九年级数学下册第7章锐角三角函数7.5解直角三角形7.5.2构造直角三角形解题同步练习一

合集下载

九年级数学下册课件锐角三角函数解直角三角形

九年级数学下册课件锐角三角函数解直角三角形

3
2
=



6
= ,
∴ a =3 3.
由勾股定理得 b = 2 − 2 = 36 − 27 = 3 .
已知一锐角和一边解三角形中的两锐角互
余求出另一个锐角,再利用已知角的正切求出另一条直角边.当已
知直角边是已知锐角的对边时,利用这个角的正弦求斜边;当已
5
3
= ,
5
H
2.如图,在△ABC 中,sinB
AC 的长为(
1
= ,tanC
3
=2,AB = 3,则
)
A. 2
B.
5
2
C. 5
D.2
A
B
C
解:如图,过 A 作 AD⊥BC 于点 D,则∠ADC=∠ADB=90°,
A
∵ tanC =2 =

,sinB

1
3
= =



∴ AD =2DC,AB =3AD,
∠A的邻边
∠B的邻边
A
a
b
C
知识点2:解直角三角形的基本类型及解法
1.根据下列条件,解直角三角形:
(1)在 Rt△ABC 中,∠C =90°,a =20,c =20 2;
解:(1)在 Rt△ABC 中,∠C = 90° ,


则 sinA = =
20
20 2
=
2
2

∴ ∠A =45°,∴ ∠B =90°-∠A =45°,∴ b =a=20.
按题意标明哪些元素是已知的,哪些元素是未知的,然
后确定锐角,再确定它的对边和邻边.
直角三角形中的边角关系
如图,在 Rt△ABC 中,∠C =90°,∠A,∠B,∠C 所

九年级锐角三角函数与解直角三角形复习课件

九年级锐角三角函数与解直角三角形复习课件
北 A
0
B
C 图3
90的水平角 (4)方向角:指北或指南方向线与目标方向线所成的小于 叫做方向角,
D
北 A
30 60
西 0 东
30 45
C 南 图4
如图4中,目标A、B、C、D的方向角分别表示北偏东60、南偏 30 东 45、南偏西 、北偏西 30。又如,东南方向,指的是南偏东45角。
B
解:(1)过B作BD⊥AC于D 根据题意得:∠BAC=30°,在Rt△ABD中 1 1 BD60 200 2 2 ∴B处会受到影响。
C

F 60
D
E
° A
西
B
(2)以B 为圆心,以200海里为半径画圆交 AC于E 、F (如图)则E 点表示台风中心第一次到达距 B处200海里的位置,在Rt△DBE中, DB=160,BE=200,由勾股定理可知DE=120,在Rt△BAD中,AB=320, BD=160,由勾股定理可知: AD 160 3 AE AD DE AD 160 3 120(海里)
B c a A b (图 1) C
a b a sin A , cos A , tan A c c b
解直角三角形时,要注意适当选用恰含一个未知数的关系式。
8. 有关解直角三角形的应用题: 应用解直角三角形的知识解决实际问题的时候,常用的几个概念: (1)仰角、俯角:视线与水平线所成的角中,视线在水平线上方的叫 做仰角,在水平线下方的叫做俯角,如图1。
t 160 3 120 38 . (小时) 40 ∴该船应在3.8小时内卸完货物。
½½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ · ½ ì ½ § ½ ü ½ ½½½ ½ ½ ú ½ ½ ½ ½ ½ á ½½ ÷ ½½ ½× ½ ½ · ½ ½ ½ ½ ½ ½ ½ × ½ ½ ½ ½ ½ · § ½ ½

苏教版九年级数学下册7.5解直角三角形(第1课时)(优秀教学设计)

苏教版九年级数学下册7.5解直角三角形(第1课时)(优秀教学设计)

课题7.5 解直角三角形(第1课时)主备人执教者课型新授课课时1授课时间教学目标1.使学生了解解直角三角形的概念,能运用直角三角形的角与角、边与边、边与角关系解直角三角形;2.通过学生的探索讨论发现解直角三角形所需的条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决;3.通过问题情境,以及对解直角三角形所需的条件的探究,运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想.教学重难点直角三角形的解法;三角函数在解直角三角形中的灵活运用.教学法指导小组合作讨论、讲练结合法教具准备多媒体课件集体智慧个性设计教学后记新课引入——情景导入五星红旗你是我的骄傲,五星红旗我为你自豪……如何测量旗杆的高度?请同学们说说你的想法.积极思考,回答问题——大多数学生会凭直觉发表自己的观点,有的用尺子度量,有的说我们可以构建直角三角通过身边的情境让学生思考、交流、发言,调动学生的课堂参与的积极性,激发了他们研究的兴趣和探究的激情.实践探索活动一:(课件展示1)如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞多远?活动二:(课件展示2)如图,为测量旗杆的高度,在C点测得A点的仰角为30°,点C到点B的距离56.3,求旗杆的高度(精确到0.1m).解:略.归纳总结同学们回答的非常好,通过上面的两个活动,若要完整解该直角三角形,还需求出哪些元素?如图,在Rt△ABC中,∠C为直角,其余5个元素之间有以下关系:观察、思考,并归纳、小结得出“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)”.用,把实际问题转化为数学模型解决;(2)巩固解直角三角形的定义和目标,初步体会解直角三角形的方法——直角三角形的边角关系(勾股定理、两锐角互余、锐角三角函数)使学生体会到“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素”交流讨论;归纳总结.AB C(1)三边之间关系: a 2+b 2=c 2(勾股定理).(2)锐角之间的关系: ∠A +∠B =90°(直角三角形的两个锐角互余). (3)边角之间的关系:学生交流讨论归纳(课件展示讨论的条件)师总结:解直角三角形,有下面 两种情况(其中至少有一边) :(1) 已知两条边(一直角边一 斜边;两直角边) ;(2) 已知一条边和一个锐角(一直角边一锐角;一斜边一锐角).自然就可以得出“定义” . 例题讲解例1 在Rt △ABC 中,∠C =90°,∠A =30°,a sin cos tan a b a A A A c c b===,,.=5.解这个直角三角形.例2已知:在Rt△ABC中,∠C=90°,a=104,b=20.49.(1)求c的值(精确到0.01);(2)求∠A、∠B的大小(精确到0.01°).知识巩固1.在Rt△ABC中,∠C=90°,根据下列条件解直角三角形(边长精确到0.1,角度精确到0.1°):求:(1)a=9 ,b=6;(2)∠A=18°,∠C=13.2.如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,求:B、C两地之间的距离.1.根据解直角三角形定义和方法进行分析.2.思考多种方法,选择最简便的方法.例2由学生独立分析,板练完成,并作自我评价,以掌握方法.练分析问题,掌握所学基础知识及基本方法,并进一步提高学生“执果索因”的能力.使学生巩固利用直角三角形的有关知识解决实际问题,考察建立数学模型的能力,转化的数学思想在学习中的应用,提高学生分析问题、解决问题的能力,以及在学习中还存在哪些问题,及时反馈矫正.课堂小结通过今天的学习,你学会了什么?布置作业(1)必做题:(2)选做题:如图所示,施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米.(1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶?解直角三角(勾股定理)两锐角之间关系 边角之间关系简单应用(参考数据:cos20°≈0.94,sin20°≈0.34,sin18°≈0.31, cos18°≈0.95)(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。

