节流管减压孔板喷淋计算

合集下载

喷淋计算书

喷淋计算书

计算原理参照《自动喷水灭火系统设计规范GB 50084-2001》(2005年版) 基本计算公式: 1、喷头流量:P K q 10=式中:q -- 喷头处节点流量,L/minP -- 喷头处水压(喷头工作压力)MPa K -- 喷头流量系数 2、流速V :2π4jxh D q v =式中:Q -- 管段流量L/sD j --管道的计算内径(m ) 3、水力坡降:3.1200107.0jd v i =式中:i -- 每米管道的水头损失(mH 20/m ) V -- 管道内水的平均流速(m/s ) d j -- 管道的计算内径(m ),取值应按管道的内径减1mm 确定 4、沿程水头损失:L i h ×=沿程 式中:L -- 管段长度m5、局部损失(采用当量长度法): L i h ×=局部(当量)式中:L(当量) -- 管段当量长度,单位m(《自动喷水灭火系统设计规范》附录C) 6、总损失:沿程局部h h h += 7、终点压力:h h h n n +=+1计算结果:所选作用面积:97.6平方米总流量:132.27 L/s平均喷水强度:81.34 L/min.平方米入口压力:78.55 米水柱喷淋系统流量:140 L/s喷淋系统扬程:H=19(高差)+14*1.2(水头损失)+79(入口压力)+6(报警阀组及水流指示器损失)+5(预留损失)=125.8m≈130m喷淋泵参数:Q=70L/s,H=130m,N=132kw (两用一备)消防用水量标准及一次灭火用水量经计算,消防水池容积为1100m3。

规范规定,容量大于500m3的消防水池,应分设成两个能独立使用的消防水池。

条文解释中说消防水池容量过大时应分成2个,以便水池检修、清洗时仍能保证消防用水,但2个水池都应具备独立使用的功能,各有水泵吸水管、补水进水管、泄水管、溢水管等。

2个水池之间还应设置连通管和控制阀门。

因此只需要分两格即可。

喷淋计算

喷淋计算

大家研究一下这个题目。

也不要吓怕了。

这题没有你想像的难。

但是就是有些局部的地方不明白。

我总是计算出来是72点多。

为避免走弯路,我提示一下供参考,234点根本不必计算。

关键就是a5段当量长度的问题怎么取,当量长度对应的DN又是多少。

西风,看看这个做法,别人做的。

解1. 采用标准反应喷头,先求解K=61.782. 计算节点a和喷头之间的压力关系Ha=H5+h(5-a)i+ h(5-a)j= H5+(1.5i)+((3.1+0.3)i)= H5+ 4.9i已知Ha=0.143 MPa根据当p=0.143 MPa,q=73.88 L/min,所以答案A和B有一个正确3.试算管道5-a的水头损失对于5-a管段当q=71.82 L/min,i=0.00364,则H5 =Ha- 4.9i=0.125 MPa,此时=69.07 L/min,和假设矛盾。

当q=69.21 L/min,i=0.00340,则H5 =Ha- 4.9i=0.126 MPa,此时=69.34 L/min,和假设相近。

答案B正确岸芷,这题目道理上并不难的,即使没有自喷的知识,用水力学的知识足够了。

无非就是H正比Q平方(这里是1.85)你发的那个i,j是什么我不太清楚,不过我可以肯定的是,忽略管径是不行的。

(1.5i)+((3.1+0.3)i)=4.9i==========这个地方其实就有问题了,因为,1.5对应的DN与3.1+0.3对应的DN并不相同,而且单位长度水损差异很大,不能用一个i来表达的。

DN40*DN25大小头,当量长度0.3m,但这0.3m对应DN25还是DN40还是DN多少?没有DN怎么来计算?不考虑管径是肯定粗糙的。

我也是这样来的。

按下游计?那这个暂且同意。

那当量长度DN50×DN40的90度三通侧流为3.1m,这个对应DN40?第三个问题如上图。

当量长度DN50×DN40的90度三通侧流为3.1m,这个我理解是从A到C是3.1m,那从B到C呢??当量长度是个很不成熟的东西。

关于减压孔板的计算

关于减压孔板的计算

关于减压孔板的计算简介:在高层建筑的消火栓系统的设计中,必定会碰到系统分区的情况,按“高规”第7.4.6.5条“消火栓栓口的静水压力不应大于0.80MPa,当大于0.80MPa时,应采取分区给水系统。

消火栓栓口的出水压力大于0.50MPa时,消火检处设减压装置”。

关键字:减压孔板计算在高层建筑的消火栓系统的设计中,必定会碰到系统分区的情况,按“高规”第7.4.6.5条“消火栓栓口的静水压力不应大于0.80MPa,当大于0.80MPa时,应采取分区给水系统。

消火栓栓口的出水压力大于0.50MPa时,消火检处设减压装置”。

通常所设的减压装置是减压孔板。

设置孔板,一是安装方便,二是便于调整。

孔板的大小可通过计算得到。

笔者经过对某工程的孔板设计计算,觉得通过以下几个步骤,能较准确地作出选择。

该工程的消火栓系统原理如附图所示。

在进行计算之前,首先要明确孔板将安装在何处。

由于现在有些建筑物中,有单出水消火栓,也有双出水消火栓,而两种类型的消火栓与立管的接口分别为DN65、DN80,其流量也不相同,因此,不先搞清楚孔板位置,会导致计算的错误。

