指数函数PPT教学课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/10/16
12
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
谢谢大家!本文档为精心编制而成,您可以在下载后自由修改和打印,希望下载对您有帮助!
对上述解题过程,可总结出比较同底数幂大小的方 法,即用指数函数的单调性,其基本步骤如下: (1)确定所要考查的指数函数; (2)根据底数情况指出已确定的指数函数的单调性; (3)比较指数大小,然后利用指数函数单调性得出 同底数幂的大小关系。 (4)对于不同底不同指数的函数值比较大小,一般要找 中间量.
少成天才功小才就=艰是不在苦百分学于的之劳习勤一动,的奋+老灵正,感确来努,的百徒力方分法之伤才+九少悲能十谈九成空的话汗功水!!
知 识 改 变 命 运,勤 奋 创 造 奇 迹.
17.10.2020
2020/10/16
1
某种细胞分裂时,由1个分裂成2个,2个分裂成4 个,……1个这样的细胞分裂x次后,得到的细胞个 数y与x的函数关系是
2Fra Baidu bibliotek
一般地,函数 y f(x)与 yf(x)的图象关于y轴对称。
在同一坐标系内画出指数函数 y 2 x y ( 1 ) x 的图象
2
2020/10/16
6
指数函数 y ax 在底数 a 1及0a1这两种情况下的
图象和性质
a>1
0<a<1

y
y ax
y ax y
(0,1) y=1
(0,1) y=1
10
说明:一般地,当时a>0时,将函数y=f(x)的图象向 左平移a个单位得到y=f(x+a)的图象;
当时a<0时,将函数y=f(x)的图象向右平移|a|个单位
得到的y=f(x+a)图象;
2020/10/16
11
例3:比较下列各题中两个值的大小: (1) 1.72.5, 1.73; (2) 0.8-0.1, 0.8-0.2; (3) 1.70.3, 0.93.1.
(1) y 2x1
(2) y 2x2
解:(1)比较函数 y 2x1 与 y 2x 的关系:
y231 与 y 22 相等,
y221 与 y21 相等,
y221 与 y 23 相等,
由此可以知道,将指数函数 y 2x 的图象向左
平移1个单位长度,就得到函数 y 2x1 的图象。
2020/10/16

0
x
o
x

(1)定义域: R
(2)值域 : (0,+∞)
(3)过点(0,1),即x=0时,y=1

x0,ax 1 x0,0ax 1
x0,ax 1 x0,0ax 1
2020/10/16 (4)在R上是增函数
(4)在R上是减函数
7
3、例题分析
例1.某种放射性物质不断变化为其他物质,每 经过1年剩留的这种物质是原来的84%,画出这 种物质的剩留量随时间变化的图象,并从图象上 求出经过多少年,剩量留是原来的一半(结果保 留1个有效数字)。
y 2x
在这个函数里,自变量x 作为指数,而底数2是一个 大于0且不等于1的常量.
2020/10/16
2
2020/10/16
3
1、指数函数的定义
一般地,函数y=a x (a>0,且a≠1)叫做指数函数,其中x是 自变量.函数的定义域是R .
问: ① y= - 4 x ,y=x 4 , y=(-2) x 是指数函数吗?
0<202a0</101/16在这个规定下,y=a x的定义域是R
4
2、指数函数y=a x (a>0,a≠1)的图象和性质
画y=2x 的图象
列出x,y的对应表,用描点法画出图象
x
… -3
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 3 …
y 2 x … 0.13 0.25 0.35 0.5 0.71 1 1.4 2 2.8 4 8 …
问: ②为什么规定底数a大于0且不等于1 ?
如果a=0 那么当x>0时,a x =0,当x≤0时, a x 无意义
如果a<0 如y=( - 4) x 这时对于x= 1 1 等,在实数范
围内函数值不存在.
42
如果a=1 这时y=1x =1是一个常量,对它没有研究的必要
为了避免上述各种情况,所以规定a>0,且a≠1即a>1或
x
0123456
y
1
0.8 0.7 0.5 0.5 0.4 0.3 419025
用描点法画出指数函数 y0.84x的图象。从图上看

xy
y 0.5
,只需
x4
答:约经过4年,剩留量是 原来的一半。
2020/10/16
9
例2、说明下列函数的图象与指数函数 y 2x 的图
象的关系,并画出它们的示意图:
分析:通过恰当假设,将剩留量y表示成经过年数x 的函数,并可列表、描点、作图,进而求得所求。
解:设这种物质量初的质量是1,经过x年,剩留量是y
经过1年,剩留量=1×84%=0.841;
经过2年,剩留量=1×84%=0.842;……
2020一/10/般16 地,经过x年,剩留量 y0.84x
8
根据这个函数关系式可以列表如下
画 y ( 1 ) x 的图象
2
列出x,y的对应表,用描点法画出图象
x
… -3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 3 …
y (1)x … 8 2
4
2.8
2
1.4
1
0.71
0.5
0.3 5
0.25
0.13 …
2020/10/16
5
问:函数 y 2 x 与 y ( 1 ) x 图象间的关系?
相关文档
最新文档