中考数学 第7章 图形的变化 锐角三角函数和解直角三角形复习

中考数学 第7章 图形的变化 锐角三角函数和解直角三角形复习

1.锐角三角函数的意义,Rt△ABC 中,设∠C=90°,∠α 为 Rt△ABC 的一个锐角,则:
∠α的对边 ∠α的正弦 sinα=____斜__边______;
∠α的邻边 ∠α 的余弦 cosα=_____斜__边_____;
∠α的对边 ∠α的正切 tanα=__∠__α_的__邻__边___.
(_3_)_边s_in_与A__=角__的c_o_s关_B_系=__:ac_,__c_o_s_A_=__s_i_n_B_=__bc_,__t_a_n_A_=__ab_,___ta_n_B_= ___ba____.
5.直角三角形的边角关系在现实生活中有着广泛的应用,它经 常涉及测量、工程、航海、航空等,其中包括了一些概念,一定 要根据题意明白其中的含义才能正确解题.
(1)铅垂线:重力线方向的直线;
(2)水平线:与铅垂线垂直的直线,一般情况下,地平面上的两点 确定的直线我们认为是水平线;
(3)仰角:向上看时,视线与水平线的夹角; (4)俯角:向下看时,视线与水平线的夹角; (5)坡角:坡面与水平面的夹角; (6)坡度:坡面的铅直高度与水平宽度的比叫做坡度(或坡比), 一般情况下,我们用 h 表示坡的铅直高度,用 l 表示坡的水平宽度, 用 i 表示坡度,即 i=hl =tanα,显然,坡度越大,坡角就越大,坡 面也就越陡;
数学
山西版
第七章 图形的变化
锐角三角函数和解直角三角形
课标解读 1.利用相似的直角三角形,探索并认识锐角三角函数(sinA, cosA,tanA),知道30°,45°,60°角的三角函数值. 2.会使用计算器由已知锐角求它的三角函数值,由已知三角 函数值求它的对应锐角. 3.能用锐角三角函数解直角三角形,能用相关知识解决一些 简单的实际问题.

7.5 解直角三角形 课件2(苏科版九年级下)

7.5 解直角三角形 课件2(苏科版九年级下)

A
45°
C
60° D B
练一练:在某市旧城改造的某一项目中,要将如图 所示的一棵没有观赏价值的树放倒,栽上白玉兰。 在操作过程中,师傅甲要直接把树放倒,师傅乙不 同意,他担心这样会损害这棵树周围4.5米处的花 草和动物雕塑。请你根据图中标注的测量数据,通 过计算说明:师傅乙的担心是否必要? (计算结果精确到0.1m)
视线
铅 直 线
仰角 俯角
视线 水平线
如图,线段AB、CD分别表示甲、乙两 幢楼的高,AB⊥BD,CD⊥BD,从甲楼顶部A处 测得乙楼顶部C的仰角α=300,测得乙楼底 部D的俯角β=450,已知甲乙两楼间的距离 BD=30米,求乙楼的高度。 C
A
α
β
D
B
1、如图,为了测量电线杆的高度AB,在离电线杆30米 的C处,用高1.20米的测角仪CD测得电线杆顶端B的仰角 a=30°,求电线杆AB的高.(精确到0.1米)
小华去实验楼做实验, 两幢实 验楼的高度AB=CD=20m, 两楼间的距离 BC=15m,已知太阳光与水平线的夹角为 30°,求南楼的影子在北楼上有多高?
AA
20m
D30 ° 30南来自FF15m北 E E
15m
B
C
小华想:若设计时要求北楼的采光, 不受南楼的影响,请问楼间距BC长至 少应为多少米?
如图,线段AB、CD分别表示甲、乙两 幢楼的高,AB⊥BD,CD⊥BD,从甲楼顶部A处 测得乙楼顶部C的仰角α=300,测得乙楼底 部D的俯角β=450,已知甲乙两楼间的距离 BD=30米,求乙楼的高度。 C
A
B
D
在进行测量时,从下向上看,视线与水平 线的夹角叫做仰角;从上往下看,视线与 水平线的夹角叫做俯角.

初三数学利用三角函数解直角三角形含答案

初三数学利用三角函数解直角三角形含答案

解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。

用锐角三角函数解决问题(课件)-2022-2023学年九年级数学下册同步精品课堂(苏科版)

用锐角三角函数解决问题(课件)-2022-2023学年九年级数学下册同步精品课堂(苏科版)
函数解决问题
坡度、坡角问题
01
知识精讲
情境引入
美丽的山坡也可以抽象出数学模型~
01
知识精讲
复习引入
回顾坡度的定义【正切的课件引入部分】
【坡度的定义】
通常把坡面的垂直高度h与水平方向的距离l的比叫做坡度(或叫做坡比),
坡度越大,坡越陡
h
l
02
坡度
知识精讲
【坡度的表示】
坡度用i表示,记作i=h:l,坡度通常写成1:m的形式
达大厦的第五层后,再看这个鸟巢,俯角为60°,已知大厦的层高均为4m,则这棵树
与大厦的距离为__________m.
16
【分析】如图:
根据题意可知:∠BAC=30°,∠B=60°,BC=4×4=16(m),
∴∠BCA=90°,
∴AC= BC=16 (m).
答:这棵树与大厦的距离为16 m.
75
__________米.
【分析】设山坡的坡角为α,
∵山坡的坡度为1: ,
∴tanα=


= ,则α=30°,


∴ ×150=75(米).

知识精讲
例2、速滑运动受到许多年轻人的喜爱.如图,四边形BCDG是某速滑场馆建造的滑台,已知
CD∥EG,滑台的高DG为5米,且坡面BC的坡度为1:1.后来为了提高安全性,决定降低坡度
eg:若h=2,l=2 3,则i=2:(2 3),即i=1: 3
h
l
02
坡角
知识精讲
坡面
α
h
l 水平面
【坡角的定义】
坡面与水平面的夹角叫做坡角,记作α

