数值分析实验报告

合集下载

数值分析综合实验报告

数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。

二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。

(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。

(2)Newton法:利用函数的导数信息,通过迭代逼近根。

(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。

3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。

(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。

(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。

三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。

(2)计算插值多项式在未知点的函数值。

2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。

(2)计算插值多项式在未知点的函数值。

3. 方程求根方法(1)输入方程和初始值。

(2)选择求解方法(二分法、Newton法、不动点迭代法)。

(3)迭代计算,直到满足精度要求。

4. 数值积分方法(1)输入被积函数和积分区间。

(2)选择积分方法(矩形法、梯形法、辛普森法)。

(3)计算积分值。

四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。

(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。

(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。

(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。

3. 数值积分方法(1)矩形法:计算简单,但精度较低。

数值分析2024上机实验报告

数值分析2024上机实验报告

数值分析2024上机实验报告数值分析是计算数学的一个重要分支,它研究如何用数值方法来解决数学问题。

在数值分析的学习过程中,学生需要通过上机实验来巩固理论知识,并学会使用相应的数值方法来解决实际问题。

本篇报告将详细介绍2024年度数值分析上机实验的内容和结果。

一、实验内容2024年度数值分析上机实验分为四个部分,分别是:方程求根、插值与拟合、数值积分和常微分方程的数值解。

1.方程求根这部分实验要求使用数值方法求解给定的非线性方程的根。

常见的数值方法有二分法、牛顿法、割线法等。

在实验过程中,我们需要熟悉这些数值方法的原理和实现步骤,并对不同方法的收敛性进行分析和比较。

2.插值与拟合这部分实验要求使用插值和拟合方法对给定的一组数据进行拟合。

插值方法包括拉格朗日插值、牛顿插值等;拟合方法包括最小二乘拟合、多项式拟合等。

在实验中,我们需要熟悉插值和拟合方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。

3.数值积分这部分实验要求使用数值方法计算给定函数的积分。

常见的数值积分方法有梯形法则、辛普森法则、龙贝格积分等。

在实验过程中,我们需要熟悉这些数值积分方法的原理和实现步骤,并对不同方法的精度和效率进行比较。

4.常微分方程的数值解这部分实验要求使用数值方法求解给定的常微分方程初值问题。

常见的数值方法有欧拉法、改进的欧拉法、四阶龙格-库塔法等。

在实验中,我们需要熟悉这些数值解方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。

二、实验结果在完成2024年度数值分析上机实验后,我们得到了以下实验结果:1.方程求根我们实现了二分法、牛顿法和割线法,并对比了它们的收敛速度和稳定性。

结果表明,割线法的收敛速度最快,但在一些情况下可能会出现振荡;二分法和牛顿法的收敛速度相对较慢,但稳定性较好。

2.插值与拟合我们实现了拉格朗日插值和最小二乘拟合,并对比了它们的拟合效果和精度。

结果表明,拉格朗日插值在小区间上拟合效果较好,但在大区间上可能出现振荡;最小二乘拟合在整体上拟合效果较好,但可能出现过拟合。

数值分析积分实验报告(3篇)

数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。

通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。

二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。

实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。

2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。

实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。

3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。

实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。

4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。

它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。

实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。

三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。

2. 选取几个不同的函数,对积分区间进行划分。

3. 使用不同方法计算积分近似值,并与实际积分值进行比较。

4. 分析不同方法的精度和效率。

四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。

2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。

3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。

4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。

数值分析方法实验报告

数值分析方法实验报告

一、实验目的通过本次实验,掌握数值分析方法的基本原理和应用,熟悉MATLAB编程环境,学会使用MATLAB进行数值计算,并分析不同数值方法的优缺点。

二、实验内容1. 二分法求方程根(1)原理:二分法是一种迭代方法,通过不断缩小根所在的区间,直到满足精度要求为止。

(2)步骤:①给定初始区间[a, b],使得f(a) f(b) < 0;②计算区间中点c = (a + b) / 2;③判断f(c)的符号:a. 若f(c) = 0,则c为方程的根;b. 若f(c) f(a) < 0,则新的区间为[a, c];c. 若f(c) f(b) < 0,则新的区间为[c, b];④重复步骤②和③,直到满足精度要求。

(3)代码实现:```MATLABfunction root = bisection_method(f, a, b, tol)while (b - a) / 2 > tolc = (a + b) / 2;if f(c) == 0break;elseif f(a) f(c) < 0b = c;elsea = c;endendroot = (a + b) / 2;end```2. Newton法求方程根(1)原理:Newton法是一种基于切线逼近的迭代方法,通过不断逼近函数的零点。

(2)步骤:①给定初始值x0;②计算导数f'(x)和f(x)在x0处的值;③计算新的近似值x1 = x0 - f(x0) / f'(x0);④重复步骤②和③,直到满足精度要求。

(3)代码实现:```MATLABfunction root = newton_method(f, df, x0, tol)while abs(f(x0)) > tolx1 = x0 - f(x0) / df(x0);x0 = x1;endroot = x0;end```3.不动点迭代法求方程根(1)原理:不动点迭代法是一种迭代方法,通过不断逼近不动点,即方程的根。

数值分析实验报告心得(3篇)