在本工程中,笔者将孔板设于消火栓栓口,以方便计算。

按规定,为保证水枪的充实水拄13米的要求,DNl9喷嘴的流量为5.7L/S,压力为0.205MPa,按DN70查水力计算表,得到此时管内流速:V=1.62m/s根据《建筑给水排水设计手册》(P40 1.5—16)H′=H/V 2 ×1=H/1.62 2 ×1=0.381H(m)其式中:H′——流速1m/s 时的剩余水头(m)V——水流通过孔板后的实际流速(m/s)H ——设计剩余水头,即须减去的多余水头(m)对系统中地下4至地上6层区域来讲,在7层设有可调式减压阀,井控制阀后压力H1=0.25MPa,以室内一层地坪为1.00米计,阀的安装标高H 2 =40.00米。

现以地下4层孔板计算为例:1、确定该层消火栓栓口标高H0=-13.60M;2、栓口的动压值(为方便计算,水头损失均按10米计)H=H 1 十(H 2 —H 0 )=25十(40十13.60)=68.6M3、栓口允许的最大动压:按规范压力控制在0.25MPa-0.5MPa,现按0.40MPa计。

喷淋计算的方法(作用面积法)

喷淋计算的方法(作用面积法)

关于喷淋计算的方法(适用于天正、鸿业给排水作用面积法)1、根据建筑类别,依据50014-2001(2005)版第五章设计基本参数查的设计建筑的作用面积A。

2、根据50014-2001(2005)版9.1.2 水力计算选定的最不利点处作用面积宜为矩形,其长边应平行于配水支管,其长度不宜小于作用面积平方根的1.2倍。

设矩形唱吧为a,短边为b,则有A=ab,a=1.2√A=>a=1.44b 即作用面积的长边至少是短边的1.44倍,为了便于设计,近似取a=1.5b。

3、根据查得的A及a、b的关系确定a、b值,使用CAD命令(rec)绘制矩形框,框的长边为a,短边为b,此矩形为最不利喷头的作用面积。

4、根据实际情况寻找最远最不利喷头,然后将绘制好的矩形框的一个角点放置在喷头的中心,(注意矩形的长边一定要平行于该最不利点喷头的配水支管)然后让矩形框由喷头的中心向离喷头最近的障碍物分别进行X及Y方向的移动,移动距离据均为该危险等级喷头间距(参见0014-2001(2005)版第七章喷头布置第一节内容)的0.5倍。

5、然后使用天正给排水软件在已经绘制完自喷平面图且所有管路与喷头均正确连接,喷淋系统已经预赋管径的情况下进行喷淋计算。

计算时注意流速控制(9.2.1 管道内的水流速度宜采用经济流速,必要时可超过5m/s,但不应大于10m/s。

用经济流速是给水系统设计的基础要素,本条在原规范第7.1.3条基础上调整为宜采用经济流速,必要时可采用较高流速的规定。

采用较高的管道流速,不利于均衡系统管道的水力特性并加大能耗;为降低管道摩阻而放大管径、采用低流速的后果,将导致管道重量的增加,使设计的经济性能降低。

原规范中关于“管道内水流速度可以超过5m/s,但不应大于10m /s”的规定.是参考下述资料提出的:我国《给排水设计手册》(第三册)建议,管内水的平均流速,钢管允许不大于5m/s;铸铁管为3m/s;原苏联规范中规定,管径超过40mm的管内水流速度,在钢管中不应超过10m/s,在铸铁管中不应超过3~5m/s;德国规范规定,必须保证在报警阀与喷头之间的管道内,水流速度不超过10m/s,在组件配件内不超过5m/s。

减压孔板在喷淋系统中的应用

减压孔板在喷淋系统中的应用

减压孔板在喷淋系统中的应用针对《自动喷水灭火系统设计规范》GB50084-2001第8.0.5条规定,“配水管道的布置,应使配水管入口的压力均衡。

轻危险级、中危险级场所中各配水管入口的压力均不宜大于0.40MPa”,这一要求本文对自动喷淋系统的减压方式做了简单归纳和对比,得出目前适合这一规范的减压方式只有减压孔板,并重点针对减压孔板减压的原理、安装要求及计算选型做了详细的阐述。

标签:喷淋;减压孔板;水头损失随着城市建筑高度的不断增加,建筑顶层自动喷淋系统入口压力越来越大,这就造成了建筑低层喷淋系统入口压力远远大于自身所需的入口压力,根据喷头流量计算公式[1] 可以看出,喷头的出流量受到压力的直接影响,压力过大,单个喷头流量就会随之增加,将导致消防水箱的水量不能满足火灾初期消防用水的要求。

因此,《自动喷水灭火系统设计规范》GB50084-2001第8.0.5条规定,“配水管道的布置,应使配水管入口的压力均衡。

轻危险级、中危险级场所中各配水管入口的压力均不宜大于0.40MPa。

这就需要在低层喷淋管道的配水管上设减压措施。

并且在规范第9.3条中,也列出了减压的措施:a、减压孔板;b、节流管;c、减压阀。

这三种减压措施中,减压阀在规范中已明确规定应设在报警阀组入口前,所以不适合配水管道的减压,而节流管由于长度要求不小于1m,对安装空间有一定的要求,并且30°的渐缩角和渐扩角市场也不易采购,因此在实际工程中也很少应用,而减压孔板由于造价低,安装方便,不占用空间,管理方便等优点被广泛应用于自动喷水灭火系统配水管需要减压的场所,本文将重点针对减压孔板进行说明。

