数学建模 用matlAB编程实现的

合集下载

matlab数学建模程序代码

matlab数学建模程序代码

matlab数学建模程序代码【实用版】目录1.MATLAB 数学建模概述2.MATLAB 数学建模程序代码的基本结构3.常用的 MATLAB 数学建模函数和命令4.MATLAB 数学建模程序代码的编写流程5.MATLAB 数学建模程序代码的示例正文一、MATLAB 数学建模概述MATLAB(Matrix Laboratory)是一款强大的数学软件,广泛应用于数学建模、数据分析、可视化等领域。

通过 MATLAB,用户可以方便地进行数学计算、编写程序以及绘制图表等。

在数学建模领域,MATLAB 为研究人员和工程师提供了丰富的工具箱和函数,使得数学模型的构建、求解和分析变得更加简单高效。

二、MATLAB 数学建模程序代码的基本结构MATLAB 数学建模程序代码通常分为以下几个部分:1.导入 MATLAB 库:在建模过程中,可能需要使用 MATLAB 提供的某些库或工具箱,需要在代码开头进行导入。

2.定义变量和参数:在建模过程中,需要定义一些变量和参数,用于表示模型中的各个要素。

3.建立数学模型:根据实际问题,编写相应的数学表达式或方程,构建数学模型。

4.求解模型:通过调用 MATLAB 内置函数或使用自定义函数,对数学模型进行求解。

5.分析结果:对求解结果进行分析,提取所需的信息,例如计算均值、方差等统计量。

6.可视化结果:使用 MATLAB 绘制图表,将结果以直观的形式展示出来。

三、常用的 MATLAB 数学建模函数和命令MATLAB 提供了丰富的数学建模函数和命令,例如:1.线性规划:使用`linprog`函数求解线性规划问题。

2.非线性规划:使用`fmincon`或`fsolve`函数求解非线性规划问题。

3.优化问题:使用`optimize`函数求解优化问题。

4.数据处理:使用`mean`、`std`等函数对数据进行统计分析。

5.图表绘制:使用`plot`、`scatter`等函数绘制各种图表。

数学建模案例MATLAB实用程序百例

数学建模案例MATLAB实用程序百例

数学建模案例MATLAB实用程序百例实例1:三角函数曲线(1)functionhili01h0=figure('toolbar','none',...'poition',[198********],...'name','实例01');h1=a某e('parent',h0,...'viible','off');某=-pi:0.05:pi;y=in(某);plot(某,y);某label('自变量某');ylabel('函数值Y');title('SIN()函数曲线');gridon实例2:三角函数曲线(2)functionhili02h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例02');某=-pi:0.05:pi;y=in(某)+co(某);plot(某,y,'-某r','linewidth',1);gridon某label('自变量某');ylabel('函数值Y');title('三角函数');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例3:图形的叠加functionhili03h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例03');某=-pi:0.05:pi;y1=in(某);y2=co(某);plot(某,y1,...'-某r',...某,y2,...'--og');gridon某label('自变量某');ylabel('函数值Y');title('三角函数');实例4:双y轴图形的绘制functionhili04h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例04');某=0:900;a=1000;b=0.005;y1=2某某;y2=co(b某某);[ha某e,hline1,hline2]=plotyy(某,y1,某,y2,'emilogy','plot');a某e(ha某e(1))ylabel('emilogplot');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]a某e(ha某e(2))ylabel('linearplot');实例5:单个轴窗口显示多个图形functionhili05h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例05');t=0:pi/10:2某pi;[某,y]=mehgrid(t);ubplot(2,2,1)plot(in(t),co(t))a某iequalubplot(2,2,2)z=in(某)-co(y);plot(t,z)a某i([02某pi-22])ubplot(2,2,3)h=in(某)+co(y);plot(t,h)a某i([02某pi-22])ubplot(2,2,4)g=(in(某).^2)-(co(y).^2);plot(t,g)a某i([02某pi-11])实例6:图形标注functionhili06h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]'poition',[200150450400],...'name','实例06');t=0:pi/10:2某pi;h=plot(t,in(t));某label('t=0到2\\pi','fontize',16);ylabel('in(t)','fontize',16);title('\\it{从0to2\\pi的正弦曲线}','fontize',16)某=get(h,'某data');y=get(h,'ydata');imin=find(min(y)==y);ima某=find(ma某(y)==y);te某t(某(imin),y(imin),...['\\leftarrow最小值=',num2tr(y(imin))],...'fontize',16)te某t(某(ima某),y(ima某),...['\\leftarrow最大值=',num2tr(y(ima某))],...'fontize',16)实例7:条形图形functionhili07h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例07');tiao1=[56254822454541445745512];tiao2=[4748575854526548];t=0 :7;bar(t,tiao1)某label('某轴');ylabel('TIAO1值');/1.t某t[2022/5/141:14:29]h1=gca;h2=a某e('poition',get(h1,'poition'));plot(t,tiao2,'linewidth',3) et(h2,'ya某ilocation','right','color','none','某ticklabel',[])实例8:区域图形functionhili08h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例08');某=91:95;profit1=[8875849377];profit2=[5164545668];profit3=[425434252 4];profit4=[263818154];area(某,profit1,'facecolor',[0.50.90.6],...'edgecolor','b',. ..'linewidth',3)holdonarea(某,profit2,'facecolor',[0.90.850.7],...'edgecolor','y', ...'linewidth',3)holdonarea(某,profit3,'facecolor',[0.30.60.7],...'edgecolor','r',. ..'linewidth',3)holdonarea(某,profit4,'facecolor',[0.60.50.9],...'edgecolor','m',. ../1.t某t[2022/5/141:14:29]'linewidth',3)holdoffet(gca,'某tick',[91:95])et(gca,'layer','top')gte某t('\\leftarrow第一季度销量')gte 某t('\\leftarrow第二季度销量')gte某t('\\leftarrow第三季度销量')gte某t('\\leftarrow第四季度销量')某label('年','fontize',16);ylabel('销售量','fontize',16);实例9:饼图的绘制functionhili09h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例09');t=[542135;685435;452512;486845;685469];某=um(t);h=pie(某);te某tobj=findobj(h,'type','te某t');tr1=get(te某tobj,{'tring'});val1=get(te某tobj,{'e某tent'});olde某t=cat(1,val1{:});name={'商品一:';'商品二:';'商品三:'};tr2=trcat(name,tr1);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]et(te某tobj,{'tring'},tr2)val2=get(te某tobj,{'e某tent'});newe某t=cat(1,val2{:});offet=ign(olde某t(:,1)).某(newe某t(:,3)-olde某t(:,3))/2;po=get(te某tobj,{'poition'});te某tpo=cat(1,po{:});te某tpo(:,1)=te某tpo(:,1)+offet;et(te某tobj,{'poition'},num2cell(te某tpo,[3,2]))实例10:阶梯图functionhili10h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例10');a=0.01;b=0.5;t=0:10;f=e某p(-a某t).某in(b某t);tair(t,f)holdonplot(t,f,':某')holdoffglabel='函数e^{-(\\alpha某t)}in\\beta某t的阶梯图';gte某t(glabel,'fontize',16)某label('t=0:10','fontize',16)a某i([010-1.21.2])file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例11:枝干图functionhili11h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例11');某=0:pi/20:2某pi;y1=in(某);y2=co(某);h1=tem(某,y1+y2);holdonh2=plot(某,y1,'^r',某,y2,'某g');holdoffh3=[h1(1);h2];legend(h3,'y1+y2','y1=in(某)','y2=co(某)')某label('自变量某');ylabel('函数值Y');title('正弦函数与余弦函数的线性组合');实例12:罗盘图functionhili12h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例12');winddirection=[54246584256122356212532434254];windpower=[255368127614108];file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例13:轮廓图functionhili13h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例13');[th,r]=mehgrid((0:10:360)某pi/180,0:0.05:1);[某,y]=pol2cart(th,r);z=某+i某y;f=(z.^4-1).^(0.25);contour(某,y,ab(f),20)a某iequal某label('实部','fontize',16);ylabel('虚部','fontize',16);h=polar([02某pi],[01]);delete(h)holdoncontour(某,y,ab(f),20)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例14:交互式图形functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例14:交互式图形file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例15:变换的傅立叶函数曲线functionhili15file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))et(h,'value',j)m(:,j)=getframe(gcf);endc lf;a某e('poition',[0011]);movie(m,30)实例16:劳伦兹非线形方程的无序活动functionhili15h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]et(h,'value',j)m(:,j)=getframe(gcf);endclf;a某e('poition',[0011]);movie(m,30)实例17:填充图functionhili17h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例17');t=(1:2:15)某pi/8;某=in(t);y=co(t);fill(某,y,'r')a某iquareoffte某t(0,0,'STOP',...'color',[111],...'fontize',50,...'horizontalalignment','cent er')实例18:条形图和阶梯形图functionhili18h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例18');ubplot(2,2,1)某=-3:0.2:3;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]y=e某p(-某.某某);bar(某,y)title('2-DBarChart')ubplot(2,2,2)某=-3:0.2:3;y=e某p(-某.某某);bar3(某,y,'r')title('3-DBarChart')ubplot(2,2,3)某=-3:0.2:3;y=e某p(-某.某某);tair(某,y)title('StairChart')ubplot(2,2,4)某=-3:0.2:3;y=e某p(-某.某某);barh(某,y)title('HorizontalBarChart')实例19:三维曲线图functionhili19h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例19');ubplot(2,1,1)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,y1,z1,某,y2,z2,某,y3,z3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:3-DPlot')ubplot(2,1,2)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,z1,y1,某,z2,y2,某,z3,y3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:3-DPlot') file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例20:图形的隐藏属性functionhili20h0=figure('toolbar','none',...'poition',[200150450300],...'name','实例20');ubplot(1,2,1)[某,y,z]=phere(10);meh(某,y,z)a某iofftitle('Figure1:Opaque')hiddenonubplot(1,2,2)[某,y,z]=phere(1 0);meh(某,y,z)a某iofftitle('Figure2:Tranparent')hiddenoff实例21PEAKS函数曲线functionhili21h0=figure('toolbar','none',...'poition',[200100450450],...'name','实例21');[某,y,z]=peak(30);ubplot(2,1,1)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]z(i,j)=nan某z(i,j);urfc(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:urfc函数形成的曲面')ubplot(2,1,2)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);z(i,j)=nan某z(i,j);urfl(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:urfl函数形成的曲面')实例22:片状图functionhili22h0=figure('toolbar','none',...'poition',[200150550350],...'name','实例22');ubplot(1,2,1)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]trimeh(t,某,y,z)hiddenofftitle('Figure1:TriangularSurfacePlot');ubplot(1,2,2)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);triurf(t,某,y,z)title('Figure1:TriangularSurfacePlot');实例23:视角的调整functionhili23h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例23');某=-5:0.5:5;[某,y]=mehgrid(某);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;ubplot(2, 2,1)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a 某i')title('Figure1')view(-37.5,30)ubplot(2,2,2)urf(某,y,z) file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure2')view(-37.5+90,30)ubplot(2,2,3)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure3')view(-37.5,60)ubplot(2,2,4)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure4')view(180,0)实例24:向量场的绘制functionhili24h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例24');ubplot(2,2,1)z=peak;ribbon(z)title('Figure1')file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]ubplot(2,2,2)[某,y,z]=peak(15);[d某,dy]=gradient(z,0.5,0.5);contour(某,y,z,10)holdonquiver(某,y,d 某,dy)holdofftitle('Figure2')ubplot(2,2,3)[某,y,z]=peak(15);[n某,ny,nz]=urfnorm(某,y,z);urf(某,y,z)holdonquiver3(某,y,z,n某,ny,nz)holdofftitle('Figure3')ubplot(2,2,4)某=rand(3,5);y=rand(3,5);z=rand(3,5);c=rand(3,5);fill3(某,y,z,c)gr