数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。

通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。

以下是我对数值分析实验的心得体会。

一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。

2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。

3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。

4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。

二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。

(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。

最后,我们将插值多项式与原始函数进行比较,分析误差。

2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。

(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。

最后,比较不同方法的收敛速度和精度。

3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。

(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。

最后,比较不同方法的计算量和精度。

4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。

(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。

数值分析实验报告

数值分析实验报告

一、实验目的1. 理解数值分析的基本概念和常用算法;2. 掌握数值方法在求解实际问题中的应用;3. 培养编程能力,提高对数值分析软件的使用熟练度。

二、实验内容本次实验主要涉及以下内容:1. 拉格朗日插值法;2. 牛顿插值法;3. 线性方程组的求解方法;4. 方程求根的数值方法;5. 最小二乘法曲线拟合。

三、实验步骤1. 拉格朗日插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。

(2)计算拉格朗日插值多项式L(x)。

(3)利用L(x)计算待求点x0的函数值y0。

2. 牛顿插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。

(2)计算牛顿插值多项式N(x)。

(3)利用N(x)计算待求点x0的函数值y0。

3. 线性方程组的求解方法(1)输入数据:给定线性方程组的系数矩阵A和常数向量b。

(2)采用高斯消元法求解线性方程组Ax=b。

4. 方程求根的数值方法(1)输入数据:给定函数f(x)和初始值x0。

(2)采用二分法求解方程f(x)=0的根。

5. 最小二乘法曲线拟合(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。

(2)建立线性最小二乘模型y=F(x)。

(3)利用最小二乘法求解模型参数。

四、实验结果与分析1. 拉格朗日插值法与牛顿插值法的比较通过实验,我们发现牛顿插值法的精度高于拉格朗日插值法。

这是因为牛顿插值法在计算过程中考虑了前一项的导数信息,从而提高了插值多项式的平滑性。

2. 线性方程组的求解方法高斯消元法在求解线性方程组时,计算过程较为繁琐,但稳定性较好。

在实际应用中,可根据具体问题选择合适的方法。

3. 方程求根的数值方法二分法在求解方程时,收敛速度较慢,但具有较好的稳定性。

对于初始值的选择,应尽量接近真实根。

4. 最小二乘法曲线拟合最小二乘法在拟合曲线时,误差较小,适用于数据点较多的情况。

数值分析原理实验报告

数值分析原理实验报告

一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。

二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。

对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。

二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。

(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。

2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。

对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。

牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。

(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。

3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。

对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。

(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。

数值分析实验报告5篇

数值分析实验报告5篇
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -13 -14
1.69376699767424 0.92310666706964 0.08471614569741 0.40804026409411
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
讨论:
利用这种方法进行这类实验,可以很精确的扰动敏感性的一般规律。即 当对扰动项的系数越来越小时,对其多项式扰动的结果也就越来越小, 即扰动敏感性与扰动项的系数成正比,扰动项的系数越大,对其根的扰 动敏感性就越明显,当扰动的系数一定时,扰动敏感性与扰动的项的幂 数成正比,扰动的项的幂数越高,对其根的扰动敏感性就越明显。
解线性方程组的直接方法
实验 (主元的选取与算法的稳定性) 问题提出:Gauss消去法是我们在线性代数中已经熟悉的。但由于计算 机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保 Gauss消去法作为数值算法的稳定性呢?Gauss消去法从理论算法到数值 算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它 却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的 Gauss消去过程。 实验要求: (1)取矩阵,则方程有解。取n=10计算矩阵的条件数。让程序自动选 取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最 小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去 过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析 不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元

数值分析实验报告总结

数值分析实验报告总结

一、实验背景数值分析是研究数值计算方法及其理论的学科,是计算机科学、数学、物理学等领域的重要基础。

为了提高自身对数值分析理论和方法的理解,我们进行了数值分析实验,通过实验加深对理论知识的掌握,提高实际操作能力。

二、实验目的1. 理解数值分析的基本理论和方法;2. 掌握数值分析实验的基本步骤和技巧;3. 培养实验设计和数据分析能力;4. 提高编程和计算能力。

三、实验内容本次实验主要分为以下几个部分:1. 线性方程组求解实验:通过高斯消元法、LU分解法等求解线性方程组,并分析算法的稳定性和误差;2. 矩阵特征值问题计算实验:利用幂法、逆幂法等计算矩阵的特征值和特征向量,分析算法的收敛性和精度;3. 非线性方程求根实验:运用二分法、牛顿法、不动点迭代法等求解非线性方程的根,比较不同算法的优缺点;4. 函数插值实验:运用拉格朗日插值、牛顿插值等方法对给定的函数进行插值,分析插值误差;5. 常微分方程初值问题数值解法实验:运用欧拉法、改进的欧拉法、龙格-库塔法等求解常微分方程初值问题,比较不同算法的稳定性和精度。

四、实验过程1. 线性方程组求解实验:首先,编写程序实现高斯消元法、LU分解法等算法;然后,对给定的线性方程组进行求解,记录计算结果;最后,分析算法的稳定性和误差。

2. 矩阵特征值问题计算实验:编写程序实现幂法、逆幂法等算法;然后,对给定的矩阵进行特征值和特征向量的计算,记录计算结果;最后,分析算法的收敛性和精度。

3. 非线性方程求根实验:编写程序实现二分法、牛顿法、不动点迭代法等算法;然后,对给定的非线性方程进行求根,记录计算结果;最后,比较不同算法的优缺点。

4. 函数插值实验:编写程序实现拉格朗日插值、牛顿插值等方法;然后,对给定的函数进行插值,记录计算结果;最后,分析插值误差。

5. 常微分方程初值问题数值解法实验:编写程序实现欧拉法、改进的欧拉法、龙格-库塔法等算法;然后,对给定的常微分方程初值问题进行求解,记录计算结果;最后,比较不同算法的稳定性和精度。

