第三章 有界线性算子-黎永锦
1.3线性有界算子,巴拿赫空间中的几个定理
§3线性有界算子,巴拿赫空间中的几个定理一、线性赋泛空间在前一节,对集合引入距离的概念,从而定义了极限下面再引入元素的加法及数乘的代数运算。
定义1:设为一集合,如果:(一)在中定义了加法,即对中的任意元素,存在相应的元素,记,称为的和,并适合:E E ,x y u E ∈u x y =+,x y E(1)(2)()(3)在中存在唯一的元素(称为零元素),对任何中的元素,有(4)在中存在唯一的元素,使称为的负元素,记为。
(二)在中定义了元素与数(实数或复数)的乘法,即在中存在元素,x y y x+=+()()x y z x y z ++=++z E ∈E θE x x xθ+=E 'x 'x x θ+='x x x −E E v记(为任何实数或复数,),称之为与元素的数积,适合:(5)(6)(是数)(7)(8)便称为线性空间(或向量空间),称中元素为向量。
若数积运算只对实数(复数)有意义,则称是实(复)线性空间。
v ax =a a x E ∈x ()()a bx ab x =,a b ()a b x ax bx+=+()a x y ax ay+=+E E E 1x x⋅=定义2:设是线性空间,是的非空子集。
如果对任何,对于中的元素都有及,那么,按中的加法及数积也成为线性空间,称为的线性子空间(或简称子空间)。
和是的两个子空间,称为平凡子空间。
若则称是的真子空间,每个子空间都含有零元素。
E M E αM ,x y x y M +∈x M α∈M E E E E {}0E M ≠M E定义3:设是线性空间的向量是个数,称为的线性组合。
若中之集的任意的有限个向量都线性无关,则称是的线性无关子集。
若是中的线性无关子集且对于中的每个非零向量都是中向量的线性组合,则称是的一组基若中存在由(有限)个线性无关向量组成的基,就说是维(有限维)线性空间,否则说是无限维空间。
E n E M M E A E E x A A E E n E n 12,,,n x x x …12,,,n ααα…11n n x x αα++…1,,n x x …引入距离,则不难验证,满足距离公理的三个条件,于是线性赋范空间就成为距离空间,今后对线性赋范空间总是按(*)式引入距离使之成为距离空间。
第三章 有界线性算子-黎永锦
第3章 有界线性算子音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可 改善物质生活,但数学能给予以上的一切.Klein F .(克萊恩) (1849-1925,德国数学家)Banach S .在1922年建立了完备赋范线性空间的公理,证明了一些基本定理后,就讨论了定义在一个完备赋范线性空间上而取值为另一个完备赋范线性空间的算子,在这类算子中最重要的是连续加法算子,所谓加法算子是指对所有x ,y ,都有Ty Tx y x T +=+)(.容易证明,T 是连续加法算子时,必有Tx x T αα=)(成立.Banach S .证明了若T 是连续的加法算子,则存在常数0>M ,使得||||||||x M Tx ≤.另外他还证明了若}{n T 是连续加法算子序列,T 也是加法算子,且对任意X x ∈,都有Tx x T n n =∞→lim ,则T 也是连续的.Hahn H .在1922年证明了,若X 是一个完备赋范空间,}{n f 为X 上的一列线性连续泛函,且对任意X x ∈,)}({x f n 都有上界,则||}{||n f 一定是有界的.Banach S .和Steinhaus H .在1927年证明了,若n T 为完备赋范空间X 到赋范空间Y的线性连续算子,且对任意X x ∈,||}{||x T n 都有界,则||}{||n T 一定有界,这就是Banach 空间理论中最重要的定理之一,即一致有界原理.Neumann Von J ..在1929年至1930年还引进并讨论了算子的几种收敛性.在1932年,Banach S .出版了线性算子理论(aires e lin rations e op des orie e Th ''')一书,书中包括了当时有关赋范线性空间的绝大部分结果,而非常著名闭图像定理就是该书中一个定理的推论.3.1 有界线性算子算子就是从一个空间到另一个空间映射,算子可分为线性算子与非线性算子.定义3.1.1 设X 和Y 都是赋范空间,T 是从X 到Y 的算子,且满足(1) Ty Tx y x T +=+)(, X y x ∈,任意; (2) Tx x T αα=)(, K X x ∈∈α,任意.则称T 为X 到Y 的线性算子.明显地,若Y 是数域K ,则X 到K 的线性算子就是线性泛函.例 3.1.1 定义从∞l 到0c 算子)2()(i i i xx T =则对任意∈)(i x ∞l ,有0>M ,使得∞<≤M x i ||sup .故)0(02|2|→→≤i M x i i i .因此0)(c x T i ∈ ,即T 是∞l 到0c 的算子,并且Ty Tx y x y x y x T iii i iii βαβαβαβα+=+=+=+)2()2()2()( 所以T 是∞l 到0c 的线性算子.例 3.1.2 设T 是从0c 到nR 的算子,且对任意0)(c x x i ∈=,定义)(i y Tx =,这里n i ≤时,i i x y =, n i >时,0=i y ,则T 是从0c 到nR 的线性算子.类似于线性连续泛函,对于线性连续算子,容易看出下面定理成立.定理 3.1.1 设T 是赋范空间X 到Y 的线性算子,则T 在X 上连续当且仅当T 在某个X x ∈0处连续.线性算子的连续与有界性有着密切的联系.定义 3.1.2 设T 是赋范空间X 到Y 的线性算子,若存在数0>M ,使得||||||||x M Tx ≤,X x ∈对任意成立.则称T 是有界线性算子,否则称为无界的.类似于线性有界泛函,有下面的定理.定理3.1.2 设T 是赋范空间X 到Y 的线性算子,则T 是有界的当且仅当T 是连续的.由上面定理可知,当T 是X 到Y 的线性连续算子时,必有0>M ,使得||||||||x M Tx ≤由此对0≠x ,有+∞<≤M x Tx ||||||||. 定义3.1.3 若T 是X 到Y 的线性连续算子,则称||||||||sup||||0x Tx T x ≠= 为T 的范数.容易看出,||||sup ||||sup ||||sup ||||1||||1||||1||||Tx Tx Tx T x x x <≤====.例 3.1.3 设X 是赋范空间,I 是X 到X 的恒等算子,则I 是连续的,且1||||sup ||||sup ||||1||||1||||=====x Ix I x x .有限维赋范空间上的线性算子的连续性显得特别简单明了.定理 3.1.3 若X 是有限维赋范空间,Y 是任意赋范空间,则X 到Y 的任意线性算子T 都是连续的.证明 设X 是n 维赋范空间,},,{1n e e 是X 的Schauder 基,则对任意X x ∈,有∑==ni i i e x 1α.由于T 是线性的,故∑==ni i i Te Tx 1α).||||}(max{||||||||||||||||111∑∑∑===≤≤=ni ii i ni ini ii Te Te TeTx ααα对任意X x ∈,定义∑==ni ix 11||||||α,则1||||⋅是X 上的范数,因此1||||⋅与||||⋅等价,即存在0>C ,使得||||||||||11x C x ni i≤=∑=α令||}m ax {||i Te C M =,则||||||||x M Tx ≤所以,T 是X 到Y 的连续线性算子.若用),(Y X L 记所有从赋范空间X 到赋范空间Y 的线性连续算子,则),(Y X L 在线性运算x T x T x T T 2121)(βαβα+=+下是一个线性空间,在空间),(Y X L 中,由算子范数的定义有||||||||||||2121T T T T +≤+和||||||||||T T λλ=,以及0||||=T 时0=T 成立.因此),(Y X L 在算子范数||||⋅下是一个赋范空间,并且当Y 是Banach 空间时,),(Y X L 也是Banach 空间.定理 3.1.4 设X 是赋范空间,Y 是Banach 空间,则),(Y X L 是Banach 空间. 证明 设}{n T 为),(Y X L 的Cauchy 列,因此对任意0>ε,存在N ,使得N n m >,时ε<-||||n m T T对任意X x ∈,有||||||||||||||)(||||||x x T T x T T x T x T n m n m n m ε<⋅-≤-=-因此}{x T n 为Y 中的Cauchy 列,由Y 的完备性质可知,存在Y y ∈,使得y x T n n =∞→lim定义X 到Y 的算子, x T y Tx n n ∞→==lim ,易知T 是线性的.由于0||||||||||||||→-≤-n m n m T T T T ,因此||}{||n T 为R 中的Cauchy 列,从而存在0>M ,使得.,||||都成立对任意N n M T n ∈≤故||||||||lim ||||x M x T Tx n m ≤=∞→,从而T 是X 到Y的线性连续算子.由上面证明可知对任意0>ε,存在N ,使得N n m >,时,有都成立对任意X x x x T T x T x T n m n m ∈<⋅-≤-||,||||||||||||||ε.令∞→m ,则 因此ε<-=-∈≠||||||||||||,0x Tx x T SupT T n Xx x n对任意N n >成立,从而T T n →,所以,),(Y X L 是完备的. 由于数域K 完备,因此容易看到下面结论成立.推论3.1.1 对于任意赋范空间X ,),(K X L 一定完备.后面都将),(K X L 记为*X ,称之为X 的共轭空间,因此所有赋范空间X 的共轭空间*X 都是完备的.3.2 一致有界原理设X 和Y 是Banach 空间.}|{∧∈ααT 是),(Y X L 中的一族有界线性算子,一致有界原理指的是若对于任意}|||{||,∧∈∈ααx T X x 是有界集,则}|||{||∧∈ααT 一定是有界集,即+∞<∧∈||||sup ααT .其实,这一定理的一些特殊情形,许多数学家早就注意到了,如Hellinger Lebesgue ,和Toeplitz 等,Hahn H .在1922年总结了他们的结果,证明了对Banach 空间X 上的一列线性泛函}{n f ,若任意|})({|,x f X x n ∈有界,则||}{||n f 一定有界.独立地,Banach S .证明了比Hahn H .更一般的情形,即设}{n T 是Banach 空间X 到Banach 空间Y 的一列算子,若对任意||}{||,x T X x n ∈有界,则||}{||n T 一定有界,最后在1927年Banach S .与Steinhaus H .利用Baire 在1899年证明的一个引理,证明了一致有界原理.||||||||x x T x T n ε<-引理 3.2.1 (Baire 引理) 设}{n F 是Banach 空间X 中的一列闭集,若≠∞=01)( n n F φ,则存在某个N 使得≠0N F φ.下面举两个例子.例 3.2.1 在R 中,]12,11[n n F n -+=, 则)2,1(1=∞= n n F 有内点,故必有某个≠0N F φ.例 3.2.2 在R 中,},,2,1{n F n =,则对任意n ,=0N F φ,且,,2,1{1=∞=n nF},1, +n n , 所以=∞=01)( n n F φ.在1912年,Helly 建立了],[b a C 上的一致有界性原理,Banach 空间上的一致有界性原理是Banach [1922],Hahn [1922]和t Hildebrand 给出的,Steinhaus H .1927年以B a n a c h 和他两个人的名义在《数学基础》第9卷上发表了该定理.它断言,在Banach 空间X 上,如果有一列算子n T ,能对每个X x ∈,数列),2,1||}({|| =n x T n 都有上界x M ,那么必存在常数M ,使得||}{||n T 有界.这个由各点x 的局部有界性推广到在一个单位球上整体地一致有界性的深刻定理就叫Steinhaus Banach -定理.定理 3.2.1 (一致有界原理) 设X 是Banach 空间,Y 是赋范线性空间,}|{∧∈ααT 是),(Y X L 中的一族有界线性算子,若对任意X x ∈,有+∞<||}sup{||x T α则+∞<||}sup{||αT证明 对任意n ,令 ∧∈≤∈=αα}|||||{n x T X x F n ,则n F 是X 闭集,且X F n n =∞= 1,由于≠=∞=001)(X F n n φ,因此由Baire 引理可知存在某个N ,使得≠0N F φ,故存在n F x ∈0及0>r ,使得N F r x U ⊂),(0,因为N F 是闭集,所以N F r x B r x U ⊂=),(),(00因此对于任意X x ∈, 1||||=x ,有N F r x B rx x ⊂∈+),(00故对任意α,有N rx x T ≤+||)(||0α又由于||)(||||||||||00rx x T x T x rT +≤-ααα, 故+∞<+≤+≤∧∈||)||sup (1||)||(1||||00x T N r x T N r x T αααα令||)||sup (10x T N r M αα∧∈+=,则M 与x 无关,且+∞<M .所以+∞<≤==M x T T x ||||sup ||||1||||αα问题 3.2.1 在一致有界原理中,X 的完备性能否去掉? 例 3.2.3 设X 为全体实系数多项式,对任意X x ∈||max ||||,)(111i ni i ni i x tt x x αα≤<-====∑ ,则||)||,(⋅X 是赋范空间,但不完备,在X 上一致有界原理不成立.事实上,对任意X x ∈,x 可以写成11)(-=∑=i ni i tt x α,这里存在某个x N ,使得xN i >时,0=i α,在X 上定义一列泛函n f :∑==ni in x f 1)(α, 这里11)(-=∑==i ni i tt x x α由|||||||)(|1x n x f ni in ≤=∑=α可知),(R X L f n ∈,且对于任意X x ∈,有∑∑∞=--===1111i i i i mi i ttx αα故∑∑==≤=ni ini i n x f 11|||||)(|αα(对于固定的n x ,是固定的),因此+∞<≤∞<≤|||||)(|sup 1x m x f n n . 但对于任意N k ∈,取kt t t x +++= 1)(0,有1}1,,1,1,1m ax {||||0=⋅⋅⋅=x ,且.)(|})(sup{|||}sup{||00k x f x f f k n n =≥≥由k 的任意性可知}||sup{||+∞=n f ,因此,}{n f 不是一致有界的.推论3.2.1 设X 是赋范空间,X x ⊂∧∈}|{αα,若对任意*∈X f ,有+∞<∧∈|)(|sup ααx f ,则+∞<∧∈||||sup ααx .证明 定义R X T →*:α为)()(ααx f f T =则αT 是线性算子,且对固定的α,有|||||||||)(||)(|αααx f x f f T ⋅≤=故αT 是线性有界算子.由于+∞<=∧∈∧∈|)(|sup |)(|sup ααααx f f T ,对任意固定的*∈X f 都成立,并且*X 是完备的,所以由一致有界原理可知+∞<∧∈||||sup ααT但|||||)(|sup |)(|sup ||||1||||1||||ααααx x f f T T f f =====,所以+∞<∧∈||||sup ααx .Neumann Von J ..在赋范空间),(Y X L 中引进几种不同的收敛性.定义3.2.1 设X ,Y 是赋范空间,),(Y X L T n ∈, ),(Y X L T ∈,则(1) 若0||||→-T T n ,称n T 一致算子收敛于T ,记为T T n −→−⋅||||; (2) 若对任意 0||||,→-∈Tx x T X x n ,称n T 强算子收敛于T ,记为T T sn −→−; (3)若对任意X x ∈, *∈Y f ,有0|)()(|→-Tx f x T f n ,称n T 弱算子收敛于T ,记为T wT n −→−.由上面的定义容易看出,算子的收敛性有如下关系:定理 3.2.2 (1) 若T T n −→−⋅||||,则T T sn −→−;(2) 若T T s n −→−,则T T wn −→−.值得注意的是上定理中反方向的推导一般不成立.例3.2.4 在1l 中,定义11:l l T n →为),,,0,,0(21 ++=n n n x x x T则),(11l l L T n ∈,且对任意 1l x ∈,有∑∞+=++→==-1210||||),,,0,,0(||||||n i in n n xx x x x T θ因此θ−→−sn T ,但 1||),0,1,0,,0(||||||||sup ||||11||||==≥=-+= n n n x n e T x T T θ所以,n T 不一致收敛于零算子θ.定理 3.2.3 设X 是Banach 空间,X 是赋范空间),(Y X L T n ∈,若对任意}{,x T X x n ∈收敛,则一定存在),(Y X L T ∈,使得n T 强算子收敛于T .证明 由于}{x T n 的收敛对任意x 都成立,故可定义x T Tx n n ∞→=lim ,由n T 的线性可知T 是线性的.由于对任意}{,x T X x n ∈收敛,因此||}{||x T n 也是收敛的,从而+∞<||}sup{||x T n ,根据一致有界原理,有+∞<≤M T n }||sup{||,因而||||||||||||sup ||||lim ||||x M x T x T Tx n n n ≤≤=∞→.即),(Y X L T ∈,显然T T sn −→−.定理 3.2.4 设X , Y 是Banach 空间,),(Y X L T n ∈, 则}{n T 强算子收敛的充要条件为(1)存在0>C ,使得+∞<≤C T n ||}sup{||;(2)存在 X M ⊂,使得X M =且对于任意 }{,x T M x n ∈收敛.证明 若T T sn −→−,则(2)明显成立. 若对于任意 X x ∈,有Tx x T n n =∞→lim . 故+∞<||}sup{||x T n ,由一致有界原理可知||}{||n T |是有界的.反之,若(1),(2)成立, 对任意X x ∈及任意0>ε,由X M =知一定存在M y ∈,使得Cy x 3||||ε<-因为对任意M y ∈,}{y T n 收敛,所以存在N ,使得N n m >,时,有3||||ε<-y T y T n m故CCCCy x T y x T x T y T y T y T y T x T x T x T n m n n n m m m n m 333||||||||3||||||||||||||||||||||||εεεε++≤-++-≤-+-+-≤-.由于Y 是完备的,因而}{x T n 是收敛的,定义x T Tx n n ∞→=lim ,则),(Y X L T ∈,所以 T T sn −→−. 推论3.2.2 设X 是Banach 空间,Y 是赋范空间,),(Y X L T n ∈,若T T sn −→−,则 ||||lim ||||n n T T ∞→≤证明 由T T sn −→−可知,对任意X x ∈,有 x T Tx n n ∞→=lim由于是Banach 空间,并对任意X x ∈,有∞<||}sup{||x T n ,因此∞<||}s up {||n T,从而,||||||||lim ||||lim ||||lim ||||x T x T x T Tx n n n n n n ⋅≤==∞→∞→∞→,所以||||lim ||||n n T T ∞→≤.例题3.2.1设X 是有限维范空间,Y 是赋范空间,∧∈∈αα),,(Y X L T . 若对任意X x ∈,有+∞<∧∈||||sup x T αα,试不用一致有界原理证明+∞<∧∈||||sup ααT .证明 在X 上定义||}||sup ||,max{||||||1x T x x αα∧∈=. 由于(1)对任意X x ∈, +∞<≤1||||0x ;(2)当0||||1=x 时,0||||=x 从而0=x .且0=x 时,显然有0||||1=x ;(3)11||||||||||x x αα=;(4)||})(||sup ||,max{||||||1y x T y x y x ++=+α||}||sup ||,max{||||}||sup ||,max{||||}||sup ||||sup ||,max{||y T y x T x y T x T y x αααα+≤++≤11||||||||y x +=因此,1||||⋅是X 上的一个范数.由于X 是有限维范空间,因此范数||||⋅和1||||⋅是等价的,故存在0>C ,使得||||||||1x C x ≤,对所有的X x ∈都成立,因而||||||||sup x C x T <∧∈αα,所以+∞<∧∈||||sup ααT .3.3 开映射定理与逆算子定理定义 3.3.1 设X 和Y 是赋范空间,Y X T →:, 若T 把X 中的开集映成Y 中的开集,则称T 为开映射.例 3.3.1 设X 是实赋范空间,则X 上的任意非零线性泛函f f ,一定是X 到R 的开映射.问题 3.3.1 设X ,Y 是Banach 空间,),(Y X L T ∈, 问T 何时一定是开映射?定理 3.3.1 (开映射定理)设X 和Y 是Banach 空间,),(Y X L T ∈,若T 是满射,即Y TX =,则T 是开映射.开映射定理的证明要用到下面的引理, 它是Schauder 在1930年得到的.引理 3.3.1 设X ,Y 是Banach 空间,),(Y X L T ∈,若Y TX =,则存在0>ε,使得)1,0(),0(TU U ⊂ε.引理的几何意义是如果)1,0(U 是X 中的开球,则)1,0(TU 为Y 中的点集,且Y 中的0点一定是)1,0(TU 的内点.开映射定理的证明设U 是X 中的任意开集,则对任意TU y ∈0,存在U x ∈0,使得00Tx y =,下面只须证明0Tx 为)(U T 的内点.由于U 是开集,因此存在0>r ,使得U r x U ⊂),(0,故),0(),0()},0(|{)},0(|{),(00000r TU y r TU Tx r U x Tx Tx r U x x x T r x TU TU +=+=∈+=∈+=⊃.由上面引理可知,存在0>ε,使得)1,0(),0(TU U ⊂ε,因此),0(),0(r TU r U ⊂ε, 所以),(),0(),0(000εεr y U r U y r TU y TU =+⊃+⊃,即0y 为TU 的内点, 因而 TU 为 Y 的开集.推论3.3.2 若X 是Banach 空间,则对所有f f X f ,0,≠∈*一定是开映射.证明 不失一般性,不妨设R K =,则由于0≠f ,因此存在X x ∈0,使得1)(0=x f ,故对任意R ∈α,有X x y ∈=0α,使得αα==)()(0x f y f ,因而f 是X 到R 的满射.所以,由开映射定理可知f 为开映射.思考题3.3.1 若f 是开映射,则1-f存在时是否1-f 一定连续?定义 3.3.2 若X ,Y 为赋范空间,),(Y X L T ∈,若对任意y x X y x ≠∈,,时,必有Ty Tx ≠,则算子X TX T →-:1, 称为T 的逆算子.明显地,若),(Y X L T ∈,1-T 存在,则1-T 也是线性的.例题 3.3.1 设X ,Y 是赋范空间,),(Y X L T ∈,则),(1X Y L T ∈-,当且仅当存在),(X Y L S ∈,使得Y X I S T I T S =⋅=⋅,且此时一定有S T=-1. 证明 若),(1X Y L T ∈-,令1-=T S ,明显地,有Y X I T T S T I T T T S =⋅=⋅=⋅=⋅--11,反之,如果存在),(X Y L S ∈,使得Y X I S T I T S =⋅=⋅,则对任意y x ≠,有Ty S y x Tx S ⋅=≠=⋅,因此Ty Tx ≠,故T 是单射,从而1-T 存在.对任意Y y ∈,有X Sy ∈故y y I Sy T Y ==)()(,令Sy x =,则y Tx =,因而T 是满射,明显地,1-T 是线性的,因此1-T 为Y 到X 的线性算子,又因为S S T T S T T I T Y =⋅⋅=⋅=---)()(111,所以 S T =-1),(X Y L ∈.逆算子定理是Banach S .在1929年给出的,利用开映射定理,容易证明逆算子定理成立.定理3.3.5. (Banach 逆算子定理)设X ,Y 是Banach 空间,),(Y X L T ∈,若T 是双射,则1-T 存在,且),(1X Y L T ∈-.证明 由于T 是一一对应,且满的,因此1-T 存在且是线性的.