1.减压孔板的原理:减压孔板的工作原理是对液体的动压力(不含静压力)进行减压。

高层建筑由于层数较多,高层和低层所承受的静水压力不一样。

出水时,低层的水流动压力比高层的水流动压力大很多。

当水流经过减压孔板时,流速发生突然变化,且在孔板前后产生许多涡流,引起很大的局部水头损失。

喷淋计算表

喷淋计算表

计算原理参照《自动喷水灭火系统设计规范GB 50084-2001》(2005年版) 基本计算公式: 1、喷头流量:
P K q 10=
式中:q -- 喷头处节点流量,L/min
P -- 喷头处水压(喷头工作压力)MPa K -- 喷头流量系数 2、流速V :
24j
xh
D
q v π=
式中:Q -- 管段流量L/s
D j --管道的计算内径(m ) 3、水力坡降:
3.1200107
.0j
d
v i =
式中:i -- 每米管道的水头损失(mH 20/m ) V -- 管道内水的平均流速(m/s ) d j -- 管道的计算内径(m ),取值应按管道的内径减1mm 确定 4、沿程水头损失:
L i h ⨯=沿程 式中:L -- 管段长度m
5、局部损失(采用当量长度法): L i h ⨯=局部(当量)
式中:L(当量) -- 管段当量长度,单位m(《自动喷水灭火系统设计规范》附录C) 6、总损失:
沿程局部h h h += 7、终点压力:
h h h n n +=+1
计算结果:
所选作用面积:160.0平方米
总流量:28.90 L/s
平均喷水强度:10.84 L/min.平方米入口压力:39.83 米水柱。