= =

【题型一:解直角三角形的应用——坡度、坡角问题】

【中小学资料】九年级数学下册 第7章 锐角三角函数 7.5 解直角三角形 7.5.2 构造直角三角形解题同步练习2

【中小学资料】九年级数学下册 第7章 锐角三角函数 7.5 解直角三角形 7.5.2 构造直角三角形解题同步练习2

[7.5 第2课时 解直角三角形的应用]一、选择题1.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ) A .7sin35° B.7cos35°C .7cos35°D .7tan35°2.如图K -31-1,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 等于( )图K -31-1A .0.5B .1.5C .4.5D .23.等腰三角形的顶角为120°,腰长为2 cm ,则它的底边长为链接听课例2归纳总结( )A. 3 cmB.4 33cmC .2 cmD .2 3 cm 4.如图K -31-2,⊙O 的直径AB =2,弦AC =1,点D 在⊙O 上,则∠D 的度数为( )图K-31-2A.30° B.45° C.60° D.75°5.如图K-31-3,在△ABC中,∠BAC=90°,AB=AC,D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )图K-31-3A.13B.2-1 C.2- 3 D.14二、填空题6.如图K-31-4,在平面直角坐标系xOy中,O为坐标原点,点P的坐标为(5,12),那么OP与x轴正半轴所夹的锐角为________.(精确到0.1°)图K-31-47.如图K-31-5,在菱形ABCD中,AC=6,BD=8,则sin∠ABC=________.图K-31-58.如图K-31-6,在△ABC中,∠A=30°,∠B=45°,AC=2 3,则AB的长为________.图K-31-69.2018·安徽四模如图K-31-7,在△ABC中,AB=AC,AH⊥BC,垂足为H,如果AH =BC,那么tan∠BAH的值是________.图K -31-710.2017·黑龙江在△ABC 中,AB =12,AC =39,∠B =30°,则△ABC 的面积是________. 三、解答题11.2018·淮南模拟如图K -31-8,在△ABC 中,∠A =30°,cos B =45,AC =6 3.求AB 的长.链接听课例2归纳总结图K -31-812.如图K -31-9,在平面直角坐标系内,O 为原点,点A 的坐标为(10,0),点B 在第一象限内,BO =5,sin ∠BOA =35.求:(1)点B 的坐标; (2)cos ∠BAO 的值.图K -31-913.2018·广安改编如图K -31-10,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,连接AC ,CG 是⊙O 的弦,CG ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,连接BE .若cos P =45,PC =10,求BE 的长.图K -31-10阅读理解在锐角三角形ABC 中,∠A ,∠B ,∠ACB 的对边分别是a ,b ,c .如图K -31-11所示,过点C 作CD ⊥AB 于点D ,则cos A =AD b,即AD =b cos A ,图K -31-11∴BD =c -AD =c -b cos A .在Rt △ADC 和Rt △BDC 中,有CD 2=AC 2-AD 2=BC 2-BD 2, ∴b 2-b 2cos 2A =a 2-(c -b cos A )2,整理,得a 2=b 2+c 2-2bc cos A ,(1)同理可得b 2=a 2+c 2-2ac cos B ,(2) c 2=a 2+b 2-2ab cos ∠ACB . (3)这个结论就是著名的余弦定理,在以上三个等式中有六个元素a ,b ,c ,∠A ,∠B ,∠ACB ,若已知其中的任意三个元素,可求出其余的另外三个元素.如:在锐角三角形ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,已知∠A =60°,b =3,c =6,则由(1)式可得a 2=32+62-2×3×6cos60°=27, ∴a =3 3,则∠B ,∠C 可由式子(2),(3)分别求出,在此略. 根据以上阅读理解,请你试着解决如下问题:已知锐角三角形ABC 的三边a ,b ,c (a ,b ,c 分别是∠A ,∠B ,∠C 的对边)分别是7,8,9,求∠A ,∠B ,∠C 的度数.(结果精确到1°)详解详析[课堂达标]1.[解析] C 在Rt △ABC 中,cos B =BCAB ,所以BC =AB ·cos B =7cos 35°.故选C .2.[解析] C 如图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限, ∴AB =t ,OB =3. 又∵tan α=AB OB =t 3=32,∴t =4.5. 故选C .3.[解析] D 如图,过点A 作AD ⊥BC 于点D ,则∠BAD =∠CAD =60°,BD =DC.∵AD ⊥BC ,∴∠B =30°.∵AB =2 cm , ∴AD =1 cm ,BD = 3 cm , ∴BC =2 3 cm .故选D .4.[解析] C ∵AB 是⊙O 的直径,∴∠ACB =90°.∵AC =1,AB =2,∴sin ∠ABC =ACAB =12,∴∠ABC =30°,∠A =60°,∴∠D =60°,故选C . 5.[解析] A ∵在△ABC 中,∠BAC =90°,AB =AC , ∴∠ABC =∠C =45°,BC =2AC. 又∵D 为边AC 的中点, ∴AD =DC =12AC.∵DE ⊥BC 于点E , ∴∠CDE =∠C =45°, ∴DE =EC =22DC =24AC , ∴tan ∠DBC =DEBE =24AC 2AC -24AC =13. 故选A .6.[答案] 67.4°[解析] 如图,过点P 作PA ⊥x 轴,垂足为A.由勾股定理,得OP =122+52=13,∴cos ∠POA =513,∴∠POA ≈67.4°.7.[答案] 2425[解析] 过点A 作AE ⊥BC ,垂足为E ,由AC =6,BD =8,根据勾股定理得AB =32+42=5,菱形ABCD 的面积=12AC·BD=BC·AE,即12×6×8=5×AE ,得AE =245,所以sin ∠ABC=AE AB =2455=2425. 8.[答案] 3+ 3[解析] 如图,过点C 作CD ⊥AB 于点D ,则∠ADC =∠BDC =90°. ∵∠B =45°,∴∠BCD =∠B =45°, ∴CD =BD.∵∠A =30°,AC =2 3, ∴CD =3, ∴BD =CD = 3.由勾股定理,得AD =AC 2-CD 2=3, ∴AB =AD +BD =3+ 3.9.[答案] 12[解析] 设AH =BC =2x.∵AB =AC ,AH ⊥BC ,∴BH =CH =12BC =x ,∴tan ∠BAH =BH AH =x 2x =12.10.[答案] 21 3或15 3[解析] (1)当∠ACB 为锐角时,如图①,过点A 作AD ⊥BC ,垂足为D.在Rt △ABD 中,∵AB =12,∠B =30°, ∴AD =12AB =6,BD =AB·cos B =12×32=6 3.在Rt △ACD 中,CD =AC 2-AD 2=(39)2-62=3, ∴BC =BD +CD =6 3+3=7 3, 则S △ABC =12BC·AD=12×7 3×6=21 3;(2)当∠ACB 为钝角时,如图②,过点A 作AD ⊥BC ,交BC 的延长线于点D.由(1)知,AD =6,BD =6 3,CD =3,则BC =BD -CD =5 3,∴S △ABC =12BC·AD=12×5 3×6=15 3.故答案为21 3或15 3.11.解:如图,过点C 作CD ⊥AB 于点D.∵∠A =30°,∴CD =12AC =3 3,AD =AC ·cos A =9.∵cos B =45,∴设BD =4x ,则BC =5x.由勾股定理,得CD =3x.由题意,得3x =3 3,解得x =3, ∴BD =4 3,∴AB =AD +BD =9+4 3.12.解:(1)如图,过点B 作BH ⊥OA ,垂足为H.在Rt △OHB 中,∵BO =5,sin ∠BOA =35,∴BH =BO·sin ∠BOA =5×35=3,∴OH =BO 2-BH 2=4, ∴点B 的坐标为(4,3).(2)∵OA =10,OH =4,∴AH =6. 在Rt △AHB 中, ∵BH =3,AH =6, ∴AB =BH 2+AH 2=3 5, ∴cos ∠BAO =AH AB =2 55.13.解:(1)证明:连接OC.∵PC 与⊙O 相切于点C ,∴∠PCO =90°,∴∠PCA +∠OCA =90°. ∵AB 是⊙O 的直径,∴∠ACB =90°, ∴∠OCB +∠OCA =90°, ∴∠PCA =∠OCB.∵OC =OB ,∴∠OCB =∠ABC , ∴∠PCA =∠ABC.(2)∵cos P =PC OP =45,PC =10,∴OP =252,∴OC =OP 2-CP 2=152,∴AB =15.∵AE ∥PC ,∴∠BAE =∠P.∵AB 是⊙O 的直径,∴∠E =90°, ∴AE =AB·cos ∠BAE =15×45=12,∴BE =AB 2-AE 2=9. [素养提升][解析] 此题只要把三边长代入余弦定理公式即可求出三角的余弦值,从而求出三角.解:由(1)得72=82+92-2×8×9cos A , 则cos A =23,∠A ≈48°.由(2)得82=72+92-2×7×9cos B , 则cos B =1121,∠B ≈58°,∴∠C =180°-∠A -∠B ≈74°.。