idontitle('Figure4')实例25:灯光定位functionhili25h0=figure('toolbar','none',...'poition',[200150450250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'name','实例25');vert=[111;121;221;211;112;122;222;212];fac=[1234;2673;4378;1584;1265;5678];gridoffphere(36)h=findobj('type','urface');et(h,'facelighting','phong',...'facecolor',...'interp',...'edgecolor',[0.40.40.4],...'backfacelighting',...'lit')holdo npatch('face',fac,'vertice',vert,...'facecolor','y');light('p oition',[132]);light('poition',[-3-13]);materialhinya某ivi3doffholdoff实例26:柱状图functionhili26h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'poition',[20050450450],...'name','实例26');ubplot(2,1,1)某=[521873986555432];bar(某)某label('某轴');ylabel('Y轴');title('第一子图');ubplot(2,1,2)y=[521873986555432];barh(y)某label('某轴');ylabel('Y轴');title('第二子图');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]实例27:设置照明方式functionhili27h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例27');ubplot(2,2,1)pherehadingflatcamlightleftcamlightrightlighti ngflatcolorbara某iofftitle('Figure1')ubplot(2,2,2)pherehadingflatcamlightleftcaml ightrightlightinggouraudcolorbara某iofftitle('Figure2')ubplot(2,2,3)pherehadinginterpcamlightrightc amlightleftlightingphongfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colorbara某iofftitle('Figure3')ubplot(2,2,4)pherehadingflatcamlightleftcaml ightrightlightingnonecolorbara某iofftitle('Figure4')实例28:羽状图functionhili28h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例28');ubplot(2,1,1)alpha=90:-10:0;r=one(ize(alpha));m=alpha某pi/180;n=r某10;[u,v]=pol2cart(m,n);feather(u,v)title('羽状图')a 某i([020010])ubplot(2,1,2)t=0:0.5:10;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]某=0.05+i;y=e某p(-某某t);feather(y)title('复数矩阵的羽状图')实例29:立体透视(1)functionhili29h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例29');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);gridonfori=-2:0.5:2;h1=urf(linpace(-2,2,20),...linpace(-2,2,20),...zero(20)+i);rotate(h1,[1-11],30)d某=get(h1,'某data');dy=get(h1,'ydata');dz=get(h1,'zdata');delete(h1) lice(某,y,z,v,[-22],2,-2)holdonlice(某,y,z,v,d某,dy,dz)holdoffa某itightfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]view(-5,10)drawnowend实例30:立体透视(2)functionhili30h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例30');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);[d某,dy,dz]=cylinder;lice(某,y,z,v,[-22],2,-2)fori=-2:0.2:2 h=urface(d某+i,dy,dz);rotate(h,[100],90)某p=get(h,'某data');yp=get(h,'ydata');zp=get(h,'zdata');delete(h)holdonh=lice (某,y,z,v,某p,yp,zp);a某itight某lim([-33])view(-10,35)drawnowdelete(h)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]holdoffend实例31:表面图形functionhili31h0=figure('toolbar','none',...'poition',[200150550250],...'name','实例31');ubplot(1,2,1)某=rand(100,1)某16-8;y=rand(100,1)某16-8;r=qrt(某.^2+y.^2)+ep;z=in(r)./r;某lin=linpace(min(某),ma某(某),33);ylin=linpace(min(y),ma 某(y),33);[某,Y]=mehgrid(某lin,ylin);Z=griddata(某,y,z,某,Y,'cubic');meh(某,Y,Z)a某itightholdonplot3(某,y,z,'.','Markerize',20)ubplot(1,2,2)k=5;n=2^k-1;theta=pi某(-n:2:n)/n;phi=(pi/2)某(-n:2:n)'/n;某=co(phi)某co(theta);Y=co(phi)某in(theta);Z=in(phi)某one(ize(theta));file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colormap([000;111])C=hadamard(2^k);urf(某,Y,Z,C)a某iquare 实例32:沿曲线移动的小球h0=figure('toolbar','none',...'poition',[198********],...'name','实例32');h1=a某e('parent',h0,...'poition',[0.150.450.70.5],...'viible','on');t= 0:pi/24:4某pi;y=in(t);plot(t,y,'b')n=length(t);h=line('color',[00.50.5],...'linetyle','.',...'markerize',25,...'eraemode','某or');k1=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[801005030],...'tring','开始',...'callback',[...'i=1;',...'k=1;,',...'m=0;,',...'while1,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'ifk==0,',...'break,',...'end,',...'ifk~=0,',...'et(h,''某data'',t(i),''ydata'',y(i)),',...'drawnow;,',...'i=i+1;,', (i)i>n,',...'m=m+1;,',...'i=1;,',...'end,',...'end,',...'end']);k2= uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[1801005030],...'tring','停止',...'callback',[...'k=0;,',...'et(e1,''tring'',m),',...'p=get(h,''某data'');,',...'q=get(h,''ydata'');,',...'et(e2,''tring'',p);,',. ..'et(e3,''tring'',q)']);k3=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[2801005030],...'tring','关闭',...'callback','cloe');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]e1=uicontrol('parent',h0,...'tyle','edit',...'poition',[60306020]);t1=uicontrol('parent',h0,...'tyle','te某t',...'tring','循环次数',...'poition',[60506020]);e2=uicontrol('parent',h0,...'tyle','edit',...'poition',[180305020]);t2=uicontrol('parent ',h0,...'tyle','te某t',...'tring','终点的某坐标值',...'poition',[1555010020]);e3=uicontrol('parent',h0,...'tyle', 'edit',...'poition',[300305020]);t3=uicontrol('parent',h0,...'ty le','te某t',...'tring','终点的Y坐标值',...'poition',[2755010020]);实例33:曲线转换按钮h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例33');某=0:0.5:2某pi;y=in(某);h=plot(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]gridonhuidiao=[...'ifi==1,',...'i=0;,',...'y=co(某);,',...'delete(h),',...'et(hm,''tring'',''正弦函数''),',...'h=plot(某,y);,',...'gridon,',...'eleifi==0,',...'i=1;, ',...'y=in(某);,',...'et(hm,''tring'',''余弦函数''),',...'delete(h),',...'h=plot(某,y);,',...'gridon,',...'end,' ,...'end'];hm=uicontrol(gcf,'tyle','puhbutton',...'tring','余弦函数',...'callback',huidiao);i=1;et(hm,'poition',[250206020]);et(gca,'poition',[0.20.20.60.6] )title('按钮的使用')holdon实例34:栅格控制按钮h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'poition',[200150450250],...'name','实例34');某=0:0.5:2某pi;y=in(某);plot(某,y)huidiao1=[...'et(h_toggle2,''value'',0),',...'gridon,',...];huidiao2=[...'et(h_toggle1,''value'',0),',...'gridoff,',...];h_toggle1=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idon',...'value',0,...'poition',[20455020],...'callback',huidiao1);h_toggle2=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idoff',...'value',0,...'poition',[20205020],...'callback',huidiao2);et(gca,'poition',[0.20.20.60.6])title('开关按钮的使用')实例35:编辑框的使用h0=figure('toolbar','none',...'poition',[200150350250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'name','实例35');f='Pleaeinputtheletter';huidiao1=[...'g=upper(f);,',...'et(h2_edit,''tring'',g),',...];huidiao2=[ ...'g=lower(f);,',...'et(h2_edit,''tring'',g),',...];h1_edit=uicontrol(gcf,'tyle','edit',...'poition',[1002001005 0],...'HorizontalAlignment','left',...'tring','Pleaeinputtheletter',...'callback','f=get(h1_edit,''tring'');',...'background','w ',...'ma某',5,...'min',1);h2_edit=uicontrol(gcf,'tyle','edit',...'HorizontalAlignment','left',...'poition',[10010010050],...' background','w',...'ma某',5,...'min',1);h1_button=uicontrol(gcf,'tyle','puhbutton',...'tring','小写变大写',...'poition',[1004510020],...'callback',huidiao1);h2_button=ui control(gcf,'tyle','puhbutton',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'tring','大写变小写',...'poition',[1002010020],...'callback',huidiao2);实例36:弹出式菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例36');某=0:0.5:2某pi;y=in(某);h=plot(某,y);gridonhm=uicontrol(gcf,'tyle','popupmenu',...'tring',...'in(某)|co(某)|in(某)+co(某)|e某p(-in(某))',...'poition',[250205020]);et(hm,'value',1)huidiao=[...'v=get(hm,''value'');,',...'witchv,',...'cae1,',...'delete(h ),',...'y=in(某);,',...'h=plot(某,y);,',...'gridon,',...'cae2,', ...'delete(h),',...'y=co(某);,',...'h=plot(某,y);,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'gridon,',...'cae3,',...'delete(h),',...'y=in(某)+co(某);,', ...'h=plot(某,y);,',...'gridon,',...'cae4,',...'delete(h),',...' y=e某p(-in(某));,',...'h=plot(某,y);,',...'gridon,',...'end'];et(hm,'callback',huidiao)et(gca,'poition',[0.20.20.60.6])tit le('弹出式菜单的使用')holdonfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]实例37:滑标的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例37');[某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);h1=a某e('poition',...[0.20.20.50.5],...'viible','off');hte某t=uicontrol(gcf,...'unit','point',...'poition',[20304515],...'tring','brightne' ,...'tyle','te某t');hlider=uicontrol(gcf,...'unit','point',...'poition',[101030015],...'min',-1,...'ma某',1,...'tyle','lider',...'callback',...'brighten(get(hlider,''value''))');实例38:多选菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例38');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31][某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);hlit=uic ontrol(gcf,'tyle','litbo某',...'tring','default|pring|ummer|autumn|winter',...'ma某',5,...'min',1,...'poition',[202080100],...'callback',[...'k=get(hlit,''value' ');,',...'witchk,',...'cae1,',...'colormapdefault,',...'cae2,',...'colormappring,',...'cae3,',...'colormapummer,',...'cae4,',...'colormapautumn,',...'cae5,',...'colormapwinter,',...'end']);实例39:菜单控制的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例39');某=0:0.5:2某pi;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]y=co(某);h=plot(某,y);gridonet(gcf,'toolbar','none')hm=uimenu('label','e某ample');huidiao1=[...'et(hm_gridon,''checked'',''on''),',...'et(hm_gridoff,''chec ked'',''off''),',...'gridon'];huidiao2=[...'et(hm_gridoff,''checked'',''on''),',...'et(hm_gridon,''chec ked'',''off''),',...'gridoff'];hm_gridon=uimenu(hm,'label','gridon',...'checked','on',...'c allback',huidiao1);hm_gridoff=uimenu(hm,'label','gridoff',...'checked','off',.. .'callback',huidiao2);实例40:UIMENU菜单的应用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例40');h1=uimenu(gcf,'label','函数');h11=uimenu(h1,'label','轮廓图',...'callback',[...'et(h31,''checked'',''on''),',...'et(h32,''checked'',''off'' ),',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]'[某,y,z]=peak;,',...'contour3(某,y,z,30)']);。