高层建筑喷淋系统减压孔板的计算

高层建筑喷淋系统减压孔板的计算

高层建筑喷淋系统减压孔板的计算王瑛;张瀚月;孟爱;王少峰;李长健【摘要】超压问题在高层建筑喷淋给水中客观存在,处理不当会使消防水泵寿命变短,设备安全运行性下降.增加减压孔板是解决超压问题比较经济实用的方法.通过实例论述了高层自动喷水超压工作状态,分析了水泵供水工况,计算了减压孔板的孔径和设置层数,从而确定减压孔板的型号,保证减压效果.设置减压孔板后使得配水管入口处的压力<0.40 MPa,延长了消防水泵寿命,设备安全性也明显提高.【期刊名称】《甘肃科学学报》【年(卷),期】2013(025)004【总页数】3页(P127-129)【关键词】高层建筑;喷淋系统;减压孔板【作者】王瑛;张瀚月;孟爱;王少峰;李长健【作者单位】兰州理工大学土木工程学院,甘肃兰州 730050;兰州理工大学土木工程学院,甘肃兰州 730050;兰州理工大学土木工程学院,甘肃兰州 730050;兰州理工大学土木工程学院,甘肃兰州 730050;盘锦市市政工程管理处,辽宁盘锦124000【正文语种】中文【中图分类】TU991《自动喷水灭火系统设计规范》规定[1]“轻危险级,中危险级场所中各配水管入口的压力均不宜>0.40 MPa”.目前的减压方式有减压阀减压、减压孔板等.减压孔板可消除喷淋系统的剩余水头,以保证给水系统均衡供水,达到节水、节能的目的.减压孔板相对于减压阀来说,系统比较简单、投资较少、管理方便.1 工程实例1.1 工程概况以甘肃省庆阳市煤田地质局生产基地综合楼为计算简化模型.综合楼包含地下1层和地上15层,主体高度49.35m,地下1层层高为3.6m,1层、2层各为4.8m,3~15层各为3m.喷淋管材为内外热镀锌钢管,干管管径为DN150.设计喷淋给水泵流量Q=0~30L/s,系统水压0.80 MPa,屋顶水箱底高48.6m.自动喷水稳压设备流量Q=4.53L/s,扬程H=18.5m,N=1.5kW.1.2 喷淋给水的工况喷淋给水主要有两种工况:一种是水箱供水,它是自上而下用于火灾初期的灭火;另一种由水泵供水,由于是按最不利的喷淋的要求来选择水泵,系统下部的喷淋出水压力也将过高,所以需采用减压措施保证喷淋系统的正常运行.从给水工况分析,两种给水工况所形成的剩余水头也不同,因此,选择减压孔板作为喷淋给水系统的减压装置时,其孔口应从上而下逐渐减小,即由孔板所消耗的水头损失,从上至下逐渐递增[2].另外,由于该类建筑的高位水箱设置位置通常比顶层的最不利喷头高,因而水箱供水时所形成的压力比水泵供水时小,所以喷淋给水系统减压计算原则应以水泵供水工况计算需要减去的压力和孔板型号,再以水箱供水工况进行校核[3].1.3 水泵供水工况下喷淋泵扬程的计算(1)管道水头损失计算每米管道的水头损失计算式为其中:i为每米管道水头损失(MPa/m);v 为管道内的平均流速(m/s);di为管道计算内径(mm),取值按管道内径减1mm 确定.沿程水头损失为其中:h为沿程水头损失(MPa);l为管道长度(m).系统所需供水压力计算式为其中:H 为系统所需的水压(MPa);∑h 为管道的沿程和局部水头损失的累计值(MPa);湿式报警阀、水流指示器取值0.02 MPa;局部损失采用估算法,为沿程损失的20%计算;Z 为最不利点处喷头与消防水池的最低水位或系统入口处水平中心线之间的高差(MPa).(2)流量计算按作用面积法[4]进行系统设计,选用吊顶型喷头,其特性系数为80,喷头处压力为0.1MPa,设计喷水强度为6L/(min·m2),作用面积为160 m2,选定为长方形[5],长边,短边长为11m.根据建筑顶棚布置要求,房屋的大小,喷头间距的不等,短边变为9.8m.根据实际工程,实际作用面积147 m2,共布置喷头18 只,其布置计算简图如图1所示.图1 庆阳市某煤田基地自动喷水管道水力计算简图(单位:mm)按图1流量计算结果如下:每个喷头的流量为作用面积内的设计秒流量为理论秒流量为设计秒流量是理论秒流量的1.63倍.作用面积内的计算平均喷水强度为此值大于规定要求6L/(min·m2)[1].在作用面积内,选2个喷头所保护的面积,分别为5.76m2 和7.42m2,其喷水强度为管段的沿程损失为系统所需的水压为1.4 减压孔板的计算减压孔板一般设置于安全信号阀之后,主要是对流体动力减压,当流动水经过减压孔板时由于局部压力损失,在减压孔板处产生水头压力降[6].减压孔板应符合下列规定[1]:①应设在直径不小于50mm的水平直管段上,前后的长度均不宜小于该管段直径的5倍;②孔口直径不应小于设置管段直径的30%,且不应小于20mm;③应采用不锈钢板材制作.设计按照最高两层(14层,15层)不需要设置减压孔板,首先算出每层需要的喷淋压力,故第n层的喷淋干管需要的压力为[7,8]其中:Hn为n 层的喷淋干管需要的压力(m);H 为最不利点喷头所需的压力(m);Hp为第n层到15层喷淋干管的高度差(m);∑h 为水流从最不利喷头至第n 层的水头损失(包括沿程水头损失和局部损失,局部损失为沿程损失的20%计算).10~15层由一套湿式报警阀控制,以其减压孔板为计算简例:已知每层的喷淋干管直径DN=150mm,流量为23.94L/s,根据Q=(d2/4)×v,得管道中的流速v=1.36m/s.喷淋干管所需压力为其中:0.08mH2O 为每一层喷淋立管的水头损失,以下类同.需要减去的水压为按照DN=150mm,直径d=150mm,△H1=31.85mH2O,查得孔板直径为43mm.以下几层的计算省略,读者可自行计算.1.5 水箱供水工况下的校核上述计算是按照喷淋水泵由下自上的供水工况进行计算.但是,在火灾初期,喷淋用水是由屋顶水箱自上而下供水,喷淋屋顶稳压系统是按照最不利点能够满足压力要求进行设计.但是,由于减压孔板的存在,压力损失比较多,所以要校核在这种情况下的压力是否满足配水干管的压力.校核计算:已知DN=150mm,假设5个喷头动作,则流量Q =6.65 L/s,查表得,流速v=0.377m/s,1 000i=1.85.水箱的底高为48.6 m,13层的喷淋干管的高为42.00m,12层的喷淋干管的高为39.00m,11层的喷淋干管的高为36.00m,10层的喷淋干管的高为33.00m.其中:Hn-d为第n 层的喷淋干管与屋顶水箱高差(m);Hkk为水流通过第n 层减压孔板的水头损失(m);Hf为管道沿程水头损失和局部水头损失(m).减压孔板局部阻力系数为355.49[2].从上面的数据可以看出,减压孔板所带来的水头损失2.54m 小于高差引起的压力6.60m.2 结论(1)减压孔板的选型应以水泵工况为主,再以水箱工况进行校核,最终确定减压孔板的型号.(2)通过增设减压孔板,使得配水管入口处的压力<0.40 MPa,延长了消防水泵的寿命,提高了设备的安全运行性.(3)在火灾初期,喷淋系统由屋顶水箱供水时,由于开启的喷头较少,低于与水箱压差,因此,减压孔板的设置并不会使得喷淋干管入口处的压力达不到需要的压力值.【相关文献】[1]GB50084-2001,自动喷水灭火系统设计规范[S].[2]李杰,赵国才.喷淋系统减压孔板的计算讨论[J].公用工程设计,2008,(增刊):38-39. [3]孔德庆.关于高层建筑消火栓系统减压孔板的计算[J].中国高新技术企业,2009,16(5):38-39.[4]王增长,高羽飞,曾雪华.建筑给水排水工程[M].第5版.北京:中国建筑工业出版社,2005.[5]中国建筑设计研究院给水排水设计手册[M].第2册.北京:中国建筑工业出版社,2008. [6]郝秦峰.建筑消防给水减压孔板的设计[J].消防技术与产品信息,2008,11(5):17-19. [7]孔祥瑞,姚兰芳.建筑消防供水系统减压问题的探讨[J].山东建筑工程学院学报,1998,13(1):105-107.[8]吴晓瑜.关于减压阀在高层建筑消防给水系统中应用之浅析[J].广东土木与建筑,1999,27(2):61-62.。