由于X ,Y 是Banach 空间,且Y TX =,因而由开映射定理可知T 开映射,从而对任意开集X U ⊂,有TU U T =--11)(也是开集,所以1-T 连续,即),(1X Y L T ∈-.在逆算子定理中,完备性的条件必不可少.例 3.3.2 设},0,,|)0,,0,,,{(1=≥∈=i i n x n i n R x x x X 时对某个 ||sup ||||i x x =,则||)||,(⋅X 是赋范空间.定义X X T →:为),31,21,(321 x x x Tx =则),(X X L T ∈,且1-T 存在,但1-T 是无界的,这是因为对X x n ∈=),0,1,,0( , 有n x T n x T n n ==--||||),,0,,,0(11 ,因此n T ≥-||||1对任意n 成立,所以1-T 不是连续线性算子.推论 3.3.3 设||||⋅和1||||⋅是线性空间上的两个范数,且||)||,(⋅X 和)||||,(1⋅X 都是Banach空间,若存在0>β, 使得||||||||1x x β≤,则||||⋅与1||||⋅等价. 证明 定义恒等算子→⋅||)||,(:X I )||||,(1⋅X 为x Ix =,则由||||||||||||11x x Ix β≤=可知I 是连续的.显然I 是双射,因而由逆算子定理可知,1-I存在且有界. 令||||11-=I α,则 111||||||||||||||||x I x x I --≤= 所以11||||||||||||1x x I ≤-, 即||||||||||||1x x x βα≤≤.问题 3.3.1 设X 为[0,1]上的全体实系数多项式,对任意X x ∈,,)(11-=∑==i n i it t x x α定义∑=≤≤==n i i t x t x x 12101|||||||,)(|sup ||||α ,则21||||||||⋅⋅和都是X 的范数,并且21||||||||x x ≤对所有的X x ∈成立,但11||||||||⋅⋅和不是等价的范数,为什么?实际上,对于,)1()(1211-=+∑-==i n i i t t x x 则1|)(|sup ||||101==≤≤t x x t , n x ni i 2||||||12==∑=α,因此不存在常数0>β,使得12||||||||x x β≤对所有的X x ∈成立,所以21||||||||⋅⋅和不是等价的范数.3.4 闭线性算子与闭图像定理在量子力学和其他一些实际应用中,有一些重要的线性算子并不是有界的,例如有一类在理论和应用中都很重要的无界性算子--闭线性算子,在什么条件下闭线性算子是连续呢?这一问题的研究,Hellinger E .和Toeplitz O .1910年在关于Hilbert 空间对称算子的工作中就开始了,然后是Hilbert 空间中共轭算子连续性的研究,1932年才发展成闭线性算子在赋范空间上的结果,这就是非常著名闭图像定理.若||)||,(⋅X 和||)||,(⋅Y 是赋范线性空间,则在乘积Y X ⨯空间中可以定义范数,使之成为赋范空间,对),(11y x 和K Y X y x ∈⨯∈λ,),(22,线性空间Y X ⨯的两种代数运算是),(),(),(21212211y y x x y x y x ++=+),(),(y x y x λλλ=并且范数定义为||||||||||),(||y x y x +=例3.4.1 乘积空间},|),{(2R y x y x R R R ∈=⨯=,且||||||||||),(||y x y x +=.明显地,有如下的结论.定理 3.4.1 设X 和Y 都是赋范空间Y X y x z n n n ⨯∈=),(,则),(y x z z n =→Y X ⨯∈当且仅当Y y X x n n ∈∈,且y y x x n n →→,.定理3.4.2 若X 和Y 都是Banach 空间,则Y X ⨯也是Banach 空间.在下面,考虑从定义域X T D ⊂)(到Y 的线性算子,)(T D 为X 的子空间.定义3.4.1 设X ,Y 是赋范空间,Y T D T →)(:是定义域X T D ⊂)(上的线性算子,若T 的图像}),(|),{()(Tx y T D x y x T G =∈=在赋范空间Y X ⨯中是闭的,则称T 为闭线性算子.定理3.4.3 设X ,Y 是赋范空间,Y T D T →)(:是线性算子,则T 是闭线性算子当且仅当对任意)(}{T D x n ⊂,满足y Tx x x n n →→,时,必有)(T D x ∈且y Tx =.证明 若T 是闭线性算子,则是)(T G 闭集,则对于任意)(T D x n ∈,当y Tx x x n n →→,时, 有),(),(y x Tx x n n →,因此)(),(T G y x ∈,由)(T G 的定义,有)(T D x ∈,y Tx =.反之,若)(),(T G Tx x n n ∈,且),(),(y x Tx x n n →时一定有)(T D x ∈,y Tx =, 从而)(),(),(T G Tx x y x ∈=.所以,)(T G 是闭集,即T 是闭线性算子.定理3.4.4 设X ,Y 是赋范空间,Y T D T →)(:是线性连续算子,若)(T D 是闭集,则T 一定是闭线性算子.证明 设)(T D x n ∈,y Tx x x n n →→,,则由T 是连续的知Tx Tx n →,故Tx y =. 由于)(T D 是闭集,因此)(T D x ∈,所以T 是闭线性算子.推论3.4.1 若Y X T →:是线性连续算子,则T 一定是闭线性算子.这是因为这时X T D =)(是闭集,反过来,一般来说,闭线性算子不一定连续.例3.4.2 设)(|)({]1,0[1t x t x C =为]1,0[上具有连续导数的},|)(|sup ||||10t x x t ≤≤=,则 ||)||],1,0[(1⋅C 是一个赋范空间,在]1,0[1C 上定义线性算子T 如下:]1,0[]1,0[:1C C T →]1,0[)(],1,0[),()(1C t x x t t x dt d t Tx ∈=∈=任意任意 则T 是]1,0[1C 到]1,0[C 的闭线性算子,但T 不是线性连续的.事实上,若]1,0[1C x n ∈ , y Tx x x n n →→,,则)(t x n 在]1,0[上“一致收敛”于)(t x ,并且n x '在]1,0[上也“一致收敛”于)(t y ,因而)(t x 具有连续的导函数)('t x ,且)()('t y t x =,所以]1,0[1C x ∈,且y Tx =,即T 是闭线性算子.令n n n t t x x ==)(,则]1,0[1C x n ∈且1||sup ||||10==≤≤n t n t x ,但n nt Tx n t n ==-≤≤||sup ||||110,因此T 不是线性连续算子.问题3.4.1 若T 是X T D ⊂)(到Y 的闭线性算子,则T 是否把闭集映为闭集呢? 例3.4.3 对任意0)(c x x i ∈=,定义线性算子00:c c T →为)2(i ix Tx = 则T 是0c 到0c 的线性连续算子,且0)(c T D =,因此T 是闭线性算子.对于闭集0c ,0Tc 不是0c 的闭子集.事实上,对于)0,,0,21,,21,21(2 n n y =, 0c y n ∈,且有)0,,0,1,,1,1( =n x ,0c x n ∈,使得n n y Tx =,故0Tc y n ∈,但因为n y 趋于),21,21,,21,21(12 +=n n y ,故不存在0c x ∈,使得y Tx =,所以0Tc y ∉,即0Tc 不是0c 的闭子集.在什么条件下闭线性算子一定是连续呢?这就是闭图像定理所研究的问题.定理3.4.5(闭图像定理)设X 与Y 是Banach 空间,Y T D T →)(:是闭线性算子,(这里X T D ⊂)(),若)(T D 在X 中是闭集,则T 一定是)(T D 到Y 的线性连续算子.证明 由于X 和Y 是Banach 空间,因此Y X ⨯也是Banach 空间,又由于X 是Banach 空间,且)(T D 是X 的闭子集,因此)(T D 作为X 子空间是完备的.由T 是闭线性算子可知)(T G 是Y X ⨯的闭子集,由于T 是线性的,因而)(T G 是Y X ⨯的子空间,从而)(T G 是Y X ⨯的完备子空间.定义从Banach 空间)(T G 到Banach 空间)(T D 的线性算子P :)()(:T D T G P →).(),(,),(T G Tx x x Tx x P ∈=任意则P 是线性算子,且||),(||||||||||||||||),(||Tx x Tx x x Tx x P =+≤=.故1||||≤P ,从而))(),((T D T G L P ∈.由P 的定义可知P 是双射,因而由逆算子定理可知1-P 存在,且))(),((1T D T G L P∈-,故对任意)(T D x ∈,有 ||||||||||||||),(||||||||||||||11x P x P Tx x Tx x Tx ⋅≤==+≤--所以,T 是)(T D 到Y 的线性连续算子.若T 的定义域X T D =)(,即T 是X 到Y 的线性算子,则闭图像定理有下面简明形式. 推论 3.4.2 设X ,Y 是Banach 空间,且T 是X 到Y 的线性算子,则),(Y X L T ∈当且仅当T 是闭线性算子.例题 3.4.1 设X ,Y ,Z 是Banach 空间,若),(Z X L A ∈,),(Z Y L B ∈,并对任意的 X x ∈,方程By Ax =都有唯一解y ,试证明由此定义的算子y Tx Y X T =→,:,有),(Y X L T ∈.证明 容易验证T 是线性算子,要证明T 是线性连续算子,只需证明T 是闭算子.对于X x n ∈, Y y Tx x x n n ∈→→,,有n n BTx Ax =.由于B A ,都是连续的,因此By BTx Ax Ax n n n n ===∞→∞→lim lim从而y Tx =所以,T 是闭算子,由闭图像定理可知,),(Y X L T ∈.习题三3.1 设算子0:c l T →∞,∞∈==l x x x Tx i i i)(),2(任意,试证明T 是线性有界算子,并求||||T . 3.2 设1)(l x i ∈,算子11:l l T →, 1)(),3(l x x x Tx i ii ∈==任意,试证明T 是线性有界算子,并求||||T . 3.3 对任意0c x ∈,定义∑∞==1!)(i i i x x f ,试证明*∈0c f ,并求||||f . 3.4 设),(Y X L T ∈,试证明||||sup ||||1||||Tx T x <=.3.5 设X 和Y 是实赋范空间,T 为X 到Y 的连续可加算子,试证明),(Y X L T ∈.3.6 设c 是所有收敛实数列全体,范数||sup ||||i x x =,}{i α为实数列,若对任意c x ∈,都有∞<=∑∞=|||)(|1i i i x x f α,试证明i i i x x f ∑∞==1)(α为c 上的线性连续泛函,并且∞<=∑∞=||||||1i i f α.3.7 设X ,Y 是赋范空间,}0{≠X , 试证明Y 是Banach 空间当且仅当),(Y X L 是Banach 空间.3.8 设X 是Banach 空间,*X f n ∈且对任意)()(lim ,x f x f X x n n =∈∞→,试证明*∈X f . 3.9设X 是实赋范空间,X x n ⊂}{, 试证明对所有的*∈X f ,都有∞<∑∞=|)(|1i i x f 当且仅当存在0>M ,使得对任意的正整数n 和1±=i δ,都有M x in i i <∑=||||1δ. 3.10 设X ,Y 是赋范空间,Y X T →:是线性算子,且T 是满射,若存在0>M ,使得||||||||x M Tx ≥对任意X x ∈成立,试证明1-T 是线性连续算子,且MT 1||||1≤-. 3.11 设T 为赋范空间X 到赋范空间Y 的闭线性算子,且1-T 存在,试证明1-T 是闭线性算子.3.12 设X 是Banach 空间,f 是X 上的非零线性泛函,试证明f 一定是开映射.3.13 设X 是赋范空间,T 是从X 到X 的线性算子,X T D =)(,S 是从*X 到*X 的线性算子,*=X S D )(若对任意*∈∈X f X x ,,有)())((Tx f x Sf =,试证明T 和S 都是线性连续算子.3.14 设X ,Y 是赋范空间,T 为X 到Y 的闭线性算子,F 为X 的紧集,试证明)(F T 为Y 的闭集.3.15 设X 为Banach 空间,T 为X 到X 的线性算子,若T T =2,且)(T N 和)(T R 都是闭的,试证明),(X X L T ∈.3.16 设X ,Y 赋范空间,),(,Y X L T T n ∈,若n T 强收敛于T ,试证明n T 弱收敛于T .3.17 设22:l l P n →,)0,,0,,,,(),,,,,(21121 n n n n x x x x x x x P =+,试证明n P 强收敛于I ,但n P 不一致收敛于I .哈恩Hans Hahn 于1879年9月27日出生于奥地利的维也纳,他在维也纳大学跟Gustav Ritter von Escherich攻读博士学位, 1902获得博士学位,博士论文题目为Zur Theorie der zweiten Variationeinfacher Integrale.他是切尔诺夫策(Chernivtsi)大学(1909–1916),波恩大学(1916–1921)和维也纳大学(1921–1934)的教授.Hahn的最早的结果对古典的变分法做出贡献,他还发表了关于非阿基米德系统的重要论文, Hahn是集合论和泛函分析的创始人之一,泛函分析的重要定理之一, Hahn-Banach定理就是Hans Hahn(1879-1934) 以他的名字命名的.他在1903 到1913间对变分法做出了重要的贡献.在1923他引进了Hahn 序列空间.他还写了关于实函数的两本书Theorie der reellen Funktionen (1921)和Reelle Funktionen (1932).Hahn获得过很多荣誉,包括1921年的Lieban奖,他是奥地利科学院院士,他还是Calcutta 数学学会名誉会员.Hahn对数学的成就主要包括著名的Hahn-Banach定理, 其实很少人知道,实际上Hahn 独立地证明了(Banach和斯坦豪斯得出的)一致有界原理. 其他定理还有Hahn分离定理、维他利-哈恩-萨克斯定理(Vitali-Hahn-Saks theorem)、哈恩-马祖凯维奇定理(Hahn-Mazurkiewicz theorem)和哈恩嵌入定理(Hahn embedding theorem)等. Hahn的数学贡献不限于泛函分析,他对拓扑学、集合论、变分法、实分析等都有很好的贡献.同时,他也活跃于哲学界,是维也纳学派的一员.。
有界线性算子逐点收敛的极限未必有界
有界线性算子逐点收敛的极限未必有界1杜升华2我们知道,定义在一个Banach 空间上的有界线性算子序列逐点收敛的极限一定是有界线性算子,这是一致有界性原理(Banach-Steinhaus 定理)的简单推论。
但是,这对不完备的赋范线性空间来说一般是不对的。
下面给出一个反例:令,首先验证X 是线性空间。
任取,11{(,,,)|01..()as n n n X x x x l s t x O n εε==∈∃<<=→∞……}1(,,)n x x x =……1(,,,)n y y y =∈……X ,设1()n n x O ε=,2()nn y O ε=(),n →∞1201εε<≤<,任取,αβ∈R ,则2()nn n x y O αβε+=(),从而n →∞x y X αβ+∈。
采用的诱导范数使X 成为赋范线性空间。
1l 3定义为,其中:n T X X →12()(,2,,,0,,0,)n n T x x x nx =………1(,,)n x x x =……。
易见且(,)n T B X X ∈n T n =。
任取1(,,)n x x x X =∈……,设当时n N ≥||n n x C ε≤。
定义,则12()(,2,,,)n T x x x nx =……()),n n n nx nO O n ε==→∞,故。
由此定义了一个线性算子。
当时,()T x X ∈:T X X →n N ≥11()()||0,k n kk n k n T x T x kxCk n ε∞∞=+=+−=≤→→∑∑∞,即在范数意义下li 。
1l m ()()n n T x T x →∞=但T 并不是有界线性算子。
事实上,设(0,,0,1,0,)k e =……为第k 分量为1、其余分量为0的向量,则,k e X ∈()k kT e k e =。
故(,)T B X X ∉。
有界线性算子理论中(同时也是线性泛函分析中)另两个最重要的定理是闭图像定理和有界逆定理。
第五章 Hlbert空间理论-黎永锦
第5章 Hilbert 空间只要一门科学分支能提出大量的问题,它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡.Hilbert D .(希尔伯特)(1862-1943,德国数学家)Hilbert 空间在历史上比赋范空间出现得早,2l 是最早提出来的Hilbert 空间,它是 1912年Hilbert D .在研究积分方程时给出的,而Hilbert 空间的公理化定义直到1927年才由Neumann V J ..在量子力学的的数学基础这一论文中给出,但它的定义包含了可分性的条件,llich F Lowig H Re .,.和Riesz F .在1934年指出,对于绝大部分理论,可分性是不必要的,因此可分性的条件就去掉了.5.1 内积空间在2R 中,把一个点看成一个向量,对于2R 的任意两个点),(),,(2121y y y x x x ==,定义内积2211),(y x y x y x +=,则可把向量的垂直、交角、投影等用内积来刻画,并且内积具有很好的性质.定义 5.1.1 设X 是线性空间,若存在X X ⨯到K 的一个映射,使得对任意X z y x ∈,,, 有(1) ),(),(x y y x =;(2) ),(),(),(z y z x z y x βαβα+=+;(3) 0),(≥x x , 且0),(=x x 当且仅当0=x 时成立.则称X 内积空间.在.}C ,)||(,|){(21212为复数这里+∞<∈=∑∞=i ii i x C x x l 上,定义内积为∑∞==1),(i i i y x y x ,则明显地,2l 是一个内积空间.n R 中的Schwarz Cauchy -不等式可以追溯Lagrange 和Cauchy ,积分形式的Schwarz Cauchy -不等式是ky Bouniakows 在1859年和Schwarz 在1885证明的.2l 中的Schwarz Cauchy -不等式则是Schmidt 在1908年得到的.抽象的Schwarz Cauchy -不等式是Neumann von 在1930年证明的.在内积空间X 中,有下面的Schwarz Cauchy -不等式成立.定理5.1.1(Schwarz Cauchy -不等式) 若X 是内积空间,则对任意X y x ∈,,有),(),(|),(|2y y x x y x ⋅≤证明 明显地,只须证明0≠y 时不等式成立.对于任意0,≠∈y K λ,有2||),(}),Re{(2),(),(λλλλ⋅++=++y y y x y x y x y x 取),(),(y y y x -=λ, 则 0),(),(|),(|),(|),(|2),(222≥+-y y y y y x y y y x x x 因此),(),(|),(|2y y x x y x ⋅≤.利用Schwarz Cauchy -不等式,可以证明任意的内积空间X 都可以定义范数),(||||x x x =,使之成为赋范空间.定理5.1.2 设X 是内积空间,),(||||x x x =,则||||⋅是X 的范数.证明 由内积的定义可知0||||=x 时,有0=x . 由于),(||),(),(2x x x x x x λλλλλ==因此,||||||),(||),(||||x x x x x x λλλλλ===.对于任意X y x ∈,,由Cauchy 不等式,有),(),(),(2),(),()],Re[(2),(),(||||21212y y y y x x x x y y y x x x y x y x y x ++≤++=++=+ 因而||||||||||||y x y x +≤+,所以||||⋅是X 的范数.由上面定理可知,对于任意内积空间,),(||||x x x =是X 的范数,一般称这一范数为内积),(y x 诱导的范数,在这一范数的意义下,可以把内积空间X 看成赋范空间||)||,(⋅X ,这样的内积空间X 上可以使用赋范空间||)||,(⋅X 的所有概念,如序列的收敛和子集的列紧性、完备性等.定义 5.1.2 若内积空间X 在范数),(||||x x x =下是Banach 空间,则称X 是Hilbert 空间.容易证明,2l 是Hilbert 空间. 内积空间还具有许多很好的性质.定理5.1.3 设X 是内积空间,若y y x x n n →→,,则),(),(y x y x n n →.证明 由于|||||||||||||||||),(||),(||),(),(||),(),(||),(),(|y y x y x x y y x y x x y x y x y x y x y x y x n n n n n n n n n n n n -⋅+⋅-≤-+-=-+-≤-因此y y x x n n →→,时,有),(),(y x y x n n →.不难证明,对于内积空间X ,有如下的极化恒等式成立.定理5.1.4 设X 是实内积空间,则对任意X y x ∈,,有)||||||(||41),(22y x y x y x --+= 定理5.1.5 设X 是复内积空间,则对任意X y x ∈,,有)||||||||||||||(||41),(2222iy x i iy x i y x y x y x --++--+=由于内积空间具有很好的几何直观性,而每一个内积空间都可以引入范数),(||||x x x =, 使之成为赋范空间,因此可以考虑如下问题.问题 5.1.1 对于任意赋范空间X ,可否定义内积使之成为内积空间,且满足),(||||x x x = ?例如,在赋范空间1l 中,对于任意1,l y x ∈,定义∑∞==1),(i i i y x y x ,则),(y x 是否为 1l 的内积,并满足),(||||x x x =?定理 5.1.6 设X 是赋范线性空间,则在X 可以定义内积),(,使之成为内积空间,且),(||||x x x =的充要条件为对任意X y x ∈,,有)||||||(||2||||||||2222y x y x y x +=-++证明 若X 可以定义内积,使之成为内积空间,且),(||||x x x =,则2222||||2||||2),(2),(2),(),(||||||||y x y y x x y x y x y x y x y x y x +=+=--+++=-++反过来,若对于任意X y x ∈,,有)||||||(||2||||||||2222y x y x y x +=-++.为了简明起见,这里只证X 是实赋范空间的情形.令 )||||||(||41),(22y x y x y x --+=,则 (1) ),(),(x y y x =;(2) 0),(≥x x 且0),(=x x 且当仅当0=x ;(3) 对于任意X z y x ∈,,,有)]||2||||)2((||2)||2||||)2((||2[41])||2)2(||||2)2((||)||2)2(||||2)2([(||41)||)(||||)((||41),(2222222222y x z y x y x z y x y x z y x y x z y x y x z y x y x z y x z y x z y x z y x +++--++++=+--++++-+-+-+++++++=-+-++=+ )||2||||2(||2122z y x z y x -+-++= 由于)||2||||2(||21)]||2||||2(||2)||2||||2(||2[41])||2)2(||||2)2((||)||2)2(||||2)2([(||41)||||||||||||||(||41),(),(22222222222222z y x z y x y x z y x y x z y x y x z y x y x z y x y x z y x y x z y x z y z y z x z x z y z x -+-++=-+-+--+++=---++-+-+---+++-+++=--++--+=+ 因此,),(),(),(z y z x z y x +=+.对于任意X y x R ∈∈,,λ,令),()(y x f λλ=,则)(λf 为连续函数,且)()()(2121λλλλf f f +=+,因此)(λf 是线性的,即λλ⋅=)1()(f f ,因而),(),(y x y x λλ=. 