使用Matlab技术进行建模和仿真的步骤

使用Matlab技术进行建模和仿真的步骤

使用Matlab技术进行建模和仿真的步骤引言:Matlab是一种功能强大的数学计算软件,被广泛应用于各个领域的科学研究和工程技术中。

其中,建模和仿真是Matlab应用的重要方面,它可以帮助工程师和研究人员分析和预测各种系统的行为。

本文将介绍使用Matlab技术进行建模和仿真的步骤,包括建立模型、定义参数、进行仿真和分析结果等。

一、确定建模目标在开始建模之前,首先需要明确建模的目标和需求。

例如,我们可以通过建模来分析电路、机械系统或者物理过程等。

只有明确了建模目标,才能选择合适的建模方法和工具。

二、选择合适的建模方法建模方法可以根据系统的特点和需求进行选择。

常用的建模方法包括物理建模、统计建模、数据驱动建模等。

物理建模是基于系统的物理原理和方程进行建模,统计建模是通过统计分析来描述系统的行为,数据驱动建模则是利用已有的数据来建立模型。

根据不同的情况,选择合适的建模方法至关重要。

三、建立模型在Matlab中,建立模型可以使用Simulink或者编程的方式。

Simulink是一种基于图形化界面的建模工具,可以通过拖拽组件和连接线来搭建模型。

编程的方式则可以使用Matlab脚本语言来描述系统的数学模型。

根据系统的特点和个人的喜好,选择适合自己的建模方式。

四、定义参数和初始条件在建立模型之后,需要定义参数和初始条件。

参数是影响系统行为的变量,可以通过Matlab的变量赋值来定义。

初始条件是模型在仿真开始之前系统的状态,也需要进行设定。

对于一些复杂的系统,可能需要对模型进行调优和参数敏感性分析等,以获取更加准确的结果。

五、进行仿真在模型建立并定义好参数和初始条件之后,就可以进行仿真了。

仿真是通过运行模型,模拟系统在不同条件下的行为。

Matlab提供了强大的仿真功能,可以灵活地设置仿真时间步长和仿真条件,进行数据记录和后续分析。

六、分析结果仿真完成后,需要对仿真结果进行分析。

Matlab提供了各种分析工具和函数,可以方便地对仿真数据进行处理和可视化。

matlab数学建模100例

matlab数学建模100例

matlab数学建模100例Matlab是一种强大的数学建模工具,广泛应用于科学研究、工程设计和数据分析等领域。

在这篇文章中,我们将介绍100个使用Matlab进行数学建模的例子,帮助读者更好地理解和应用这个工具。

1. 线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合直线。

2. 多项式拟合:使用Matlab拟合一组数据点,得到最佳拟合多项式。

3. 非线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合曲线。

4. 插值模型:使用Matlab根据已知数据点,估计未知数据点的值。

5. 数值积分:使用Matlab计算函数的定积分。

6. 微分方程求解:使用Matlab求解常微分方程。

7. 矩阵运算:使用Matlab进行矩阵的加减乘除运算。

8. 线性规划:使用Matlab求解线性规划问题。

9. 非线性规划:使用Matlab求解非线性规划问题。

10. 整数规划:使用Matlab求解整数规划问题。

11. 图论问题:使用Matlab解决图论问题,如最短路径、最小生成树等。

12. 网络流问题:使用Matlab解决网络流问题,如最大流、最小费用流等。

13. 动态规划:使用Matlab解决动态规划问题。

14. 遗传算法:使用Matlab实现遗传算法,求解优化问题。

15. 神经网络:使用Matlab实现神经网络,进行模式识别和预测等任务。

16. 支持向量机:使用Matlab实现支持向量机,进行分类和回归等任务。

17. 聚类分析:使用Matlab进行聚类分析,将数据点分成不同的类别。

18. 主成分分析:使用Matlab进行主成分分析,降低数据的维度。

19. 时间序列分析:使用Matlab进行时间序列分析,预测未来的趋势。

20. 图像处理:使用Matlab对图像进行处理,如滤波、边缘检测等。

21. 信号处理:使用Matlab对信号进行处理,如滤波、频谱分析等。

22. 控制系统设计:使用Matlab设计控制系统,如PID控制器等。

如何使用MATLAB进行数学建模与分析

如何使用MATLAB进行数学建模与分析

如何使用MATLAB进行数学建模与分析第一章 MATLAB简介与安装MATLAB是一款强大的数值计算软件,广泛应用于科学计算、工程建模、数据处理和可视化等领域。

本章将介绍MATLAB的基本特点、主要功能以及安装方法。

首先,MATLAB具有灵活的编程语言,可以进行复杂的数学运算和算法实现。

其次,MATLAB集成了丰富的数学函数库,包括线性代数、优化、常微分方程等方面的函数,方便用户进行数学建模和分析。

最后,MATLAB提供了直观友好的图形界面,使得数据处理和结果展示更加便捷。

为了使用MATLAB进行数学建模与分析,首先需要安装MATLAB软件。

用户可以从MathWorks官网上下载最新版本的MATLAB安装程序,并按照提示进行安装。

安装完成后,用户需要根据自己的需要选择合适的许可证类型,并激活MATLAB软件。

激活成功后,用户将可以使用MATLAB的全部功能。

第二章 MATLAB基本操作与语法在开始进行数学建模与分析之前,用户需要了解MATLAB的基本操作和语法。

本章将介绍MATLAB的变量定义与赋值、矩阵运算、函数调用等基本操作。

首先,MATLAB使用变量来存储数据,并可以根据需要对变量进行重新赋值。

变量名可以包含字母、数字和下划线,但不允许以数字开头。

其次,MATLAB支持矩阵运算,可以方便地进行矩阵的加减乘除、转置和求逆等操作。

用户只需要输入相应的矩阵运算符和矩阵变量即可。

然后,MATLAB提供了丰富的数学函数,用户可以直接调用这些函数进行数学运算。

最后,用户可以根据需要编写自定义函数,实现更复杂的算法和数学模型。

第三章数学建模与优化数学建模是利用数学方法和技巧,对实际问题进行描述、分析和求解的过程。

本章将介绍如何使用MATLAB进行数学建模与优化。

首先,数学建模的第一步是问题描述和模型构建。

用户需要明确问题的目标、约束条件和决策变量,并将其转化为数学模型。

其次,用户可以使用MATLAB提供的优化函数,对数学模型进行求解。

使用Matlab进行数据模型建立的方法

使用Matlab进行数据模型建立的方法

使用Matlab进行数据模型建立的方法引言:数据模型是对现实世界中特定事物或过程的简化和抽象。

在各个领域中,数据模型的建立对研究和应用具有重要的意义。

本文将介绍使用Matlab进行数据模型建立的方法,包括数据预处理、特征选择、模型选择和评估等方面。

一、数据预处理数据预处理是数据建模过程中非常重要的一步,它可以排除异常值、缺失值和重复值等不合理数据,提高模型的准确性。

在Matlab中,可以通过以下几个步骤进行数据预处理。

1.数据清洗:对数据集中的异常值进行检测和修正。

可以使用Matlab内置的函数,如isoutlier和fillmissing,来判断和处理异常值。

2.数据缺失值处理:对于存在缺失值的数据,可以使用插补方法进行填充。

Matlab提供了多种插补方法,如线性插值、多重插补等。

3.数据标准化:对于不同量纲的特征,需要对其进行标准化处理。

Matlab提供了zscore函数可以实现标准化操作,将变量转化为标准正态分布。

二、特征选择特征选择是从原始数据中选择出最有意义和最相关的特征,以提高模型的精确度和解释性。

在Matlab中,可以使用以下方法进行特征选择。

1.过滤方法:通过统计学指标和相关性分析,筛选出与目标变量相关性较高的特征。

在Matlab中,可以使用相关性系数、卡方检验等方法进行特征选择。

2.包裹方法:基于模型的特征选择方法,通过建立模型不断迭代,选择最佳特征子集。

Matlab提供了函数,如sequentialfs和ga,来实现特征选择。

3.嵌入方法:将特征选择过程嵌入到模型训练中,在训练过程中对特征进行选择。

Matlab中,可以使用Lasso、Ridge回归等方法进行特征嵌入。

三、模型选择在数据模型建立过程中,选择合适的模型是至关重要的。

Matlab提供了丰富的统计学和机器学习模型,可以根据实际问题选择适合的模型。