中学九年级数学下册 7.5 解直角三角形教案 (新版)苏科版 教案

中学九年级数学下册 7.5 解直角三角形教案 (新版)苏科版 教案

解直角三角形课堂教学教案教材第七章第五节第1课时课题7.5 解直角三角形备课人课型新授课:展现标点讲解重点突破难点巩固疑点教学目标(认知技能情感)【知识与技能】使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.【过程与方法】通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.【情感态度与价值观】渗透数形结合的数学思想,培养学生良好的学习习惯.教学重难点重点:直角三角形的解法难点:用计算器辅助解决含三角函数值计算的实际问题. 三角函数在解直角三角形中的灵活运用.教具与课件多媒体与三角尺板书设计7.5 解直角三角形(1)三边之间关系: (勾股定理)。

(2)锐角之间的关系: ∠A+ ∠B=90°(直角三角形的两个锐角互余)(3)边角之间的关系: 由直角三角形中的已知元素,求出所有未知元素的过程,叫做解直角三角形教学环节学生自学共研的内容方法(按环节设计自学、讨论、训练、探索、创新等内容)教师施教提要(启发、精讲、活动等)再次优化asin,cos,tanba bA A Ac c===222a b c+=一、创设情境二、探究活动三、例题教学【新知引入】如图,在Rt△ABC中, ∠C为直角,其余5个元素之间有以下关系:(1)三边之间关系: (勾股定理)(2)锐角之间的关系: ∠A+ ∠B=90°(直角三角形的两个锐角互余)(3)边角之间的关系:利用以上关系,如果知道其中的2个元素(其中至少有一个是边),那么就可以求出其余的3个未知元素.由直角三角形中的已知元素,求出所有未知元素的过程,叫做解直角三角形。

【典型例题】在Rt△ABC中,∠C=90°,∠A=30°,a=5.解这个直角三角形 .2.已知:在Rt△ABC中,∠C=90°,a=3, b= .求: (1)c的大小;(2)∠A、∠B的大小.3.如图,⊙O的半径为10,求⊙O的内接正五边形ABCDE的边长.4.在Rt△ABC中,CD是斜边上的高..若,求△ABC的面积.课后练习:【知识要点】1、如图,在Rt△ABC中,∠C为直角,其余5个元素之间有以提问的形式进行。

7.5 解直角三角形

7.5 解直角三角形

生:独立思考后小组交 流。 师:请同学谈谈自己的 做法, 后师生共同总结。
题,综合运用解 直角三角形知 识,既是对所学 知识的巩固,更 能够培养学生 分析问题和解 决问题的能力。
七、 课后 作业 八、 教学 反思
课本 P53 习题 7.5:1,2 本节课主要是让学生掌握直角形中的边角关系, 会运用这些关系解直角三角形。 例 题的难度较小,通过例题的学习,既能够巩固所学知识,更能培养学生分析问题和 解决问题的能力。教学中设置的拓展延伸题,虽有一定的难度,但同样能够培养学 生用数学知识解决实际问题的能力,还能激发学生学习数学的热情。
课 题 主备 人
§7.5 解直角三角形 吴桂余 审稿人
课型 统稿人
新授
上课日期 执教人
教 学 目 标
知识与技能目标 1.理解直角三角形中 5 个元素的关系,会运用勾股定理、直角三角形的两个锐角之 间的关系及锐角三角函数解直角三角形。 2、通过本节课的学习,渗透数形结合的思想,培养学生分析问题和解决问题的能 力。 过程与方法目标 1、通过探讨直角三角形中 5 个元素的关系,引入解直角形概念; 2、通过具体的例子让学生经历探索分析解直角三角形的过程,进一步体验解直角 三角形的方法。 情感与态度目标 情感与态度目标 1、通过渗透数形结合的思想,对学生进行门辩证唯物主义教育。 2、通过探究活动,让学生明白考虑问题经细致,说理要明确。 直角三角形的边角关系及其解法。 会运用解直角三角形的知识解决生活中的一些常见问题 教 材 处 理 情境一: 如图,已知直角三角形的边 a、b,你 能求出边 c 的长度及∠A 的度数吗? 师生活动设计 师生活动设计 活动 师:出示情境一。 生:说出解题的思路 设 计 意 图 情境一的问题 一方面是用来 巩固勾股定理 和直角三角形 中的边角关系, 二是借此题引 入解直角形概 念。 情境二从实际 出发,能激发学 生的求知欲,让 学生感受学习 新知的必要性。 引导学生了解 解直角三角形 的概念,关键问 题是让学生认 识直角三角形 中的边角关系, 这是解直角三 角形的基础。

第七章三角函数全章教学案(1)

第七章三角函数全章教学案(1)