由222||||)||||||(||41),(x x x x x x x =--+=可知),(||||x x x =,因此),(y x 是X 上的内积,且),(||||x x x =.在上面定理的证明中,当X 是复赋范空间时,令)||||||||||||||(||41),(2222iy x i iy x i y x y x y x --++--+=, 则可证明),(y x 就是X 上的内积,且满足),(||||x x x =.由以上定理可知,一般的赋范线性空间||)||,(⋅X 不一定可以定义内积),(⋅⋅,使之成为内积空间,且满足),(||||x x x =.例 5.1.1 在∞l 中,取),0,1,1(),,0,0,1,1(ΛΛ-==y x ,则1||||,1||||==y x ,但2||||||||=-=+y x y x ,因此)||||||(||2||||||||2222y x y x y x +≠-++,所以在∞l 上不能定义内积,使得∞l 成为内积空间,且满足),(||||x x x =.利用前面定理,还可以证明内积空间一定是严格凸的.定理5.1.8 设X 是内积空间,则X 一定是严格凸的赋范空间.证明 对于任意X y x ∈,,若y x ≠,且1||||||||==y x ,则由 )||||||(||2||||||||2222y x y x y x +=-++可知4||||4||||22<--=+y x y x ,因而1||2||<+y x ,所以X 是严格凸的.5.2 投影定理内积空间是n R 的自然推广,在内积空间X 上,可以把向量空间n R 的正交和投影等概念引进来.定义5.2.1 设X 是内积空间,X y x ∈,,若0),(=y x ,则称x 与y 正交,记为y x ⊥. 若X M X x ⊂∈,,且对任意M y ∈,有0),(=y x ,则称x 与M 正交,记为M x ⊥.若对任意N y M x ∈∈,,都有0),(=y x ,则称M 与N 正交,记为N M ⊥.若X M ⊂,则称}|{M x X x M ⊥∈=⊥为M 的正交补.例题 5.2.1 设]1,1[-C 为[-1, 1]上的实连续函数全体,内积为⎰-=11)()(),(dt t y t x y x ,若M为[-1, 1]上的实连续奇函数全体,试证明M 的正交补为[-1, 1]上的实连续偶函数全体.证明 (1) 若y 为[-1, 1]上的实连续偶函数,则对所有,M x ∈)()(t y t x 都是[-1, 1]上的实连续奇函数,从而0)()(),(11==⎰-dt t y t x y x ,因此⊥∈M y . (2) 反过来,若⊥∈M y ,令)()()(t y t y t z --=,则)()()()(t z t y t y t z -=--=-,从而)(t z为奇函数,因此M z ∈,所以0),(=z y .由于)()()()()()]()([)(2t z t y t z t y t z t y t y t z --+=--=,因此 0),(),()()()()()(1111112=+=--+=⎰⎰⎰---z y z y dt t z t y dt t z t y dt t z从而 0)]()([112=--⎰-dt t y t y 由)(t y 是连续函数可知)()(t y t y -=,即)(t y 一定是偶函数.由(1)和(2)可知,M 的正交补为[-1, 1]上的实连续偶函数全体.明显地,由以上的定义可以看出下面定理成立.定理5.2.1 设X 为内积空间,X M X x ⊂∈,,则(1) 当y x ⊥时,有222||||||||||||y x y x +=+;(2) 当y x ⊥且z x ⊥时,有)(21z y x λλ+⊥对于任意K ∈21,λλ都成立;(3) 当N M ⊥时,有⊥⊂N M ,且⊥⊂M N ;(4) 当N M ⊂时,有⊥⊥⊃N M ;(5) }0{⊂⊥M M I ,对任意X M ⊂成立.定理5.2.2 设X 是内积空间,X M ⊂,则⊥M 是X 的闭线性子空间.证明 对于任意 ⊥∈M y x ,,及M z ∈,有 0),(=z x 且 0),(=z y因此,对任意 K ∈βα,,有0),(),(),(=+=+z y z x z y x βαβα故⊥∈+M y x βα,即⊥M 是线性子空间.若x x M x n n →∈⊥,,则对任意M z ∈,有0),(lim ),(==∞→z x z x n n , 因此⊥∈M x ,所以,⊥M 是X 的闭线性子空间.定理5.2.3 设X 是内积空间,X M ⊂,则⊥⊥=M M span ))((.证明: 对于M M span ⊃)(因此⊥⊥⊂M M span ))((.反过来,对任意⊥∈M x ,有⊥⊂}{x M ,由上面定理可知⊥}{x 是闭子空间, 故⊥⊂}{x M span ,因而⊥∈))((M span x ,所以⊥⊥⊂))((M span M ,从而⊥⊥=M M span ))((. 定义 5.2.2设X 是内积空间,M ,N 是X 的线性子空间,若N M ⊥,则称},|{N y M x y x H ∈∈+=为M 与N 的正交和,记为N M H +=.如在2R 中,取}|),0{(},|)0,{(2211R x x N R x x M ∈=∈=,则N M ⊥,且N M R +=2.定义5.2.3 设M 是内积空间X 的线性子空间,X x ∈,若存在⊥∈∈M y M x ,0,使得y x x +=0则称0x 为x 在M 上的投影.在3R 中,对},|)0,,{(2121R x x x x M ∈=,及任意 X x x x x ∈=),,(321,有⊥∈=∈=M x y M x x x ),0,0(,)0,,(3210,使得y x x +=0即0x 为x 在M 上的投影.定理5.2.4 设X 是内积空间,M 是X 的子空间,X x ∈,若0x 是x 在M 上的投影,则||||inf ||||0z x x x Mz -=-∈ 证明 由于0x 是x 在M 上的投影,因此M x ∈0且M x x ⊥-0,故对于任意M z ∈,有M z x ∈-0,因而z x x x -⊥-00,故2020202002||||||||||||||)()(||||||x x z x x x z x x x z x -≥-+-=-+-=-,所以,||||inf ||||0z x x x Mz -=-∈. 在3R 中,若取},|)0,,{(2121R x x x x M ∈=,则对任意X x x x x ∈=),,(321,x 在M 上的投影)0,,(210x x x =与x 的距离是x 到M 上的最短距离.Schmidt E .在讨论 Hilbert 的原型2l 空间时,在2l 证明了对任一固定的闭子空间M ,若x 是2l 的任一点,则存在唯一的⊥∈∈M y M x ,0,使得y x x +=0,这就是现在的投影定理.定理5.2.5 设M 是Hilbert 空间X 的闭子空间,则对任意X x ∈,x 在M 上存在唯一的投影,即存在⊥∈∈M y M x ,0,使得y x x +=0,且这种分解是唯一的.证明 对于X x ∈,令||||inf ),(z x M x d d Mz -==∈,则存在M x n ∈,使得 d x x n n =-∞→||||lim . 由于M x x n m ∈+2,因此d x x x n m ≥-+||2||. 故 ||)2||||||(||2)||2||2||||||(||2)||2||2(2||||22222222d x x x x x x x x x x x x x x x n m n m n m n m n m --+-≤-+--+-=-=- 由d x x n →-||||,可知}{n x 是Cauchy 列.由于X 是Hilbert 空间,且M 是闭凸集,因此存在M x ∈0,使得0x x n →,所以),(||||0M x d x x =-.令0x x y -=,则y x x +=0,因此下面只须证明M y ⊥.对任意0,≠∈z M z ,及任意K ∈λ,有M z x ∈+λ0.因此d z x x ≥+-||)(||0λ,故22202020||||||)),(Re(2||||||)(||d z z x x x x z x x ≥+---=--λλλ.取20||||),(z z x x -=λ,则 22202022022020|||||),(||||||||||),(||||||),(|2||||d z z x x x x z z x x z z x x x x ≥---=-+---由d x x =-||||0可知,一定有 0),(0=-z x x ,因此z x x ⊥-0对于任意M z ∈成立,即M y ⊥. 由上面讨论可知对于任意M x ∈,存在⊥∈∈M y M x ,0,使得y x x +=0.现证这种分解是唯一的.假设存在另一个M x ∈'0及⊥∈M y ',使得''0y x x +=,则⊥∈-∈-M y y M x x ''00,,故由M x x x x x x y y ∈-=---=-'00'00')()(,可知'y y =.结合前面的定理,还可以得下面推论.推论 5.2.1 设X 是Hilbert 内积空间,M 是X 的闭子空间,X x ∈则M x ∈0使得),(||||0M x d x x =-当且仅当M x x ⊥-0.问题 5.2.1 若M 是Hilbert 空间X 的子空间,但M 不是闭的子空间,那对任意X x ∈,x 在M 上是否存在投影呢?例5.2.2 在2l 中,M 为只有有限项非零的实数列全体构成的子空间,则M 不是2l 的闭子空间。
第二章赋范线性空间黎永锦
第2章 赋范线性空间虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能 发生这样的情形:一定的虚构假设足以解释许多现象.Eurler L . (欧拉) (1707-1783,瑞士数学家)Schmidt E .在1908 年讨论由复数列组成的空间}||:){(12∞<∑∞=i ii zz 时引入记号||||z 来表示211)(∑∞=i i i z z ,||||z 后来就称为z 的范数.赋范空间的公理出现在Riesz F .在 1918年关于],[b a C 上关于紧算子的工作中,但赋范空间的定义是在 1920到1922年间由 Banach S .(1892—1945)、Hahn H .(1879—1934)、Helly E .(1884—1943)和 Wiener N .(1894—1964)给出的,其中以Banach S .的工作最具影响.2.1赋范空间的基本概念线性空间是Peano Giuseppe 在1888年出版的书Geometrical Calculus 中引进的.Banach S .在1922年的工作主要是建立具有范数的完备空间,以后为了纪念他称之为Banach 空间.他定义的空间满足三组公理,第一组公理定义了线性空间,第二组定义了范数,第三组给出了空间的完备性.定义 2.1.1 设K 是实数域R 或复数域C ,X 是数域K 上的线性空间,若||||⋅是X 到R 的映射,且满足下列条件:(1) 0||||≥x 且0||||=x 当且仅当0=x ; (2) ||||||||||x x λλ=,对任意X x ∈和任意K ∈λ ;(3) ||||||||||||y x y x +≤+,对任意X y x ∈, .则称||||⋅为X 上的范数,而||||x 称为x 的范数,这时称||)||,(⋅X 为赋范线性空间.明显地,若||)||,(⋅X 为赋范线性空间,则对任意X y x ∈,,定义||||),(y x y x d -=时,),(d X 为度量空间,但对一般的度量空间),(d X ,当X 为线性空间时,若定义)0,(||||x d x =,则||||x 不一定就是X 上的范数.例2.1.1 设s 数列全体,则明显地,s 为线性空间,对任意的s y x ∈,, 定义∑∞=-+-=1|)|1(!||),(i i i i i y x i y x y x d则∑∞=+=1|)|1(!||)0,(i i i x i x x d但)0,(|||)|||1(!||||)0,(1x d x i x x d i i i λλλλ≠+=∑∞=取)0,,0,1(0Λ=x ,210=λ,则 3121121)0,(00=+=x d λ 而412121)0,(||00=⨯=x d λ因此)0,(||)0,(0000x d x d λλ≠所以,)0,(0x d 不是s 上的范数.问题 2.1.1 对于线性空间X 上的度量d , 它满足什么条件时,)0,(||||x d x =才能成为范数?定理2.1.2 设X 是线性空间,d 是X 上的度量,在X 上规定)0,(||||x d x =,则X 成为赋范线性空间的条件是:(1) )0,(),(y x d y x d -=,对任意X y x ∈, ;(2) )0,(||)0,(x d x d λλ=,对任意X x ∈和任意K ∈λ.下面举出赋范线性空间的一些例子.例 2.1.3 对于}||,|){(11∞<∈=∑∞=i ii i xK x x l ,∑∞==1||||||i i x x 是1l 的范数, 即||)||,(1⋅l 是赋范线性空间.例2.1.4 对于∞<≤p 1,}||,|){(1∞<∈=∑∞=i p ii i p xK x x l 在范数pi pi x x 11)||(||||∑∞==下是赋范线性空间.例2.1.5 }||sup ,|){(∞<∈=∞i i i x K x x l 在范数||sup ||||i x x =下是赋范线性空间. 例2.1.6 }0lim ,|){(0=∈=∞→i i i i x K x x c 在范数||sup ||||i x x =下是赋范线性空间.例 2.1.7 }],[)(|)({],[上的连续函数为b a t x t x b a C =,在范数|)(|sup ||||t x x =下是赋范线性空间.由于赋范线性空间在度量||||),(y x y x d -=下是度量空间,因此,在度量所引入的序列收敛,开(闭)集、稠密和紧集等概念都可以在赋范线性空间中使用.定义 2.1.2 设X 是赋范空间X x X x n ∈⊂0,}{, 若n x 依度量||||),(y x y x d -=收敛于0x , 即0||||lim 0=-∞→x x n n ,则称n x 依范数||||⋅收敛于0x ,记为0||||x x n −→−⋅在赋范线性空间中,仍然用}|||||{),(00r x x X x r x U <-∈=记以0x 为球心,r 为半径的开球,用}|||||{),(00r x x X x r x B ≤-∈=记以0x 为球心,r 为半径的闭球. 为了方便,用}1|||||{=∈=x X x S X 记以0为球心,1为半径的闭单位球面. 用}1|||||{≤∈=x X x B X 记以0为球心,1为半径的闭单位球. 用}1|||||{<∈=x X x U X 记以0为球心,1为半径的开单位球.例2.1.8 在Euclid 空间2R 中,对于),(21x x x =可以定义几种不同的范数:||||||||211x x x += 2122212)|||(|||||x x x +=|}||,m ax {|||||213x x x =则对1),0,0(0==r x , 闭球)1,(0x B 在不同范数下的形状为:}1|||||{11≤=x x B}1|||||{22≤=x x B}1|||||{33≤=x x B思考题 2.1.1 设||)||,(⋅X 是赋范线性空间,问开球),(0r x U 的闭包是否一定是闭),(0r x B ?思考题2.1.2 设||)||,(⋅X 是线性空间,问闭球),(0r x B 内部是否一定是开球),(0r x U ?在赋范线性空间中,加法与范数都是连续的.定理2.1.8 若||)||,(⋅X 是赋范空间00,y y x x n n →→,则00y x y x n n +→+. 证明 由||||||||||)()(||0000y y x x y x y x n n n n -+-≤+-+可知定理成立. 定理 2.1.9 若||)||,(⋅X 是赋范空间,0x x n →,则||||||||0x x n →. 证明 由||||||||||||00x x x x n n +-≤和||||||||||||00n n x x x x +-≤,可知||||||||||||||00x x x x n n -≤-,因此||||||||0x x n →.定义2.1.3 设||)||,(⋅X 是赋范线性空间,若),(0||||,}{∞→→-⊂n m x x X x n m n 时, 必有X x ∈,使0||||→-x x n , 则称||)||,(⋅X 为完备的赋范线性空间.根据M.]1928,,,[Paris Villars Gauthier abstraits Espaces Frechet -的建议,完备的赋范线性空间称为Banach 空间.不难证明,∞∞<≤l p l c R p o n),1(,,都是Banach 空间.在数学分析中,曾讨论过数项级数,函数项级数,类似地,在赋范线性空间中,也可定义无穷级数.定义 2.1.4 设||)||,(⋅X 是赋范线性空间,若序列}{}{21n n x x x S +++=ΛΛ收敛于某个X x ∈时,则称级数∑∞=1n nx收敛,记为∑∞==1n nxx .定义2.1.5 设||)||,(⋅X 是赋范线性空间,若数列||}||||||||{||21n x x x +++ΛΛ收敛时, 则称级数∑∞=1n nx绝对收敛.在数学分析中绝对收敛的级数一定是收敛的,但在赋范空间上却不一定成立,先来看看下面一个定理.定理 2.1.10 设||)||,(⋅X 是赋范线性空间,则||)||,(⋅X 是Banach 空间的充要条件为X 的每一绝对收敛级数都收敛.证明 设||)||,(⋅X 是Banach 空间,且∑∞=1n nx绝对收敛,则由∞<∑∞=1||||n nx可知,对于n n x x x S +++=ΛΛ21,有)(0||||||||||||||||11∞→→++≤++=-+++++n x x x x S S p n n p n n n p n ΛΛ,因此n S 是X 的Cauchy 列,由||)||,(⋅X 的完备性可知,存在X x ∈使x S n n =∞→lim ,即x xn n=∑∞=1反之,设X 的每一个绝对收敛级数都收敛,则对于X 的Cauchy 列n x ,对kk 21=ε,有 ΛΛ<<<<<+121k k n n n n , 使得),2,1(21||||1Λ=<-+k x x kn n k k因而+∞<-∑∞=+1||||1n n n k k x x.由假设可知+∞<-∑∞=+1)(1n n n k k x x收敛于某个X x ∈,即}{k n x 收敛x ,所以n x 必收敛于x ,从而||)||,(⋅X 完备.事实上,在实数空间R 中,正是由于R 的完备性才保证了绝对收敛级数一定是收敛的.定义 2.1.6 设||)||,(⋅X 是赋范线性空间,若X M ⊂是X 的线性子空间,则称||)||,(⋅M 为||)||,(⋅X 的子空间,若M 还是||)||,(⋅X 的闭集, 则称||)||,(⋅M 为||)||,(⋅X 的闭子空间.明显地,若||)||,(⋅X 是Banach 空间,M 为||)||,(⋅X 的闭子空间,则||)||,(⋅M 是Banach 空间,反之亦然.定理 2.1.11 设||)||,(⋅X 是Banach 空间,M 为||)||,(⋅X 的子空间,则||)||,(⋅M 是Banach 空间当且仅当M 是X 的闭集.证明 设||)||,(⋅X 是Banach 空间,当M x n ∈,且x x n →时,则}{n x 为M 的Cauchy 列,因而}{n x 收敛于 M 上的一点,故M x ∈,即M M ∈',所以M 是闭集.反之,设M x n ⊂}{为Cauchy 列,则}{n x 为 ||)||,(⋅X 的Cauchy 列,由于||)||,(⋅X 是Banach 空间,因此}{n x 是收敛列, 即存在X x ∈使x x n →,又由于M 是||)||,(⋅X 的闭子空间,因此M x ∈,即n x 在M 中收敛于x ,所以||)||,(⋅M 是Banach 空间.定义2.1.7 设X 是线性空间,p 为X 上的一个实值函数,且满足: (1) 0)0(=p ;(2) )()()(y p x p y x p +≤+,对任意X y x ∈,; (3) )(||)(x p x p λλ=,对任意X x ∈,任意K ∈λ.则称p 为X 上的半范数.明显地,X 上的范数一定是半范数,但对X 上的半范数p ,由于0)(=x p 时不一定有0=x ,因此半范数不一定是范数.例2.1.9 在∞l 中,定义||)(11x x p =,易证)(1x p 是∞l 中的半范数,但对于),,,,0(2ΛΛn x x x =,都有0)(1=x p ,因此p 不是∞l 的范数.有什么办法能使),(p X 中的问题转化为赋范空间中来解决呢?定义 2.1.8 设X 是线性空间,M 是X 的线性子空间,若M x x ∈-21,则称1x 与2x 关于M 等价,记为)(~21M x x易知,等价具有下面的三个性质(1) x x ~(反射性);(2) y x ~推出 x y ~(对称性); (3) y x ~, z y ~ 推出z x ~(传递性).明显地,若M 是线性空间X 的线性子空间,记}),(~|{~M y M x y y x ∈=, 则~x 的全体在加法~~~y x y x +=+和数乘~~x x αα=下是线性空间,称为X 对模M 的商空间,记为M X /.在商空间M X /中,对M X =∈~0,0, 即0是M X /的零元,而对M X /的每一元素~x ,~x 都是唯一确定的,并且对于加法和数乘都是唯一确定的.例2.1.10 对于}||sup |){(+∞<=∞i i x x l ,取}||sup ,0|){(1+∞<==i i x x x M , 则M 为∞l 的子空间,对M l y x /,∞∈,当~~y x =时有M y x ∈-,即011=-y x , 这时R M l ~/∞当||)||,(⋅X 为赋范线性空间,M 为X 的闭线性子空间时,在M X /商空间中还可以定义范数,使M X /成为赋范线性空间.定理 2.1.14 设||)||,(⋅X 是赋范线性空间,M 为X 的闭线性子空间,在M X /上定义范数}|||inf{||||||~~x y y x ∈=,则||)||,/(⋅M X 是赋范线性空间.利用上面的技巧,不难证明,当)(x p 为X 上的一个半范数时,取}|||inf{||||||},0)(|{~~x y y x x p x M ∈===,则||)||,/(⋅M X 是一个赋范线性空间,且对任意X x ∈有, )(||||~x p x =.当X 是空备赋范线性空间,M 为X 的闭子空间的,M X /还具有完备性.定理2.1.15 设X 是Banach 空间,M 为X 的闭子空间,则M X /是Banach 空间.2.2 范数的等价性与有限维赋范空间在同一线性空间上,可以定义几种不同的范数,使之成为不同的赋泛线性空间,但有时X 上的几种不同范数诱导出的拓扑空间是一样的,有时却很不相同,这主要是X 上的序列依范数收敛的不同引起的.定义 2.2.1 设X 是线性空间,1||||⋅和|2||||⋅是X 上的两个不同范数,若对X 中的序列}{n x ,当0||||10→-x x n 时,必有0||||20→-x x n ,则称范数1||||⋅比范数2||||⋅强,亦称2||||⋅比1||||⋅弱.若对X 中的序列}{n x ,0||||10→-x x n 当且仅当0||||20→-x x n 则称范数1||||⋅与2||||⋅等价.定理 2.2.1 设1||||⋅和2||||⋅是线性空间X 上的两个不同范数,则范数1||||⋅比2||||⋅强当且仅当存在常数0>C ,使得对任意X x ∈都有12||||||||x C x ≤.证明 若存在0>C ,使12||||||||x C x ≤,则明显地0||||1→-x x n 时,有0||||||||12→-≤-x x C x x n n ,因而1||||⋅比2||||⋅强.反过来,若范数1||||⋅比2||||⋅强,则必有0>C ,使12||||||||x C x ≤. 若不然,则对任意自然数n ,存在X x n ∈,使12||||||||n n x n x >. 令2||||n nn x x y =,则nx x y n n n 1||||||||||||211<=故0||0||1→-n y ,因而0||0||2→-n y ,但这与1||||||||||0||222==-n n n x x y 矛盾,所以必存在0>C ,使12||||||||x C x ≤,对任意X x ∈成立.推论 2.2.2 设1||||⋅与2||||⋅是线性空间X 上的两个不同范数,则范数1||||⋅与2||||⋅等价当且仅当存在常数0,021>>C C ,使得对任意X x ∈,有12211||||||||||||x C x x C ≤≤推论 2.2.3 设1||||⋅与2||||⋅是线性空间X 上的两个等价范数,则)||||,(1⋅X 是Banach 空间当且仅当)||||,(2⋅X 是Banach 空间.