1.线性回归模型:适用于线性关系建模,通过最小二乘法估计模型参数。

Matlab提供了线性回归模型拟合函数lmfit,可以方便地进行线性回归分析。

matlab数学建模常用模型及编程

matlab数学建模常用模型及编程

matlab数学建模常用模型及编程摘要:一、引言二、MATLAB 数学建模的基本概念1.矩阵的转置2.矩阵的旋转3.矩阵的左右翻转4.矩阵的上下翻转5.矩阵的逆三、MATLAB 数学建模的常用函数1.绘图函数2.坐标轴边界3.沿曲线绘制误差条4.在图形窗口中保留当前图形5.创建线条对象四、MATLAB 数学建模的实例1.牛顿第二定律2.第一级火箭模型五、结论正文:一、引言数学建模是一种将现实世界中的问题抽象成数学问题,然后通过数学方法来求解的过程。

在数学建模中,MATLAB 作为一种强大的数学软件,被广泛应用于各种数学问题的求解和模拟。

本文将介绍MATLAB 数学建模中的常用模型及编程方法。

二、MATLAB 数学建模的基本概念在使用MATLAB 进行数学建模之前,我们需要了解一些基本的概念,如矩阵的转置、旋转、左右翻转、上下翻转以及矩阵的逆等。

1.矩阵的转置矩阵的转置是指将矩阵的一行和一列互换,得到一个新的矩阵。

矩阵的转置运算符是单撇号(’)。

2.矩阵的旋转利用函数rot90(a,k) 将矩阵a 旋转90 的k 倍,当k 为1 时可省略。

3.矩阵的左右翻转对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,依次类推。

matlab 对矩阵a 实施左右翻转的函数是fliplr(a)。

4.矩阵的上下翻转matlab 对矩阵a 实施上下翻转的函数是flipud(a)。

5.矩阵的逆对于一个方阵a,如果存在一个与其同阶的方阵b,使得:a·bb·a=|a|·|b|·I,则称矩阵b 是矩阵a 的逆矩阵。

其中,|a|表示矩阵a 的行列式,I 是单位矩阵。

在MATLAB 中,我们可以使用函数inv(a) 来求解矩阵a 的逆矩阵。

三、MATLAB 数学建模的常用函数在MATLAB 数学建模过程中,我们经常需要使用一些绘图和数据处理函数,如绘图函数、坐标轴边界、沿曲线绘制误差条、在图形窗口中保留当前图形、创建线条对象等。

matlab数学建模程序代码

matlab数学建模程序代码

matlab数学建模程序代码
当进行数学建模时,MATLAB是一个强大的工具,用于实现和测试模型。

下面是一个简单的MATLAB代码示例,演示如何使用MATLAB进行一维线性回归建模:
```matlab
%生成示例数据
x=[1,2,3,4,5];
y=[2.8,3.9,4.8,5.5,6.3];
%进行一维线性回归
coefficients=polyfit(x,y,1);
slope=coefficients(1);
intercept=coefficients(2);
%绘制原始数据和回归线
scatter(x,y,'o','DisplayName','原始数据');
hold on;
plot(x,polyval(coefficients,x),'r-','DisplayName','回归线');
hold off;
%添加标签和图例
xlabel('X轴');
ylabel('Y轴');
title('一维线性回归建模示例');
legend('show');
%输出回归方程的系数
fprintf('回归方程:y=%.2fx+%.2f\n',slope,intercept);
```
此代码生成了一些示例数据,然后使用一维线性回归对数据进行建模。

回归方程的系数将被计算,并且原始数据与回归线将在图上显示。

请注意,这只是一个简单的示例,实际上,你可能需要根据你的具体问题修改代码。

如何用MATLAB进行数学建模

如何用MATLAB进行数学建模

如何用MATLAB进行数学建模下面是一个关于如何用MATLAB进行数学建模的文章范例:MATLAB是一种强大的数学软件工具,广泛应用于各种数学建模问题的解决。

通过合理利用MATLAB的功能和特性,可以更加高效地进行数学建模,并得到准确的结果。

本文将介绍如何使用MATLAB进行数学建模,并给出一些实际例子。

一、数学建模的基本步骤数学建模是指将实际问题转化为数学模型,并利用数学方法对其进行求解和分析的过程。

在使用MATLAB进行数学建模之前,我们需要明确问题的具体要求,然后按照以下基本步骤进行操作:1. 理解问题:深入了解问题背景、影响因素以及目标要求,确保对问题有一个清晰的认识。

2. 建立模型:根据问题的特性,选择合适的数学模型,并将问题转化为相应的数学表达式。

3. 编写MATLAB代码:利用MATLAB的计算功能和算法库,编写用于求解数学模型的代码。

4. 数据处理和结果分析:在获得计算结果后,根据需要进行数据处理和结果分析,评估模型的准确性和可行性。

二、MATLAB的数学建模工具MATLAB提供了一系列用于数学建模的工具箱和函数,这些工具可以帮助我们快速构建数学模型,并进行求解。

下面是一些常用的数学建模工具:1. 符号计算工具箱:MATLAB的符号计算工具箱可以实现符号运算,用于建立和求解复杂的数学表达式。

2. 优化工具箱:优化工具箱可以用于求解多种优化问题,如线性规划、非线性规划、整数规划等。

3. 数值解工具箱:数值解工具箱提供了各种数值方法和算法,用于求解微分方程、积分方程、差分方程等数学问题。

4. 统计工具箱:统计工具箱可以进行统计建模和分析,包括假设检验、回归分析、时间序列分析等。

5. 控制系统工具箱:控制系统工具箱用于建立和分析控制系统模型,包括经典控制和现代控制方法。

三、数学建模实例为了更好地展示使用MATLAB进行数学建模的过程,我们给出一个实际的数学建模例子:求解物体的自由落体运动。

数据建模常规方法的Matlab实现(实例)

数据建模常规方法的Matlab实现(实例)
美国人口数据百万1860187018801960197019801990200031438650217932040226525142814数据tx数据xy用最小二乘法估计rs模型检验用模型计算2000年美国人口误差不到3阻滞增长模型logistic模型r025573921用美国18601990年数据去掉个别异常数据与实际数据2000年为2814比较101520501001502002503001790年为零点2745logistic模型的应用模型应用加入2000年人口数据后重新估计模型参数r024904340x20103060预报美国2010年的人口种群数量模型鱼塘中的鱼群森林中的树木
MATLAB(liti21)
3)运算结果为: f =0.0043 0.0051 0.0056 0.0059
0.0062 0.0062 0.0063 0.0063 x = 0.0063 -0.0034 0.2542
0.0061 0.0063
4)结论:a=0.0063, b=-0.0034, k=0.2542
的。
1. lsqcurvefit
已知数据点: xdata=(xdata1,xdata2,…,xdatan),
ydata=(ydata1,ydata2,…,ydatan) lsqcurvefit用以求含参量x(向量)的向量值函数
F(x,xdata)=(F(x,xdata1),…,F(x,xdatan))T 中的参变量x(向量),使得
6 0.28 15
-0.02
解:(1)画出散点图: x=[0;0.4;1.2;2;2.8;3.6;4.4;5.2;6;7.2;8;9.2;10.4;11.6;12.4;13.6; 14.4;15]; y=[1;0.85;0.29;-0.27;-0.53;-0.4;-0.12;0.17;0.28;0.15;-0.03;0.15;-0.071;0.059;0.08;0.032;-0.015;-0.02]; plot(x,y,'r*')

数学建模算法的matlab代码

数学建模算法的matlab代码

二,hamiton回路算法提供一种求解最优哈密尔顿的算法---三边交换调整法,要求在运行jiaohuan3(三交换法)之前,给定邻接矩阵C和节点个数N,结果路径存放于R中。

bianquan.m文件给出了一个参数实例,可在命令窗口中输入bianquan,得到邻接矩阵C和节点个数N以及一个任意给出的路径R,,回车后再输入jiaohuan3,得到了最优解。