九年级下数学三角函数教学案班级 姓名:课 题 7.5解直角三角形学 习 目 标 使学生了解解直角三角形的概念,能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形. 重 点 直角三角形的解法.难 点三角函数在解直角三角形中的灵活运用.教学流程随笔栏一、探究活动:1.如图,在Rt △ABC 中,∠ACB =90°,其余5个元素之间有以下关系(1)两锐角互余∠A +∠B = .(2)三边满足勾股定理a 2+b 2= .(3)边与角关系sinA = =a c ,cosA =sinB =bc,tanA = ,a= = , b= = .二、典例研究:例1. 由下列条件解直角三角形:在Rt △ABC 中,∠C=90°: (1)已知BC=5,∠A=30°,求AC 、AB 的长,tanA 的值.(2) 已知AC+CB=12,tanB=1,求三边的长,sinB 的值.三、课堂反馈:1.在下列直角三角形中不能求解的是( )A.已知一直角边一锐角B.已知一斜边一锐角C.已知两边D.已知两角 2.由下列条件解题:在Rt △ABC 中,∠C=90°: (1)已知AC=10,sinB=23,求BC ,AB .(2)已知AB=20,cosA=21,求BC ,tanB .bac3.等腰三角形的底边长20 cm ,面积为33100cm 2,求它顶角和底角的度数.4.Rt △ABC 中,∠C =90°,AC =8,∠CAB 的平分线AD =3316, 求∠B 的度数以及边BC 、AB 的长.四、拓展提高:在一次科技活动中,小明进行了模拟雷达扫描实验.如图,表盘是△ABC ,其中AB=AC ,∠BAC=120°,在点A 处有一束红外光线AP ,从AB 开始,绕点A 逆时针匀速旋转,每秒钟旋转15°,到达AC 后立即以相同旋转速度返回AB ,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB 处旋转开始计时,旋转1秒,此时光线AP 交BC 边于点M ,BM 的长为(320-20)cm .(1)求AB 的长;(2)从AB 处旋转开始计时,若旋转6秒,此时光线AP 与BC 边的交点在什么位置?若旋转2020秒,交点又在什么位置?请说明理由.五、课堂小结: 课堂反思九年级下数学三角函数教学案班级姓名:课题7.6锐角三角函数的简单应用(1)学习目标1.会把现实生活中较简单的实际问题转化为直角三角形的问题;2.在解决实际问题的过程中进一步体会三角函数的意义.重点把现实生活中较简单的实际问题转化为直角三角形的问题.难点把现实生活中较简单的实际问题转化为直角三角形的问题.教学流程随笔栏一、探索研究1.如图1,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为 m2.如图3,AB是伸缩性遮阳棚,CD是窗户,要想夏至正午时的阳光刚好不能射入窗户,则AB的长度是米.(假如夏至正午时的阳光与地平面的夹角是600)二、典例研究:例1.如图,小明在公园放风筝,拿风筝线的手B离地面高度AB为1.5m,风筝飞到C处时的线长BC为30m,这时测得∠CBD=75º.求此时风筝离地面的高度.(精确到0.1m,参考数据sin75°≈0.97,cos75°≈0.26,tan75°≈3.7)例2.如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:8秒后船向岸边移动了多少米?(结果保留根号)三、课堂反馈2.1.已知不等臂跷跷板AB长4m.如图①,当AB的一端A碰到地面上时,AB与地面的夹角为α;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为β.求跷跷板AB 的支撑点O到地面的高度OH.(用含α,β的式子表示)四、拓展延伸身高1.65米的小明在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形CDEF代表建筑物,小明位于建筑物前点B处,风筝挂在建筑物上方的树枝点G处(点G在FE的延长线上).经测量,小明与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G与建筑物顶点D及风筝线在手中的点A在同一条直线上,点A距地面的高度AB=1.4米,风筝线与水平线夹角为37°.(1)求风筝距地面的高度GF;(2)在建筑物后面有长5米的梯子MN,梯脚M在距墙3米处固定摆放,通过计算说明:若小明充分利用梯子和一根5米长的竹竿能否触到挂在树上的风筝?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五、我的收获课堂反思:九年级下数学三角函数教学案班级 姓名:课题 7.6锐角三角函数的简单应用(2)学 习目 标3.能把现实生活中较复杂的实际问题(仰角、俯角、方位角)转化为直角三角形的问题;4.体会“化斜为直”的思想 .重点 在解决实际问题的过程中,进一步体会三角函数的意义. 难点 在解决实际问题的过程中,进一步体会三角函数的意义.教学流程 随笔栏一、探索研究 1.当从高处测量低处的目标时,视线与水平线之间的夹角叫做 角, 2.当从低处测量高处的目标时,视线与水平线之间的夹角叫做 角. 如图,∠1叫做 角,∠2叫做 角.3.如图,为了测量电线杆的高度AB ,在离电线杆21米的C 处,用1米的测角仪CD 测得电线杆顶端B 的仰角a =30°.在图中标出仰角a ,并求电线杆AB 的高度.(结果保留根号)二、典例研究:例1.某校九年级数学兴趣小组为测量校内旗杆高度,如图,在C 点测得旗杆顶端A 的仰角为30°,向前走了6米到达D 点,在D 点测得旗杆顶端A 的仰角为60°(测角器的高度不计). (1)AD =_______米; (2)求旗杆AB 的高度.(3≈1.73)例2.如图,小山顶上有一信号塔AB ,山坡BC 的倾角为30°,现为了测量塔高AB ,测量人员选择山脚C 处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E 处,再测得塔顶仰角为60°,求塔高AB (结果保留整数,3≈1.73,2≈1.41)30°60° A 6米 D C B铅垂线水平线视线视线21三、课堂反馈1.如图,人们从O处的某海防哨所发现,在它的北偏东60°方向相距600米的A处有一艘快艇正向正南方向航行,经过若干时间快艇到达哨所东南方向的B处,则A、B 之间的距离是米.2.某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).四、拓展延伸在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距83km的C处.(1)求该轮船航行的速度(结果保留根号);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.五、我的收获课堂反思:NM东北BCAl九年级下数学三角函数教学案班级 姓名:课题 7.6锐角三角函数的简单应用(3) 学 习 目 标 5.能把现实生活中较复杂的实际问题(坡度、坡角)转化为直角三角形问题; 6.体会“化斜为直”的思想. 重点 在解决实际问题的过程中,进一步体会三角函数的意义. 难点 在解决实际问题的过程中,进一步体会三角函数的意义.教学流程 随笔栏一、探索研究 一张水库拦水坝的横断面的设计图如图所示,坡面的垂直高度与水平宽度的比叫 做 (或 ),记作i ,即i = ,坡度通常用l ︰m 的形式,从三角 函数的概念可以知道,坡度与坡角之间的关系是 .1.一坡面的坡角为600,则坡度i= .2..小明沿着坡角为20°的斜坡向上前进80m, 则他上升的高度是 ( ) A .080m cos 20 B .080m sin 20C .80sin200mD .80cos200m 3.如图是一个拦水大坝的横断面图,AD ∥BC, .斜坡AB=10m,大坝高为8m,(1)则斜坡AB 的坡度i AB = .(2)如果坡度i AB =1︰3,则坡角∠B= .(3)如果坡度i AB =1︰2,AB=8m ,则大坝高度为___m. 二、典例研究:例1.如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.例2.如图1,某超市从一楼到二楼的电梯AB 的长为16.50米,坡角∠BAC 为32°. (1)求一楼与二楼之间的高度BC (精确到0.01米);(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249.A B CD三、课堂反馈1. 小明沿着坡度为1:2的山坡向上走了1000m ,则他升高了( ) A .5200m B .500m C .3500m D .1000m2.如图,一水库迎水坡AB 的坡度1i =︰3,则该坡的坡角α= .3. 如图,在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东60°方向,船P 在船B 的北偏西45°方向,AP 的距离为30海里.(1)求船P 到海岸线MN 的距离;(2)若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.四、拓展延伸如图,已知斜坡AB 长60米,坡角(即∠BAC )为30°,BC ⊥AC ,现计划在斜坡中点D 处挖去部分坡体(用阴影表示)修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(请将下面2小题的结果都精确到0.1米,参考数据:(3≈1.732)(1)若修建的斜坡BE 的坡角(即∠BEF )不大于45°,则平台DE 的长最多为 米; (2)一座建筑物GH 距离坡角A 点27米远(即AG=27米),小明在D 点测得建筑物顶部H 的仰角(即∠HDM )为30°.点B 、C 、A 、G 、H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG ⊥CG ,问建筑物GH 高为多少米?五、我的收获 课堂反思:九年级下数学三角函数教学案班级姓名:课题锐角三角函数复习(1)学习目标回顾三角函数定义、理清锐角三角函数边角关系、求(特殊)三角函数值.重点理清锐角三角函数边角关系、求(特殊)三角函数值.难点理清锐角三角函数边角关系、求(特殊)三角函数值.教学流程随笔栏例题1:在△ABC中,∠C=90°,求三角函数值:sinA= sinB=cosA= CosB=tanA= tanB=例题2:如图,在△ABC中,∠C=90°, ∠B=30°,AC=3,求AB、BC的值.变式:如上图,在△ABC中,∠C=90°, ∠A=60°,AB=8,求AC、BC的值.例题3:如图,在△ABC中,∠B=90°, cosA=54,AB=8,求AC、BC的值.变式:如图,在△ABC中,∠B=90°, sinA =135,AB=24,求AC、BC的值.例题4:如图,在△ABC中,∠C=90°, ∠B=45°,AB=36,求AC的值.BACAB C例题5:如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=43,求sinC 的值.例题6:如图,在△ABC 中,已知∠B=40°,BC=12,AB=10,能否求出AC ?如果能,请求出AC 的长度?(参考数据:sin40°≈0.6,cos40°≈0.8,tan40°≈0.75)例题7:如图,在△ABC 中,AB=AC=10,sinC=53,点D 是BC 上一点,且DC=AC . (1)求BD 的长; (2)求tan ∠BAD . 课堂反思九年级下数学三角函数教学案班级姓名:课题三角函数复习(2)学习目标三角函数的简单运用.重点三角函数的简单运用.难点三角函数的简单运用.教学流程随笔栏例1.在离地面高6米处的拉线固定一烟囱BC,拉线与地面成60°角,求拉线AC的长.例2.太阳光与地面成42.5°的角,一树的影长10米,求树高.(精确到0.1米)已知:sin42.5°≈0.68,cos42.5°≈0.74,tan42.5°≈0.92.例3.如图,河对岸有一铁塔AB.在C处测得∠ACB为30°,向塔前进16米到达D,在D处测得∠ADB为45°,求铁塔AB的高.例4.如图,要测量小山上电视塔BC的高度,在山脚A处测得:∠BAD=40°,∠CAD=29°,AC=200米. (参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin29°≈0.48,cos29°≈0.87,tan29°≈0.55.)(1)求山脚到电视塔的水平距离AD长;(精确到1米)(2)求电视塔BC的高.(精确到1米)例5.为建设“宜居宜业宜游”山水园林式城市,内江市正在对城区沱江河段进行区域性景观打造.如图,某施工单位为测得某河段的宽度,测量员先在河对岸边取一点A,再在河这边沿河边取两点B、C,在点B处测得点A在北偏东30°方向上,在点C处测得点A在西北方向上,量得BC长为200米.请你求出该河段的宽度(结果保留根号).例6.今年五、六月份,我省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在B处接到报告:有受灾群众被困于一座遭水淹的楼顶A处,救援队伍在B处测得A 在B的北偏东60°的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A 处救人,同时第二组从陆地往正东方向奔跑120米到达C处,再从C处下水游向A处救人,已知A在C的北偏东30°的方向上,且救援人员在水中游进的速度均为1米/秒.(1)求点A到陆地BC的距离;(2)在陆地上奔跑的速度为4米/秒,试问哪组救援队先到A处?请说明理由.(参考数据3=1.7,精确到1米)例7.地震发生后,一支专业搜救队驱车前往灾区救援.如图,汽车在一条南北走向的公路上向北行驶,当在A处时,车载GPS(全球卫星定位系统)显示村庄C在北偏西26°方向,汽车以35km/h的速度前行2h到达B处,GPS显示村庄C在北偏西52°方向.(1)求B处到村庄C的距离;(2)求村庄C到该公路的距离.(结果均精确到0.1km)(参考数据:sin26°≈0.44,cos26°≈0.90,sin52°≈0.79,cos52°≈0.62)课堂反思九年级下数学三角函数教学案班级姓名:课题三角函数复习(3)教学目标复习解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力.重点解决与仰角、俯角有关的实际问题.难点在系统复习知识的同时,使学生能够灵活运用知识解决问题。