思考题 2.2.1 若1||||⋅与2||||⋅是线性空间X 上的两个不同范数,且)||||,(1⋅X 和)||||,(2⋅X 都是Banach 空间,是否就一定有1||||⋅与2||||⋅等价呢?定义2.2.2 设X 是n 维线性空间,||||⋅是X 上的范数,则称||)||,(⋅X 为n 维赋范线性空间.有限维赋范线性空间是Minkowski 在1896年引入的,因此有限维赋范线性空间也称为Minkowski 空间.若||)||,(⋅X 为n 维线性空间,n e e e ,,,21Λ为X 的一组线性无关组,则称n e e e ,,,21Λ为||)||,(⋅X 的Hamel 基,此时对任意X x ∈,x 都可以唯一地表示成∑==nn i i e x 1α定理 2.2.4 设||)||,(⋅X 是n 维线性空间n e e e ,,,21Λ是X 的Hamel 基,则存在常数1C 及02>C 使得2112221121)||(||||)||(∑∑==≤≤ni i ni i C x C αα对任意∑==nn i i e x 1α都成立.证明 对于任意ni K ∈=)(αα,定义函数||||)(1∑==nn i i e f αα则对任意n i K ∈=)(αα,ni K ∈=)(ββ,有21122112211211111)||()||||()||(|||||||||||||||||||||)()(|∑∑∑∑∑∑∑∑========-=-≤-≤-≤-=-n i iin i in i iini i i ini ni ii ii ni ii n n ii M ee e e e ef f βαβαβαβαβαβα这里2121)||||(∑==nn ieM ,因此f 是n K 到R 的连续函数.由于nK 的单位球面}1)||(|){(2112=∈=∑=ni in i K S αα是紧集,因此f 在S 上达到上下确界,即存在S i i ∈==)(),()0(0)0(0ββαα,使得10}|)(inf{)(C S f f =∈=ααα 20}|)(sup{)(C S f f =∈=ααβ因此对任ni K ∈=)(αα,有S ni iK n∈=∑=2112)||(||||αααα故21)||||(C f C nK≤≤αα即211221121121)||(||||)||(∑∑==≤++≤ni i n n ni i C e e C ααααΛ下面证明01>C ,容易知道02>C 的证法是类似的.假设01=C ,则有0||||)(1)0(0==∑=nn i ie f αα,故01)0(=∑=nn i ie α由}{i e 是X 的Hamel 基可知,0)0(=i α,从而00=α,但这与S ∈0α矛盾.定理 2.2.5 设X 是有限维线性空间,1||||⋅与2||||⋅是X 上的两个范数,则存在常数01>C , 02>C 使得12211||||||||||||x C x x C ≤≤定理 2.2.6 有限维的赋范线性空间一定是Banach 空间.证明 若}{m x 为n 维赋范线性空间||)||,(⋅X 的Cauchy 列,则对于X 的Hamel 基n e e e ,,,21Λ有i ni m im e x ∑==1)(α,由2112221121)||(||||)||(∑∑==≤≤ni i ni i C x C αα可知}{)(m iα亦为Cauchy 列,故存在R i ∈α,使得i m i αα→)(,因而有)(i αα=,使得0)||(2112)(→-∑=ni i m iαα令i ni ie x ∑==1α,则0||||→-x x m ,因此}{m x 是收敛序列,所以X 是完备的.在nR 中,M 是列紧的当且仅当M 是有界闭集,在有限维赋范空间中是否成立呢?下面就来讨论有限维赋范线性空间||)||,(⋅X 中紧集与有界闭集的关系.定理2.2.7 设||)||,(⋅X 是有限维的赋范线性空间,则X M ⊂是紧的当且仅当M 是有界闭集.证明 设n e e e ,,,21Λ为||)||,(⋅X 的Hamel 基,则对任意X x ∈,有i ni ie x ∑==1α定义nK 到X 的算子T :i ni i e T ∑==1)(αα则存在0,021>>C C ,使得2112221121)||(||)(||)||(∑∑==≤≤ni i i ni i C T C ααα从而T 是n K 到X 的连续算子,且是一一对应的. 由||)(||)||(21121ααT C ni i≤∑=可知1-T 是X 到n K 的连续算子, 因此T 是n K 到X 的拓扑同构.所以M 的紧集当且仅当 )(1M T -为n K 的紧集,从而M 是X 的紧集当且仅当M是有界闭集.问题2.2.1 若赋范线性空间||)||,(⋅X 的每个有界闭集都是紧集,则X 是否一定为有限维的赋范线性空间?为了回答上面的问题,先来讨论Riesz 引理,这是Riesz F .在1918年得到的一个很漂亮的结果.引理 2.2.8 (Riesz 引理)设M 是赋范线性空间||)||,(⋅X 的闭真子空间,则对任意10<<ε,存在1,=∈εεx X x ,使得εε≥-x x对任意M x ∈成立.证明 由于M 是X 的闭真子空间,因此≠M X \φ,故存在M X y \0∈,令}|||inf{||),(00M x x y M y d d ∈-==,则0>d .对任意10<<ε,由d 的定义可知,存在M x ∈0,使得εdx y d ≤-≤||||00令||||0000x y x y x --=ε,则1||||=εx ,且对任意M x ∈,有||)||||(||||||1||||||||||||0000000000x x y x y x y x y x y x x x -+--=---=-ε由M x ∈0,M x ∈和M 是线性子空间,可知M x x y x ∈-+||||000因此d x x y x y ≥-+-||)||||(||0000故εεε=≥-≥-ddx y d x x ||||||||00由Riesz 引理,容易得到有限维赋范线性空间特征的刻画.定理 2.2.9 赋范线性空间||)||,(⋅X 是有限维的当且仅当X 的闭单位球}1|||||{≤=x x B X 是紧的.证明 明显地,只须证明X B 是紧的时候,X 一定是有限维的.反证法,假设X B 是紧的,但X 不是有限维赋范线性空间,对于任意固定的,1X x ∈1||||1=x ,令}|{}{111K x x span M ∈==λλ,则1M 是一维闭真子空间,取21=ε,由Riesz 引理可知,存在1||||,22=∈x X x 且21||||2≥-x x 对任意1M x ∈成立,从而21||||12≥-x x . 同样地,令},{212x x span M =,则2M 是二维闭真空子空间,因而存在1||||,33=∈x X x ,使21||||3≥-x x 对任意2M x ∈成立,从而21||||13≥-x x 且21||||23≥-x x . 利用归纳法,可得一个序列X n B x ⊂}{,对任意n m ≠,有21||||≥-n m x x 因而}{n x 不存在任何收敛子序列,但这与X B 是紧集矛盾,由反证法原理可知X 是有限维赋范线性空间.推论2.2.10 赋范线性空间X 是有限维当且仅当X 的每个有界闭集是紧的.对于无穷维赋范线性空间X 的紧集的刻画,就比较困难.在]1,0[C 中,容易看出]1,0[}1|)(||)({C x f x f A ⊂≤=是]1,0[C 的有界闭集,但不是紧集.为了讨论]1,0[C 子集的紧性,需要等度连续的概念,它是由Ascoli 和Arzelà同时引入的.定义 2.2.3 设]1,0[C A ⊂,若对任意的0>ε,都存在0>δ,使得对任意的A f ∈,任意的]1,0[,∈y x ,δ<-||y x 时,一定有ε<-|)()(|y f x f ,则称A 是等度连续的.Ascoli 给出了]1,0[C A ⊂是紧的充分条件, Arzelà在1895年给出了]1,0[C A ⊂是紧的必要条件,并给出了清楚的表达.定理 2.2.11 (Arzel à-Ascoli 定理) 设]1,0[C A ⊂,则是紧的当且仅当A 是有界闭集, 且A 是等度连续的.2.3 Schauder 基与可分性一个Banach 空间,如果想把它看作序列空间来处理,最好的办法是引入坐标系,常用的方法是引入基的概念, Schauder 基是-Fun in stetiger Theorie Zur Schauder J [..]6547.)1927(26,,-pp t Zeitschrif che Mathematis men ktionalrau 引入的.定义 2.3.1 Banach 空间||)||,(⋅X 中的序列}{n x 称为X 的Schauder 基,若存在对于任意X x ∈,都存在唯一数列K a n ⊂}{,使得nn n x x ∑∞==1α容易看到,有限维赋范线性空间一定具有Schauder 基.例2.3.1 在1l 中令),0,1,0,,0(ΛΛ=n e ,则}{n e 为1l 的Schauder 基,明显地,在)01(,,0∞<<p l c c 中,}{n e 都是Schauder 基.Schauder J .在1928年还在]1,0[C 中构造一组基,因而]1,0[C 也具有Schauder 基. 具有Schauder 基的Banach 空间具有许多较好的性质,它与Banach 空间的可分性有着密切联系.定义 2.3.2 ||)||,(⋅X 是赋范线性空间,若存在可数集X M ⊂,使得X M =,即可数集在X 中稠密,则称X 是可分的.若||)||,(⋅X 可分,则存在可数集X x n ⊂}{,使得对任意X x ∈及任意0>ε,都有某个}{n n x x ∈ε,满足εε<-||||x x n .例2.3.2 由于有理数集Q 是可数集,且R Q =,因此R 是可分的.类似地,n R 也是可分的赋范空间.例2.3.3 对于p l p ,1+∞<≤都是可分的,因为取时,使得存在N i N x M i >=,|){(},,0都是有理数时并且i i x N i x <=,则M 是可数集,并且p l M =.实际上,对任意p l x ∈,由+∞<∑∞=pi pi x 11)||(可知,对任意0>ε,存在N ,使得2||1pN i pix ε<∑∞+=, 取有理数N q q q Λ,,21,使2||1pNi pi i x q ε<-∑=,则M q q q x N ∈=)00,,,(21ΛΛε,且εε<+-≤-∑∑∞+==pN i p iNi p i i xx q x x 111)||||(,因此p l M =,所以p l 是可分的.例 2.3.4 由Weierstrass 逼近定理可知对任意],[b a C x ∈,必有多项式0→-x p n ,取M 为],[b a 上有理系数的多项式全体,则M 是可数集,且],[b a C M =,因而],[b a C 是可分的赋范线性空间.定理2.3.5 若||)||,(⋅X 赋范空间有Schauder 基,则X 一定可分的. 证明 为了简明些,这里只证明||)||,(⋅X 为实的情形.设}{i e 为X 的Schauder 基,则任意X x ∈有∑∞==1i ii ea x ,这里R a i ∈.令},|{1Q q N n eq M i ni ii ∈∈=∑=,则M 是可数集,且对任意X x ∈及任意0>ε,存在M x ∈ε,使得εε<-x x ,因此X M =,所以M 为可分的赋范空间.对于复赋范空间||)||,(⋅X ,可令},,|)({1Q pq N n e ip q M iini iii∈∈+=∑=,证明是类似的.问题2.3.1 是否每个赋范空间都具有Schauder 基? 例2.3.6 赋范空间∞l 没有Schauder 基.由于∞l 不可分,因而一定没有Schauder 基.事实上,假设∞l 可分,则存在∞∈=l x x m im )()(,使得}{m x X =.令=)0(ix ⎪⎩⎪⎨⎧>≤+. 1|| 0;1|x | ,1)((i)i )(时当时当i i i i x ,x 则211||sup )0(=+≤i x ,即∞∈=l x x i)()0(0,并且1||||sup ||||)0()()0()(10≥-≥-=-∞<≤m m m i m i i m x x x x x x所以}{m x 不存在任何收敛子列收敛于0x ,故}{0m x x ∉,从而}{m x X ≠,但这与假设}{m x l =∞矛盾,因此∞l 不可分.另外,还再进一考虑下面的问题:问题2.3.2 是否每个可分的赋范空间都具有Schauder 基?上面问题自从S. Banach 在1932年提出后,很多数学家为解决这一问题做了很多的努力,由于常见的可分Banach 空间,如10,l c 等都具有Schauder 基,因此大家都以为问题的答案是肯定的,但所有的努力都失败了,大家才倾向于问题的答案是否定的.Enflo P .在1972年举出了一个例子,它是可分的赋范空间,但不具有Schauder 基[A counterexample to the approximation problem in Banach spaces. Acta Math. 130(1973), 309-317.]2.4 线性连续泛函与Banach Hahn -定理Banach S .1929年引进共轭空间这一重要概念,这也就是赋范线性空间上的全体有界线性泛函组成的线性空间,在这个线性空间上取泛函在单位球面的上界为范数,则共轭空间是完备的赋范线性空间. Banach S .还证明了每一连续线性泛函是有界的,但最重要的是Banach S .和Hahn H .各自独立得到的一个定理,这就是泛函分析中最著名的基本定理,即Banach Hahn -定理,它保证了赋范线性空间上一定有足够多的连续线性泛函.泛函这名称属于Hadamard ,他是由于变分问题上的原因研究泛函.定义 2.4.1 设||)||,(⋅X 是赋范线性空间,f 为X 到K 的映射,且对于任意X y x ∈,及K ∈βα,,有)()()(y f x f y x f βαβα+=+则称f 为X 的线性泛函.例2.4.1 在∞l 上,若定义1)(x x f =,则f 为∞l 上的线性泛函.由于线性泛函具有可加性,因此,线性泛函的连续性比较容易刻画.定理2.4.2 设f 是赋范线性空间||)||,(⋅X 上的线性泛函,且f 在某一点X x ∈0上连续,则f 在X 上每一点都连续.证明 对于任意X x ∈,若x x n →,则00x x x x n →+-由f 在0x 点的连续性,因此)()(00x f x x x f n →+-所以)()(x f x f n →,即f 在x 点连续.这个定理说明,要验证泛函f 的连续性,只须验证f 在X 上某一点(例如零点)的连续性就行了.问题2.4.1 是否存在一个赋范线性空间X ,X 上任意线性泛函都连续?例2.4.3 n R 上任意线性泛函都是连续的.事实上令)0,0,1,0,0(ΛΛ=i e ,则任意nR x ∈,有∑==ni ii ex x 1,设0,→∈m nm x R x ,则∑==ni i m im e x x 1)(,且0)(→m ix 对任意i 都成立.因此)0(0)()()(1)(1)(f e f x e x f x f ni i m ini i m i m =→==∑∑==,所以f 在0点连续,从而f 在n R 上任意点都连续.定义 2.4.2 若X 上的线性泛函把X 的任意有界集都映为K 的有界集,则称f 为有界线性泛函,否则f 为无界线性泛函.定理 2.4.4 设f 为赋范线性空间||)||,(⋅X 上的线性泛函,则f 是有界的当且仅当存在0>M ,使|||||)(|x M x f ≤.证明 若存在0>M ,使得对任意|||||)(|,x M x f X x ≤∈,则对于X 中的任意有界集F ,有0>r ,使得对任意F x ∈,有r x ≤||||,因此,Mr x M x f ≤≤|||||)(|对所有F x ∈成立,所以)(F f 为K 的有界集,即f 为有界线性泛函.反之,若f 为有界线性泛函,则f 把X 的单位球面}1|||||{)(==x x X S 映为K 的有界集,因此存在0>M ,使得对一切1||||=x ,有M x f ≤|)(|故对任意X x ∈,有M x xf ≤|)||||(| 所以|||||)(|x M x f ≤例2.4.5 对)(|){(i i x x c =为收敛序列},范数||sup ||||i x x =,若定义f 为i i x x f ∞→=lim )(,则f 为c 上的线性泛函,由于||sup ||||i x x =,因此|||||lim ||)(|x x x f i i ≤=∞→所以f 为c 上的有界线性泛函.对于赋范线性空间的线性泛函而言,有界性与连续性是等价的,Banach S .在1929年证明了每一个连续可加泛函(线性连续泛函)都是有界的.定理2.4.6 设X 是赋范线性空间,则X 上的线性泛函是连续的当且仅当f 是有界的. 证明 若f 是有界的,则由上面定理可知存在0>M ,使得|||||)(|x M x f ≤,因此当x x n →时,有)()(x f x f n →,即f 为连续的.反之,假设f 为连续线性泛函,但f 是无界的,则对任意自然数n ,存在X x n ∈,使得|||||)(|n n x n x f >令0,||||0==y x n x y n nn ,则01||||0→=-n y y n ,由f 的连续性可知)()(0y f y f n →,但1||||)()(>=n n n x n x f y f ,0)(0=y f ,从而 1|)()(|0>-y f y f n ,但这与)()(0y f y f n →矛盾.所以f 为连续线性泛函时,f 一定是有界的.线性泛函的连续性还可以利用f 的零空间是闭集来刻画.定理 2.4.7 设X 是赋范线性空间,则X 上的线性泛函是连续的当且仅当}0)(|{)(==x f x f N 为X 的闭线性子空间.证明 明显地)(f N 为线性子空间,因此只须证)(f N 是闭的.若f 是连续线性泛函,则当x x f N x n n →∈),(时,必有)()(x f x f n →,因而0)(=x f ,即)(f N x ∈,所以)(f N 是闭子空间.反之,若)(f N 是闭的,但f 不是有界的,则对于任意正整数n ,有X x n ∈,使|||||)(|n n x n x f >令||||n nn x x y =,则1||||=n y ,且n y f n >|)(|. 取)(,)()(11011y f yz y f y y f y z n n n -=-=, 由于01|)(|||||||)(||||||0→<==-ny f y y f y z z n n n n n 因而0z z n →,且0))()(()(11=-=y f yy f y f z f n n n ,即)(f N z n ∈,从而由)(f N 是闭集可知)(0f N z ∈,但这与1)(0-=z f 矛盾,因此当)(f N 是闭子空间时,f 一定是连续的. 从上面的讨论容易看出,X 上的全体连续线性泛函是一个线性空间,在这个线性空间上还可以定义其范数.定义2.4.3 设f 为X 上的线性连续泛函,则称|||||)(|sup||||0x x f f x ≠= 为f 的范数.明显地,若记X 上的全体线性连续泛函为*X ,则在范数||||f 下是一赋范空间,称之为X 的共轭空间.虽然Hahn H .在1927年就引起了共轭空间的概念,但Banach S .在1929年的工作更为完全些.容易看出,对于任意X f ∈,还有|)(|sup |)(|sup ||||1||||1||||x f x f f x x ≤===.但对于具体的赋范空间X ,要求出X 上的连续线性泛函的范数,有时是比较困难.例 2.4.8 设f 为1l 的连续线性泛函,若取}{i e 为1l 上的Schauder 基,则对任意)(i x x =,有∑∞==1i ii ex x , 故∑∞==1)()(i i ie f xx f ,因而)||(|)(|sup |)(||||)(||)(|111∑∑∑∞=∞=∞=≤≤=i iii iii iix e f e f x e f x x f从而|)(|sup ||||i e f f ≤. 取1)0,0,1,0,0(l e i ∈=ΛΛ, 则1||||=i e , 且|)(|||||||||||||i i e f e f f ≥=, 故|)(|sup ||||i e f f ≥,所以|)(|sup ||||i e f f =.设M 是赋范线性空间X 的子空间,f 为M 上的连续线性泛函,且存在0>C ,使得|||||)(|x C x f ≤对任意M x ∈成立,则f 是否可以延拓到整个范空间X 上?这一问题起源于n 维欧氏空间n R 上的矩量问题. Banach S . 在1920年提交的博士论文中,用几何语言将它推广到无限维空间.1922年,Hahn H .发表的论文也独立地得出类似结果. Hahn H . 在1927年将结果更一般化,在完备的赋范线性空间研究了这一问题,并证明了在X 上f 存在连续延拓F ,使得|||||)(|x C x F ≤对一切M x ∈成立,且对一切M x ∈,有)()(x f x F =. 1929年,Banach S .独立地发表了与Hahn H .相近的定理和证明,并把一定理推广为一般的情形,这就是下面的Banach Hahn -延拓定理.定理 2.4.9 设M 是实线性空间X 的线性子空间,f 为M 上的实线性泛函,且存在X 上的半范数)(x p 使得)(|)(|x p x f ≤, 对任意M x ∈成立则存在f 在X 上的延拓F ,使得(1) )(|)(|x p x F ≤, 对任意X x ∈成立; (2) )()(x f x F =, 对任意M x ∈成立.Bohnehbius F H ..与Sobczyk A . 在 1938 年还把Banach Hahn -定理推广到复线性空间.定理 2.4.10 设M 是复线性空间X 的复线性子空间,f 为M 上的线性泛函,p 是X 上半范数且满足)(|)(|x p x f ≤, 对任意M x ∈成立则存在f 在X 上的延拓F ,使得(1) )(|)(|x p x F ≤, 对任意X x ∈成立; (2) )()(x f x F =, 对任意M x ∈成立.利用线性空间的Banach Hahn -延拓定理,可以建立赋范线性空间上的保范延拓定理,它是Banach 空间理论的基本定理.定理 2.4.11 设M 是赋范线性空间X 的线性子空间,f 为M 上的连续线性泛函,则存在X 上线性连续泛函F ,使得(1) **=M X f F |||||||| ;(2) )()(x f x F =, 对任意M x ∈成立.这里*X F ||||表示F 在*X 的范数, *M f ||||表示f 在*M 的范数.证明 由于f 为M 上的连续线性泛函,因此对任意M x ∈,有|||||||||)(|x f x f M *≤. 定义半范数||||||||)(x f x p M *=,则有)(|)(|x p x f ≤,对任意M x ∈.由线性空间的Banach Hahn -定理可知存在F ,使得)()(x f x F =, 对任意M x ∈且)(|)(|x p x F ≤, 对任意X x ∈因此对于任意X x ∈,有|||||||||)(|x f x F M *≤,故F 为X 上的连续线性泛函,且**≤M X f F ||||||||.反过来,由**==≥=≠∈≠∈≠∈M x M x x M x x X x X f x x f x x F x x F F |||||||||)(|sup |||||)(|sup |||||)(|sup||||0,0,0,可知**=M X f F ||||||||, 且)()(x f x F =对任意M x ∈成立.在上面定理中,若X 是复赋范线性空间,则M 必须是复线性子空间.很有意思的是Bohnehbius F H ..和Sobczyk A .在1938年证明在任意无穷维复Banach 空间X 中,一定存在实线性子空间M ,在M 上有一复连续线性泛函不能保范延拓到X 上.问题2.4.2 在Banach Hahn -定理中,什么条件下保范延拓是唯一的?例2.4.12 在},|),{(2121R x x x x X ∈=上,定义范数||||||),(||||||2121x x x x x +==. 令}|)0,{(11R x x M ∈=, 明显地,M 是赋线性空间X 的线性子空间,对M x y ∈=)0,(1,定义1)(x y f =,则|||||||)(|1y x y f ==故1||||≤*M f ,且对)0,1(0=x ,有1|)(|,1||||00==x f x ,因而1||||=*M f ,但对X 上的线性泛函211)(x x x F +=212)(x x x F -=这里X x x x ∈=),(21 在M 上,都有)()(1y f y F = )()(2y f y F =对任意的M x y ∈=)0,(1成立. 在M 上有f F f F ==21,,且***==M X X f F F ||||||||||||21,因此21,F F 是f 的两个不同的保范延拓.定理2.4.13 设||)||,(⋅X 是赋范空间,M 是X 的子空间,X x ∈0,),(0M x d d =0}|||inf{||0>∈-=M y y x ,则存在*∈X f ,使得(1)对任意0)(,=∈x f M x ; (2)d x f =)(0; (3)1||||=f .