浅析减压孔板和节流管的减压设计计算与比较

浅析减压孔板和节流管的减压设计计算与比较

浅析减压孔板和节流管的减压设计计算与比较【摘要】根据某项目自动喷淋系统水力计算,比较两种减压措施的优劣。

【关键词】自动喷淋灭火系统;减压孔板;节流管;【Abstract】According to the calculation of hydraulic project of automatic sprinkling system,comparison of two kinds of relief measures of quality.【Key words】Sprinkler systems;Decompression orifice plate; Throttle pipe自动喷淋灭火系统,是当今世界上公认的最为有效的自救灭火设施,是应用最广泛、用量最大的自动灭火系统。

根据《自动喷水灭火系统设计规范》要求,使自动喷淋灭火系统充分达到预期灭火效果既要满足最不利点的压力和流量要求,同时又要满足配水管入口的压力平衡。

由于管道局部和沿程水头损失的存在,距离水泵越近,其配水管入口压将越大。

因此,在自动喷淋灭火系统中,减压措施的设计计算和选择显得尤为重要。

在管道中设计减压孔板和节流管,是最为常见的两种减压措施。

减压孔板和节流管减压的适用范围是对流体动力减压,其原理是当流动水经过减压孔板时,由于水头阻力损失,在减压孔板处或节流管处产生水头压力降(水头损失),从而可以降低底层的自动喷淋系统配水管和消火栓的出口压力。

高层建筑由于层数较多,高低层所承受的静水压力不一样,实际出水量相差很大,作用时底层的自动喷水设备和消火栓出水量远远超过顶层的设计流量和设计压力。

若不采取减压措施,将会造成同样的消防水量无法满足火灾持续时间,从而不能有效的起到灭火效果。

减压孔板和节流管相对于减压阀来说,系统比较简单,投资较少,管理方便。

因此本文着重介绍减压孔板和节流管的减压计算方法,减压阀减压不在讨论其中。

1规范对两种减压措施的有关规定《自动喷水灭火系统设计规范》对减压孔板与节流管两种减压措施的相关规定见表1:表1对过水管管径的要求对孔口直径的要求对管长的要求减压孔板应设在直径不小于50mm的水平直管段上孔口直径不应小于设置管段直径的30%,且不应小于20mm 前后管段的长度均不宜小于该管段直径的5倍节流管直径宜按上游管段直径的1/2确定节流管内水的平均流速不应大于20m/s 长度不宜小于1m2设计计算以珠江国际商贸中心中区6~11号楼工程为例,本工程为一类高层,建筑性质公寓式办公楼,本项目采用自动喷淋灭火系统,火灾危险等级地下车库按中危险II级,其消防水泵房位于地下二层,喷淋水泵扬程1.2MPa,流量35L/s,其地下二层喷淋配水管入口压力达到1.1MPa,规范要求不宜大于0.40MPa,远远超过规定值,因此需要采取减压措施。

减压孔板在喷淋系统中的应用

减压孔板在喷淋系统中的应用

减压孔板在喷淋系统中的应用针对《自动喷水灭火系统设计规范》GB50084-2001第8.0.5条规定,“配水管道的布置,应使配水管入口的压力均衡。

轻危险级、中危险级场所中各配水管入口的压力均不宜大于0.40MPa”,这一要求本文对自动喷淋系统的减压方式做了简单归纳和对比,得出目前适合这一规范的减压方式只有减压孔板,并重点针对减压孔板减压的原理、安装要求及计算选型做了详细的阐述。

标签:喷淋;减压孔板;水头损失随着城市建筑高度的不断增加,建筑顶层自动喷淋系统入口压力越来越大,这就造成了建筑低层喷淋系统入口压力远远大于自身所需的入口压力,根据喷头流量计算公式[1] 可以看出,喷头的出流量受到压力的直接影响,压力过大,单个喷头流量就会随之增加,将导致消防水箱的水量不能满足火灾初期消防用水的要求。

因此,《自动喷水灭火系统设计规范》GB50084-2001第8.0.5条规定,“配水管道的布置,应使配水管入口的压力均衡。

轻危险级、中危险级场所中各配水管入口的压力均不宜大于0.40MPa。

这就需要在低层喷淋管道的配水管上设减压措施。

并且在规范第9.3条中,也列出了减压的措施:a、减压孔板;b、节流管;c、减压阀。

这三种减压措施中,减压阀在规范中已明确规定应设在报警阀组入口前,所以不适合配水管道的减压,而节流管由于长度要求不小于1m,对安装空间有一定的要求,并且30°的渐缩角和渐扩角市场也不易采购,因此在实际工程中也很少应用,而减压孔板由于造价低,安装方便,不占用空间,管理方便等优点被广泛应用于自动喷水灭火系统配水管需要减压的场所,本文将重点针对减压孔板进行说明。