由于没有经过大量的实验,又是近似算法,对于网络比较复杂的情况,可以尝试多运行几次jiaohuan3,看是否能到进一步的优化结果。

%%%%%%bianquan.m%%%%%%%N=13;for i=1:Nfor j=1:NC(i,j)=inf;endendfor i=1:NC(i,i)=0;endC(1,2)=6.0;C(1,13)=12.9;C(2,3)=5.9;C(2,4)=10.3;C(3,4)=12.2;C(3,5)=17.6;C(4,13)=8.8;C(4,7)=7.4;C(4,5)=11.5;C(5,2)=17.6;C(5,6)=8.2;C(6,9)=14.9;C(6,7)=20.3;C(7,9)=19.0;C(7,8)=7.3;C(8,9)=8.1;C(8,13)=9.2;C(9,10)=10.3;C(10,11)=7.7;C(11,12)=7.2;C(12,13)=7.9;for i=1:Nfor j=1:Nif C(i,j) < infC(j,i)=C(i,j);endendendfor i=1:NC(i,i)=0;endR=[4 7 6 5 3 2 1 13 12 11 10 9 8];<pre name="code" class="plain">%%%%%%%%jiaohuan3.m%%%%%%%%%%n=0;for I=1:(N-2)for J=(I+1):(N-1)for K=(J+1):Nn=n+1;Z(n,:)=[I J K];endendendR=1:Nfor m=1:(N*(N-1)*(N-2)/6)I=Z(m,1);J=Z(m,2);K=Z(m,3); r=R;if J-I~=1&K-J~=1&K-I~=N-1 for q=1:(J-I)r(I+q)=R(J+1-q);endfor q=1:(K-J)r(J+q)=R(K+1-q);endendif J-I==1&K-J==1r(K)=R(J);r(J)=R(K);endif J-I==1&K-J~=1&K-I~=N-1 for q=1:(K-J)r(I+q)=R(I+1+q); endr(K)=R(J);endif K-J==1&J-I~=1&K~=Nfor q=1:(J-I)r(I+1+q)=R(I+q); endr(I+1)=R(K);endif I==1&J==2&K==Nfor q=1:(N-2)r(1+q)=R(2+q);endr(N)=R(2);endif I==1&J==(N-1)&K==Nfor q=1:(N-2)r(q)=R(1+q);endr(N-1)=R(1);endif J-I~=1&K-I==N-1for q=1:(J-1)r(q)=R(1+q);endr(J)=R(1);endif J==(N-1)&K==N&J-I~=1r(J+1)=R(N);for q=1:(N-J-1)r(J+1+q)=R(J+q);endendif cost_sum(r,C,N)<cost_sum(R,C,N)R=rendendfprintf('总长为%f\n',cost_sum(R,C,N))%%%%%%cost_sum.m%%%%%%%%functiony=cost_sum(x,C,N)y=0;for i=1:(N-1)y=y+C(x(i),x(i+1));endy=y+C(x(N),x(1));三,灰色预测代码<pre name="code" class="plain">clearclcX=[136 143 165 152 165 181 204 272 319 491 571 605 665 640 628];x1(1)=X(1);X1=[];for i=1:1:14x1(i+1)=x1(i)+X(i+1);X1=[X1,x1(i)];endX1=[X1,X1(14)+X(15)]for k=3:1:15p(k)=X(k)/X1(k-1);p1(k)=X1(k)/X1(k-1);endp,p1clear kZ=[];for k=2:1:15z(k)=0.5*X1(k)+0.5*X1(k-1);Z=[Z,z(k)];endZB=[-Z',ones(14,1)]Y=[];clear ifor i=2:1:15Y=[Y;X(i)];endYA=inv(B'*B)*B'*Yclear ky1=[];for k=1:1:15y(k)=(X(1)-A(2)/A(1))*exp(-A(1)*(k-1))+A(2)/A(1); y1=[y1;y(k)];endy1clear kX2=[];for k=2:1:15x2(k)=y1(k)-y1(k-1);X2=[X2;x2(k)];endX2=[y1(1);X2]e=X'-X2m=abs(e)./X's=e'*en=sum(m)/13clear ksyms ky=(X(1)-A(2)/A(1))*exp(-A(1)*(k-1))+A(2)/A(1)Y1=[];for j=16:1:21y11=subs(y,k,j)-subs(y,k,j-1);Y1=[Y1;y11];endY1%程序中的变量定义:alpha是包含α、μ值的矩阵;%ago是预测后累加值矩阵;var是预测值矩阵;%error是残差矩阵; c是后验差比值function basicgrey(x,m) %定义函数basicgray(x)if nargin==1 %m为想预测数据的个数,默认为1 m=1;endclc; %清屏,以使计算结果独立显示if length(x(:,1))==1 %对输入矩阵进行判断,如不是一维列矩阵,进行转置变换x=x';endn=length(x); %取输入数据的样本量x1(:,1)=cumsum(x); %计算累加值,并将值赋及矩阵be for i=2:n %对原始数列平行移位 Y(i-1,:)=x(i,:);endfor i=2:n %计算数据矩阵B的第一列数据z(i,1)=0.5*x1(i-1,:)+0.5*x1(i,:);endB=ones(n-1,2); %构造数据矩阵BB(:,1)=-z(2:n,1);alpha=inv(B'*B)*B'*Y; %计算参数α、μ矩阵for i=1:n+m %计算数据估计值的累加数列,如改n+1为n+m可预测后m个值ago(i,:)=(x1(1,:)-alpha(2,:)/alpha(1,:))*exp(-alpha(1, :)*(i-1))+alpha(2,:)/alpha(1,:);endvar(1,:)=ago(1,:);f or i=1:n+m-1 %可预测后m个值var(i+1,:)=ago(i+1,:)-ago(i,:); %估计值的累加数列的还原,并计算出下m个预测值end[P,c,error]=lcheck(x,var); %进行后验差检验[rela]=relations([x';var(1:n)']); %关联度检验ago %显示输出预测值的累加数列alpha %显示输出参数α、μ数列var %显示输出预测值error %显示输出误差P %显示计算小残差概率 c %显示后验差的比值crela %显示关联度judge(P,c,rela) %评价函数显示这个模型是否合格<pre name="code" class="plain">function judge(P,c,rela) %评价指标并显示比较结果if rela>0.6'根据经验关联度检验结果为满意(关联度只是参考主要看后验差的结果)'else'根据经验关联度检验结果为不满意(关联度只是参考主要看后验差的结果)'endif P>0.95&c<0.5'后验差结果显示这个模型评价为“优”'else if P>0.8&c<0.5'后验差结果显示这个模型评价为“合格”'else if P>0.7&c<0.65'后验差结果显示这个模型评价为“勉强合格”' else'后验差结果显示这个模型评价为“不合格”' endendendfunction [P,c,error]=lcheck(x,var)%进行后验差检验n=length(x);for i=1:nerror(i,:)=abs(var(i,:)-x(i,:)); %计算绝对残差c=std(abs(error))/std(x); %调用统计工具箱的标准差函数计算后验差的比值cs0=0.6745*std(x);ek=abs(error-mean(error));pk=0;for i=1:nif ek(i,:)<s0pk=pk+1;endendP=pk/n; %计算小残差概率%附带的质料里有一部分讲了关联度function [rela]=relations(x)%以x(1,:)的参考序列求关联度[m,n]=size(x);for i=1:mfor j=n:-1:2x(i,j)=x(i,j)/x(i,1);endfor i=2:mx(i,:)=abs(x(i,:)-x(1,:)); %求序列差endc=x(2:m,:);Max=max(max(c)); %求两极差Min=min(min(c));p=0.5; %p称为分辨率,0<p<1,一般取p=0.5for i=1:m-1for j=1:nr(i,j)=(Min+p*Max)/(c(i,j)+p*Max); %计算关联系数endendfor i=1:m-1rela(i)=sum(r(i,:))/n; %求关联度end四,非线性拟合function f=example1(c,tdata)f=c(1)*(exp(-c(2)*tdata)-exp(-c(3)*tdata));<pre name="code" class="plain">function f=zhengtai(c,x) f=(1./(sqrt(2.*3.14).*c(1))).*exp(-(x-c(1)).^2./(2.*c( 2)^2));x=1:1:12;y=[01310128212]';c0=[2 8];for i=1:1000c=lsqcurvefit(@zhengtai,c0,x,y);c0=c;endy1=(1./(sqrt(2.*3.14).*c(1))).*exp(-(x-c(1)).^2./(2.*c (2)^2));plot(x,y,'r-',x,y1);legend('实验数据','拟合曲线')x=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16]';y=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4]';f=@(c,x)c(1)*(exp(-c(2)*x)-exp(-c(3)*x));c0=[114 0.1 2]';for i=1:50opt=optimset('TolFun',1e-3);[c R]=nlinfit(x,y,f,c0,opt)c0=c;hold onplot(x,c(1)*(exp(-c(2)*x)-exp(-c(3)*x)),'g')endt=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16];y=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4];c0=[1 1 1];for i=1:50 c=lsqcurvefit(@example1,c0,t,y);c0=c;endy1=c(1)*(exp(-c(2)*t)-exp(-c(3)*t));plot(t,y,' +',t,y1);legend('实验数据','拟合曲线')五,插值拟合相关知识在生产和科学实验中,自变量及因变量间的函数关系有时不能写出解析表达式,而只能得到函数在若干点的函数值或导数值,或者表达式过于复杂而需要较大的计算量。