证明 令}}{{0x M span E ⋃=∆,则对任意E x ∈,x 有唯一的表达式0'tx x x +=,这里M x K t ∈∈',.在E 上定义泛函g :td x g =)(则g 为E 上的线性泛函,且 (1)d x g =)(0;(2)对任意0)(,=∈x g M x .对0'tx x x +=,不妨假设0≠t .由}||inf{||,|||)'(||)(|00M y x y d d t tx x g x g ∈-==+=可知||||||'||||'||||||'|||||||)(|000x tx x x tx t x t x t d t x g =+=+=--≤=. 因此g 是E 上的线性连续泛函,且1||||≤*M g .根据Banach Hahn -定理,有连续线性泛函*∈X f ,使得 (1)对任意)()(,x g x f E x =∈; (2)||||||||g f =.由0}|||inf{||0>∈-=M y y x d ,可知存在M x n ∈,使得d x x n →-||||0. 故df x x f x f x f x f d n n |||||||||||||)()(||)(|000→-⋅≤-==因此1||||≥f ,所以1||||=f ,且对所有M x ∈,有0)(=x f .特别地,当}0{=M 时,对任意00≠x ,有||||),(00x M x d =,因此由上面定理可知下面推论成立.推论 2.4.14 设X 是赋范线性空间,则对任意0,00≠∈x X x ,有*∈X f ,使得||||)(00x x f =,且1||||=f .该结论的重要意义在于它指出了任意赋范线性空间X 上都存在足够多的线性连续泛函.由下面推论还可知道X 中两个元素y x ,,若对所有*∈X f ,都有)()(y f x f =,则一定有y x =.推论 2.4.15 设X 是赋范线性空间,X y x ∈,则y x ≠当且仅当对存在*∈X f 使得)()(y f x f ≠.证明 假设y x ≠,则对y x z -=,有0||||≠z ,因此Banach Hahn -定理的推论可知存在1||||=f ,使得0||||)(≠=z z f ,从而)()(y f x f ≠.例题2.4.1 设X 是赋范线性空间,试证明对任意X x ∈0,有|)(|sup||||0,1||||0x f x Xf f *∈==证明 对任意*∈X f ,1||||=f ,有|||||||||||||)(|000x x f x f =≤因此|)(|sup||||0,1||||0x f x X f f *∈=≥另外, 但对0,00≠∈x X x ,存在*∈X f ,1||||=f ,使得 ||||)(00x x f =, 故|)(|sup||||0,1||||0x f x Xf f *∈=≤, 所以|)(|sup||||0,1||||0x f x Xf f *∈==.例题 2.4.2 设||)||,(⋅X 是赋范空间,若对于任意1||||,1||||,,==∈y x X y x 且y x ≠都有2||||<+y x ,试证明对于任意)1,0(∈α,有1||)1(||<-+y x αα.证明 反证法. 假设存在1||||||||00==y x 和)1,0(0∈α,使得1||)1(||0000=-+y x αα由Banach Hahn -定理的推论,可知存在*∈X f , 1||||=f ,使得||)1(||))1((00000000y x y x f αααα-+=-+即1)()1()(0000=-+y f x f αα这时一定有1)()(00==y f x f . 否则的话,若1)(0<x f 或1)(0<y f ,则1)1()()1()(000000=-+<-+ααααy f x f ,矛盾.因此2)(|)(|sup||||0000,1||||00=+≥+=+*∈=y x f y x f y x X f f ,又由2|||||||||||0000=+≤+y x y x可知2||||00=+y x ,但这与2||||00<+y x 的题设矛盾,因此由反证法原理可知对于任意)1,0(∈α,有1||)1(||<-+y x αα.2.5 严格凸空间Clarkson A J ..在1936年引入了一致凸的Banach 空间的概念,证明了取值一致凸的Banach 空间的向量测度Nikodym Radon -的定理成立,从而开创了从单位球的几何结构来研究Banach 空间性质的方法.Clarkson A J ..和Gkrein M . 独立地引进了严格凸空间,严格凸空间在最佳逼近和不动点理论上有着广泛的应用.定义 2.5.1 赋范空间X 称为严格凸的,若对任意1||||,1||||,,==∈y x X y x ,y x ≠,都有1||2||<+yx严格凸的几何意义是指单位球面X S 上任意两点y x ,的中点2yx +一定在开单位球}1|||||{<=x x U X 内.例2.5.1 Banach 空间0c 不是严格凸的. 取000),0,0,1,0(),,0,1,1(c y x ∈==ΛΛ,则1||||||||00==y x ,且对),0,0,1,21(200Λ=+y x ,明显地有 1||2||00=+y x .类似地,易验证,Banach 空间 ∞l l c ,,1都不是严格凸空间.例2.5.2 若1||||,1||||,,2==∈y x l y x 且y x ≠,则4||||2||||2)||2()||2()||()||(||||||||221212121222=+=+=-++=-++∑∑∑∑∞=∞=∞=∞=y x y x y x y x y x y x i i i i i i i i i i从而4||||4||||22<--=+y x y x ,即1||2||<+yx . 所以2l 是严格凸的.类似地,容易证明Banach 空间)1(∞<<p l p 是严格凸的.定理2.5.3 若X 是严格凸赋范空间,则对任意非零线性泛函*∈X f , f 最多只能在X S 上的一点达到它的范数||||f .证明 反证法.假设存在1||||||||,0000==≠y x y x ,使得||||)()(00f y f x f ==由于||||)]()([21)2(0000f y f x f y x f =+=+ 因此||2||||||)2(||||0000y x f y x f f +≤+= 从而1||2||0≥+y x 明显地,12||||||||||2||0000=+≤+y x y x .因此 1||2||00=+y x ,但这与X 的严格凸假设矛盾,所以由反证法原理可知定理成立.设X 是赋范空间,M 是X 的子空间,对*∈X f , f 在X 上可能有不同的保范延拓,不过,*X 的严格凸性能保证保范延拓的唯一性.Taylor A .在1939年证明了以下结果-function linear of extension The Taylor A ,.[ ].547538),1959(5..,-J Math Duke als .定理 2.5.4 若*X 是严格凸,M 是X 的子空间,则对任意*∈M f ,f 在X 上有唯一的保范延拓.证明 反证法. 假设对*∈M f ,f 在X 上有两个不同的保范延拓1F 及2F ,即对任意M x ∈,都有)()()(21x F x F x f ==,且||||||||21F F =,则1||2/)||||||||(||21≤+f Ff F 由于2|)()(|sup 2||sup ||2||21,1||||21,1||||21x F x F F F F F Mx x X x x +≥+=+∈=∈= ||||2|)()(|sup,1||||f x f x f M x x ≥+=∈=因此1||2/)||||||||(||21=+f Ff F ,但这与*X 是严格凸矛盾. 所以f 在X 上只有唯一的保范延拓.思考题2.5.1 若对X 的任意子空间M ,任意的*∈M f ,f 在X 上都只有唯一的保范延拓,则*X 是否一定为严格凸的?严格凸性还保证了最佳逼近元的唯一性.定义2.5.2 设X 是赋范线性空间X x X M ∈⊂,,若存在M y ∈0,使得||||inf ||||0y x y x My -=-∈则称0y 为M 中对x 的最佳逼近元.定理2.5.5 设M 为赋范线性空间X 上的有限维子空间,则对任意X x ∈,存在M y ∈0,使得||||inf ||||0y x y x My -=-∈证明 令||||inf y x d My -=∈,由下确界的定义,存在M y n ∈,使得d y x n →-||||因而}{n y 是有界序列,即存在0>C ,使得C y n ≤||||,对任意n 成立.事实上,若}{n y 不是有界序列,则对任意N k ∈有}{n n y y k ∈,使得k y k n >||||,故)(||||||||||||||||∞→∞→-≥-≥-k x k x y y x k k n n .但这与d y x k n →-||||矛盾,所以}{n y 为有界序列.由于M 是有限维,且}{n y 为M 中有界序列,因此}{n y 存在收敛子列0y y k n →,且M y ∈0.故d y x y x k n k =-=-∞→||||lim ||||0,所以存在M y ∈0.且||||inf ||||0y x y x My -=-∈.问题2.5.1 上述定理中的最佳逼近元是否一定唯一?例 2.5.6 在2R 中,取范数|}||,max{|||||21x x x =,}|)0,{(11R x x M ∈=,则M 为2R 的一维子空间,取20)1,0(R x ∈=,对于任意M x x ∈=)0,(1,有1}1||,max{||||)0,()1,0(||||||110≥=-=-x x x x故1}|||inf{||),(00≥∈-=M x x x M x d对于)0,1(0=w ,有1||||00=-w x .因此1}|||inf{||),(00=∈-=M x x x M x d . 但对于)0,0(=u 及)0,1(-=v ,都有1||||||||00=-=-v x u x ,因此0x 在M 的最佳逼 元不唯一.既然上述定理中的最佳逼近元不唯一,那么什么时候才能保证唯一呢?定理2.5.7 设X 是严格凸空间,M 为X 的有限维子空间,X x ∈,则在M 中存在唯一的最佳逼近元,即存在M y ∈0,使得||||inf ||||0y x y x My -=-∈证明 令||||inf y x d My -=∈,假设存在M y y ∈21,, 使得d y x d y x =-=-|||||,||||21则由M y y ∈+221,可知d y y x ≥+-||2||21. 由于d y x y x y y x =-+-≤+-||2||||2||||2||2121,从而d y y x =+-||2||21. 因此1||||,1||||21=-=-d y x d y x ,且1||2/)(||21=-+-dy x d y x .但这与X 的严格凸性。
线性算子有界性的特征刻画
了解 有 界线性 算 子 的特 征 , 对进 一 步 开 展 理 论 和 应 用研 究 有很 大作 用 。在 判 断算 子 的有 界 性 时 , 仅 通 过定 义 有 时是很 复 杂 甚 至是 行 不 通 的 , 本 文 给 出 了 判 断算 子有 界性 的一 些简 便且 有效 的方法 。
・
1 27 ・
的线 性算 子 , 则下 列三个 命题 等价 :
( , 】 , ) , 假如在 中 一 , 而{ } 在 ( , 】 , ) 中
弱收敛 于 。证 明 : T 在 l , 中弱 收敛 于 。 证 明 已知 是 有 界 线 性 算 子 , 由定 理 2知 :
D OI : 1 0 . 1 3 7 8 3 / j . c n k i . c n 4 1 —1 2 7 5 / g 4 . 2 0 1 5 . 0 1 . 0 3 0
中图分 类号 : 0 1 7 7
文 献标 识码 : A
文章 编号 : 1 0 0 8—3 7 1 5 ( 2 0 1 5 ) 0 1— 0 1 2 7— 0 2
射为 y中的有界 集 。
子。
定 义 2 设 、 y是 同一 数域 K上 的赋 范 线性 空 间, D是 的线性 子 空间 , 是 D到 l , 的有 界 线性算 子, 则 称
=
证 明 V ∈X, 记F x ∈X 为 在 自然 映射 下 的像 , 则 对 ∈ ( 0 , 1 )
1 预 备知 识 定义 1 T: y是 线 性 赋 范 空 间 到 l , 的线
( 4 ) 存在 M> 0 , 使l l T ( x )l } ≤
2 主要 结果
;
( 5 ) 若{ } c , 叫 。 , 则 T ( ) 一 ( ‰) 。 定理 1 设 和 l , 都是赋范线性空间 , 是
电子科技大学泛函分析(江泽坚)作业题答案
电子科技大学泛函分析(江泽坚)作业题答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.MarchP46:第一章习题:1.验证(),()d m 满足距离定义。
解:设{}i x ξ=,{}i y η=属于X ,α是数,()1,sup .j j j d x y ξη≥=-(1)对j ∀,有0j j ξη-≥,所以1sup j j j ξη≥-,(),0d x y ≥,且1sup 00j j j j j j j ξηξηξη≥-=⇔-=⇔=,即(),0d x y =当且仅当.x y =(2) ()()11,sup sup ,j j j j j j d x y d y x ξηηξ≥≥=-=-=;(3)设{}i z ζ=()()1111,sup sup ()()sup sup ,(,)j j j j j j j j j j j j j j d x z d x y d y z ξζηξξζηξξζ≥≥≥≥=-≤-+-≤-+-=+综上(1),(2),(3),(),d 满足距离定义。
3.试证明:在空间()s 中的收敛等价于坐标收敛。
证:设{}()(),1,2,n n j x s n ξ=∈=,{}()(0)0j x s ξ=∈,()⇒若0n x x →,则必有()(0)lim ,1,2,n j j n j ξξ→∞==,否则,j N +∃∈,00ε>,与正整数列的子序列{}1k k n ∞=,使()(0)0,1,2,kn j j k ξξε-≥=,因为()1tf t t=+是单调递增, 所以()()(0)0()(0)11,,1,2,2211k k k n j j n j j n j j d x x k ξξεεξξ-≥⋅≥⋅=++-,这与()0,0k n d x x →矛盾, 故()s 中的收敛可推出坐标收敛。
()⇐若()(0)lim ,1,2,n j j n j ξξ→∞==,则对j ∀,0ε∀>,0N N +∃∈,0n N ∀>,()(0)2n j jεξξ-<,()()(0)0()(0)1111,,1,2,2211n j j n j j n j j j j d x x k ξξεεξξ∞∞==-=⋅<⋅=++-∑∑,由ε的任意性得()0,0.n d x x → 故命题得证。
有界线性算子的谱
第一节有界线性算子的谱一.算子代数定义:厶(X)是一复Banach空间,并且为一具有线性运算与乘法运算的代数系统,我们称英为算子代数。
性质:设R,S,T“(X),xC,则有1、结合律:(RS)T = R(ST), T m+B=r n r(m,neN);2、a(ST) = (aS)T = S(aT);3、R(S + T) = RS + R「(R + S)T = RT + ST ;4、单位算子/满足:IT = TI = T ;5、7\X T X为同构O存在A.B^L(X),使得AT = [ = TB :必左4 = B,称它为T的逆,记作T~\并称丁为可逆算子。
以GZXX)记厶(X)中的可逆算子的全体。
6、若S、TwGL(X),贝iJSreGL(X),且(ST)"1=T^S'\(T n y[ =(T-I)/\当Tw GL(X)时约宦厂〃=(厂丫⑺> 0),厂=I,因而对任何"乙厂有意义。
注:1、算子乘法不满足交换律;2、阿|邙||||71,||鬥|井『(心);3、若在厶(X)中S Q S、T Q T,则必有S n T n ->ST o定义:设丁属于某算子代数,称/(7')=工%7'”=%/ + <7' + ・・・+ ©7'”+・・・n-0(其中系数e C(// > 0)为算子幕级数。
性质:设通常幕级数有收敛半径R,则当TeMX),||T||</?时级数ZF-0工0Z1卜工闯P『vs引理3丄1设TeL(X),则X (/_丁尸=工厂『“■0只要貝右端级数收敛。
特別,当|卩||<1时上式必成立。
推论:若T,SwL(X),T可逆,则00(T + S)-=工厂l_S 厂 g/r-()只要英右端级数收敛:特别,当||s||适当小时必成立。
二、谱与谱半径定义3.1.2设Tw厶(X ),1、若不可逆,即AI-TeGL(X),则称2为丁的谱值。
第四章 共轭空间-黎永锦
第4章 共轭空间纯数学使我们能够发现概念和联系这些概念的规律,这些概念和规律给了我们理解自然现象的钥匙.A. Einstein (爱因斯坦) (1879-1955,美国物理学家)Banach S .在1929年引进了Banach 空间的共轭空间这一概念,这个思想Hahn H .在1927年也引进过,但Banach S .的工作更完全些,共轭空间就是已知赋范的空间X 上的全体线性连续泛函所组成的线性空间*X ,它在范数|)(|sup ||||1||||x f f x ==下是Banach 空间.对于具体的赋范线性空间,弄清这些赋范空间上的线性连续泛函的一般形式是非常有用的.另外,赋范空间X 的性质与它的共轭空间*X 的性质有着密切的联系,因此可以通过共轭空间*X 的性质来研究赋范空间X 的性质.4.1 共轭空间由Banach Hahn -定理可知,对赋范线性空间X ,若}{θ≠X ,则}{*θ≠X ,另外,对于任意赋范空间X ,X 的共轭空间*X 一定是完备的.定理 4.1.1 *)(n R f ∈当且仅当有nn R ∈),,(1αα ,使得i ni ix x f ∑==1)(α,对任意nn R x x ∈),,(1 成立. 且此时有2112)||(||||∑==ni i f α.证明 若存在nn R ∈),,(1αα ,使得i ni i x x f ∑==1)(α , 对任意 n i R x x ∈=)(成立.则f 是nR 上的线性泛函,且||||)||()||()||(|||||||)(|21122112211211x x x x x f ni i ni i n i i i ni i i n i i ⋅=≤≤=∑∑∑∑∑=====αααα因此f 是n R 上的线性连续泛函,即*)(n R f ∈.反之,若f 为n R 上的线性连续泛函,则对ni R e ∈=)0,,0,1,0,,0( ,有∑∑∑======ni i i n i i i i n i i x e f x e x f x f 111)()()(α这里)(i i e f =α,ni R ∈)(α.设0≠f ,i ni ix x f ∑==1)(α,对任意n i R x ∈)(成立,由||||)||(|)(|2112x x f ni i ⋅≤∑=α可知2112)||(||||∑=≤ni i f α取2112)||(∑==ni iii x αα,可知ni R x x ∈=)(,且1||||=x .因此2112211212)||()||(/)(||||∑∑∑=====≥ni ini in i i x f f ααα所以2112)||(||||∑==ni i f α由上面定理可以看出*)(n R 与nR 是几乎一样,为了刻画这样的“一样”关系,下面引进保范同构的概念.定义4.1.1 设X 和Y 都是赋范空间,若T 是X 到Y 的线性算子,T 是双射,并且对于任意X x ∈,有||||||||x Tx =,则称T 是X 到Y 的保范同构,亦称X 与Y 是保范同构的.明显地,若X 与Y 是保范同构的,则X 和Y 具有几乎一样的性质,因而可将与看成是一致的.由上面定理的证明可以看出,若定义*)(n K 到n K 的线性算子为),(),((21e f e f Tf =))(,n e f ,则T 是*)(n K 到n K 的保范同构,因此可以把上面定理写成n R R n=*)(的形式.定理 4.1.2 *0c f ∈当且仅当存在1)(l i ∈α,使得i i ix x f ∑∞==1)(α对所有0)(c x x i ∈=成立,且此时,有∑∞==1||||||i if α.证明 若*0c f ∈,则对0),0,1,,0(c e i ∈= ,有∑∑∞=∞===11)()()(i i i i i i e f x e x f x f 对任意 0)(c x x i ∈=成立.令))(()(i i e f ==αα,则i i ix x f ∑∞==1)(α,对任意0)(c x x i ∈=成立.由|||||||||)(|x f x f ⋅≤可知,对于=N x ⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧>=≤≠≤.0;0, N 0; 0N, ,||i 时当,时时当时当N i i ,i i i i αααα有1||||≤N x ,且∑==Ni iN x f 1||)(α因此,|||||||||||||)(|f x f x f N N ≤⋅≤,故∞<≤∑=||||||1f Ni iα,即1)(l i ∈α.反之,若存在1)(l i ∈α,使得i i i x x f ∑∞==1)(α对任意0)(c x x i ∈=成立,则f 是0c 的线性泛函,且||||)||()||(||sup |||)(|111x x x x f i ii ii i i i∑∑∑∞=∞=∞==≤=ααα因此*0c f ∈,且∑∞=≤1||||||i if α,所以∑∞==1||||||i i f α.由上面定理可知 1*0l c =,类似地,不难证明下面定理成立.定理 4.1.3 ∞=l l *1.定理4.1.4 对于∞<<p 1,有q p l l =*)(,这里)1,1,111(>>=+q p qp .对于X 的共轭空间*X ,同样可以考虑它的共轭空间**)(X ,称为X 的二次共轭空间,记为**X ,由上面讨论可知∞=l c **0.对于∞<<p 1,有p p l l =**.赋范空间X 的性质与它的共轭空间*X 的性质有着密切的联系,如若*X 是严格凸的,则对于X 的任一子空间M 上线性连续泛函f ,它在X 上只有唯一的保范延拓.利用共轭空间*X 的性质,还可以弄清原来的赋范线性空间的性质,如X 的可分性等. 定理4.1.5 设X 是赋范空间,若*X 是可分的,则X 也是可分的.证明 由于*X 是可分的,因此存在0,}{*≠⊂n n g X g ,使得*}{X g n =,令||||n nn g g f =, 则}1|||||{)(}{*==⊃f f X S f n .由1||||=n f 可知,对31=ε,存在1||||,=∈n n x X x ,使得321|)(|=->εn n x f .令}{n x span M =为}{n x 生成的闭子空间,则M 是可分的,且一定有M X =. 事实上,如果M X ≠,则由Banach Hahn -定理可知存在1||||,*=∈f X f ,使得.,0)(成立对任意M x x f ∈=故32|)(||)()(||)()(|sup ||||1||||==-≥-=-=n n n n n n x n x f x f x f x f x f f f 但这与)(}{*X S f n ⊃矛盾,从而M X =,所以X 是可分的.4.2 自反Banach 空间对于赋范空间X ,可以讨论X 的共轭空间*X 和二次共轭空间**X ,如1*0l c =, ∞=l c **0等,当然还可以讨论三次共轭空间***X 和四次共轭空间****X 等,赋范空间X 的性质与它的二次共轭空间**X 有着密切的联系.对于任意X x ∈,可以构造出*X 的线性泛函如下:***),()(X f x f f x ∈=这里.则由|||||||||)(||)(|**x f x f f x ⋅≤=可知**x 为*X 上的线性连续泛函,且||||||||**x x≤. 因而对于任意 X x ∈,****X x ∈,若定义**x Jx =,则J 为X 到**X 的映射.映射J 称为X 到**X 的自然嵌入,它有下面的性质. 定理4.2.1 设X 是赋范空间,**:X X J →,则J 是X 到**X 的保范线性算子,即(1)Jy Jx y x J βαβα+=+)(; (2)||||||||x Jx =. 证明 (1)对任意*X f ∈,有)()()())((y f x f y x f f y x J βαβαβα+=+=+))(()()(f Jy Jx f Jy f Jx βαβα+=+=(2)对任意θ≠∈x X x ,,由Banach Hahn -定理可知,存在1||||,*=∈f X f ,使得||||)(x x f =,故|||||||||||||)(||)(|||||Jx f Jx f Jx x f x =⋅≤==因此,由||||||||||||**x x Jx ≤=可知||||||||x Jx =.