1.减压孔板的原理:减压孔板的工作原理是对液体的动压力(不含静压力)进行减压。

高层建筑由于层数较多,高层和低层所承受的静水压力不一样。

出水时,低层的水流动压力比高层的水流动压力大很多。

当水流经过减压孔板时,流速发生突然变化,且在孔板前后产生许多涡流,引起很大的局部水头损失。

节流孔板计算

节流孔板计算
380H2 H=0.23Mpa
平均耗气量为1%,即220×1%=2.2m3/min=132 m3/h
工作周期8小时,170分钟再生吹冷,即170÷480=0.35,实际耗气量132÷0.35=380 m3/h
代入上述公式:19=0.677×
通过再生气量调节阀可调到0.2~0.25Mpa之间(再生压力表的压力)。
操作时慢慢往下调,注意观察均压时间是否够,如不够,再生压力适当提高。
基于孔板节流的压降理论通过分析气液两相流流经孔板时的压降及状态变化情况提出在设计选取二级孔板时的计算方法得出相关
节流孔板计算
节流孔板计算
节流孔板计算: D=0.677 4Q
H2㎜
Q:减压孔板的Biblioteka 缩空气流量,m3/hH:减压孔板前后所消耗的压力,Mpa
D:节流孔板的孔径,㎜
220 m3/min压缩热吸附式干燥器设备节流孔板直径为19㎜,

减压孔板计算表

减压孔板计算表

减压孔板计算
减压孔板孔径的计算:
水流通过孔板时的水头损失,可按下式计算:
(1)
式中H--水流通过孔板的水头损失值(kPa);
10--单位换算值()
v--水流通过孔板后的流速(m/s)
g--重力加速度
ξ值可从下式求得:
(2)
式中D--给水管直径(mm)
d--孔板的孔径(mm)
为简化计算,将各种不同管径及孔板孔径代入式(1)中及(2)中,求的相应的H值,所得结果列入下表中。

使用时,只要已知剩余水头H及给水管直径D,就可以从表中查得所需孔板孔径d。

下表中数据是假定水流通过孔板后的流速为1(m/s)计算得出的,如实际流速与此不符,则应按下式进行修正,并按修正后的剩余水头查表:
式中H'--流速1m/s时的剩余水头(kPa);
v--水流通过孔板后的实际流速(m/s)(如孔板前后管径无变化,则v值等于管内流速);
H--设计剩余水头(kPa)。

='。

喷淋水力计算

喷淋水力计算

计算原理参照《自动喷水灭火系统设计规范GB 50084-2001》(2005年版)基本计算公式:1、喷头流量:式中:q -- 喷头处节点流量,L/minP -- 喷头处水压(喷头工作压力)MPaK -- 喷头流量系数2、流速V:式中:Q -- 管段流量L/sDj --管道的计算内径(m)3、水力坡降:式中:i -- 每米管道的水头损失(mH20/m)V -- 管道内水的平均流速(m/s)dj -- 管道的计算内径(m),取值应按管道的内径减1mm确定4、沿程水头损失:式中:L -- 管段长度m5、局部损失(采用当量长度法):(当量)式中:L(当量) -- 管段当量长度,单位m(《自动喷水灭火系统设计规范》附录C)6、总损失:7、终点压力:管段名称起点压力mH2O管道流量L/s管长m当量长度管径mmK水力坡降mH2O/m流速m/s损失mH2O终点压力mH2O1-2 7.00 1.11 3.10 0.80 25 80 0.539 2.09 2.10 9.10 2-3 9.10 2.38 3.10 1.80 32 80 0.530 2.51 2.60 11.70 3-4 11.70 3.81 1.55 2.10 32 80 1.365 4.02 4.98 16.68 30-31 7.00 1.11 3.10 0.80 25 80 0.539 2.09 2.10 9.10 31-32 9.10 2.38 3.10 1.80 32 80 0.530 2.51 2.60 11.70 32-4 11.70 3.81 1.55 2.10 32 80 1.365 4.02 4.98 16.68 4-5 16.68 7.63 3.40 3.60 50 80 0.645 3.59 4.51 21.20计算结果:所选作用面积:161.0平方米总流量:25.79 L/s平均喷水强度:9.61 L/min.平方米入口压力:43.93 米水柱3、高差计算泵房水池吸水管标高为—10米,最高处喷头标高为7.00,高差Z =6+7=17米。