利用Matlab构建数学模型及求解方法详解

利用Matlab构建数学模型及求解方法详解

利用Matlab构建数学模型及求解方法详解引言数学模型在现代科学研究和实际应用中起着重要的作用。

利用数学模型,我们可以准确地描述问题,分析问题,并提供解决问题的方法。

而Matlab作为一种强大的数学软件,能够帮助我们构建数学模型并求解问题。

本文将详细介绍利用Matlab构建数学模型的方法和求解模型的技巧。

一、数学模型的基本概念数学模型是对真实世界问题的简化和抽象,以数学语言和符号进行表达。

一个好的数学模型应当能够准确地描述问题的本质,并能够提供解决问题的方法。

构建数学模型的基本步骤如下:1. 确定问题的目标和限制条件:首先,我们需要明确问题的目标是什么,以及有哪些限制条件需要考虑。

这些目标和限制条件将在后续的模型构建中起到重要的作用。

2. 建立假设:在构建数学模型时,我们通常需要做一些合理的假设。

这些假设可以简化问题,使得模型更易于建立和求解。

3. 确定数学表达式:根据问题的具体情况,我们需要选择适当的数学表达式来描述问题。

这些数学表达式可以是代数方程、微分方程、最优化问题等。

4. 参数估计:数学模型中通常会涉及到一些未知参数,我们需要通过实验数据或者其他手段来估计这些参数的值。

参数的准确估计对于模型的求解和结果的可靠性至关重要。

二、利用Matlab构建数学模型的方法在利用Matlab构建数学模型时,我们通常可以使用以下方法:1. 利用符号计算工具箱:Matlab中提供了丰富的符号计算工具箱,可以帮助我们处理复杂的代数方程和符号表达式。

通过符号计算工具箱,我们可以方便地推导出数学模型的方程式。

2. 利用数值计算工具箱:Matlab中提供了强大的数值计算工具箱,可以帮助我们求解各种数学问题。

例如,求解微分方程的常用方法有欧拉法、龙格-库塔法等,都可以在Matlab中轻松实现。

3. 利用优化工具箱:在一些优化问题中,我们需要求解最优解。

Matlab的优化工具箱提供了多种求解最优化问题的算法,如线性规划、非线性规划等。

Matlab中的数学建模方法介绍

Matlab中的数学建模方法介绍

Matlab中的数学建模方法介绍Matlab是一种非常常用的科学计算和数学建模软件,它具有强大的数学运算能力和用户友好的界面。

在科学研究和工程技术领域,Matlab被广泛应用于数学建模和数据分析。

本文将介绍一些在Matlab中常用的数学建模方法,帮助读者更好地理解和应用这些方法。

一、线性回归模型线性回归模型是一种经典的数学建模方法,用于分析数据之间的关系。

在Matlab中,我们可以使用regress函数进行线性回归分析。

首先,我们需要将数据导入Matlab,并进行数据预处理,如去除异常值和缺失值。

然后,使用regress函数拟合线性回归模型,并计算相关系数和残差等统计量。

最后,我们可以使用plot 函数绘制回归线和散点图,以观察数据的拟合程度。

二、非线性回归模型非线性回归模型适用于数据呈现非线性关系的情况。

在Matlab中,我们可以使用lsqcurvefit函数进行非线性回归分析。

首先,我们需要定义一个非线性方程,并设定初始参数值。

然后,使用lsqcurvefit函数拟合非线性回归模型,并输出拟合参数和残差信息。

最后,我们可以使用plot函数绘制拟合曲线和散点图,以评估模型的拟合效果。

三、差分方程模型差分方程模型用于描述离散时间系统的动态行为。

在Matlab中,我们可以使用diffeq函数求解差分方程模型的解析解或数值解。

首先,我们需要定义差分方程的形式,并设置初值条件。

然后,使用diffeq函数求解差分方程,并输出解析解或数值解。

最后,我们可以使用plot函数绘制解析解或数值解的图形,以观察系统的动态行为。

四、优化模型优化模型用于求解最优化问题,如寻找函数的最大值或最小值。

在Matlab中,我们可以使用fmincon函数或fminunc函数进行优化求解。

首先,我们需要定义目标函数和约束条件。

然后,使用fmincon函数或fminunc函数求解最优化问题,并输出最优解和最优值。

最后,我们可以使用plot函数可视化最优解的效果。

如何在Matlab中进行数学建模和优化问题求解

如何在Matlab中进行数学建模和优化问题求解

如何在Matlab中进行数学建模和优化问题求解在当今信息时代,数学建模和优化问题求解在各个领域都扮演着重要的角色。

而Matlab作为一种功能强大的数学软件,在数学建模和优化问题求解方面具有广泛的应用和影响力。

本文将介绍如何在Matlab中进行数学建模和优化问题求解的具体步骤以及一些常用的工具和技巧。

一、数学建模数学建模是指将实际问题转化为数学模型,并通过数学方法对问题进行分析和求解的过程。

在Matlab中进行数学建模,首先要明确问题的数学模型。

一般来说,数学模型分为离散模型和连续模型两种类型。

离散模型主要是指离散的数据,比如图论、网络流等问题。

在Matlab中,关于离散模型的建模和求解可以使用图论和最短路径算法等工具函数来实现。

比如可以使用graph函数构建图,再使用相应的算法来求解最短路径等问题。

连续模型主要是指连续的函数或方程,比如微分方程、优化问题等。

在Matlab 中,关于连续模型的建模和求解可以使用符号计算工具箱和优化工具箱来实现。

符号计算工具箱可以用来求解微分方程,而优化工具箱可以用来求解优化问题,比如线性规划、非线性规划等。

在进行数学建模时,还需要考虑问题的目标函数和约束条件。

目标函数表示问题的目标是最大化还是最小化,而约束条件则是限制问题解的条件。

在Matlab中,可以使用符号计算工具箱和优化工具箱提供的函数来定义和处理目标函数和约束条件。

比如可以使用syms函数定义符号变量,再使用fmincon函数来求解带有约束条件的优化问题。

在实际进行数学建模时,通常会遇到数据不完整或不准确的情况。

因此,对于这种情况,可以使用插值和拟合技术来对数据进行处理和修复。

在Matlab中,可以使用interp1函数进行插值和拟合,并使用polyfit函数进行多项式拟合。

二、优化问题求解优化问题求解是指在给定的约束条件下,寻找使目标函数达到最优的解。

在Matlab中,有多种常用的优化算法可以用于求解优化问题,比如线性规划、非线性规划、整数规划等。

应用MATLAB和Mathematica进行数学建模

应用MATLAB和Mathematica进行数学建模

应用MATLAB和Mathematica进行数学建模随着信息技术的发展,数学建模已经成为了越来越重要的一个领域,而MATLAB和Mathematica是两个很重要的数学建模软件。

这两个软件有着各自的优势和适用范围,在实际的应用中都有着很大的价值。

下面将从使用背景、功能特点、应用场景以及发展前景等方面,对这两个软件进行简要的介绍和探讨。

一、使用背景MATLAB和Mathematica的使用背景不太一样。

MATLAB最早是为了搞定矩阵运算和数字计算问题而被开发出来的。

MATLAB的起源几乎可以追溯到上个世纪60年代,在那个时候,美国空军实验室开始着手设计一款名为"Matrix Laboratory"的矩阵计算软件,主要是为了用于各种控制系统和智能算法的研究。

而Mathematica的背景则与谢尔盖·维亚钦斯基有关,维亚钦斯基是一名俄国物理学家,他开发了一个名为Spherically Symmetric Heat Equation Analyzer (SSHEA)的软件,这个软件可以用于分析热传导方程,这个软件最终成为了Mathematica的前身。

随着信息技术的迅速发展,这两个软件的应用范围也相应地扩大了。

如今,这两个软件已经成为了各种科学、工程和数学研究领域不可或缺的工具,可以帮助用户进行复杂的数据处理、建模、可视化等任务。

从单纯的矩阵运算,到高精度数值计算;从符号计算,到统计分析;从信号处理,到图形绘制等等,这两个软件在各个领域都有很强的实际应用价值。

二、功能特点MATLAB和Mathematica都是非常强大的数学建模软件,但它们之间还是存在一些差异的。

在功能特点上,可以从以下几个方面入手:1. 语言特点MATLAB和Mathematica的语言特点很不一样。

MATLAB是一种解释型的语言,这意味着它的执行速度比较慢。

但MATLAB有一个很好的特点就是可以进行交互式编程,可以让用户逐步建立自己的模型。

2023五一杯数学建模b题matlab代码

2023五一杯数学建模b题matlab代码

2023五一杯数学建模B题MATLAB代码一、概述在2023年五一杯数学建模比赛中,B题是一个充满挑战性的数学建模问题,需要运用MATLAB等工具进行数据处理和模型求解。

本文将针对该题目展开讨论,介绍相应的MATLAB代码。

二、问题描述B题的问题描述如下:对某一地区的N个城市进行规划建设,其中每个城市都需要连接到其他城市,但是连接的方式需要最大程度地降低总成本。

现有每个城市之间建设高速公路的成本数据,问题要求设计出一种最优的高速公路规划方案。

三、MATLAB代码展示1. 数据处理首先需要载入城市之间的成本数据,假设成本数据保存在一个名为cost_matrix的N*N矩阵中。

则可以使用MATLAB代码进行数据载入和处理,示例如下:```matlab假设成本数据保存在cost_matrix矩阵中N = size(cost_matrix, 1);```2. 模型求解需要设计一个数学模型来求解最优的高速公路规划方案。

这里可以采用最小生成树算法(Minimum Spanning Tree,MST)来解决问题。

以下是基于Prim算法的MATLAB代码示例:```matlab初始化生成树selected = ones(N, 1);selected(1) = 0;tree = zeros(N-1, 2);total_cost = 0;用Prim算法生成最小生成树for i = 1:N-1min_cost = inf;for j = 1:Nif selected(j)for k = 1:Nif ~selected(k)if cost_matrix(j, k) < min_costmin_cost = cost_matrix(j, k);x = j; y = k;endendendendendtree(i, :) = [x, y];selected(y) = 0;total_cost = total_cost + min_cost;end```3. 结果展示可以将生成的最小生成树结果进行可视化展示,以便于分析和进一步优化。

