度的取值仍是无限多个,是连续的,在幅度上离散化抽样信号,就是量化。

简单的说,量化就是将抽样信号在幅度上离散化的过程。

通信原理-脉冲编码调制(PCM)上课讲义PPT共77页

通信原理-脉冲编码调制(PCM)上课讲义PPT共77页
60、人民的幸福是至高无个的法。— —西塞 罗
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
通信原理-脉冲编码调制(PCM)上课讲义
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
ห้องสมุดไป่ตู้
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0100 0101 0111 0110 0010 0011 0001 0000
量化级
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
20
非线性PCM
先把模拟信号抽样值进行压缩,使小信 号放大,大信号缩小,然后在均匀量化 编码,即对大幅度的样值使用大的量化 间隔,小幅度的样值采用小的量化间隔, 接收端再相反处理,称为压缩扩张技术。
12
量化
为了消除噪声积Leabharlann ,并且使得抽样 值易于表示,我们要对幅度上连续 的抽样值进行量化。
13
量化的过程
把信号幅度划分为若干个区间(又称为量化 级),取该区间预先规定的某个参考电平作为 信号指,即利用预先规定的有限个电平来表示 模拟抽样值的过程,称为量化。
14
量化的有关概念
量化误差:信号值 与信号量化后的取 值之差。
目前国际上广泛采用的两种对数压缩律 是µ压缩律和A压缩律。美国采用µ压缩律, 我国和欧洲各国均采用A压缩律。
21
13折线A律压缩
X为输入信号,Y为输出信号。 除一、二段外,其他各段折线的 斜率都不相同,当x、y在-1~0的 第三象限中,压缩特性的形状同 第1象限压缩特性的形状相同,且 以原点为奇对称,所以负方向也 有八段直线,合起来共有16个线 段。由于正向一、二两段和负向 一、二两段的斜率相同,这四段 实际上为一条直线,因此,正、 负双向的折线总共由13条直线 段构成,故称其为13折线。
PCM技术的典型应用是语音数字化。语音、图 像信息必须数字化才能经计算机处理。
6
脉冲编码调制分的步骤
PCM的过程分为抽样、量化和编码三步。 抽样——把模拟信号在时间上离散化,变为脉 冲幅度调制(PAM)信号。 量化——把PAM信号在幅度上离散化,变为量 化值(共有N个量化值)。 编码——用二进码来表示N个量化值。
信源编码是数字通信系统的重要组成部 分,它有两方面的作用:一个是把信源 消息的冗余信息去掉,降低数字信号的 数据量,提高传输的有效性。一个是把 信源发出的模拟信号转换成离散的数字 信号,实现模拟信号数字化。
5
脉冲编码调制
脉冲编码调制(Pulse Code Modulation,PCM) 是模拟数据数字化的主要方法。
0111 0110 0101 0100 0011 0010 0001 0000
折叠二进码
1111 1110 1101 1100 1011 1010 1001 1000
0000 0001 0010 0011 0100 0101 0110 0111
格雷码
1000 1001 1011 1010 1110 1111 1101 1100
数字信息易于加密且保密性强。 由于数字集成电路,特别是大规模集成电路技术日益成
熟,数字设备越来越易于制造,而且成本低、体积小、 可靠性高。 与模拟通信相比数字通信可以传输种类更多的消息,使 通信系统变得通用、灵活。 数字通信的不足之处是比模拟通信占据更多的频带。
4
信源编码
将模拟信号转换为数字信号的过程称为 模拟信号数字化,它属于信源编码的内 容。
量化间隔越小,量 化误差越小,需要 的量化级别越多, 处理和传输就越复 杂,所以,既要尽 量减少量化级数, 又要使量化失真尽 可能的小。
量化误差又称为量 化噪声,用信噪比 来衡量。
15
均匀量化
采用均匀量化级进行量化的方法称 为均匀量化或线性量化。
缺点:大信号时信噪比大, 但小信号时,信噪比不足。
编码是使用一组二进制代码来表示 量化值。
18
编码位数
若量化电平总数为Q,则二进制编码 位数应>=log2Q,才能保证编码不重 复。为了提高编码效率,一般取 Q=2n (n为编码位数)
19
常用二进制编码
样值脉冲极性 正极性部分
负极性部分
自然二进码
1111 1110 1101 1100 1011 1010 1001 1000
均匀量化适合信号是均匀分布(如 图像信号)的情况。
16
非均匀量化
如果使小信号时量化级间宽度小, 而大信号时量化级间宽度大,就可 以使小信号时和大信号时的信噪比 趋于一致,这种非均匀量化级的安 排称为非均匀量化或非线性量化。
数字电视,语音均采取非均匀量化。
17
编码
把量化后的信号变换成代码的过程 称为编码,其相反的过程称为译码。
数字通信是未来通信的发展方向。
3
数字通信系统的优点
数字传输的抗噪声(或干扰)的能力强,尤其在中继时, 数字信号还可以再生而消除噪声的积累,而模拟通信则 会把噪声干扰和信号一起放大,增大噪声干扰。
传输中的差错可以设法控制,不但可以发现而且还能改 正,因而大大提高了传输质量。
便于同计算机连接,采用现代计算机技术对数字信息进 行处理,以便实现通信现代化、自动化。
fs > 2 fm
10
奈奎斯特间隔和奈奎斯特速率
• 所谓奈奎斯特间隔就是能唯一确定 信号f(t)的最大抽样间隔。
• 奈奎斯特速率是能够唯一确定信号 f(t)的最小抽样频率。
• 因此,奈奎斯特间隔= 1/2fm • 奈奎斯特速率=2fm
11
话音信号的抽样频率
• 话音信号频率范围:300~3400Hz, fm=3400Hz,这时满足抽样定理的最 低为的了抽留样有频一率定应的为防2卫×带fm,=C6C8IT0T0Hz, (ITU-T)规定话音信号的抽样频率 为=8000Hz,(防卫带为8000- 6800=1200Hz),T=125µs。
7
PCM通信系统
8
抽样的概念
抽样是指对模拟 信号在时间域上 的离散化过程, 即把一个时间上 连续、幅度上也 连续的模拟信号 变换成时间上离 散、幅度上连续 的信号。抽样是 由抽样门来完成 的。
9
抽样定理
对频带为0~fm的模拟信号,其抽样 频率fs必须满足下列条件:
即 fs >= 2 fm (抽样定理) 应留有一定宽度的防卫带
大家好
1
第三讲 脉冲编码调制
熟悉数字通信系统的优点 掌握脉冲编码调制的工作过程 掌握低通抽样定理 掌握量化的基本方法 熟悉编码方法 熟悉非线性PCM的工作过程 了解增量调制的概念
2
模拟通信系统与数字通信系统
按照信道中传输的是模拟信号还是 数字信号,可以把通信系统分为模 拟通信系统和数字通信系统。
相关文档
最新文档