九年级数学下册 第七章锐角三角函数学教案 苏科版 教案

九年级数学下册 第七章锐角三角函数学教案 苏科版 教案

A2 C 1BB C A13 1 B AC35 课题:§7.1正切[学习目标]1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。

2、了解计算一个锐角的正切值的方法。

[学习重点与难点]计算一个锐角的正切值的方法 [学习过程]一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。

下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动 1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢? ① 可通过测量BC 与AC 的长度,再算出它们的比, 来说明台阶的倾斜程度。

(思考:BC 与AC 长度的比与台阶的倾斜程度有何关系?) 答:_________________________________________. ②讨论:你还可以用其它什么方法?能说出你的理由吗? 答:_________________________________________. 2、思考与探索二:(1)如图,一般地,如果锐角A 的大小已确定,我们可以作出无数个相似的RtAB 1C 1,RtAB 2C 2,RtAB 3C 3……,那么有:Rt △AB 1C 1∽________∽________……根据相似三角形的性质,得:111AC CB =_________=_________=……(2)由上可知:如果直角三角形的一个锐角的大小已确定,那么这个锐角的对边与这个角的邻边的比值也_________。

3、正切的定义如图,在Rt △ABC 中,∠C =90°,a 、b 分别是∠A 的对边和邻边。

我们将∠A 的对边a 与邻边b 的比叫做∠A_______,记作______。

即:tanA =________=__________(你能写出∠B 的正切表达式吗?)试试看.4、牛刀小试根据下列图中所给条件分别求出下列图中∠A 、∠B 的正切值。

苏科版九年级下册数学 下册 7.5---7.6练习题带答案

苏科版九年级下册数学 下册 7.5---7.6练习题带答案

C BA7.5锐角三角函数章节------解直角三角形(含答案)例1. 如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( )(A).1 (B).√2 (C).√22(D).2√2例2、如果a 是锐角,且cosa=45,那么sina 的值是( ). (A )925 (B ) 45 (C )35 (D )1625例3、等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ). (A )513 (B )1213 (C )1013 (D )512例4、在Rt △ABC 中,∠C =90°,下列式子中正确的是( ).(A )sinA=sinB (B )sinA=cosB(C )tanA=tanB (D )cotA=cotB例5、已知α为锐角,tan (90°-α)=√3,则α的度数为( )(A )30° (B )45° (C )60° (D )75°例6、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ).(A )12 (B )√22 (C )√32(D )1 例7、如图,在△ABC 中,若∠A =30°,∠B =45°,AC =√22,则BC =例8、如图,沿倾斜角为30 的山坡植树,要求相邻两棵树的水平距离AC 为2m , 那么相邻两棵树的斜坡距离AB 为 m 。

(精确到0.1m)例9、求值:sin 245°- cos60°+ tan60°·cos 230°例10、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为60°, 路基高度为5.8米,求路基下底宽(精确到0.1米).例11、如图,某一水库大坝的横断面是梯形ABCD ,坝顶宽CD =5米,斜坡AD =16米,坝高 6米,斜坡BC 的坡度i=1:3.求斜坡AD 的坡角∠A (精确到1分)和坝底宽AB . (精确到0.1米)例12、某中学有一块三角形形状的花圃ABC,现可直接测到∠A=30°,AC=40米,BC=25米, 请你求出这块花圃可能的面积(结果保留根号)巩固练习:1.如图,在Rt△ABC 中,除∠C=90°外,其余______个元素之间存在以下关系: (l)三边之间的关系:____________(也就是__________定理);(2)两个锐角之间的关系:____________;(3)边角之间的关系:sin A =________,cos A =________,tan A =_________. D CBA2.如图,在梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB =3√3,则底BC 的长为_______. 3.在△ABC 中,∠C =90°,a=3,c =2√3,则∠B =________.4.在△ABC 中,∠C =90°,∠A =45°,c =6,则b =________.5.在Rt△ABC 中,∠C =90°,BC =√5,AC =√15,则∠A 的度数为 ( )A .90°B .60°C .45°D .30°6.在Rt△ABC 中,∠C =90°,则在下列边角之间的关系中,正确的是 () A .b =c sin A B .a =b tan A C .a =b tan B D .b =c cos B7.在△ABC 中,∠C =90°,tan A =13,则sin B 的值为 () A .√1010 B .23 C .34 D .√10√108.如图,在△ABC 中,cosB=√22,sinC =35,AC =5,则△ABC 的面积是( )A .212 B .12 C .14 D .219.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB =α,则AB 的长为 ( )A .a .sin αB .a .tan αC .a .cos αD .3310.在Rt△ABC中,∠C=90°.根据下列条件解直角三角形:(1)已知c=20,∠A=45°;(2)已知a=36,∠B=30°;(3)已知a=19,c=19√2;(4)a=6√2,b=.求四边形ABCD的周长.11.如图,在菱形ABCD中,AE⊥BC于E点,EC=1,sinB=51312.如图,在△ABC中,∠C=90°,D是BC的中点,∠ADC=60°,AC=√3,求△ABD的周长.13.如图,某居民楼I高20米,窗户朝南,该楼内一楼住户的窗台到地面的距离CM为2米,窗户CD高1.8米.现计划在I楼的正南方向距I楼30米处新建一居民楼Ⅱ.当正午时刻太阳光线与地面成30°角时,要使Ⅱ楼的影子不影响I楼所有住户的采光,新建Ⅱ楼最高只能盖多少米?14.在Rt△ABC中,∠C=90°,b+c=24,∠A-∠B=30°,解此直角三角形.15.如图,在△ABC中∠C=90°,∠A=45°,D为AC上一点,∠BDC=60°,AD=2,求BC 的长.16.已知等腰三角形的底边长为20 cm,面积为100√3cm2,求此三角形各内角的度数.317.如图,⊙O的直径AB与弦CD相交于点E,弧BC=弧BD,⊙O的切线BF与弦AD的延长线相交于点F,连接BC,若⊙O的半径为4,cos∠BCD=34,求线段AD、CD的长.18.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取√3=1.732,结果精确到1m)巩固练习答案:1.5 (1) a2+b2=c2 勾股(2) ∠A+∠B=90°(3)acbcab2.103.30°4.5.D 6.B 7.D 8.A 9.B 10.(1)∠B =45°,a =10√2,b =10(2)∠A =60°,b =12,c =24 (3)∠A =45°,∠B =45°,b =19 (4)∠A =30°,∠B =60°,c =12311.可以求得边长为13,则四边形ABCD 的周长为52.12.△ABD 的周长为37+13.新建居民楼Ⅱ最高只能盖(10√3+2)米14. ∠A =60°,∠B =30°,a =83,b =8,c =1615.BC 的长为3+116.三个内角分别为30°、30°、120°17.AD =6, CD =3718. 设CE =x m ,则由题意可知BE =x m ,AE =(x +100)m .在Rt △AEC 中,tan ∠CAE =AE CE,即tan30°=100+x x∴33100=+x x ,3x =3(x +100) 解得x =50+503=136.6∴CD =CE +ED =(136.6+1.5)=138.1≈138(m)7.6锐角三角函数章节------锐角三角函数的简单应用练习(含答案) 例1.如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号)。