数值分析实验报告模板

数值分析实验报告模板

数值分析实验报告模板篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告实验报告一题目:非线性方程求解摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。

本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。

利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。

即若x0 偏离所求根较远,Newton法可能发散的结论。

并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。

前言:(目的和意义)掌握二分法与Newton法的基本原理和应用。

掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收敛,但精度不够。

熟悉Matlab语言编程,学习编程要点。

体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。

数学原理:对于一个非线性方程的数值解法很多。

在此介绍两种最常见的方法:二分法和Newton法。

对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk)产生逼近解x*的迭代数列{xk},这就是Newton法的思想。

当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。

另外,若将该迭代公式改进为xk?1?xk?rf(xk) 'f(xk)其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。

程序设计:本实验采用Matlab的M文件编写。

其中待求解的方程写成function的方式,如下function y=f(x);y=-x*x-sin(x);写成如上形式即可,下面给出主程序。

数值分析绪论实验报告

数值分析绪论实验报告

一、实验目的1. 了解数值分析的基本概念和主要内容;2. 掌握数值计算的基本方法,如插值、求根、数值积分等;3. 培养使用计算机进行数值计算的能力;4. 增强对数值分析在实际问题中的应用意识。

二、实验内容1. 插值法:拉格朗日插值、牛顿插值;2. 求根法:二分法、牛顿法、不动点迭代法;3. 数值积分:矩形法、梯形法、辛普森法。

三、实验步骤1. 插值法实验(1)编写拉格朗日插值程序,以x1, x2, ..., xn为节点,y1, y2, ..., yn为函数值,求插值多项式P(x)。

(2)编写牛顿插值程序,以x1, x2, ..., xn为节点,y1, y2, ..., yn为函数值,求插值多项式P(x)。

2. 求根法实验(1)编写二分法程序,求方程f(x) = 0在区间[a, b]上的根。

(2)编写牛顿法程序,求方程f(x) = 0在初始值x0附近的根。

(3)编写不动点迭代法程序,求方程f(x) = 0在初始值x0附近的根。

3. 数值积分实验(1)编写矩形法程序,求定积分∫f(x)dx在区间[a, b]上的近似值。

(2)编写梯形法程序,求定积分∫f(x)dx在区间[a, b]上的近似值。

(3)编写辛普森法程序,求定积分∫f(x)dx在区间[a, b]上的近似值。

四、实验结果与分析1. 插值法实验(1)使用拉格朗日插值法,以x1, x2, ..., xn为节点,y1, y2, ..., yn为函数值,求插值多项式P(x)。

(2)使用牛顿插值法,以x1, x2, ..., xn为节点,y1, y2, ..., yn为函数值,求插值多项式P(x)。

2. 求根法实验(1)使用二分法,求方程f(x) = 0在区间[a, b]上的根。

(2)使用牛顿法,求方程f(x) = 0在初始值x0附近的根。

(3)使用不动点迭代法,求方程f(x) = 0在初始值x0附近的根。

3. 数值积分实验(1)使用矩形法,求定积分∫f(x)dx在区间[a, b]上的近似值。

华工数值分析实验报告

华工数值分析实验报告

一、实验名称数值分析实验二、实验目的1. 掌握数值分析的基本概念和方法。

2. 理解并应用插值法、数值积分、数值微分、数值解法等数值分析的基本方法。

3. 提高数值计算能力和编程能力。

三、实验内容1. 插值法1.1 拉格朗日插值法1.2 牛顿插值法1.3 线性插值法1.4 拉格朗日插值法与牛顿插值法的比较2. 数值积分2.1 牛顿-科特斯公式2.2 帕普斯公式2.3 比较牛顿-科特斯公式与帕普斯公式的精度3. 数值微分3.1 前向差分法3.2 后向差分法3.3 中点差分法3.4 比较三种差分法的精度4. 数值解法4.1 线性方程组的迭代法4.2 非线性方程的迭代法4.3 比较不同迭代法的收敛速度四、实验步骤1. 插值法1.1 输入插值点的数据,使用拉格朗日插值法计算插值多项式。

1.2 使用牛顿插值法计算插值多项式。

1.3 使用线性插值法计算插值多项式。

1.4 比较三种插值法的精度。

2. 数值积分2.1 输入被积函数和积分区间,使用牛顿-科特斯公式进行数值积分。

2.2 使用帕普斯公式进行数值积分。

2.3 比较两种数值积分方法的精度。

3. 数值微分3.1 输入函数和求导点的数据,使用前向差分法、后向差分法和中点差分法计算导数。

3.2 比较三种差分法的精度。

4. 数值解法4.1 输入线性方程组或非线性方程,使用迭代法求解方程组或方程。

4.2 比较不同迭代法的收敛速度。

五、实验结果与分析1. 插值法通过比较三种插值法的精度,得出以下结论:- 线性插值法精度最低。

- 拉格朗日插值法与牛顿插值法精度较高,但牛顿插值法在计算过程中需要计算多项式的导数,增加了计算量。

2. 数值积分通过比较牛顿-科特斯公式与帕普斯公式的精度,得出以下结论:- 牛顿-科特斯公式精度较高。

- 帕普斯公式精度较低。

3. 数值微分通过比较三种差分法的精度,得出以下结论:- 中点差分法精度最高。

- 后向差分法次之。

- 前向差分法精度最低。

4. 数值解法通过比较不同迭代法的收敛速度,得出以下结论:- 牛顿迭代法收敛速度最快。

数值分析matlab实验报告

数值分析matlab实验报告

数值分析matlab实验报告数值分析 Matlab 实验报告一、实验目的数值分析是研究各种数学问题数值解法的学科,Matlab 则是一款功能强大的科学计算软件。

本次实验旨在通过使用 Matlab 解决一系列数值分析问题,加深对数值分析方法的理解和应用能力,掌握数值计算中的误差分析、数值逼近、数值积分与数值微分等基本概念和方法,并培养运用计算机解决实际数学问题的能力。