喷淋计算

喷淋计算

计算原理参照《自动喷水灭火系统设计规范GB 50084-2001》(2005年版)基本计算公式:1、喷头流量:PK q 10=式中:q --喷头处节点流量,L/minP --喷头处水压(喷头工作压力)MPa K --喷头流量系数2、流速V :2π4j xh D q v =式中:Q --管段流量L/sD j --管道的计算内径(m )3、水力坡降:3.1200107.0jd v i =式中:i --每米管道的水头损失(mH 20/m )V --管道内水的平均流速(m/s )d j --管道的计算内径(m ),取值应按管道的内径减1mm 确定4、沿程水头损失:Li h ×=沿程式中:L --管段长度m5、局部损失(采用当量长度法):L i h ×=局部(当量)式中:L(当量)--管段当量长度,单位m(《自动喷水灭火系统设计规范》附录C)6、总损失:沿程局部h h h +=7、终点压力:hh h n n +=+1管段名称起点压力mH2O 管道流量L/s 管长m 当量长度管径mm K 水力坡降mH2O/m 流速m/s 损失mH2O 终点压力mH2O 1-2 5.000.94 2.150.8025800.385 1.77 1.14 6.142-3 6.14 1.98 2.15 1.8032800.367 2.09 1.457.593-47.59 3.14 3.60 2.1032800.923 3.31 5.2612.8540-4111.09 1.400.600.6025800.854 2.63 1.0212.1241-412.12 1.400.850.0025800.854 2.630.7312.844-512.854.542.702.7040800.9153.614.9417.7942-516.29 1.700.600.602580 1.254 3.19 1.5017.79 5-617.79 6.23 1.05 3.6050800.430 2.93 2.0019.79 43-447.59 1.16 2.150.8025800.584 2.18 1.729.32 44-459.32 2.44 2.15 1.8032800.558 2.57 2.2011.52 45-611.52 3.86 3.60 2.303280 1.401 4.088.2619.79 6-719.7910.10 2.50 3.7065800.295 2.86 1.8321.61 46-719.79 1.870.600.602580 1.523 3.52 1.8321.61 7-821.6111.96 1.30 4.3065800.414 3.39 2.3223.93 47-4811.15 1.40 2.300.8025800.858 2.64 2.6613.81 48-4913.81 2.96 2.30 2.1032800.824 3.12 3.6217.44 49-817.44 4.72 3.55 3.0040800.990 3.75 6.4923.92 8-923.9316.68 2.25 4.6080800.325 3.36 2.2326.15 50-920.00 1.880.600.602580 1.539 3.54 1.8521.85 9-1026.1518.56 1.40 5.4080800.402 3.74 2.7328.89 51-5213.47 1.54 2.300.802580 1.037 2.90 3.2116.68 52-5316.68 3.26 2.30 2.1032800.995 3.43 4.3821.06 53-1021.06 5.18 3.55 3.004080 1.196 4.137.8328.89 10-1128.8923.74 2.15 6.10100800.151 2.74 1.2430.13 11-1230.1323.74 1.500.00100800.151 2.740.2330.36 12-1330.3623.74 2.050.00100800.151 2.740.3130.67 13-1430.6723.74 1.600.00100800.151 2.740.2430.91 14-1530.9123.74 1.270.00100800.151 2.740.1931.10 15-1631.1023.74 1.580.00100800.151 2.740.2431.34 16-1731.3423.74 2.400.00100800.151 2.740.3631.70 17-1831.7023.740.250.00100800.151 2.740.0431.74 18-1931.7423.74 2.350.00100800.151 2.740.3532.09 19-2032.0923.74 1.200.00100800.151 2.740.1832.27 20-2132.2723.74 2.450.00100800.151 2.740.3732.64 21-2232.6423.740.250.00100800.151 2.740.0432.68 22-2332.6823.740.850.00100800.151 2.740.1332.81 23-2432.8123.74 2.150.00100800.151 2.740.3233.13 24-2533.1323.740.250.00100800.151 2.740.0433.17 25-2633.1723.74 1.150.00100800.151 2.740.1733.34 26-2733.3423.74 2.450.00100800.151 2.740.3733.71 27-2833.7123.74 1.100.00100800.151 2.740.1733.88 28-2933.8823.74 2.600.00100800.151 2.740.3934.27 29-3034.2723.740.950.00100800.151 2.740.1434.41 30-3134.4123.74 2.600.00100800.151 2.740.3934.80 31-3234.8023.740.00 1.10100800.151 2.740.1734.97 32-3334.9723.740.950.00125800.049 1.790.0535.01 33-3435.0123.74 2.650.00125800.049 1.790.1335.14 34-3535.1423.740.000.00125800.049 1.790.0035.14 35-3635.1423.740.900.00125800.049 1.790.0435.1936-3735.1923.74 2.750.00125800.049 1.790.1335.32 37-3835.3223.740.350.00125800.049 1.790.0235.34 38-3935.3423.74 3.460.00125800.049 1.790.1735.51计算结果:所选作用面积:160.1平方米总流量:23.74L/s平均喷水强度:8.90L/min.平方米入口压力:35.51米水柱。