记}|{**X x xJX ∈=,则**X JX ⊂,且J 是X 到JX 的保范同构,因而可以把X 和JX 看成一样的赋范空间,亦即不区分X 和**X ,在这种意义下,X 可看成**X 的子空间,即**X X ⊂.一般来说,JX 与**X 是不相等的,如果**XJX =的话,赋范空间X 就具有很好的性质.1927年 Hahn H . 在研究赋范空间的线性方程时,认识到了这种空间的重要性,引入了自反这一概念.定义 4.2.1 设X 是赋范线性空间,若从X 的**X 自然嵌入映射J 是满射,即**X JX =,则称X 是自反的.∞l l c ,,10和]1,0[C 都不是自反的,但)1(∞<<p l p 是自反的.明显地,若X 是自反的,则X 与**X 保范同构.问题4.2.1 若X 是Banach 空间,X 与**X 保范同构时,是否X 一定自反?James C R ..在1951年已构造了一个非自反的Banach 空间X ,X 与**X 保范同构,但X 不是自反的.(参见:R. C. James, A non-reflexive Banach space isometric with its secondconjugate space. Proc. Nat. Acad. Sci. U. S. A. 37, (1951), 174-177.).由于X 自反时,有X X =**,因此X 一定是完备的赋范空间. 定理4.2.2 若X 是自反的赋范空间,则X 是Banach 空间.怎么才能知道一个赋范空间是自反的呢?James C R ..花了二十年的时间研究这一问题,得到了一个很简明的判别法.(参见:R. C. James, Reflexivity and the supremum of linear functionals. Ann. of Math. (2) 66 (1957), 159–169.)定理 4.2.3 Banach 空间X 是自反的当且仅当对任意*X f ∈,存在1||||,=∈x X x ,使得||||)(f x f =.利用这一定理,容易证明任意有限维Banach 空间是自反的.定理4.2.4 若Banach 空间X 是有限维的,则X 是自反的Banach 空间.证明 对于任意*X f ∈,由)(sup ||||1||||x f f x ==,可知存在1||||,=∈n n x X x ,使得||||)(f x f n →.由于X 是有限维的,因此闭单位球是紧的,故}{n x 有收敛子列x x k n →,从而1||||||||lim ==∞→k n k x x ,满足||||)(lim )(f x f x f k n k ==∞→,所以X 是自反的Banach 空间.定理4.2.5 若Banach 空间X 是自反的,则X 可分当且当仅*X 可分.证明 明显地,只须证明X 可分时,*X 可分. 由于X 是自反的,因此X X =**,故X 可分时,**X 可分,所以*X 是可分的.由于∞=l l *1,并且1l 可分,∞l 不可分,因此由上面定理可知,1l 不是自反Banach 空间. Banach 空间的自反性有很多重要的性质,下面就是一些自反的充要条件. 定理4.2.6 若X 是Banach 空间,则下列条件都是等价的. (1) X 是自反Banach 空间;(2) X 的每个闭线性子空间都是自反Banach 空间;(3) X 的每个闭凸集A 都有范数最小元,即存在A x ∈0,使得}|||inf{||||||0A x x x ∈=; (4) X 的每个闭凸集A 都是可逼近集,即对任意X x ∈,都一定存在A x ∈0,使得}|||inf{||||||0A y y x x x ∈-=-.4.3 弱收敛在赋范空间X 中序列}{n x 的收敛定义为0||||→-x x n ,即n x 依范数收敛于x ,这种收敛性亦为强收敛,但在X 和*X 上还可以定义比范数弱的收敛性,这就是弱收敛性和弱*收敛,这些收敛性在研究X 和*X 的性质以及它们的联系时起着重要的作用.定义4.3.1 设X 是赋范空间,X x n ∈若X x ∈0,若对任意*X f ∈,都有)()(0x f x f n →则称}{n x 弱收敛于0x ,记为0x x wn −→−例4.3.1 设}{n e 为0c 的Schauder 基,则对于任意*0c f ∈,有1)(l i ∈=αα,使得α=f ,故 n n e f α=)(,因此0)()(→-θf e f n 对任意*0c f ∈成立,即→θwn e .定理4.3.2 设X 是赋范空间,X x n ⊂}{,若→x x n ,则→x x wn . 证明 由于→x x n ,因此0||||→-x x n ,故对于任意*X f ∈,有0|||||||||)(||)()(|→-⋅≤-=-x x f x x f x f x f n n n ,所以→x x wn . 一般来说,→x x w n 时,不一定有→x x n ,例如在0c 中,→θwn e ,但0||||→-θn e 不成立.由Banach Hahn -定理容易知道,若X x n ⊂}{是弱收敛序列,则}{n x 的弱收敛点唯一.即x x w n −→−,且'x x wn −→−时,有x x ='. 虽然x x wn −→−时,一般x x n −→−不成立,但有一些赋范空间,弱收敛与强收敛是一致的.定理4.3.3 若X 是有限维Banach 空间,则→0x x wn 当且仅当0x x n →. 证明 明显地,只须证明对于有限维Banach 空间,→0x x wn 时,一定有→0x x n . 设m e e ,,1 为X 的Schauder 基,则对X x X x n ∈∈0,,有∑∑====mi ii i mi n i n e xx e x x 1)0(01)(,由于m e e ,,1 是Schauder 基,因此}|{i j e span e j i ≠∉,故由Banach Hahn -定理可知存在*X f i ∈,使得1)(=i i e f ,且i j e f j i ≠=,0)(.由→0x x wn 可知→)()(0x f x f i n i ,因此)0()(in i x x →.因而)0(0||||||||||||||1)0()(1)0(1)(0→→⋅-≤-=-∑∑∑===n e x xe x e x x x i mi in imi ii imi n i n所以,序列}{n x 强收敛于0x .问题 4.3.1 若X 是Banach 空间,且有→x x wn 时,→x x n ,则X 是否一定是有限维Banach 空间?有趣的是Schur I .在1921年证明了在1l 中,→x x wn 与→x x n 是等价的. 定理4.3.4 在1l 中,→x x wn 当且仅当→x x n . 弱收敛还可以用下面的定理来刻画.定理4.3.5 设X 是赋范空间X x X x n ∈⊂,}{,则→x x wn 当且仅当 (1)||}{||n x 是有界;(2) 存在*X M ⊂,使得*X M =,且对所有M f ∈,有)()(x f x f n →.证明 令1||}||sup ||,m ax {||+=n x x β,则由(1)可知,+∞<<β0,且ββ≤≤||||,||||n x x , 对任意n 成立.对于任意0>ε,由于*X M =,因此对于任意*X g ∈,有M f ∈,使得βε3||||<-f g ,由M f ∈可知)()(x f x f n →,故存在N ,使得N n >时,有 3|)()(|ε<-x f x f n因而对于N n >,有εββεεββεε=++≤⋅-++⋅-<-+-+-≤-333||||||||3|||||||||)()(||)()(||)()(||)()(|x g f x f g x g x f x f x f x f x g x g x g n n n n n所以,)()(x g x g n →对*X g ∈成立,即→x x wn .反过来,若→x x wn ,则对任意*X f ∈,有)()(x f x f n →,故)()(f Jx f Jx n →因而+∞<||)(||sup f Jx n由于*X 是Banach 空间,因此由一致有界原理可知+∞<||||sup n Jx ,即+∞<||||sup n x ,所以||}{||n x 是有界的.类似于列紧性的定义,可以定义弱列紧性.定义 4.3.2 设X 是赋范空间,F 是X 的子集,若F 的任意序列都含有弱收敛子序列,且弱收敛点属于F ,则称F 是弱列紧的.例如在2l 中,}1)||(|){(211222≤∈=∑∞=i ii l xl x B 是弱列紧的.与列紧性刻画了有限维Banach 空间的特征类似,弱列紧性刻画了自反Banach 空间的特征.定理4.3.6 Banach 空间X 是自反的当且仅当X 的任意有界集都是弱相对列紧的.对于赋范空间X 的共轭空间*X ,由序列弱收敛的定义,对**,X f X f n ∈∈,f f wn −→−当且仅当对于任意**X F ∈,有)()(f F f F n →.除了范数收敛和弱收敛,在*X 上还可以定义弱*收敛.定义 4.3.3 设X 是赋范空间,*,X f f n ∈,若对任意X x ∈,有)()(x f x f n →,则称n f 弱*收敛于f ,记为 f f w n −→−*.明显地,弱收敛比弱*收敛强.定理4.3.7 设X 是赋范空间,*,X f f n ∈,若f f wn −→−,则f f wn −→−*.类似于弱收敛,对于弱*收敛,有下面的定理成立.定理4.3.8 设X 是Banach 空间,*,X f f n ∈,则f f wn −→−*的充要条件是(1)||}{||n f 是有界;(2) 存在X M ⊂,使得X M =,且对任意M x ∈,有)()(x f x f n →.定理 4.3.9 设X 是Banach 自反空间,*,X f f n ∈,则f f w n −→−*当且仅当f f w n −→−.例 4.3.10 对于0c 的共轭空间1l ,取1l e f n n ∈=,则对任意0c x ∈,有0||lim =∞→i i x , 因此0)(→=n n x x f ,故0*−→−w n f . 但对于∞∈=l F ),1,1,1,1( ,有1)(=n f F , 因而n f 不101弱收敛于0.由上例可知,序列的弱*收敛要比弱收敛还要弱.类似于X 中弱列紧集的定义,可以考虑*X 中子集的弱列紧性.定义 4.3.4 设X 是赋范空间,*X F ⊂,若F 中任意序列都含有弱*收敛子序列,则称F 为*X 的相对弱*列紧集.若F 中任意序列都含有弱*收敛子序列,且其弱*收敛点都属于F ,则称F 是*X 的弱*紧列集.明显地,对于*X 的子集F ,F 的列紧集性要比弱*紧性强. 定理4.3.11 若F 是*X 的列紧集,则F 一定是弱*列紧集.可分Banach 空间的Banach –Alaoglu 定理是S. Banach 在1932给出的.定理4.3.12 (Banach –Alaoglu 定理)若X 是可分Banach 空间,则*X 的每个有界集都是相对弱*列紧的.证明 设F 是*X 的有界集,F f n ⊂}{,则存在0>C ,使得C f n ≤||||对任意n 成立.由于X 是可分的,因此存在可数集X x x x M n ⊂=},,,,{21 ,使得X M =. 对于任意M x i ∈和n f ,有+∞<≤⋅≤|||||||||||||)(|i i n i n x C x f x f ,因此)}({i n x f 是K 中的有界数列,因而可以取到满足下列条件的n f 子序列.}{}{)1(n n f f ⊂且 ,,,,,)1()1(2)1(1n f f f 在1x 点收敛;}{}{)1()2(n n f f ⊂且 ,,,,,)2()2(2)2(1n f f f 在21,x x 点收敛;...............................................................................................}{}{)1()(-⊂k n k n f f 且 ,,,,,)()(2)(1k n k k f f f 在k x x x ,,,21 点收敛.这里}{}{}{)()1(n k n k nf f f ⊂⊂+.102利用对角线法,取子序列}{)(n n f ,则}{}{)(n n n f f ⊂,且对任意M x i ∈,有)()(lim )(i i n n n x f x f =∞→存在,因而由上面定理可知}{)(n n f 弱*收敛于f . 所以,F 是*X 的相对弱*列紧集.L. Alaoglu 在1940第一次给出了一般Banach 空间的Banach –Alaoglu 定理的证明.定理4.3.13 (Banach –Alaoglu 定理)若X 是Banach 空间,则*X 的每个有界集都是相对弱*列紧的.例 4.3.13 设X 是Banach 空间,M 是X 的闭子空间,若M x n ⊂}{,且0x x wn −→−,试证明M x ∈0.证明 假设M x ∉0,则由于M 是闭子空间,因此0),(0>M x d ,故由Banach Hahn -定理,存在1||||,*=∈f X f ,使得 ),()(00M x d x f =,且对于任意M x ∈,有0)(=x f ,因此0)(=n x f ,但这与)()(0x f x f n →矛盾,所以M x ∈0.4.4 共轭算子由赋范空间X 到赋范空间Y 的线性连续算子,可以讨论*Y 到*X 的共轭算子,这种共轭算子在讨论物理学及其他一些应用中出现的算子方程时是很有用的.定义 4.4.1 设X 和Y 是赋范空间. ),(Y X L T ∈,若存在*Y 到*X 的算子*T ,使得对任意*Y f ∈和X x ∈,有)())((*Tx f x f T =则称*T 为T 的共轭算子.对于任意),(Y X L T ∈,是否T 的共轭算子*T 一定存在呢?定理 4.4.1 设X , Y 是赋范空间,若),(Y X L T ∈,则T 的共轭算子*T 一定存在,且||||||||*T T =.证明 对于任意*Y f ∈,定义103X x Tx f x g ∈=任意),()(则g 是线性的,且|||||||||||||||||||||)(||)(|x T f Tx f Tx f x g ⋅⋅≤⋅≤=从而*X g ∈,并且||||||||||||T f g ⋅≤.定义gf T X Y T =→****:则*T 是*Y 到*X 的线性算子.由于||||||||||||||||*T f g f T ⋅≤=,因此||||||||*T T ≤,故),(***X Y L T ∈,且对任意X x Y f ∈∈,*,有)())((*Tx f x f T =因而,*T 为T 的共轭算子.对于任意X x ∈,若0≠Tx ,则由Banach Hahn -定理可知存在1||||,*=∈f Y f ,使得||||)(Tx Tx f =故||||||||||||||||||||||||||||)()(||||****x T x f T x f T x f T Tx f Tx ⋅=⋅⋅≤⋅≤==对于X x ∈,若0=Tx ,则明显地有||||||||||||*x T Tx ⋅≤,因此||||||||||||*x T Tx ⋅≤,对任意X x ∈都成立. 因而||||||||*T T ≤,又因为||||||||*T T ≤,所以||||||||*T T =.对于共轭算子的运算,有如下的基本性质.定理4.4.2 设X , Y 是赋范空间,若),(,21Y X L T T ∈,则*2*1*21)(T T T T βαβα+=+证明 对任意*Y f ∈,X x ∈,有))]()([()()()()()))((()]()[(*2*1*2*12121*21x f T T x f T x f T x T f x T f x T T f x f T T βαβαβαβαβα+=+=+=+=+104所以,*2*1*21)(T T T T βαβα+=+.定理4.4.3 设X , Y , Z 是赋范空间,若),(),,(Z Y L T Y X L S ∈∈,则***)(T S TS =. 证明 对于任意X x Z f ∈∈,*,有))](([))(())(())(()]()[(****x f T S Sx f T Sx T f x TS f x f TS ====因此,***)(T S TS =.共轭算子与线性算子方程的可解性有着密切的联系.定理 4.4.4 设X 是实赋范空间,0,),,(≠∈∈λX y X X L T ,若存在满足方程0*=-f f T λ的f ,使得0)(≠y f ,则方程y x Tx =-λ无解.证明 反证法,假设方程y x Tx =-λ有解0x , 则00x Tx y λ-=故对满足方程的f ,有0))(()()()()(0*00*00=-=-=-=x f f T x f x f T x Tx f y f λλλ但这与定理的条件矛盾,所以定理得证.105习题四4.1 试证明1*0l c =.4.2 试证明∞=l l *1. 4.3 试证明2*2l l =. 4.4 试证明1*l l ≠∞. 4.5 试证明2l 是自反的.4.6 试证明在2l 中强收敛比按坐标收敛强.4.7 设X 是无穷维的赋范空间,试证明*X 一定也是无穷维的赋范空间.4.8设X 是赋范空间,X x x n ∈,,x x wn −→−,若}{n x 是相对紧的,试证明x x n →. 4.9设X 是Banach 空间,Y 是赋范空间,),(,Y X L T T n ∈,若x x X x x n n →∈,,,且n T 弱收敛于T ,试证明Tx x T wn n −→−.. 4.10设Y X ,为Banach 空间,),(Y X L T ∈,若x x wn −→−,试证明Tx Tx wn −→− 4.11设X 为赋范空间,X x x n ∈,,若x x wn −→−,试证明||||inf ||||lim n x x n ∞→≤. 4.12设X 是赋范空间,*,,,X f f X x x n n ∈∈,n x 弱收敛于x ,且n f 收敛于f ,试证明)()(x f x f n n →.4.13 设X 是Banach 空间,*,,,X f f X x x n n ∈∈,f f x x wn n −→−−→−*,,试证明)()(x f x f n n →.4.14设Y X ,是Banach 空间,),(Y X L T ∈,且1-T存在且有界,试证明*T 的逆存在且*11*)()(--=T T .4.15试证明在2l 中弱收敛与强收敛不等价.4.16设X 是赋范空间,}{,n wn x span M x x =−→−,试证明M x ∈. 4.17定义算子11:l l T →,),0,,,,(),,,,(2121 n n x x x x x x T =,试求*T .黎茨Frigyes Riesz于1880年1月22日出生于奥匈帝国(现在的匈牙利)的Győr,他1902年在布达佩斯(Budapest)获得博士学位,他的博士论文是几何方面的. Riesz是一个泛函分析的创始人, 他的工作在物理中有许多重要的应用. 他用Fréchet可在他的博士论文的想法,利用Fréchet的度量将勒贝格的工作与希尔伯特和他的学生施密特在积分方程方面的工作联接起来.Frigyes Riesz(1880-1956) 在1907年和1909年,Riesz建立了二次勒贝格可积函数的泛函表示定理,并在第二篇论中,得到斯蒂尔吉斯可积函数的泛函表示定理.次年,他开始了赋范函数空间的研究. Riesz1910年的工作,标志着算子理论的开始. 1918年,他的工作已接近于巴拿赫空间的公理化理论,而这些是Banach两年后建立的.1922年, Riesz和Haar在塞格德(Szeged)创建了János Bolyai数学研究所.Riesz成为新杂志Acta Scientiarum Mathematicarum的编辑, Riesz在该期刊发表许多论文,1922年关于线性泛函的Egorov定理就发表在该刊物的第一卷的第一部分.Riesz在泛函分析的很多基本结果与Banach是不谋而合的.他在1907年证明的定理- Riesz-Fischer定理是Hilbert空间傅里叶分析的基础. Riesz对包括遍历理论的其他领域做出了很多贡献,他还研究了正交系列和拓扑.Riesz和他的学生塞克佛尔维写的《泛函分析讲义》(Leçon's d'analyse fonctionnelle)是非常好的泛函分析著作.Riesz的成就给他带来了很多许多荣誉,他当选为匈牙利科学院院士,在1949年,他被授予Kossuth奖.他被授予塞格德(Szeged)大学,布达佩斯(Budapest)大学和巴黎大学的荣誉博士学位.106。
4.1有界线性算子
4.1有界线性算⼦第4章线性算⼦与线性泛函4.1 有界线性算⼦4.1.1 线性算⼦与线性泛函算⼦概念起源于运算。
例如,代数运算、求导运算、求不定积分和定积分、把平⾯上的向量绕坐标原点旋转⼀个⾓度等等。
在泛函分析中,通常把映射称为算⼦,⽽取值于实数域或复数域的算⼦也称为泛函数,简称为泛函。
本章着重考察赋范线性空间上的线性算⼦,它是出现在各个数学领域中具有线性性质的运算(例如线性代数中的线性变换;微分⽅程论、积分⽅程论中⼤量出现的微分、积分运算、积分变换等)的抽象概括。
它是线性泛函分析研究的重要对象。
关于线性算⼦的理论不仅在数学的许多分⽀中有很好的应⽤,同时也是量⼦物理的数学基础之⼀。
中国物理学界习惯上把算⼦称为算符。
定义4.1.1 设F 是实数域或复数域,,X Y 是F 上的两个线性空间,D 是X 的线性⼦空间,:T D Y →是⼀个映射.对x D ∈,记x 经T 映射后的象为 Tx 或 ()T x . 若对,x y D ?∈及数,αβ∈F , 有()()()T x y T x T y αβαβ+=+(或 Tx Ty αβ=+) (4.1.1)则称T 是线性算⼦.称D 是T 的定义域,记为()T D ;称集(){}T D Tx x D =∈(或TD )为T 的值域(或象域),记为()T R .取值为实数或复数的线性算⼦T (即:()T ?F R , 1=F R 或1C )分别称为实的或复的线性泛函,统称为线性泛函。
注今后所讨论的算⼦(泛函)都是线性算⼦(线性泛函)。
例4.1.1 设1[0,1],[0,1]X C Y B ==([0,1]上有界函数全体),定义d()()()d Tx t x t t=, 则T 是X 到Y 的线性算⼦。
例4.1.2 设[,]X C a b =,(,)K t s 是[,][,]a b a b ?上的⼆元连续函数,定义()()(,)()d baTx t K t s x s s =?,则T 是X 到X 的线性算⼦。
第2章 有界线性算子的基本概念(1)kj
n
算子. 因此当基底取定后, X 上的线性算子与 n ´ n 阶矩阵一一对应.
线性泛函的情形更简单. 设 (a1 , , an ) Î K . 当 x =
n
å x e 时, 令
i i i =1
n
f ( x) = å ai xi .
i =1
n
(1)
则 f 是 X 上的线性泛函. 反过来, 设 f 是 X 上的线性泛函, 记
矛盾. 因此 T 必有界. ■ 注 1 回顾在§1.5 中我们定义了两个赋范空间的拓扑同构: 设 X 和 Y 是赋范空间. 若存在映射 T : X Y , 使得 T 是一对一映上的线性 的, 并且存在 a, b 0 使得
a x £ Tx £ b x ( x Î X ),
(4)
则称 X 与 Y 是拓扑同构的. 根据定理 2.1.1, (4)式第二个的不等式蕴含 T 是连续的. 对任意 x Î X , 记 Tx = y, 则 T -1 y = x. 由(4)式的第一个不等 式得到
ai = f (ei ) ( i = 1, , n). 则 f ( x) = f ( å xi ei ) = å xi f (ei ) = å ai xi .
i =1 i=1 i =1 n n n
这说明 X 上的线性泛函都可以表示为(1)的形式. 因此 X 上的线性泛函
与 K n 中向量一一对应. 例 2 设 K ( s, t ) 是 [a, b] [a, b] 上的可测函数, 满足
a a
b
b
2
(3)
这表明 x(t ) 在 [a, b] 上可积. 故 f 是 L2 [a, b] 上的泛函. f 的线性性是显 然的. 例 2 中的算子 T 称为第二型 Fredholm 积分算子. 定义 2.1.1 设 X , Y 是赋范空间, T : X Y 是线性算子. 若 T 将 X 中的每个有界集都映射为 Y 中的有界集, 则称 T 是有界的. 有界线性算子之所以重要, 是因为根据下面的定理, 线性算子的有 界等价于连续. 定理 2.1.1 设 X , Y 是赋范空间, T : X Y 是线性算子. 则下列三 项是等价的: (1) T 是有界的;
第5讲(4)有界线性算子
§1 有界性与连续性
让我们回顾线性算子与线性泛函的有关概念. 定义5.1 设 X和Y都是数域 F上的赋范线性
空间,T : X → Y,如果 ∀x, y ∈ X , 有T (x + y) = Tx + Ty ,则称T是可加的. 若 ∀α ∈ F, x ∈ X ,T (α x) = αTx
则称T是齐次的.可加齐次的映线称为线性映射
空间,T : X → Y 是一个线性算子,如果T在 某一点 x° ∈ X连续,则T在X上连续.