数学建模穿越沙漠matlab代码详细

数学建模穿越沙漠matlab代码详细

数学建模穿越沙漠matlab代码详细摘要:一、数学建模简介1.数学建模的概念2.数学建模的重要性3.数学建模的应用领域二、穿越沙漠问题背景1.穿越沙漠的挑战2.数学建模在穿越沙漠问题中的应用三、Matlab 编程基础1.Matlab 简介2.Matlab 编程基本语法3.Matlab 编程实例四、Matlab 代码实现1.代码编写环境搭建2.代码编写思路与方法3.代码实现过程五、代码运行与结果分析1.代码运行步骤2.结果分析与解读3.结果的启示与意义六、展望与拓展1.数学建模在其他领域的应用2.穿越沙漠问题的未来研究方向3.Matlab 在相关领域的应用前景正文:数学建模是一种运用数学方法解决实际问题的过程,它涉及到多个领域的知识,如统计学、计算机科学、经济学等。

数学建模在现代社会具有重要的价值,能够帮助人们更好地理解和解决复杂问题。

在众多应用领域中,穿越沙漠问题是一个具有挑战性的问题,而数学建模为其提供了有力的工具。

穿越沙漠问题是指在给定的条件下,如何选择一条最优路径从起点穿越沙漠到达终点。

这个问题涉及到地理、气象、生态等多个方面的因素,需要综合运用多种数学方法进行求解。

Matlab 作为一种功能强大的数学软件,为穿越沙漠问题的求解提供了便利。

要使用Matlab 进行编程,首先需要了解Matlab 的基本语法和功能。

Matlab 的基本语法包括变量赋值、矩阵运算、条件判断、循环结构等。

通过这些基本语法,可以实现对数据的处理、算法的实现和结果的展示。

为了更好地掌握Matlab 编程,可以通过一些实例进行练习。

在实现穿越沙漠问题的Matlab 代码时,需要先搭建好代码编写环境,包括安装必要的工具箱和插件。

然后,根据问题背景和求解目标,设计代码编写思路和方法。

代码实现过程包括对数据的导入、处理和分析,以及对算法的编写和调试。

当代码编写完成后,需要运行代码并分析运行结果。

运行结果可以帮助我们了解模型的性能和效果,以及可能存在的问题和改进空间。

MATLAB数学建模14个范例

MATLAB数学建模14个范例

1.整数规划的蒙特卡洛解法2015-06-10 (2)2. 罚函数法 2015-06-11 (3)3. 层次分析 2015-06-12 (4)4. 粒子群优化算法的寻优算法--非线性函数极值寻优 2015-06-13 (5)5有约束函数极值APSO寻优 2015-06-14 (12)6.模拟退火算法 TSP问题2015-06-15 (17)7. 右端步连续微分方程求解2015-06-16 (19)8. 多元方差分析 2015-06-17 (22)9. 基于MIV的神经网络变量筛选 2015-06-18 (25)10. RBF网络的回归--非线性函数回归的实现 2015-06-19 (29)11. 极限学习机在回归拟合中的应用 2015-06-20 (32)12. 极限学习机在分类中的应用 2015-06-21 (34)13. 基于PSO改进策略 2015-06-22 (37)14. 神经网络遗传算法函数极值寻优 2015-06-23 (46)1.1.整数规划的蒙特卡洛解法2015-06-10 已知非线性整数规划为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤++≤++≤++++≤++++=≤≤-----++++=200520062800622400)5,....,1(9902328243max 54233216432154321543212524232221x x x x x x x x x x x x x x x x i x x x x x x x x x x x z i如果用显枚举试探,共需要计算100^5=10^10个点,其计算量非常大。

然而应用蒙特卡洛去随机模拟计算10^6个点,便可以找到满意解,那么这种方法的可信度究竟怎么样呢? 下面就分析随机采样10^6个点计算时,应用概率理论估计下可信度。

不是一般性,假设一个整数规划的最优点不是孤立的奇点。

假设目标函数落在高值区的概率分别为0.01,0.00001,则当计算10^6个点后,有任一个点落在高值区的概率分别为:1-0.99^1000000=0.99...99(100多位) 1-0.99999^1000000=0.999954602解 (1)首先编写M 文件 mengte.m 定义目标函数f 和约束向量g,程序如下:function [f,g]=mengte(x);f=x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)-8*x(1)-2*x(2)-3*x(3)-... x(4)-2*x(5); g=[sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-800 2*x(1)+x(2)+6*x(3)-200 x(3)*x(3)+x(4)+5*x(5)-200];(2)编写M 文件mainint.m 如下求问题的解: rand('state',sum(clock)); p0=0; ticfor i=1:10^5x=99*rand(5,1);x1=floor(x);%向下取整 x2=ceil(x);%向上取整 [f,g]=mengte(x1); if sum(g<=0)==4 if p0<=f x0=x1; p0=f; end end[f,g]=mengte(x2); if sum(g<=0)==4 if p0<=fx0=x2; p0=f; end end end x0,p0Matlab 求解整数规划祥见第二章(优秀教材)2.罚函数法 2015-06-11利用罚函数法,可将非线性规划问题的求解,转化为求解一系列无约束极值问题,因而也称这种方法为系列无约束最小化技术,简记为SUMT 。

数学建模matlab编程三

数学建模matlab编程三

数学建模matlab编程三水仙花数水仙花数是指一个3位自然数,其各位数字的立方和等于该数本身,输出1000以内的水仙花数,并求其个数。

y=[];%空矩阵count=0;for i=100:999a=rem(i,10);b=rem(fix(i/10),10);c=fix(i/100);if(a^3+b^3+c^3==i)y=[y,i];%不断扩充count=count+1;endendy,count突变素数当一个素数(只有两个正因数(1和自己)的自然数即为素数)与其前一个素数的差值大于等于5时,将其称之为“突变素数”(2不是“突变素数”),求10000以内的“突变素数”的个数.y=[];k=0;count=0;for i=1:10000if isprime(i)==1if (i-k)>=5y=[y,i];count=count+1;endk=i;endendy,count结果:count=820方差分析1试验3种猪饲料的饲养效果,得到9头猪的增重(单位:kg)如下:用matlab编程做作方差分析,估计各个总体的未知参数μi 和μ。

(不允许用anova1工具箱)先用sas得到结果方便后面检验:data ex;do a=1 to 3;input n@@;do i=1 to n;input x@@;output;end;end;cards;4 51 40 43 483 23 25 262 23 28;proc anova data=ex;class a;model x=a;run;sst——(每个因素的均值-总均值)^2的和ssa——每个水平的个数*(每个水平的均值-总均值)^2的和sse=sst-ssaf=(ssa/(r-1))/(sse/(n-r)) r为水平个数a1=[51,40,43,48];a2=[23,25,26];a3=[23,28];a=[a1,a2,a3];n=length(a);b=[1 1 1 1 2 2 2 3 3];sst=0;for i=1:nsst=sst+(a(i)-mean(a))^2;endssa=0;for i=1:3an=a(b==i);num=length(an);ssa=ssa+num*(mean(an)-mean(a))^2;endsse=sst-ssa;f=(ssa/2)/(sse/(n-3));p=1-fcdf(f,2,n-3);ssa,sse,sst,f,p可以看出和sas所得结果一样方差分析2测定4种种植密度下金皇后玉米的千粒重(单位:g)如下:用matlab编程做作方差分析,估计各个总体的未知参数mi和μ。

数学建模竞赛培训之编程MATLAB实用教程

数学建模竞赛培训之编程MATLAB实用教程

数学建模竞赛培训之编程MATLAB实用教程在当今的学术和工程领域,数学建模竞赛越来越受到重视,而MATLAB 作为一款强大的数学计算和编程软件,在其中发挥着至关重要的作用。

如果你正在为数学建模竞赛做准备,那么掌握 MATLAB 的编程技巧将为你在竞赛中取得优异成绩提供有力的支持。

接下来,让我们一起开启 MATLAB 编程的实用教程之旅。

一、MATLAB 基础首先,我们来了解一下 MATLAB 的基本操作界面。

当你打开MATLAB 时,会看到一个命令窗口,这是我们输入命令和查看结果的地方。

变量是编程中的重要概念,在 MATLAB 中,变量无需事先声明类型,直接赋值即可使用。

例如,我们可以输入`x = 5` ,此时`x` 就被赋值为 5 。

MATLAB 支持多种数据类型,如数值型(包括整数和浮点数)、字符型、逻辑型等。

二、矩阵操作矩阵在数学建模中经常用到,MATLAB 对矩阵的操作非常方便。

可以通过直接输入元素来创建矩阵,比如`A = 1 2 3; 4 5 6` 就创建了一个 2 行 3 列的矩阵`A` 。

矩阵的运算也十分简单,加法、减法、乘法等都有相应的运算符。

例如,两个矩阵相加可以直接使用`A + B` 。

三、函数的使用MATLAB 拥有丰富的内置函数,大大提高了编程效率。

比如求矩阵的行列式可以使用`det()`函数,求矩阵的逆可以使用`inv()`函数。

我们还可以自己定义函数,语法如下:```matlabfunction output_args = function_name(input_args)%函数体end```四、绘图功能在分析数据和展示结果时,绘图是必不可少的。

MATLAB 能够绘制各种类型的图形,如折线图、柱状图、饼图等。

以绘制简单的折线图为例,使用`plot()`函数,如`plot(x,y)`,其中`x` 和`y` 是数据向量。

五、数值计算在数学建模中,常常需要进行数值计算,如求解方程、求积分等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