苏教版九年级数学下册第7章锐角三角函数课件

苏教版九年级数学下册第7章锐角三角函数课件
4.会用解直角三角形的有关知识解决简单的 实际问题。
⑴正弦
1.锐角三角函数的定义 ⑵余弦

⑶正切
角 2.30°、45°、60°特殊角的三角函数值

⑴定义

①三边间关系
函 3.解直角三角形 数
⑵解直角三角形的根据
②锐角间关系 ③边角间关系
⑶解直角三角形在实际问题中
的应用
B
斜边c
对边a
一、锐角三角函数的概念 A 邻边b C
7
痕为DE,则tan∠CBE的值是 24 。
方法点拨:设CE=x,则 AE=BE=8-x,利用勾股定理求出 x,再求tan∠CBE的值。
C
6
E8
B
D
A
7.如图,某数学兴趣小组在活动课上测量学校旗杆高度。 已知小明的眼睛与地面的距离是1.7m,看旗杆顶部的仰角 为45°;小红的眼睛与地面的距离(CD)是1.5m,看旗杆 顶部的仰角为30°。两人相距28米且位于旗杆两侧(点B, N,D在同一条直线上)。要求出旗杆MN的高度。(结果保 留整数)
DC
设AC=13k,AD=12k,所以CD=5k,又AC=BD=13k,
所以BC=18k=12,故k= 2
2
3
所以AD=12× =8
3
1.若 2 sin 2 0 ,则锐角α= 45°
2.若tan( 20) 3 0 ,则锐角α= 80°
3.计算:
(1) 2 sin 45 tan 60 2 cos30. 1
分析:就是当∠EAD=45° 时,求BE的长,作BF⊥AD, EG⊥AD,则BE=GF=AG-AF。
GF
解:
GF
过点B作BF⊥AD,在Rt△ABF中,AB=40,∠BAD=60°,

九年级数学下册《解直角三角形》全章教案 新人教版

九年级数学下册《解直角三角形》全章教案 新人教版

九年级数学下册《解直角三角形》全章教案新人教版九年级数学下册《解直角三角形》全章教案(新人教版)第一课时:锐角三角函数教学目标:知识目标:初步了解正弦、余弦、正切的概念;能正确地用sinA、cosA、___表示直角三角形中两边的比;熟记30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。

能力目标:逐步培养学生观察、比较、分析和概括的思维能力。

情感目标:提高学生对几何图形美的认识。

教学程序:一、探究活动1.通过特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。

2.归纳三角函数的定义。

sinA = 对边/斜边,cosA = 邻边/斜边,tanA = 对边/邻边3.例1.求如图所示的直角三角形Rt⊿ABC中的sinA、cosA、___的值。

二、探究活动二1.让学生画30°、45°、60°的直角三角形,分别求sin30°、cos45°、tan60°,并归纳结果。

sinA cosA ___30° 1/2 √3/2 √3/345° √2/2 √2/2 160°√3/2 1/2 √32.求下列各式的值。

1) sin30° + cos30°2) 2sin45° - cos30° + tan60° - tan30°三、拓展提高1.P82例4.(略)2.如图,在直角三角形ABC中,∠A = 30°,tanB = 1/3,AC = 2√3,求AB。

四、小结通过本节课的研究,我们初步了解了正弦、余弦、正切的概念,并学会了用sinA、cosA、___表示直角三角形中两边的比。

同时,我们也熟记了30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。

人教版九年级数学下册锐角三角函数《解直角三角形及其应用(第5课时)》示范教学课件

人教版九年级数学下册锐角三角函数《解直角三角形及其应用(第5课时)》示范教学课件
解题思路在解决坡度、坡角的有关问题时,一般通过作高构造直角三角形,其实质就是解直角三角形.与坡度、坡角有关的问题常用的方法一般是过上底的顶点作下底的垂线,构造直角三角形和矩形来求解.
例3 如图,某人在山坡坡脚 A 处测得电视塔尖点 C 的仰角为60°,沿山坡向上走到 P 处再测得电视塔尖点 C 的仰角为45°,已知 OA=200 m,山坡坡度为 ,且 O,A,B 在同一条直线上,求电视塔 OC 的高度以及此人所在位置点 P 的垂直高度(测倾器的高度忽略不计,结果保留根号).
分析:解题的关键是理解仰角、俯角、坡度、坡角的有关概念,通过作辅助线,将有关数据转化到直角三角形中解答.
在 Rt△AOC 中,直接利用锐角三角函数求得电视塔 OC 的高度;求点 P 的垂直高度时,关键有三步:①过点 P 作 PE⊥OB 于点 E,PF⊥CO 于点 F,得到 Rt△PAE 和Rt△PFC;
②利用 60°,45°以及坡度,发现 AE=3PE,PF=CF=OC-PE,PF=OA+AE;③选取 PE 为未知数,通过设元列方程求解.
解:如图,过点 P 作 PE⊥OB 于点 E,PF⊥CO 于点 F.在 Rt△AOC 中,∵ OA=200 m,∠CAO=60°,∴ OC=OA·tan∠CAO=200×tan 60°= (m).设 PE=x m,∵ ,∴ AE=3x m.
例1 如图,一山坡的坡度为 i=1∶2.小刚从山脚 A 出发,沿山坡向上走了 240 m 到达点 C.则小刚上升了多少米?
解:用 α 表示坡角的大小,由题意可得tan α= ,AC=240 m,∴sin α= ,∴BC=240× .则小刚上升了 m.
E
F
在 Rt△PCF 中,CF=OC-PE=( -x)m,PF=OA+AE=(200+3x)m.