证明 任取 xn , x ∈ X,且 xn → x,由
T的可加性知,
Txn − Tx = T (xn − x) = T (xn − x + x° ) − Tx°
由于 xn − x + x° → x°,而T在x0连续,
=
⎧
⎪ ⎨
n
⎪0
t∈[a,a+ 1] n
t∈(a+ 1,b]
⎩
n
显然 xn∈L′[a,b] ,而且 ||xn||1=∫ab|xn(t)|dt=1 .
进而有 ||Txn||1=∫ab|∫at xn(s)ds|dt
=
∫a+
a
1 n
|∫at
xn(s)ds|dt
+
∫b
a+
1
|∫at
xn(s)ds|dt
n
=∫a+1 n a
公式求已知连续函数的近似多项式.设 x∈C ⎡⎣a,b⎤⎦
在⎡⎣a,b⎤⎦内任取n个点a≤t1<t2<⋅⋅⋅<tn≤b ,作多项式
( ) ( )( ) ( ) P t t t t t t t t t ⎛ k⎜ ⎝
部分习题解-黎永锦《泛函分析讲义》的Word文档
泛函分析讲义-黎永锦134部分习题解答意义深刻的数学问题从来不是一找出解答就完事了,好象遵循着的格言,每一代的数学家都重新思考并重新改造他们前辈所发现的解答,并把这 解答纳入当代流行的概念和符号体系之中L. Bers (贝尔斯)(1914-1993,美国数学家)习题一1.2 设∑=∞≤∈=n i ii i x R x x l 11}||,|){(,对任意1)(),(l y y x x i i ∈==,∑∞=-=1||),(i iiy x y x d ,||sup ),(i i y x y x -=ρ, 试证明d 和ρ为X 上的两个度量,且存在序列1}{l x n ⊂,1l x o ∈,使得0),(0→x x n ρ,但),(0x x d n 不收敛于0.1.2证明:(1)只须按度量定义验证即可知道为上的两个度量(,)d x y 和(,)x y ρ为 1l 上的两个度量.(2)取111(,,,,0,)n x n n n= 当i n ≤时,()1n i n x = , 当i n >时()0n ix =,则1n x l ∈且()1(,0)sup |0|0n n inx xρ=-=→,但()111(,0)|0|1nn n in i i d x x∞===-==∑∑.因此(,0)0n x ρ→,但),(0x x d n 不收敛于0.黎永锦-部分习题解答1351.4 试找出一个度量空间),(d X ,在X 中有两点y x ,,但不存在X z ∈,使得=),(z x d ),(21),(y x d z y d =. 1.4 证明:在2R 上取离散度量(,)d x y =0, 1,.x y x y ⎧=⎨≠⎩当时当时,则对于x y ≠,有(,)1d x y =,但不存在2z R ∉,使得12(,)(,)(,)d x z d y z d x y ==.1.6 在∞l 中,设F 为的非空子集,G 为开集,试证明G F +为开集.1.6证明:由(,)sup ||i i d x y x y =-可知,对任意,x y l ∞∈,有(,)(,0)d x y d x y =-,若G 是开集,则对于任意,x F y G ∈∈,有开球(,)U y r G ⊂.故(,)x U y r x G +⊂+,因而G x r y x U +⊂+),(,从而对任意,x F x G ∈+是开集,由()x FF G x G ∈+=+ 可知F G +是开集.1.8 在∞l 中,设|){(i x M =只有限个i x 不为0},试证明M 不是紧集. 1.8证明:取()()n n i x x =,当i n >时,()0n ix =当i n ≤时,()1n i i x = ,则n x M ∈,且lim n n x x →= ,这里112(1,,,,)n x = ,但x M ∉,因此M 不是闭集,所以M 不是紧集.1.10 设),(d X 为度量空间,X F ⊂,试证明CC F F )(0=.1.10证明:对于任意0x F ∈,有0(,)U x r F ⊂,故φ=C F r x U ),(,因而C C F x )(∈,从而C C F F )(0⊂.对于任意C C F x )(∈,有()Cx F ∉,因而存在φ=C F r x U ),(,故(,)U x r F ⊂,从而0x F ∈,故0)(F F C C ⊂.所以,0()C CF F ⊂.1.12 设),(d X 为度量空间,X F ⊂,试证明}|),(inf{),(F y y x d F x d ∈=为X 到 ),0[+∞的连续算子.泛函分析讲义-黎永锦1361.12 证明:对于任意,x z X ∈,有.(,)inf{(,)|}inf{(,)(,)|}(,)inf{(,)|}(,)(,)d x F d x y y F d x z d y z y F d x z d y z y F d x z d z F =∈≤+∈=+∈=+故(,)(,)(,)d x F d z F d x z -≤类似地,有(,)(,)(,)d z F d x F d z x -≤因此|(,)(,)|(,)d x F d z F d x z -≤所以,0n x x →时,必有0(,)(,)n d x F d x F →,即(,)d x F 是连续函数. 1.14 设),(d X 为度量空间,F 为闭集,试证明存在可列个开集n G ,使n G F =.1.14 证明:由于F 是闭集,因此{|(,)0}F x d x F ==,又因为(,)d x F 是连续的,所以对任意1,{|(,)}n n x d x F <是开集,从而对于开集1{|(,)}n n G x d x F =<,有1{|(,)0}{|(,)1/}n F x d x F x d x F n ∞====< ,所以1n n F G ∞== .1.16 试证明∞l 是完备的度量空间.1.16证明:设{}n x 为 ∞l 的Cauchy 列,则对于任意0ε>,存在 N,使得n N >时有()()(,)sup ||n p n n p n i i d x x x x ε++=-<.故对每个固定的i,有()()||(,1)n p n i i x x n N p ε+-<>>.因此(){}n i x 是Cauchy 列.因而存在i x ,使得()lim n ii n x x →∞=,令()i x x =,则由可知(1)||N i i x x ε+-≤故黎永锦-部分习题解答137(1)||||N i i x x ε+≤+由于(1)1()N N ix x l ++∞=∈,因此存在常数1N M +使得11sup ||N i N x M ++≤<+∞.又由()()||n p n ii x x ε+-<可知||n i i x x ε-<对任意i 及n N ∈成立.故()(,)sup ||n n i i d x x x x ε=-<所以,n x x →,即l ∞是完备的度量空间. 1.18 证明0c 中的有界闭集不一定是紧集.1.18 证明:令{()|||1}i i M x x =≤,则M 是0c 的有界闭集,但M 是不紧集.1.20 设),,1[+∞=X |/1/1|),(y x y x d -=,试证明),(d X 为度量空间,但不是完备的. 1.20证明:容易验证|/1/1|),(y x y x d -=是),(d X 的度量.取X x n ∈,),1[+∞∈=n x n ,则}{n x 为X 的Cauchy 列,但}{n x 没有极限点,因此}{n x 不是收敛列,所以不是完备的.1.22 试证明度量空间),(d X 上的实值函数f 是连续的当且仅当对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集.1.22证明: 若度量空间),(d X 上的函数f 是连续的,则明显地,对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集.如果对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集,则于任意R ∈21,εε,容易知道})(|{})(|{\})(|{2121εεεε≥≤=<<x f x x f x X x f x 是开集,对于R 上的开集G ,有G 的构成区间),(n n βα,使得),(n n G βα =,因而)(1G f -是开集,所以f 是连续的.1.24 设R 为实数全体,试在R 上构造算子T ,使得对任意R y x ∈,,y x ≠,都有||||y x Ty Tx -<-,但T 没有不动点.泛函分析讲义-黎永锦1381.24证明:(1) 设R 为实数全体,12:,tan T R R Tx x x π-→=+- 则对任意,,x y R x y ∈≠,由'()()()()f x f y f x y ξ-=-可知22|()()|||||1f x f y x y x y ξξ-=-<-+ 但f(x)没有不动点.实际上,若()x f x = ,则1tan 2x π-=,因而矛盾.(2) 设),,1[+∞=X 11:,x T X X Tx x +→=+ 则对任意,,x y R x y ∈≠,由'()()()()f x f y f x y ξ-=-可知21|()()|[1]||||(1)f x f y x y x y ξ-=--<-+但f(x)没有不动点.实际上,若()x f x =,则110x +=,矛盾,所以f(x)没有不动点.1.25 设函数),(y x f 在)},(],,[|),{(+∞-∞∈∈=y b a x y x H 上连续,处处都有偏导数),('y x f y ,且满足+∞<≤≤<M y x f m y ),('0试证明0),(=y x f 在],[b a 上有唯一的连续解)(x y ϕ=. 提示:定义:],[],[:b a C b a C T →为),(1ϕϕϕx f MT -= 证明T 为压缩算子,然后利用S. Banach 不动点定理.1.26 设),(d X 为度量空间,T 为X 到X 的算子,若对任意X y x ∈,,y x ≠,都有 ),(),(y x d Ty Tx d <,且T 有不动点,试证明T 的不点是唯一的.1.26证明:反证法,假设A 有两个不动点12,x x ,使得1122,A x x A x x ==,则121212(,)(,)(,)d x x d Ax Ax d x x =<但这与12x x ≠矛盾,所以A 只有唯一的不动点.黎永锦-部分习题解答1391.27 设),(d X 为度量空间,且X 为紧集,T 为X 到X 的算子,且y x ≠时,有),(),(y x d Ty Tx d <,试证明T 一定有唯一的不动点.证明思路:构造X 上的连续泛函),(),(y x d Ty Tx d <,利用紧集上的连续泛函都可以达到它的下确界,证明存在X x ∈0,使得}|)({inf )(0X x x f x f ∈=,0x 就是T 的不动点. 1.28 试构造一个算子22:R R T →,使得T 不是压缩算子,但2T 是压缩算子.1.28证明:定义)0,(),(:221x x x T →,则T 不是压缩算子,但2T )0,0(),(:21→x x 是压缩算子.1.30 设||),(),,1[y x y x d X -=+∞=,x x Tx X X T /13/,:+=→,试证明T 是压缩算子. 1.30证明:由 x x Tx /13/+=,可知|/13//13/|||y y x x Ty Tx +--=-),(32|||131|2y x d y x ≤--=ξ,所以T 是压缩算子.习题二2.2 设X 为赋范线性空间,||||⋅为X 上的范数,定义⎩⎨⎧≠+-==.y x 1||||;y x ,0),(时当时当,y x y x d试证明),(d X 为度量空间,且不存在X 上的范数1||||⋅,使得1||||),(y x y x d -=. 2.2证明:由度量的定义可知是X 上的度量.假设存在X 上的范数1||||⋅,使得1(,)||||d x y x y =-,则对于,K x X λ∈∈,一定有11||||||||||x x λλ=⋅.泛函分析讲义-黎永锦140如果取001,,||||12x X x λ=∈=,则 001000013||||||||1||||||1122x x x λλλ=+=⋅+=+= , 但是1)11(21)1||(||||||||||00100=+=+=x x λλ,因此11||||||||||x x λλ=⋅不成立,所以一定不存在X 上的范数1||||⋅,使得1(,)||||d x y x y =-.2.4设M 是赋范空间X 的线性子空间,若M 是X 的开集,证明M X =.2.4证明:由于M 是线性子空间,因此0M ∈.由M 是开集可知存在(0,){|||||}U x x M εε=<⊂.因而对于任意,0x M x ∈≠,有),0(2εεU x∈,从而M x∈2ε,因为M 是线性子空间,所以x M ∈,即M X =.2.6设X 是赋范线性空间,若λλλλ→∈∈n n n X x x K ,,,,且x x n →,试证明x x n n λλ→.2.6证明:由n x x →可知存在0M >,使得||||x M ≤,故||||||||||||||||||||||||||||||||0n n n n n n n n n n n x x x x x x x x x M x x λλλλλλλλλλλλ-≤-+-≤-⋅+⋅-≤-+⋅-→所以,n n x x λλ→.2.10 在∞l 中,若M 是∞l 中只有有限个坐标不为零的数列全体,试证明M 是∞l 的线性子空间,但M 不是闭的.2.10证明:明显地M 是线性子空间,取112(1,,,,0,0)n n x = ,则n x M ∈ 且0n x x →,但1102(1,,,,0,0)n x M =∉ ,所以M 不是闭的子空间.2.12 设R R f →:,满足)()()(y f x f y x f +=+对任意X y x ∈,成立,若f 在R 上连续,试证明f 是线性的.黎永锦-部分习题解答1412.12证明:由)()()(y f x f y x f +=+可知,)()(x nf nx f =对所有正整数N n ∈都成立.并且)()()(m x mf m x m x m x f x f =+⋅⋅⋅++=,故)(1)(x f mm x f =对所有正整数N m ∈都成立.因此所有正有理数Q q ∈都有)()(x qf qx f =成立,由)()())((x f x f x x f -+=-+和)0()0()0(f f f +=可知0)0(=f 并且)()(x f x f -=-,因而)()(x qf qx f =对所有有理数Q q ∈都有成立.由于f 在R 上连续,因此,对于任意R ∈α,有Q q n ∈,使得α→n q ,从而)()(lim )(lim )(x f x f q x q f x f n n n n αα===∞→∞→,所以f 是线性的.2.14设X 是有限维Banach 空间,n i i x 1}{=为X 的Schauder 基,试证明存在*∈X f i ,使得1)(=i i x f ,且0)(=j i x f ,对j i ≠成立.2.14证明:令{|}i j M span x i j =≠,则M 是 n-1维的闭子空间,且i i x M ∉,由Hahn Banach -定理可知存在*,||||1i g X x ∈=,使得()(,)i i i i g x d x M =,且()0g x =对任意i x M ∈成立,令(,)ii i g i d x M f = ,则*i f X ∈,且()1,()0i i i j f x f x ==,对任意i j≠成立.2.16设X 是赋范空间,M 为X 的闭线性子空间,M X x \0∈,试证明存在*∈X f ,使得),(1||||,1)(00M x d f x f ==,且0)(=x f ,对所有M x ∈成立.2.16证明: 由M 是闭线性子空间,M X x \0∈因此,因此0(,)0d x M >存在*,||||1g X g ∈=,使得00()(,)g x d x M =,且()0g x =对于任意x M ∈成立.令0(,)gd x M f =,则00||||10(,)(,)()1,||||g d x M d x M f x f ===,且()0f x =对任意x M ∈成立.2.18设X 是严格凸空间,试证明对任意,0,0,,≠≠∈y x X y x 且||||||||||||y x y x +=+时,有0>λ 使得x y λ=.2.18证明:假设存在00,x y ,使得0000||||||||||||x y x y +=+,但00x y λ≠,对任意0λ>成泛函分析讲义-黎永锦142立,则0000||||||||xy x y ≠,故有0000000000||||||||||||||||||||||||||||||||||||||||1x x y yx y x x y y ++⋅+⋅<因而0000||||||||||||1x yx y ++< 但这与0000||||||||||||x y x y +=+矛盾,所以||||||||||||y x y x +=+时,有x y λ=对某个0λ>成立.2.20试证明1l 和∞l 都不是严格凸的赋范线性空间. 2.20证明:在1l 中,取1111(,0,,0,0,,0),(0,,0,,0,,0)2222x y == ,则||||1,||||1x y ==,且x y ≠,但||||2x y +=,因而1l 不是严格凸的.类似的,在∞l 中,取(1,0,1,0,0,,0),(1,1,0,,0)x y == ,则 ||||1,||||1x y ==,且x y ≠,但 ||||2x y +=,所以l ∞不是严格凸的.2.22举例说明在赋范线性空间中,绝对收敛的级数不一定是收敛级数.2.22证明:令{()|N 0}i i i X x x R i N x =∈>=存在某个,使得时,有,定义1||||||()||||i i i x x x ∞===∑,则(,||||)X ⋅是赋范空间,取12(0,0,,0,,0,0,,0)n n x = ,则1211||||nni i x∞∞===∑∑,因此1ni x∞=∑绝对收敛,但级数1ni x∞=∑不收敛.2.24 设是X 赋范线性空间,,,X x x n ∈x x n →,试证明对任意*∈X f ,有)||||()||||(x xf x x f n n →. 2.24证明:由x x n →可知, ||||||||x x n →,因而,||||||||x xx x n n →,所以, ≤-|)||||()||||(|x x f x x f n n 0||||||||||||||||→-x xx x f n n . 2.26在]1,0[C 中,]},[),()(|)({b a C x b x a x t x M ∈==,试证明M 是]1,0[C 的完备线性子空间.黎永锦-部分习题解答1432.26证明:容易验证M 是]1,0[C 的线性子空间.由于]1,0[C 是完备赋范线性空间,M 是]1,0[C 的闭子空间,因此M 是]1,0[C 的完备线性子空间.2.28 在2R 中,取范数||||||||21x x x +=,}|)0,{(11R x x M ∈=,则M 为2R 的线性子空间,对20)1,0(R x ∈=,试求出M y ∈0,使得),(||||000M x d y x =-.2.28证明:由于1||})1,(inf{||}|||inf{||),(100≥=∈-=x M y y x M x d ,并对于M y ∈=)0,0(0,有1||)1,0(||||||00==-y x ,所以1),(0=M x d ,且),(||||000M x d y x =-.习题三3.2 设1)(l x i ∈,算子11:l l T →, 1)(),3(l x x x Tx i i i∈==任意,试证明T 是线性有界算子,并求||||T .3.2证明: 由T 的定义可知T 是线性算子,且||||31||31||)3(||||||1x x x Tx i i i =≤=∑∞=, 因此13||||T ≤,从而T 是线性有界算子.取0(1,0,,0)x = ,则01x l ∈,且0||||1x =,故01||||||||3T Tx ≥=,所以1||||3T =. 3.4 设),(Y X L T ∈,试证明||||sup ||||1||||Tx T x <=.3.4证明:由于||||||||sup ||||supsup 111T x Txx Tx Tx x x x =≤≤≠<<,因此Tx T x 1||||sup ||||<≥.对于任意10n >,由||||sup ||||||||sup ||||||||sup||||1||||0||||0||||Tx x xT x Tx T x x x =≠≠===可知,有||||1n x =,使得1||||||||n n Tx T ≥-,故111||(1)||(1)(||||)n n n n T x T -≥--,因而111||||1sup ||||||(1)||(1)(||||)n n n n x Tx T x T <≥-≥--对任意n 成立泛函分析讲义-黎永锦144从而||||1||||sup ||||x T Tx <≤,所以||||sup ||||1||||Tx T x <=3.6 设X 是赋范空间,X x ∈α,若对任意*f X ∈,有+∞<|)(|sup ααx f ,试证明+∞<||||sup ααx .3.6 证明:定义*:,()()T X K T f f x ααα→=,则T α是*X 到K 的线性有界算子,且对于任意*f X ∈,有sup |()|sup |()|T f f x ααα=<+∞因为任意赋范空间X 的共轭空间 *X 都是完备的,因此由一致有界原理,有sup ||||T α<+∞.由αT 的定义可知||)(||sup |)(||sup ||||1||||1||||αααx f f T T f f ====故||||||||T x αα=,所以,sup ||||x α<+∞.3.7 设X ,Y 是赋范空间,}0{≠X , 试证明Y 是Banach 空间当且仅当),(Y X L 是Banach 空间.证明思路:明显地,只需证明),(Y X L 是Banach 空间时,Y 是Banach 空间.由于}0{≠X ,因此有1||||,00=∈x X x ,故由Hahn-Banach 定理存在1||||=f ,使得1||||)(00==x x f .若Y y n ∈}{是Cauchy 列,定义算子列),(Y X L T n ∈为n n y x f x T )(=,则),(Y X L T n ∈,并且||||||||n m n m y y T T -=-,因而}{n T 为),(Y X L 的Cauchy 列,所以存在),(Y X L T ∈,使得T T n →.不难证明0Tx y n →,从而Y 是Banach 空间.3.8 设X 是Banach 空间,*X f n ∈且对任意)()(lim ,x f x f X x n n =∈∞→,试证明*∈X f .3.8证明: 由于lim ()()n n f x f x →∞=,因此sup{|()|}n f x <∞对任意x 成立,由X 是Banach黎永锦-部分习题解答145空间可知sup{||||}n f M <<∞因而|()|||||||||||||n n f x f x M x ≤⋅<,所以|()|||||f x M x ≤,即f 是X 的线性连续泛函. 3.10 设X ,Y 是赋范空间,Y X T →:是线性算子,且T 是满射,若存在0>M ,使得||||||||x M Tx ≥对任意X x ∈成立,试证明1-T 是线性连续算子,且MT1||||1≤-. 3.10 证明:由||||||||Tx M x ≥可知T 是单射,因而1T -存在,且对于任意y Y ∈,由T 满射可知存在x X ∈,使得y Tx =,容易验证T 是线性算子,故1111||||||||||||||||||||T y T Tx x Tx y --==≤=,所以,1T -连续,且11||||MT-≤.3.12 设X 是Banach 空间,f 是X 上的非零线性泛函,试证明f 一定是开映射. 3.12证明:由0f ≠可知存在00x ≠,使得0()1f x =,故对于X 的开集G 及任意()f G α∈,必有x G ∈,使得()f x α=,由于是G 开集,故有0ε>,使(,)U x G ε⊂,因此对00,||||||x x x λλε+<,有0x x G λ+∈,因而0()f x x G λ+∈,但00()()()f x x f x f x λλαλ+=+=+,故(,)()f G αεαε-+⊂ ,即α为G 的内点,所以()f G 为开集,即f 一定开映射.3.13 设X 是赋范空间,T 是从X 到X 的线性算子,X T D =)(,S 是从*X 到*X 的线性算子,*=X S D )(若对任意*∈∈X f X x ,,有)())((Tx f x Sf =,试证明T 和S 都是线性连续算子.证明思路:先证S 为闭算子,从而S 是线性连续算子,然后利用Hahn-Banach 定理的推论可泛函分析讲义-黎永锦146知, 当0≠Sx 时,存在1||||,*=∈f X f ,使得||||)(Sx Sx f =,不难进一步证明T 为是线性连续算子.3.14 设X ,Y 是赋范空间,T 为X 到Y 的闭线性算子,F 为X 的紧集,试证明)(F T 为Y 的闭集.3.14证明:若()n y T F ∈,且0n y y →,则存在n x F ∈使得()n n y f x =,由于F 是紧集,因此存在k n x ,使得0k n x x →,且0x F ∈.由0y Tx k n →及T 是闭线性算子可知0y Tx =,所以0()y T F ∈,即)(F T 是闭集.3.15 设X 为Banach 空间,T 为X 到X 的线性算子,若T T =2,且)(T N 和)(T R 都是闭的,试证明),(X X L T ∈.证明思路:由于T 的定义域为X ,因此明显地,只需证明T 为闭线性算子.设有点列X x n ∈}{,X y x ∈,,当∞→n 时,x x n →,y Tx n →.