二、实验内容(一)误差分析在数值计算中,误差是不可避免的。

通过对给定函数进行计算,分析截断误差和舍入误差的影响。

例如,计算函数$f(x) =\sin(x)$在$x = 05$ 附近的值,比较不同精度下的结果差异。

(二)数值逼近1、多项式插值使用拉格朗日插值法和牛顿插值法对给定的数据点进行插值,得到拟合多项式,并分析其误差。

2、曲线拟合采用最小二乘法对给定的数据进行线性和非线性曲线拟合,如多项式曲线拟合和指数曲线拟合。

(三)数值积分1、牛顿柯特斯公式实现梯形公式、辛普森公式和柯特斯公式,计算给定函数在特定区间上的积分值,并分析误差。

2、高斯求积公式使用高斯勒让德求积公式计算积分,比较其精度与牛顿柯特斯公式的差异。

(四)数值微分利用差商公式计算函数的数值导数,分析步长对结果的影响,探讨如何选择合适的步长以提高精度。

三、实验步骤(一)误差分析1、定义函数`compute_sin_error` 来计算不同精度下的正弦函数值和误差。

```matlabfunction value, error = compute_sin_error(x, precision)true_value = sin(x);computed_value = vpa(sin(x), precision);error = abs(true_value computed_value);end```2、在主程序中调用该函数,分别设置不同的精度进行计算和分析。

(二)数值逼近1、拉格朗日插值法```matlabfunction L = lagrange_interpolation(x, y, xi)n = length(x);L = 0;for i = 1:nli = 1;for j = 1:nif j ~= ili = li (xi x(j))/(x(i) x(j));endendL = L + y(i) li;endend```2、牛顿插值法```matlabfunction N = newton_interpolation(x, y, xi)n = length(x);%计算差商表D = zeros(n, n);D(:, 1) = y';for j = 2:nfor i = j:nD(i, j) =(D(i, j 1) D(i 1, j 1))/(x(i) x(i j + 1));endend%计算插值结果N = D(1, 1);term = 1;for i = 2:nterm = term (xi x(i 1));N = N + D(i, i) term;endend```3、曲线拟合```matlab%线性最小二乘拟合p = polyfit(x, y, 1);y_fit_linear = polyval(p, x);%多项式曲线拟合p = polyfit(x, y, n);% n 为多项式的次数y_fit_poly = polyval(p, x);%指数曲线拟合p = fit(x, y, 'exp1');y_fit_exp = p(x);```(三)数值积分1、梯形公式```matlabfunction T = trapezoidal_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);T = h ((y(1) + y(end))/ 2 + sum(y(2:end 1)));end```2、辛普森公式```matlabfunction S = simpson_rule(f, a, b, n)if mod(n, 2) ~= 0error('n 必须为偶数');endh =(b a) / n;x = a:h:b;y = f(x);S = h / 3 (y(1) + 4 sum(y(2:2:end 1))+ 2 sum(y(3:2:end 2))+ y(end));end```3、柯特斯公式```matlabfunction C = cotes_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);w = 7, 32, 12, 32, 7 / 90;C = h sum(w y);end```4、高斯勒让德求积公式```matlabfunction G = gauss_legendre_integration(f, a, b)x, w = gauss_legendre(5);%选择适当的节点数t =(b a) / 2 x +(a + b) / 2;G =(b a) / 2 sum(w f(t));end```(四)数值微分```matlabfunction dydx = numerical_derivative(f, x, h)dydx =(f(x + h) f(x h))/(2 h);end```四、实验结果与分析(一)误差分析通过不同精度的计算,发现随着精度的提高,误差逐渐减小,但计算时间也相应增加。

数值_分析实验报告

数值_分析实验报告

一、实验目的1. 理解数值分析的基本概念和方法;2. 掌握线性方程组的求解方法,如雅可比迭代法、高斯赛德尔迭代法和SOR迭代法;3. 利用MATLAB软件进行数值计算,并分析结果。

二、实验原理1. 数值分析是研究如何用数值方法求解数学问题的学科,其核心是误差分析和算法设计。

2. 线性方程组是数值分析中的基本问题之一,常见的求解方法有直接法和迭代法。

3. 雅可比迭代法、高斯赛德尔迭代法和SOR迭代法是三种常用的迭代法,它们通过迭代过程逐步逼近方程组的解。

4. MATLAB是一种高性能的科学计算软件,具有强大的数值计算和可视化功能。

三、实验内容1. 实验一:雅可比迭代法(1)原理:雅可比迭代法是求解线性方程组的迭代法之一,其基本思想是将线性方程组分解为多个子方程,然后依次求解子方程,逐步逼近方程组的解。

(2)步骤:a. 输入系数矩阵A和常数向量B;b. 初始化迭代变量X0;c. 计算对角矩阵D、上三角矩阵L和下三角矩阵U;d. 进行迭代计算,直到满足精度要求或达到最大迭代次数;e. 输出解向量X。