喷淋管每层压力计算公式

喷淋管每层压力计算公式

喷淋管每层压力计算公式在工业生产中,喷淋管是一种常用的设备,用于喷洒液体或气体,常见于冷却、清洗、喷涂等工艺中。

喷淋管的设计和使用需要考虑到各种因素,其中之一就是每层压力的计算。

每层压力的计算对于确保喷淋管正常工作非常重要,因此我们需要了解喷淋管每层压力的计算公式。

喷淋管每层压力计算公式可以根据流体力学原理进行推导,一般情况下可以使用以下公式进行计算:P = ρgh。

其中,P为每层压力,ρ为液体的密度,g为重力加速度,h为液体的高度。

在实际应用中,我们需要根据具体情况来确定每个参数的数值。

下面我们将分别介绍每个参数的确定方法。

首先,液体的密度ρ是一个固定值,可以通过查阅相关资料或者实验测定来确定。

不同液体的密度不同,因此在使用喷淋管时需要根据实际使用的液体来确定密度值。

其次,重力加速度g也是一个固定值,通常取9.8 m/s^2。

在地球上,重力加速度几乎是恒定的,因此在大多数情况下可以直接使用这个数值。

最后,液体的高度h是需要根据实际情况来确定的。

在喷淋管中,液体的高度通常是由喷嘴到液体表面的垂直距离。

在设计喷淋管时,需要根据需要喷洒的液体量和喷洒的距离来确定液体的高度。

通过以上公式和参数的确定方法,我们可以计算出喷淋管每层的压力。

在实际应用中,我们还需要考虑到喷嘴的设计和压力损失等因素,但是喷淋管每层压力的计算公式可以作为设计和使用的基础,帮助我们确保喷淋管正常工作。

除了上述的基本计算公式,根据实际情况,还可以通过流体力学的其他原理和方法来进行更复杂的计算。

例如,可以考虑管道摩擦阻力、流体的速度和流量等因素,进一步优化喷淋管的设计和使用。

总之,喷淋管每层压力的计算是喷淋管设计和使用中非常重要的一部分。

通过合理的计算和设计,可以确保喷淋管正常工作,提高工业生产的效率和质量。

希望本文介绍的喷淋管每层压力计算公式对大家有所帮助,也希望大家在使用喷淋管时能够注意相关的设计和安全要求,确保工作的顺利进行。

减压孔板计算表

减压孔板计算表

27 0.6 3.0 10.3 50.0 89.9 233.0 590.3
28
2.4 8.6 42.5 76.8 199.9 507.9
d(mm)
29
30
1.9 7.1 36.3 65.8 172.3 439.2
1.5 5.9 31.1 56.7 149.2 381.4 810.6
31
1.2 5.0 26.7 49.0 129.7 332.7 708.3
10 3.3 15.1 42.5 125.3 321.8 810.6
11 1.8 9.4 27.6 83.1 215.7 547.2
12 0.9 5.9 18.3 56.7 149.2 381.4
13 0.4 3.8 12.4 39.7 105.9 273.1
D(mm ) 15 20 25 32 40 50 70 80
41
42
0.8 6.8 13.3 38.0 101.8 221.3
0.6 5.9 11.9 34.1 91.7 199.9
D(mm ) 50 70 80
100 125 150
43 0.5 5.2 10.5 30.6 82.8 181.0
44 0.4 4.6 9.4 27.6 74.9 164.2
45
63 0.3 1.1 4.5 14.5 34.1
64 0.2 0.9 4.2 13.4 31.7
d(mm)
65
66
0.8 3.8 12.4 29.6
0.7 3.5 11.5 27.6
67
0.6 3.2 10.7 25.7
68
69
0.5 2.9 9.9 24.0
0.5 2.7 9.2 22.4

喷淋管道承受压力计算公式

喷淋管道承受压力计算公式

喷淋管道承受压力计算公式喷淋管道是工业生产中常用的一种输送介质的管道,其承受压力的计算是非常重要的。

在设计喷淋管道时,需要考虑到管道的材质、管道的直径、工作压力等因素,以确保管道能够承受所需的压力,从而保证生产的正常进行。

本文将介绍喷淋管道承受压力的计算公式及相关知识。

1. 喷淋管道承受压力的计算公式。

喷淋管道承受压力的计算公式可以通过以下公式来进行计算:P = 2 S t / (D 2 t)。

其中,P为管道的承受压力,单位为MPa;S为管道材质的抗拉强度,单位为MPa;t为管道的壁厚,单位为mm;D为管道的外径,单位为mm。

通过这个公式,可以计算出管道在给定材质、壁厚和外径的情况下,所能承受的最大压力。

在实际工程中,需要根据工作条件和安全系数来确定管道的设计压力,以确保管道的安全运行。

2. 喷淋管道承受压力计算的相关知识。

在进行喷淋管道承受压力的计算时,需要考虑以下几个关键因素:(1)管道材质,不同材质的管道其抗拉强度是不同的,因此在进行计算时需要根据实际情况选择合适的材质参数。

(2)管道壁厚,管道的壁厚直接影响着其承受压力的能力,通常情况下,壁厚越大,管道的承受压力就越大。

(3)管道外径,管道的外径也会对其承受压力产生影响,外径越大,管道的承受压力就越大。

(4)安全系数,在进行管道的设计时,需要考虑到安全系数,以确保管道在工作时不会发生意外事故。

除了以上几个因素外,还需要考虑到管道的工作温度、介质的性质等因素,以确保管道在实际工作中能够承受所需的压力。

3. 喷淋管道承受压力计算的实例。

为了更好地理解喷淋管道承受压力的计算方法,我们可以通过一个实际的例子来进行说明。

假设某工厂需要设计一条喷淋管道,管道材质为碳钢,壁厚为5mm,外径为100mm,要求管道能够承受的最大压力为1.5MPa。

根据上面的公式,可以计算出管道的抗拉强度S为300MPa。

将这些参数代入公式中,可以得到:P = 2 300 5 / (100 2 5) = 1.5MPa。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

减压孔板水力计算表
消火栓减压孔板计算法,当消火栓栓口压力决定了,只要选定合适的孔板,就决定了减压的阻力损失与栓口余下的损失,由于有
流速后去算出此流量流速下孔板损失,通过校核此流量流速下减压后余下的压力与假定的校对,不断调整。

当二者数值相近时则假定的成立
同,栓口出水压力也不同。

由此选用合适的孔板与余下的充实水柱。

由于充实水柱的特性系数要查减压孔板水力计算表
其中充实水柱计算中的水枪充实水柱特性&值及充实水柱a值为查表所得(a值可以用插入法计算)
水枪口径1316192225
&0.0160.0120.010.0080.006
充实水柱68101216
a 1.19 1.19 1.2 1.21 1.24
得(a值可以用插入法计算)
由于有循环计算流量与流速等问题,可以选定孔板后去假设余下的压力通过假定的流量者数值相近时则假定的成立,所以当孔板一旦选定后,栓口出水压力也就确定了。

孔板大小不于充实水柱的特性系数要查表,故本表仅为接近值。

相关文档
最新文档