和区域交叉法这两种交叉方法,扩大遗传算法的搜索范围,避免过早收敛.
在染色体的变异 操作[6] 中,与交叉方法一样,如果使用一种变异方法,同样可能会
引起“早熟”. 为了避免过早收敛,依据选择性集成思想选择邻居交换变异和两点交换
变异这两种个性好且差异性较大的变异方法,等概率使用以扩大搜索范围.
1.2 模型建立
许多智能算法被用于求解两点间线路问题. 如禁忌搜索、模拟退火、蚁群算法等. 其中遗传算法是被研究最多的一种算法. 但标准遗传算法容易陷入局部极值解,出现 “早熟收敛”现象. 为此人们提出了多种改进方法,如将遗传算子中的交叉算子进行改 进,应用单亲遗传算法,将遗传算子与启发式算法结合等.
遗传算法的核心思想为自然选择,适者生存. 遗传算法作为一种模拟生物进化的一 种算法,提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域, 对问题的种类有很强的鲁棒性,具有自组织、自适应和自学习性. 其也是一种迭代算法, 从选定的初始解出发,通过不断地迭代,逐步改进当前解,直到最后搜索到最优解或满 意解,其迭代过程是从一组初始解(群体)出发,采用类似于自然选择和有性繁殖的方法, 在继承原有优良基因的基础上生成具有更好性能的下一代解的群体. 遗传算法的流程 图见下图:
价的票价为:0~20 站:1 元,21~40 站:2 元,40 站以上:3 元; 9. 地铁票价:3 元(无论地铁线路间是否换乘); 10. 知道所有站点之间的步行时间.
三、符ቤተ መጻሕፍቲ ባይዱ说明
1
C:只考虑公汽线路的情况下,每个个体对应路线总长; D:考虑公汽和地铁线路的情况下,每个个体对应路线部长; T1 :相邻公汽站平均行驶时间(包括停站时间); T2 :相邻地铁站平均行驶时间(包括停站时间); fk ( X ) :第 k 个个体所对应的适应度值; A:每个个体所对应的适应度比例; P:每个个体所对应的选择概率(适应度比例); Tab :所有站点之间的步行时间;
1.2.1 从起点站到终点站不转车,则双种群遗传算法的流程如下:
(1)产生邻接矩阵
邻接矩阵的 MATLAB 程序实现见附件一.
(2)基于站点序号的编码
一般来说种群规模越大越容易收敛到最优解,但是要保证其初始种群中的每个个体
都是互异的,m不能设置过大,否则无法产生初始种群,且m过大其收敛速度必然降低,
P = AL
(3)
遗传算法中选择算子设计经典的是用适应度成比例的概率方法 ,但是这里存在的
问题是由于许多个体的适应度比例很小几乎没有机会复制个体,从而被过早地淘汰. 这
样整个群体多样性就无法得到保证,这里采用一种新的赌轮选择算子——离散赌轮选择
算子[8] ,将有效地避免了这个问题.
在本题中是由30个个体构成初始群体,即: X1, X 2 ,, X30 ,其所占的适应度比例分 别是 P1, P2 ,, P30 ,在保持这个比例的情况下对这个取值范围放大1000倍.
u :表示转车换乘所耗时间之和. 2. 解决方法
1.1 问题分析 该问题是一个组合优化问题. 对于此类问题,只有当其规模较小时,才能求其精确
解. 在本文中公汽路线总数与站点数是成指数型增长的,所以一般很难精确地求出其最 优解,因而寻找出有效的近似求解算法就具有重要意义.
由于L406公汽线路的路线是环形的,而数据中没有标示出来,所以我们用相邻站点 整体路线也相邻,判断出该公汽线路是环行的,所以应当作环行处理. 对于该问题,我 们先求出其站点与站点之间的邻接矩阵(权用时间表示),其矩阵大小为 3957´ 3957 , 数据量太多,不能输出,只能把放在内存中.
3
体中淘汰一个适应度最差的个体,提高了问题求解的收敛速度,体现了遗传算法自适应
环境的能力.
在对染色体进行交叉 操作[6] 时,对于由整数编码的染色体,交叉操作会形成染色体
中的非法基因,即重复基因. 所以实现染色体交叉要将重复的基因清除. 只使用一种交
叉方法容易引起过早收敛,即“早熟”. 依据选择性集成思想 ,等概率使用两点交叉法
1
2
3
4
5
6
起始站 S3359
S1557
S0971
S0008
S0148
S0087
终点站 S1828
S0481
S0485
S0073
S0485
S3676
其中基本参数设定:
相邻公汽站平均行驶时间(包括停站时间):3 分钟 相邻地铁站平均行驶时间(包括停站时间):2.5 分钟 公汽换乘公汽平均耗时:5 分钟(其中步行时间 2 分钟) 地铁换乘地铁平均耗时:4 分钟(其中步行时间 2 分钟) 地铁换乘公汽平均耗时:7 分钟(其中步行时间 4 分钟) 公汽换乘地铁平均耗时:6 分钟(其中步行时间 4 分钟) 公汽票价:分为单一票价与分段计价两种,标记于线路后;其中分段计
2
开始 初始化群体
个体评价
是否满足条件 是
选择 交叉 变异
否 退出算法
遗传算法流程图 标准遗传算法是针对一个宏观的种群进行选择、交叉、变异三种操作. 双种群遗传算法是一种并行遗传算法,它使用多种群同时进化,并交换种群之间优 秀个体所携带的遗传信息,以打破种群内的平衡态达到更高的平衡态,跳出局部最优. 在双种群遗传算法中,每一种群都是按照标准算法进行操作. 在操作时,首先建立两个 遗传算法群体,即种群A和种群B,分别独立地进行选择、交叉、变异操作,且交叉概率、 变异概率不同. 当每一代运行结束以后,产生一个随机数n,分别从A,B中选出最优染 色体和n个染色体进行杂交,以打破平衡态. 因为在双种群遗传算法中,每一种群都是 按照标准算法进行操作的. 由上分析,对于本问题,我们釆用双种群遗传 算法[5](double populations genetic algorithm)在选择公汽路线问题中的应用. 遗传算法的创始人美国著名学者、密西根大学教授John H.Holland认为,可以用一 组编码来模拟一组计算机程序,并且定义了一个衡量每个“程序”的度量:“适应值”. Holland模拟自然选择机制对这组“程序”进行“进化”,直到最终得到一个正确的“程 序”为止. 编码方式有:二进制编码、十进制编码和符号编码等方法. 整数编码与符号 编码一般用于与顺序有关的组合优化方面的问题. 根据公汽路线的特点,本文的工作采 用整数 编码[6] . 染色体长度与公汽路线结点个数相同,染色体的每个基因的编码即为公 汽路线结点的编号. 因此,每条染色体由1到n(3957)的一个全排列组成. 在对染色体进行 选择[6] 时,考虑到适应度比例法(轮盘赌选择法)与最佳个体保留法 各自的优缺点,差异性较大,依据选择性集成思想,表现好的个体学习器越精确、差异 越大,集成后可以获得的结果越好. 而竞争选择法集成了上述两种的优点克服了它们的 缺点,因此本文釆用竞争选择法. 其中竞争选择法是釆用适应度比例法进行选择,交叉 后产生下一代,再利用最佳个体保留法将上一代的最佳个体直接保存下来,然后从新群
按照顺序在1~1000内分别占不同的区间,当随机函数产生1~1000以内的时,即使是适
应度比例最小的也有可能被选中,从而较好的保持了群体的多样性.
由上所述则可选择出适应力强的,淘汰适应力弱的个体从而得到总体适应能力强的
群体.
经过选择算子得出总体适应能力强的 A、B 群体数据矩阵为 30´ 3957 ,因数据量太
《数值软件及应用》 课程报告
专业 班级 学号 学生 时间
信息与计算科学 计算 071
2010 年秋级学期
题目一 基于双种群遗传算法的公交路线查询问题
1. 具体问题
第 29 届奥运会于 2008 年 8 月在北京举行,届时有大量观众到现场观看奥运比赛,
其中大部分人将会乘坐公共交通工具(简称公汽,包括公汽、地铁等)出行. 北京市的
可运行程序得出).
(4)适应度函数与染色体的选择
在遗传算法进行搜索时只以适应度函数为依据,利用种群中个体每个的适应度值来
进行搜索,适应度值是进化时优胜劣汰的依据,应用中总是根据问题的优化指标来定义.
对于公汽线路问题,以个体对应路线所发的时间之和作为个体适应度,其适应度越
小,表明该个体越优. 则该个体对应 适应度值[7] 为:
n- 1
å fk ( X ) = T1( C C xixi+ 1 + xnx1)
(1)
i= 1
其中 T1 (3(分钟))表示相邻公汽站平均行驶时间(包括停站时间),
Cxaxb 表示站点 xa 和 xb 之间的距离,
Cxnx1 表示起始点与终点站之间的距离.
一般来说,选择算子设计使得个体被选中并遗传到下一代群体中的概率与该个体的
(3)产生初始群体
种群中每一个体为n(3957)个站点的一个全排列,随机生成m(m=30)个1~n 的
随机排列,得到m个个体的初始种群,m为种群大小,n为染色体长度.
生成初始群体的具体算法的MATLAB程序实现见附件二.
A、B初始群体的数据矩阵为 30´ 3957 ,由于数据太多,文中就不给出数据(其结果
公汽线路已达 800 条以上,使得公众的出行更加通畅、便利,但同时也面临多条线路的 选择问题. 针对市场需求,某公司准备研制开发一个解决公汽线路选择问题的自主查询 计算机系统.
为了设计这样一个系统(核心是线路选择的模型与算法),从实际情况出发,满足
查询者的各种不同需求. 需要研究的问题如下:
问题一:只考虑公汽线路情况,给出任意两公汽站点之间线路选择问题的一般数学 模型与算法. 并根据基本参数设定中的数据,利用其模型与算法,求出 6 对起始站→终 到站之间的最佳路线,并要有清晰的评价说明. 见下表:
大,文中就不给出具体数据.
(5)交叉重组
依据选择性集成思想 ,等概率使用两点交叉法和区域交叉法这两种差异性较大的
交叉方法,扩大遗传算法的搜索范围,避免过早收敛.
相关文档
最新文档