(3)MATLAB代码实现:```MATLABfunction [X, K] = JACOBI(A, B, X0, E, N)[n, n] = size(A);D = diag(A);L = tril(A - D, -1);U = triu(A - D);K = 0;for i = 1:NX_new = (B - L \ U \ X0) / D;if norm(X_new - X0) < Ebreak;endX0 = X_new;K = K + 1;endX = X_new;end```2. 实验二:高斯赛德尔迭代法(1)原理:高斯赛德尔迭代法是另一种求解线性方程组的迭代法,其基本思想是在每次迭代中,利用已求得的近似解来更新下一个近似解。

(2)步骤:a. 输入系数矩阵A和常数向量B;b. 初始化迭代变量X0;c. 进行迭代计算,直到满足精度要求或达到最大迭代次数;d. 输出解向量X。

数值分析拟合实验报告(3篇)

数值分析拟合实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析方法对一组已知数据点进行拟合,掌握线性插值、多项式插值、样条插值等方法的基本原理和实现过程,并学会使用MATLAB进行数值拟合。

二、实验内容1. 线性插值线性插值是一种简单的插值方法,适用于数据点分布较为均匀的情况。

其基本原理是通过两个相邻的数据点,利用线性关系拟合出一条直线,然后通过该直线来估算未知的值。

2. 多项式插值多项式插值是一种较为精确的插值方法,通过构造一个多项式函数来逼近已知数据点。

其基本原理是利用最小二乘法求解多项式的系数,使得多项式在已知数据点上的误差最小。

3. 样条插值样条插值是一种更灵活的插值方法,通过构造一系列样条曲线来逼近已知数据点。

其基本原理是利用最小二乘法求解样条曲线的系数,使得样条曲线在已知数据点上的误差最小。

三、实验步骤1. 线性插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`linspace`生成插值点:xi = linspace(1, 5, 100);(3)使用MATLAB内置函数`interp1`进行线性插值:yi = interp1(x, y, xi, 'linear');(4)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');2. 多项式插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`polyfit`求解多项式系数:p = polyfit(x, y, 3);(3)使用MATLAB内置函数`polyval`进行多项式插值:yi = polyval(p, xi);(4)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');3. 样条插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`spline`进行样条插值:yi = spline(x, y, xi);(3)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');四、实验结果与分析1. 线性插值线性插值方法简单易行,但精度较低,适用于数据点分布较为均匀的情况。

数值分析实验报告

数值分析实验报告

数值分析实验报告一、实验目的数值分析是一门研究用计算机求解数学问题的数值方法及其理论的学科。

本次实验的目的在于通过实际操作和编程实现,深入理解和掌握数值分析中的常见算法,提高运用数值方法解决实际问题的能力,并对算法的精度、稳定性和效率进行分析和比较。

二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。

实验所依赖的主要库包括 NumPy、Matplotlib 等。

三、实验内容(一)函数逼近与插值1、拉格朗日插值法通过给定的离散数据点,构建拉格朗日插值多项式,对未知点进行函数值的估计。

2、牛顿插值法与拉格朗日插值法类似,但采用了不同的形式和计算方式。

(二)数值积分1、梯形公式将积分区间划分为若干个梯形,通过计算梯形面积之和来近似积分值。

2、辛普森公式基于抛物线拟合的方法,提高积分近似的精度。

(三)线性方程组求解1、高斯消元法通过逐行消元将线性方程组化为上三角形式,然后回代求解。

2、 LU 分解法将系数矩阵分解为下三角矩阵 L 和上三角矩阵 U,然后通过两次前代和回代求解。

(四)非线性方程求解1、二分法通过不断将区间一分为二,逐步缩小根所在的区间,直到满足精度要求。

2、牛顿迭代法利用函数的切线来逼近根,通过迭代逐步收敛到根的近似值。

四、实验步骤(一)函数逼近与插值1、拉格朗日插值法定义计算拉格朗日基函数的函数。

根据给定的数据点和待求点,计算插值多项式的值。

输出插值结果,并与真实值进行比较。

2、牛顿插值法计算差商表。

构建牛顿插值多项式。

进行插值计算和结果分析。

(二)数值积分1、梯形公式定义积分区间和被积函数。

按照梯形公式计算积分近似值。

分析误差。

2、辛普森公式同样定义积分区间和被积函数。

运用辛普森公式计算积分近似值。

比较与梯形公式的精度差异。

(三)线性方程组求解1、高斯消元法输入系数矩阵和右端项向量。

进行消元操作。

回代求解方程。

输出解向量。

2、 LU 分解法对系数矩阵进行 LU 分解。

工程数值分析实验报告(3篇)

工程数值分析实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,对工程实际问题进行建模、求解和分析。

通过学习数值方法的基本原理和算法,提高解决实际工程问题的能力。