苏科版数学九年级下册7.5《解直角三角形》教学设计

苏科版数学九年级下册7.5《解直角三角形》教学设计

苏科版数学九年级下册7.5《解直角三角形》教学设计一. 教材分析苏科版数学九年级下册7.5《解直角三角形》是直角三角形相关知识的学习,这部分内容在初中数学中占有重要地位。

通过本节课的学习,学生将掌握直角三角形的性质,学会使用勾股定理和锐角三角函数解直角三角形,从而为后续学习立体几何和物理学打下基础。

本节课内容分为两个部分:一是直角三角形的性质;二是解直角三角形的方法。

二. 学情分析九年级的学生已经掌握了锐角三角函数、平行线、相似三角形等基础知识,具备一定的逻辑思维能力和空间想象能力。

但学生在学习过程中,对于直角三角形的性质和解直角三角形的方法容易混淆,因此在教学中需要强调直角三角形的特殊性质,以及解直角三角形的具体步骤。

三. 教学目标1.了解直角三角形的性质,掌握勾股定理和锐角三角函数在解直角三角形中的应用。

2.学会使用勾股定理和锐角三角函数解直角三角形,提高解决问题的能力。

3.培养学生的空间想象能力和逻辑思维能力,提高学生分析问题和解决问题的能力。

四. 教学重难点1.教学重点:直角三角形的性质,勾股定理和锐角三角函数在解直角三角形中的应用。

2.教学难点:解直角三角形的具体步骤和方法。

五. 教学方法1.采用问题驱动法,引导学生通过观察、思考、讨论,发现直角三角形的性质和解直角三角形的方法。

2.使用多媒体课件,展示直角三角形的图形,增强学生的空间想象能力。

3.学生进行小组讨论,培养学生的团队协作能力。

4.通过典型例题,讲解解直角三角形的步骤,让学生在实践中掌握方法。

六. 教学准备1.多媒体课件:制作直角三角形的相关图形和典型例题。

2.教学素材:提供一些关于直角三角形的习题,用于巩固所学知识。

3.教学工具:黑板、粉笔、直尺、三角板等。

七. 教学过程1.导入(5分钟)利用多媒体课件展示直角三角形的图形,引导学生回顾直角三角形的定义和性质。

提问:你们知道直角三角形有哪些特殊的性质吗?2.呈现(10分钟)展示直角三角形的性质,引导学生观察、思考,发现直角三角形的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章锐角三角函数
7.5 第2课时构造直角三角形解题
知识点构造直角三角形解题
1.如图7-5-12,在△ABC中,AB=AC,AH⊥BC,垂足为H,如果AH=BC,那么sin ∠BAC的值是( )
A.5
4
B.
4
5
C.
3
5
D.
5
3
7-5-12
7-5-13
2.如图7-5-13,圆的内接正五边形ABCDE的边长为a,圆的半径为r,下列等式成立的是( )
A.a=2r·sin36° B.a=2r·cos36°
C.a=r·sin36° D.a=2r·sin72°
3.如图7-5-14,在△ABC中,AB=3,BC=2,∠B=60°,则△ABC的面积等于( )
A.3 3
2
B.
3
2
C. 3 D.3 3
7-5-14
7-5-15
4.如图7-5-15,在四边形ABCD 中,∠B =∠D =90°,AB =3,BC =2,tan A =4
3
,则
CD =________.
5.如图7-5-16,正三角形ABC 内接于⊙O ,若AB =2 3 cm ,求⊙O 的半径.
图7-5-16
6.2018·自贡 如图7-5-17,在△ABC 中,BC =12,tan A =3
4,∠B =30°,求AC
和AB 的长.
图7-5-17
7.如图7-5-18,已知∠B =37°,AB =20,C 是射线BM 上一点.
(1)在下列条件中,可以唯一确定BC 长的是________(填写所有符合条件的序号); ①AC =13;② tan ∠ACB =12
5
;③连接AC ,△ABC 的面积为126.
(2)在(1)的答案中,选择一个作为条件,画出草图,求BC (参考数据: sin37°≈0.60, cos37°≈0.80, tan37°≈0.75).
图7-5-18
第7章 锐角三角函数
7.5 第2课时 构造直角三角形解题
1.B [解析] 过点B 作BD ⊥AC 于点D ,设AH =BC =2x .∵AB =AC ,AH ⊥BC ,∴BH =CH =12BC =x .根据勾股定理,得AC =AH 2+CH 2=(2x )2+x 2
=5x .由S △ABC =12BC ·AH =12AC ·BD ,得12·2x ·2x =12·5x ·BD ,解得BD =4 55x ,∴sin ∠BAC =BD AB =4 5
5x 5x =4
5
.
2.A [解析] 如图,作OF ⊥BC 于点F . ∵∠COF =360°÷5÷2=36°, ∴CF =r ·sin36°, ∴a =2r ·sin36°.故选A.
3.A [解析] △ABC 的面积为12AB ·BC ·sin B =12×3×2×sin60°=12×3×2×32=
3 3
2
. 故选A.
4.65 [解析] 延长AD 和BC 交于点E .∵在Rt △ABE 中,tan A =BE AB =43,AB =3,∴BE =4,∴EC =BE -BC =4-2=2.∵△ABE 和△CDE 中,∠B =∠EDC =90°,∠E =∠E ,∴∠DCE =∠
A ,∴在Rt △CDE 中,tan ∠DCE =tan A =DE CD =4
3
,∴设DE =4x ,则CD =3x .在Rt △CDE 中,EC 2
=DE 2+CD 2,∴4=16x 2+9x 2
,∴x =25(负值舍去),则CD =65
.
5.解:如图,过点O 作OD ⊥BC 于点D ,连接BO .∵正三角形ABC 内接于⊙O ,∴点O 既是三角形的内心也是外心,∴∠OBD =30°,BD =CD =12BC =12AB = 3 cm ,∴ cos30°=
BD
BO =
3
BO
,解得BO =2(cm),即⊙O 的半径为2 cm.
6.[解析] 通过作高构造直角三角形,在Rt △BCD 和Rt △ACD 中利用特殊角的三角函数值和勾股定理即可求解.
解:如图所示,过点C 作CD ⊥AB 于点D ,
在Rt △BCD 中,∵∠B =30°,BC =12,
∴sin B =CD BC =CD 12=sin30°=1
2,∴CD =6;
cos B =BD BC =BD 12=cos30°=3
2
,∴BD =6 3.
在Rt △ACD 中,tan A =3
4,CD =6,
∴tan A =CD AD =
6AD =3
4
,∴AD =8,
∴AC =AD 2
+CD 2
=82
+62
=10,AB =AD +BD =8+6 3. 即AC 的长为10,AB 的长为8+6 3. 7.解:(1)②③
(2)画图略.若选②,作AD ⊥BM 于点D ,则∠ADB =∠ADC =90°. 在Rt △ABD 中,∠ADB =90°,
∴AD =AB · sin B ≈12,BD =AB ·cos B ≈16. 在Rt △ACD 中,∠ADC =90°, ∴CD =
AD
tan ∠ACB
≈5,
∴BC =BD +CD ≈21.
若选③,作CE ⊥AB 于点E ,则∠BEC =90°.
由S △ABC =1
2AB ·CE ,得CE =12.6.
在Rt △BEC 中,∠BEC =90°, ∴BC =
CE
sin B
≈21.。

相关文档
最新文档