二、实验内容1. 线性方程组的求解2. 矩阵特征值与特征向量的计算3. 函数插值与曲线拟合4. 数值微分与积分三、实验步骤1. 线性方程组的求解(1)编写程序实现高斯消元法、克劳斯消元法和列主元素法(2)设计输入界面,用户输入增广矩阵的行和列,填写系数及常数项(3)分别运用三种方法求解线性方程组,比较求解结果的正确性、数值稳定性和计算效率2. 矩阵特征值与特征向量的计算(1)编写程序实现幂法、QR算法和逆幂法(2)设计输入界面,用户输入矩阵的行和列,填写矩阵元素(3)分别运用三种方法计算矩阵的特征值与特征向量,比较求解结果的准确性和计算效率3. 函数插值与曲线拟合(1)编写程序实现拉格朗日插值、牛顿插值和样条插值(2)设计输入界面,用户输入函数的自变量和函数值,选择插值方法(3)分别运用三种方法进行函数插值,比较插值结果的准确性和光滑性4. 数值微分与积分(1)编写程序实现有限差分法、龙格-库塔法和辛普森法(2)设计输入界面,用户输入函数的导数或积分的上下限,选择数值方法(3)分别运用三种方法进行数值微分和积分,比较求解结果的准确性和计算效率四、实验结果与分析1. 线性方程组的求解通过实验,我们发现列主元素法在求解线性方程组时具有较好的数值稳定性,计算效率也较高。

而高斯消元法和克劳斯消元法在处理大型稀疏矩阵时存在一定的困难。

2. 矩阵特征值与特征向量的计算实验结果表明,QR算法和逆幂法在计算矩阵特征值与特征向量时具有较高的准确性和计算效率。

幂法在处理大型稀疏矩阵时表现出较好的性能。

3. 函数插值与曲线拟合在函数插值和曲线拟合实验中,样条插值方法具有较好的准确性和光滑性。

拉格朗日插值和牛顿插值方法在处理简单函数时表现良好,但在处理复杂函数时可能存在精度问题。

数值分析实验报告doc

数值分析实验报告doc

数值分析实验报告篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告数值分析实验报告课题一:解线性方程组的直接方法1.实验目的:1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;4、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。

2.实验过程:实验代码:#include "stdio.h"#include "math.h"#includeusing namespace std;//Gauss法void lzy(double **a,double *b,int n) {int i,j,k;double l,x[10],temp;for(k=0;k {for(j=k,i=k;j {if(j==k)temp=fabs(a[j][k]);else if(temp {temp=fabs(a[j][k]);i=j;}}if(temp==0){cout return;}elsefor(j=k;j {temp=a[k][j];a[k][j]=a[i][j];a[i][j]=temp;}temp=b[k];b[k]=b[i];b[i]=temp;}for(i=k+1;i {l=a[i][k]/a[k][k];for(j=k;j a[i][j]=a[i][j]-l*a[k][j]; b[i]=b[i]-l*b[k];}}if(a[n-1][n-1]==0){cout return;}x[n-1]=b[n-1]/a[n-1][n-1];for(i=n-2;i>=0;i--)temp=0;for(j=i+1;j temp=temp+a[i][j]*x[j]; x[i]=(b[i]-temp)/a[i][i];}for(i=0;i {printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}//平方根法void pfg(double **a,double *b,int n) {int i,k,m;double x[8],y[8],temp;for(k=0;k {temp=0;for(m=0;m temp=temp+pow(a[k][m],2); if(a[k][k] return;a[k][k]=pow((a[k][k]-temp),1.0/2.0); for(i=k+1;i {temp=0;for(m=0;m temp=temp+a[i][m]*a[k][m]; a[i][k]=(a[i][k]-temp)/a[k][k];}temp=0;for(m=0;m temp=temp+a[k][m]*y[m];y[k]=(b[k]-temp)/a[k][k];}x[n-1]=y[n-1]/a[n-1][n-1];for(k=n-2;k>=0;k--){temp=0;for(m=k+1;m temp=temp+a[m][k]*x[m];x[k]=(y[k]-temp)/a[k][k];}for(i=0;i {printf("x%d=%lf\t",i+1(转自:小草范文网:数值分析实验报告),x[i]);printf("\n");}}//追赶法void zgf(double **a,double *b,int n){int i;double a0[10],c[10],d[10],a1[10],b1[10],x[10],y[10];for(i=0;i {a0[i]=a[i][i];if(i c[i]=a[i][i+1];if(i>0)d[i-1]=a[i][i-1];}a1[0]=a0[0];for(i=0;i {b1[i]=c[i]/a1[i];a1[i+1]=a0[i+1]-d[i+1]*b1[i];}y[0]=b[0]/a1[0];for(i=1;i y[i]=(b[i]-d[i]*y[i-1])/a1[i];x[n-1]=y[n-1];for(i=n-2;i>=0;i--)x[i]=y[i]-b1[i]*x[i+1];for(i=0;i {printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}int main(){int n,i,j;double **A,**B,**C,*B1,*B2,*B3;A=(double **)malloc(n*sizeof(double)); B=(double **)malloc(n*sizeof(double));C=(double **)malloc(n*sizeof(double));B1=(double *)malloc(n*sizeof(double));B2=(double *)malloc(n*sizeof(double));B3=(double *)malloc(n*sizeof(double));for(i=0;i {A[i]=(double *)malloc((n)*sizeof(double));B[i]=(double*)malloc((n)*sizeof(double));C[i]=(double*)malloc((n)*sizeof(double)); }cout cin>>n;cout for(i=0;i for(j=0;j篇三:数值分析实验报告(包含源程序)课程实验报告课程实验报告。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电器数值分析仿真实验报告姓名学号班级时间2015学年秋季上机练习:一.问题描述平板空气电容器如图所示,求其电场的分布。

1. 仿真目的利用ansoft软件建立相应模型,求平行板电容器的电场分布2. 仿真过程与分析(1)过程分析:属于静电场问题,外边框设置气球边界。

(2)仿真过程:①选择求解场(Electrostatic)。

②利用Maxwell-2D仿真建立平行板容器的模型:③添加材料:极板为铜copper,板间真空vacuum。

④添加激励:左极板为0v,右极板为10v。

⑤外边框设置气球边界。

3. 仿真结果与讨论(一)实验结果(1)电场矢量分布:(2)电场标量分布:(3)电位移矢量分布:(4)电位移标量分布:(二)对实验结果的讨论从E,D的空间分布可以看出两个平行板电容器之间的电场为匀强电场,在极板边缘处电场分布出现尖端效应,右极板内侧的尖端电场强度最大,且为正极电场线从右极板发出,平行板电容器外部电场为零。

实验结果与理论分析基本相符。

4. 总结在进行建模的时候可以在画完一个极板后通过镜像对称这种简单的方法来画对称的图形。

运用仿真可以节省材料,在仿真的过程中,对仿真结果进行思考,会出现一些在理论分析中一般会忽略的现象,比如尖端效应等。

二.问题描述避雷器(铜)简化模型如图所示,求解避雷针的电压分布。

1. 仿真目的利用ansoft软件建立相应模型,求解避雷器的电压分布。

2. 仿真过程与分析(1)过程分析:属于静电场问题,外边框设置气球边界。

(2)仿真过程:①选择求解器:属于静电场问题(Electrostatic)②利用Maxwell-2D仿真建立平行板容器的模型:③添加材料:极板为铜copper。

④添加激励:最上面的极板接100v,最下面的接0v,设置边界条件为气球边界。

⑤设置求解器solver。

⑥求解电压分布。

3. 仿真结果与讨论(一)实验结果(1)避雷器的电压分布如下图所示:(二)对实验结果的讨论避雷器之间电压由100v到0v均匀降落电势大约分别为100v,67v,34v,0v,与极板间的距离成正比。

实验结果与理论分析相符。

4. 总结添加激励时,只需要将最顶的和最底的铜片分别加100v和0v,其他的不需要。

通过做仿真实验可得出铜板加的越多,电压分布在每片上的电势值就越小,不易击穿,让我进一步验证了理论。

三.问题描述一矩形接地金属槽,长40cm ,宽20cm,边界条件如图所示,求解槽内电压分布。

1. 仿真目的利用ansoft软件建立仿真模型,求解槽内电压分布。

2. 仿真过程与分析(1)过程分析:属于静电场问题,外边框设置气球边界。

(2)仿真过程:①选择求解器:静电场(Electrostatic)②利用Maxwell-2D仿真建立金属槽的模型:③添加材料:四个极板为铜copper。

④设置槽各个边框的激励电压:最上面的100v其他三个为0v。

设置边界条件为气球边界。

⑤设置求解器solver。

⑥求解电压分布。

3. 仿真结果与讨论(一)仿真结果(1)电压分布(二)对实验结果的讨论由于尖端效应,金属槽上极板两端与槽的间隙电场变化最快,在槽内,电场强度基本分布均匀,电势值正比于距离递减,所以呈现U型。

实验结果与理论分析相符。

4. 总结通过仿真实验可以直观快速的看到金属槽的电压分布,不用繁琐的计算。

进一步验证了理论,从而加深了对理论的理解。

四.问题描述两个半径为5mm的实心铁球,球心距为30mm,带电量均为1C。

分析空间电场分布。

1. 仿真目的利用ansoft软件建立仿真模型,求解两个实心铁球的空间电场分布。

2. 仿真过程与分析(1)过程分析:属于静电场问题,外边框设置偶对称边界。

(2)仿真过程:①选择求解场(Electrostatic)。

②建立实心铁球的模型:③添加材料:金属球为铁iron。

④添加激励:给实心铁球加电荷量为1C。

⑤添加边界:第一种四周加气球边界,第二种对称轴加对偶对称边界其余三条添加气球边界。

⑥设置求解器solver。

⑦求解空间电场分布。

3.仿真结果与讨论(一)仿真结果(1)空间电场分布气球边界对称边界(二)对实验结果的分析两个带有相同电荷量的铁球,连线中心处的电场为零,两个铁球周围的电场随距铁球距离的增加而减小,从两电荷中垂线到无穷远的电场强度先增大后减小,在两个电荷附近有最大值。

实验结果与理论分析相符合。

4.总结等量同种电荷的电场分布,将对称边界(1/2模型)由偶边even改成奇边odd,或者将左边金属球电荷量改为-1c来分析。

通过仿真实验,更直观的看到两电荷的库伦定律。

五、问题描述在一长直导线直径为5mm中通有1A的直流电流,求其周围磁力线的分布。

1. 仿真目的利用ansoft软件建立仿真模型,求无限长直导线周围磁力线分布。

2. 仿真过程与分析(1)过程分析:属于静磁场问题,外边框设置气球边界。

(2)仿真过程:①选择求解器:属于静磁场问题(Magnetostatic)。

②利用Maxwell-2D仿真建立5mm长直导线模型:③添加材料:导线为铜copper。

④给长直导线加激励电流为5A(方向为垂直纸面向外(positive))。

⑤设置求解器solver。

⑥求磁力线分布。

3. 仿真结果与讨论(一)仿真结果 (1)磁力线分布(二)对实验结果的讨论长直导线外磁力线的方向符合右手定则,外部大小符合RIB πμ20=成反比例关系,内部为B=μIr/2πR ²与r 有关呈线性关系。

实验结果与理论分析相符合.4.总结通过做仿真实验我更加清晰明确的看到了长直导线周围的磁力线分布。

六问题描述有一个电抗器,由三层线圈正向串联接在一个直流电源上。

电流由z轴右半轴流入,左半轴流出。

求电抗器磁感应强度分布状况。

1. 仿真目的利用ansoft软件建立仿真模型,求电抗器磁感应强度分布状况。

2. 仿真过程与分析(1)过程分析:属于静磁场问题,外边框可以设置气球边界,也可以用全气球边界。

(2)仿真过程:①选择求解器:属于静磁场(Magnetostatic)。

②利用Maxwell-2D仿真建立电抗器模型:③添加材料:极板为铜copper。

④添加激励:左边电流为10A,方向向外(positive); 右边电流为10A,方向向内(negative)。

并设置边界,第一种为全气球边界,第二种为对称边界,在对称轴边界设置为奇odd对称边界,其余为气球边界。

⑤设置求解器solver。

⑥求磁感应强度分布状况。

3. 仿真结果与讨论(一)仿真结果(1)采用对称边界得到的磁力线分布(2)采用全气球边界得到的磁力线分布(二)对实验结果的讨论实验结果与理论分析相符。

同种电流磁场相互削弱,异种电流磁场相互加强,电抗器中心轴处磁感应强度最强,向外逐渐减弱。

4.总结通过做仿真实验我更加清晰明确的看到了电抗器磁感应强度的分布。

七问题描述相互靠近的导体通有交变电流时,观察其邻近效应。

1. 仿真目的利用ansoft软件建立相关模型,当相互靠近的导体通有交变电流时,观察其邻近效应。

2. 仿真过程与分析(1)过程分析:属于涡流场问题,外边框设置气球边界。

(2)仿真过程:①选择求解器:为涡流场(Eddy Current)。

②利用Maxwell-2D仿真建立导体通有交变电流模型。

③添加材料:导线为铜copper。

④添加激励:电流大小为10A,方向分别向外(positive)。

并设置气球边界。

⑤设置求解器solver,其中选择频率为1KHz。

⑥观察临近效应。

3. 仿真结果与讨论(一)仿真结果(1)邻近效应(二)对实验结果的讨论在实验的过程中为了清晰的看到临近效应,需要通过不断的试验从而选择合适的电流大小、两根导线之间距离的大小和频率大小,最终得到的结论是:电流越大,间距越小以及频率越高时临近效应越明显。

4.总结在实验的过程中,通过不断的改变电流和频率,使我加深了对临近效应的理解。

二、铜导体通100A的交变电流(1KHz)1. 仿真目的利用ansoft软件建立相关模型,当相互靠近的导体通有交变电流时,观察其集肤效应。

2. 仿真过程与分析(1)过程分析:属于涡流场问题,外边框设置气球边界。

(2)仿真过程:①选择求解器:为涡流场(Eddy Current)。

②利用Maxwell-2D仿真建立导体通有交变电流模型。

③添加材料:导线为铜copper。

④添加激励:电流大小为100A,并设置气球边界。

⑤设置求解器solver,其中选择频率为1KHz。

⑥观察集肤效应。

3. 仿真结果与讨论(一)仿真结果(1)集肤效应(二)对实验结果的讨论集肤效应为当导体中有交流电或交变电磁场时,导体内部的电流分布不均匀,电流集中在导体外表的薄层,越靠近导体表面电流密度越大,导线内部实际上电流较小。

4.总结做仿真实验中,不断改变交变电流的频率,仿真结果不同,频率越高效果越明显,使我加深了对集肤效应的理解。

八问题描述两长直导线相距400mm,导体半径为20mm,其中一导线电势为220V,另一支导线电势为0V,其材料(material)是铁(iron),场域中介质是空气(air)。

观察电场分布。

1. 仿真目的利用ansoft软件建立相关模型,观察两根长直导线周围电场分布。

2. 仿真过程与分析(1)过程分析:属于静电场问题,外边框设置气球边界。

(2)仿真过程:①选择求解器:属于为静电场(Electrostatic)。

②建立俩长直导线模型:③添加材料:导体为铁iron,场域介质为空气air。

④添加激励:激励,左边导线电压大小为220V,右边导线电压大小为0V。

并设置气球边界。

⑤设置求解器solver。

⑥观察俩长直导线周围电场分布。

3. 仿真结果与讨论(一)仿真结果(1)电场分布(二)对实验结果的讨论两根长直导线周围电场线密集处,场强大;稀疏出,场强小。

电场线从左边电压为220V导线出发,右边电压为0V导线。

实验结果与理论分析相符。

4.总结实验结果与理论分析相符合,在实验的过程中,我对两根长直导线的空间电场分布有了更进一步的认识。

九问题描述如图:同轴电缆模型,内导体半径为20mm,外导体半径为160mm,厚度为20mm,内外导体均用银(silver),内外导体间填充树脂玻(plexiglass)。

内导体电势为380V,外导体电势为0V。

1. 仿真目的利用ansoft软件建立相关模型,观察同轴电缆电场分布。

2. 仿真过程与分析(1)过程分析:属于静电场问题,外边框设置气球边界。

(2)仿真过程:①选择求解器:属于静电场(Electrostatic)。

②利用Maxwell-2D仿真建立同轴电缆模型:③添加材料:内外导体均用银(silver),内外导体间填充树脂玻(plexiglass)。

④添加激励:内导体电势为380V,外导体电势为0V。

并设置气球边界。

相关文档
最新文档