由)(T R 是闭的,)(T R Tx n ∈可知必有X x ∈0,使得0Tx y =.由于T T=2,因此0)(2=-=-n n n n Tx x T x Tx T ,即)(T N x Tx n n ∈-.由)(T N 是闭的,可得)()(lim T N x Tx x y n n n ∈-=-∞→,从而0)(=-x y T .因此y Tx Tx T Ty Tx ====00)(,所以T 为闭线性算子.由闭图像定理可知),(X X L T ∈3.16 设X ,Y 赋范空间,),(,Y X L T T n ∈,若n T 强收敛于T ,试证明n T 弱收敛于T . 3.16证明:由于n T 强收敛于,因此T 对任意x X ∈,有||||0n T x Tx -→,故对于任意*f Y ∈,有|()()||()|||||||||0n n n f T x f Tx f T x Tx f T x Tx -=-≤⋅-→,所以n T 弱收敛于T .黎永锦-部分习题解答147习题四4.2 试证明∞=l l *1.4.2证明:对于任意1x l ∈,有11lim ni ii i n i i x x ex e ∞→∞====∑∑,故对于任意*1f l ∈,有11()lim ()lim ()nni i i i n n i i f x f x e x f e →∞→∞====∑∑由于1111|()||||()|||||||||||||||||n n n niiiiiiii i i i x f e x f e x f e x f ====≤≤⋅⋅=⋅∑∑∑∑因此由1()i x x l =∈可知1||n ii x =∑收敛,从而1()niii x f e =∑绝对收敛,且11|()||()|sup |()|sup |()|||||i i i i i i i f x x f e f e x f e x ∞∞===≤=⋅∑∑令()(())i i y f e α==,则y l ∞∈,且对于任意,都1()i x x l =∈,有1()i i i f x x α∞==∑ 且||||||||f y =.反过来,对于任意 ()i y l α∞=∈,则定义f 为11(),()i iii f x x x x l α∞==∀=∈∑则f 是上的线性连续泛函,且||||sup ||||||i f y α==,所以 ∞=l l *1 4.4 试证明1*l l ≠∞.4.4证明: 用反证法,假设 *1l l ∞=,则由于1l 是可分的,因此是l ∞可分的,但这与1l 不可分矛盾,所以1*l l ≠∞泛函分析讲义-黎永锦1484.6 试证明在2l 中强收敛比按坐标收敛强.4.6证明:若()(0)202(),()n n i i x x l x x l =∈=∈,且0n x x →,则()(0)21/21(||)0n i i i x x ∞=-→∑因此,对于任意i 有()(0)()(0)21/21||(||)n n iii i i xxx x ∞=-≤-∑从而()(0)n ii x x →,所以强收敛比按坐标收敛强.4.7 设X 是无穷维的赋范空间,试证明*X 一定也是无穷维的赋范空间.证明思路:对于任意的自然数n ,由于X 是无穷维的赋范空间,因此存在n 个线性无关的的X e e e n ∈⋅⋅⋅,,,21,由Hahn-Banach 定理,不难证明存在*21,,,X f f f n ∈⋅⋅⋅,使得都成立对任意并且j i e f e f j i i i ≠==,0)(,1)(,从而只需证明n f f f ,,,21⋅⋅⋅是线性无关的,则n X >)dim(*,所以*X 一定也是无穷维的赋范空间.4.8设X 是赋范空间,X x x n ∈,,x x wn −→−,若}{n x 是相对紧的,试证明x x n −→−. 4.8证明:由于{}n x 是相对紧的,因此存在子列{}k n x 收敛于y ,但n x 弱收敛于x ,因此对于任意*f X ∈,有()()k n f x f x →.由{}k n x 收敛于y 可知|()()|||||k kn n f x f y f x y -≤⋅-→,从而()()f x f y =,对任意成*f X ∈立.因而x y =.故k n x x →,所以x x n −→−. 4.10设Y X ,为赋范空间,),(Y X L T ∈,若x x w n −→−,试证明Tx Tx wn −→− 4.10证明:对于任意*g Y∈,定义X 上的泛函()()f x g T x =,则由|()||()||||||f x g T x g T x =≤⋅⋅,可知f 是X 上的线性连续泛函,由于n x 弱收敛x ,因黎永锦-部分习题解答149此()()n f x f x →,因而()()n g Tx g Tx →,所以n Tx 弱收敛Tx .4.12 设X 为Banach 空间,*,,,X f f X x x n n ∈∈n x 弱收敛于x ,且n f 收敛于f ,试证明)()(x f x f n n →.4.12证明:由于n x 弱收敛于x 时,有0M >,使得||||n x M ≤<∞,因此|()()||()()||()()||||||||||()()||||||()()|n n n n n n n n n n n f x f x f x f x f x f x f f x f x f x M f f f x f x -≤-+-≤-⋅+-≤-+-所以,当n x 弱收敛于x ,且n f 收敛于f 时,有()()n n f x f x →.4.14设Y X ,是Banach 空间,),(Y X L T ∈,且1-T 存在且有界,试证明*T 的逆存在且*11*)()(--=T T .4.14证明:由 **11*()()T T T T I --==及 1**1*()()T T TT I --==可知*1()T -存在,并且*11*)()(--=T T .4.16设X 是赋范空间,}{,0n w n x span M x x =−→−,试证明M x ∈0. 4.16证明:反证法,假设0x M ∉,则由于M 是闭子空间,因此0(,)0d x M >,故由Hahn Banach-定理可知存在*f X ∈,使得00()(,)f x d x M =且对于任意 ,()0x M f x ∈=,所以00()0,()(,)0n f x f x d x M ==>,但这与n x 弱收敛于0x 矛盾,因而n x 弱收敛0x 时,一定有0x M ∈.习题五泛函分析讲义-黎永锦1505.2设X 是内积空间,X y ∈,试证明),()(y x x f =是X 上的线性连续泛函,且||||||||y f =.5.2证明: 由()(,)f x x y =可知f 线性泛函,且|()||(,)|||||||||f x x y x y =≤⋅,因此f 是X 上的连续线性泛函,并且||||||||f y ≤,取||||y y x =,则||||||||1,|()||(,)|(,)||||y y x f x x y y y ====,所以,||||||||f y =.5.4 设X 是内积空间,X e e n ∈,,1 ,若=),(j i e e ⎩⎨⎧=≠.1j,0j i ,i试证明n e e ,,1 线性无关.5.4证明:若12,,,n e e e X ∈ ,且=),(j i e e ⎩⎨⎧=≠.1j ,0j i ,i则对于i K α∈,当10ni ii eα==∑时,有1(,)0ni i i i i e e αα===∑.因此120n ααα==== ,所以12,,,n e e e 线性无关.5.6 设M 是Hilbert 空间X 的闭真子空间,试证明⊥M 含有非零元素.5.6 证明: 由M 是X 的真子空间,因而对\x X M ∈,存在0x M ⊥∈,使得 00x x y =+,由x M ∉及0x M ∈可知00x x -≠所以0y ≠,且y M ⊥∈,即M ⊥含有非零元.5.8 设M 是Hilbert 空间X 的闭真子空间,试证明⊥⊥=M M .5.8证明:由于M M⊥⊥⊂,因此只须证MM ⊥⊥⊂.对于任意x M ⊥⊥∈有y M ⊥∈使得0x x y =+,由M M ⊥⊥⊂可知0x M ⊥⊥∈,故0x x M ⊥⊥-∈,因此0y x x M ⊥⊥=-∈,所以y y ⊥,因而0y =,从而MM ⊥⊥⊂.黎永锦-部分习题解答1515.9 设f 是实内积空间3R 上的线性连续泛函,若32132)(x x x x f ++=,试求X y ∈,使得),()(y x x f =.5.9 解答:取)3,2,1(,3=∈y R y ,则一定有32132)(x x x x f ++=. 5.10 设M 是内积空间X 的非空子集,试证明⊥⊥⊥⊥=M M . 5.10 证明:由()MM ⊥⊥⊥⊥⊥⊥=可知, M M ⊥⊥⊥⊥⊂.反过来,对任意x M ⊥⊥⊥∈,及y M M⊥⊥∈⊂,可知(,)0x y =,因而x y ⊥对于任意y M ∈成立,故x M ⊥∈因此M M ⊥⊥⊥⊥⊂,所以M M ⊥⊥⊥⊥=.5.12 设X 是Hilbert 空间,M 、N 是X 的闭真空间,N M ⊥,试证明N M +是X 的闭子空间.5.12证明:明显地N M +是X 的线性子空间,因此只须证N M +在X 中是闭的,若,,n n n n x y M N x M y N +∈+∈∈,且n n x y z +→,则由于X 是Hilbert 空间,M 是闭子空间,因此,,z x y x M y M ⊥=+∈∈,故,n n x x M y y M ⊥-∈-∈.因而22222||||||||||||||()||||||0n n n n n n n n x x y y x x y y x y x y x y z -+-=-+-=+-+=+-→,所以,n n x x y y →→,故,,z x y x M y N =+∈∈,即N M +是的X 闭子空间. 5.14 设X 是内积空间,X y x ∈,,试证明y x ⊥的充要条件为对任意K ∈α,有||||||||y x y x αα-=+.5.14 证明:若x y ⊥,则对任意K α∈,有2222||||(,)(,)(,)(,)(,)||||||||||x y x y x y x x x y y x y y x y αααααααα+=++=+++=+ 且2222||||||||||||||x y x y αα+=+ 因此||||||||y x y x αα-=+.泛函分析讲义-黎永锦152反过来,若K α∈,有||||||||y x y x αα-=+,则由(,)(,)(,)(,)(,)x y x y x x x y y x y y αααααα++=+++和(,)(,)(,)(,)(,)x y x y x x x y y x y y αααααα--=--+可知2(,)2(,)0x y y x αα+=令(,)x y α= ,则22|(,)||(,)|0x y x y += 因而(,)0x y =,所以x y ⊥.5.16设X 是内积空间,X y x ∈,,试证明y x ⊥当且仅当对任意K∈α,有||||||||x y x ≥+α.5.16证明:若x y ⊥,则对任意K α∈,有x y α⊥,因此 22222||||||||||||||||||x y x y x αα+=+≥,所以||||||||x y x ≥+α.反过来,若对任意K α∈,有||||||||x y x ≥+α,则 令2(,)||||x y y α=-,由22||||||||0x y x α+-≥及|||||),(|),(|||||),(||||||),(||||||),(|),(||),(),(),(),(),(),(),(),(),(224222222≥-=+--=++=-+++=-++y y x y y y y x y y x y y x y y x y y x x x y y x y y x x x x x y x y x αααααααα因此(,)0x y =,所以,x y ⊥.5.17 设}|{N i e i ∈是内积空间X 的正交规范集,试证明黎永锦-部分习题解答153|||||||||),)(,(|1y x e y e x i ii⋅≤∑∞=对任意X y x ∈,成立.5.17证明:由于{|}i e i N ∈是X 的正交规范集,因此对任意,x y X ∈,有222211|(,)|||||,|(,)|||||ii i i x e x y e y ∞∞==≤≤∑∑故21/221/2111|(,)(,)|[|(,)|][|(,)|]||||||||iiiii i i x e y e x e x e x y ∞∞∞===≤=⋅∑∑∑5.18设}|{N i e i ∈为Hilbert 空间的正交规范集,}{i e span M =,试证明M x ∈时,有i i i e e x x ∑∞==1),(.5.18证明:若x M ∈,则由于{}i e 是正交规范集,因此221|(,)|||||ii x e x ∞=≤∑.因为X 是完备的,所以由22||(,)|||(,)|0n p n p iiii ni nx e e x e ++===→∑∑ 可知1(,)i ii x e e ∞=∑是收敛级数,记1(,)iii y x e e ∞==∑,则1(,)((,),)(,)(,)0j i i j j j i x y e x x e e e x e x e ∞=-=-=-=∑故x y M -⊥,由,x y M ∈,可知x y M -∈,因而x y x y -⊥-,所以,0x y -=,即ii iee x x ∑∞==1),(.泛函分析讲义-黎永锦1545.19设}{n x 是Hilbert 空间X 的正交集,试证明1{}ii x ∞=∑弱收敛当且仅当21||||ii x ∞=<∞∑.5.19证明:若1ii x ∞=∑弱收敛,则存在0M >,使得M x ni i≤∑=||||1对任意n 成立,故由{}ix 是正交集可知22211||||||||ii i i x x M ∞∞===≤∑∑,所以21||||i i x ∞=<∞∑.反之,若21||||ii x ∞=<∞∑,则由0||||||||2121→=∑∑++=++=pn n i ipn n i ix x 可知1{}i i x ∞=∑是X 的Cauchy 列,所以1i i x ∞=∑在Hilbert 空间X 中收敛,因而1i i x ∞=∑弱收敛.5.20设}|{∧∈=ααe S 是内积空间X 的正交规范集,则对于任意}|),{(,∧∈∈ααe x X x 中最多只有可列个不为零,且22|||||),(|x e x i ≤∑∧∈α.5.20证明:若Λ是有限集,则明显地,有22|||||),(|x e x i≤∑∧∈α若Λ不是有限集,则对于任意}1),(|{,me x e S N m m ≥=∈αα,只能是有限集,因而'1m m S S ∞== 是可数集,且对任意'\e S S α∈,有(,)0x e α=,故22|||||),(|x e x i ≤∑∧∈α5.21 设X 是Hilbert 空间,),(X X L T ∈,若1-T 存在,且),(1X X L T∈-,试证明1*)(-T 存在且*11*)()(--=T T .5.21 证明:由于X 是Hilbert 空间,且),(1X X L T∈-,因此1*()T -存在.对于任意,x y X ∈,有11**1*(,)(,)(,())(,())x y T Tx y Tx T y x T T y ---===黎永锦-部分习题解答155又因为11*1**(,)(,)(,)(,())x y TT x y T x T y x T T y ---===,所以,*1*1**()()T T T T --=,因而*11*)()(--=T T .5.22 设X 是Hilbert 空间,),(,X X L T T n ∈,若T T n →,试证明**T T n →.5.22证明:由***()n n T T T T -=-及*||()||||||n n T T T T -=-,可知n T T →时,有**||||||||0n n T T T T -=-→,因此**T T n →.5.24 若X 是Hilbert 空间,),(,X X L T S ∈是自伴算子,R ∈βα,,试证明T S βα+是自伴算子.5.24证明:由于,S T 是自伴算子,因此*S S = ,且*T T =,所以对于***,,()R S T S T S T αβαβαβαβ∈+=+=+.5.25 设X 是Hilbert 空间,),(X X L T ∈,若T 是自伴算子,N n ∈,试证明n T 是自伴算子.5.25证明:由于*T T =,因此***()()()n nnT T T T T T =⋅⋅⋅== ,所以n T 是自伴的.5.26 设X 是复H i l b e r t 空间,),(X X L T ∈若试证明存在唯一的自伴算子),(,21X X L T T ∈,使得21iT T T +=,且21*iT T T -=.5.26 证明:令**111222(),()iT T T T T T =+=-,则),(,21X X L T T ∈,且*1212,T T iT T T iT =+=-由于***1111*******11122222()(),[()]()()iii T T T T T T T T T T T T T T =+=+==-=--=-=因此1T 和2T 都是自伴算子.假设存在自伴算子12,(,)S S L X X ∈,使得12T S iS =+,则1212S iS T iT +=+且**12121212()()S iS S iS T iT T iT -=+=+=-,因此1122,S T S T ==.泛函分析讲义-黎永锦156所以,存在唯一的自伴算子),(,21X X L T T ∈,使得*1212,T T iT T T iT =+=-. 5.27 设X 是Hilbert 空间,T T X X L T T n n →∈),,(,,若n T 是正规算子,试证明T 是正规算子.5.27 证明:由于n T 是正规,因此**n n n T T T T =故************************||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||n n n n n n n n n n n n n n n nn n n nn n n n n T T TT TT T T T T T T TT T T TT T T TT T T TT TT TT T T T T T T T T T T T T T T T T T T T T T -≤-+-+-≤-+-≤-+-⋅-+-≤⋅-+⋅-+⋅-+⋅**||n T -由n T T →可知**n T T →,所以**||||0T T TT -=即T 是正规算子.5.28 设X 是复H i l b e r t 空间,),(X X L T ∈,试证明T 是正规算子当且仅当||||||||*Tx x T =对于任意X x ∈成立.5.28 证明:若T 是正规算子,则**T T TT =,因此对于任意x X ∈,有**((),)0T T TT x x -=,故**(,)(,)T Tx x TT x x =,因此**(,)(,)Tx Tx T x T x =,所以*||||||||T x T x =对任意x X ∈成立.反之,若对任意x X ∈有*||||||||T x Tx =,则**(,)(,)Tx Tx T x T x =,故**(,)(,)T Tx x TT x x =.因而**((),)0T T TT x x -=对任意x X ∈成立.所以**0TT T T -=,即是T 正规算子.5.29 设X 是Hilbert 空间, T 是X 到X 的线性算子,若对任意,x y X ∈,有(,)(,)Tx y x Ty =,试证明T 是连续线性算子.5.29 证明:由于()D T X =,因此只须证T 是闭线性算子,若00,n n x x Tx y →→,则对于黎永锦-部分习题解答157任意y X ∈,有000(,)lim(,)lim(,)(,)(,)n n n n y y Tx y x Ty x Ty Tx y →∞→∞====故00(,)(,)y y Tx y =对任意y X ∈成立,因此00Tx y =,因而T 是闭线性算子,所以由闭图象定理可知T 是连续的.学年论文可选的题目学完一门课程,如能对所学内容做些比较系统的整理和思考,对加深该课程的理解和进一步学习都会有很好的帮助.学年论文的写作,可以提高阅读有关文献资料的能力,学会从书本和论文中了解有关信息、得到启发.并可有目的、有计划地搜集相关资料,可以养成独立思考和研究探索的好习惯. 下面的一些题目和思路可供参考:1. 抽象空间的球具有哪些奇怪的性质,在度量空间和赋范空间中,它们的性质有哪些不同,如开球的闭包一定是与开球球心和半径一样的闭球吗?开球有可能是闭集吗?2. 不动点定理的推广和应用,特别是在微分方程中的一些应用.3. 度量空间和赋范空间中,序列的各种收敛性的相互关系.4. 度量空间和赋范空间中,紧、完备、闭、有界等的相互关系.5. 凸集和凸函数的性质.6. 线性连续泛函和可加泛函的性质.7. 一致有界原理的应用.8. 逆算子定理或闭算子定理的应用. 9. Hahn-Banach 定理及其推广和应用. 10. 内积空间中的正交性的推广.11. 平面几何的有关概念和性质在Hilbert 空间的推广.泛函分析讲义-黎永锦12. 数学分析中的Fourier 级数相关概念在内积空间的推广.13. 赋范空间中的级数收敛的判别法.158。
第一章度量空间-黎永锦
第一章度量空间-黎永锦第1章度量空间在1900年巴黎数学家大会上我曾毫不犹豫地把十九世纪称为函数论的世纪.V. Volterra(伏尔泰拉)(1860-1940, 意大利数学家)泛函分析这一名称是由法国数学家P. Levy引进的. 在十九世纪后期,许多数学家已经认识到数学中许多领域处理的是作用在函数上的变换或者算子,推动创立泛函分析的根本思想是这些算子或变换可以看作某类函数上算子的抽象形式,把这类函数全体看成空间,而每个函数就是空间的点,算子或变换就把点变成点,将函数变成实数或复数的算子就称为泛函.泛函的抽象理论是由V. Volterra(1860-1940)在关于变分法的 P. Levy (1886-1971)工作中最先研究的,但在建立函数空间和泛函的抽象理论中,第一个卓越的成果是由法国数学家M. Frechet 1906年在他的博士论文中得到的.1. 1 度量空间M. Frechet是法国数学家,他1906年获得博士学位. M. Frechet的博士论文开创了一般拓扑学,G. Cantor, C. Jordan, G. Peano, E. Borel和其他数学家发展了有限维空间的点集理论. V. Volterra, G. ascoli和J. Hadamard等开始把实值函数作为空间的点来考虑. M. Frechet的博士论文统一了这两种思想,并建立了一个公理结构. 他给出收敛序列的极限的一组公理,然后定义了闭集、内点和完备集等基本概念,还引入1了相对列紧性和列紧性,并得到了列紧集的基本性质,在他的博士论文中,M. Frechet第一次给出了度量空间的公理.定义 1.1.1 若是一个非空集合,是满足下列条件的实值函数,Xd:X,X,Rx,y,X对于任意,有d(x,y),0(1) 当且仅当; x,yd(x,y),d(y,x);(2)d(x,y),d(x,z),d(y,z)(3) .(X,d)则称d为X上的度量,称为度量空间.d(x,y),d(y,x),d(x,x)d(x,y),0 明显地,由(3)可知 ,故由(2)可知,因此是一个非负函数. d(E,d)若X是一个度量空间,E是X的非空子集,则明显地也是度量空间,称(X,d)(E,d)为的度量子空间.d(x,y),|x,y|(R,d)例1.1.1 若R是实数集,定义,则容易看出是度量空间.X例1.1.2 对于任意一个非空集,只需定义,0,当 x , y 时,d(x,y) = ,1,当 x , y 时.,(X,d)则X是一个度量空间,称d为上的平凡度量或离散度量.度量不是唯一的,在一个非空集合上,可以定义几种完全不同的度量.nR例1.1.3 对于,可以定义几种不同的度量,对于, 有 x,(x),y,(y)iin21/2d(x,y),[(x,y)]; ,ii,n12nd(x,y),|x,y|; ,1iin,1d(x,y),max{|x,y|}2iinnnn容易验证,和都是度量空间,一般称为欧几里得(R,d)(R,d)(R,d)(R,d)12 空间.以下的例子是在M. Frechet 1906年提出的.例1.1.4 如果用记所有实数列形成的集合,对于任意,定义 x,(x),y,(y)sii ,|x,y|iid(x,y), ,i!(1,|x,y|)i1,iix容易知道满足度量定义中的(1)和(2),由函数(x) =在 (0, ) 是d,,,1,x |a,b|,|a|,|b|单调增加的可知对于,有|a,b||a|,|b||a||b|,,, 1,|a,b|1,|a|,|b|1,|a|,|b|1,|a|,|b| |a||b|,, 1,|a|1,|b|d(x,y),d(x,z),d(y,z)(s,d) 令,则可得到,所以a,x,z,b,z,yiiii是一个度量空间.常见的序列空间还有如下几个空间.(x),(y),ll,{(x)|sup|x|,,,}例1.1.5 , 对于任意的,定义,iiii,i,,1d(x,y),sup|x,y|l. 即为所有有界数列所形成的空间,如, x,()ii,ii, 但. y,(1,(,1)),lz,(i),l,,c,{(x)|limx,0}(x),(y),c例1.1.6 ,对于任意的,定义ii00iii,,31cd(x,y),sup|x,y|. 即为所有收敛于0的数列所成的空间,如x,(), 0iii2 i1,(,1)i, 但. y,(),cz,(1,(,1)),c0i03,(x),(y),ld(x,y)例1.1.7 ,对于任意的,定义 l,{(x)||x|,,,}ii11,ii1i, ,1l.即为所有绝对收敛数列所成的空间,如, 但 ,|x,y|x,(),l1ii1,ii1,31. z,(),l1i3R 度量就是中距离的推广,在给定的集合上定义了度量,就可以讨论点列的收敛性.d(x,x),0(X,d)定义 1.1.2 设是度量空间,, 若, 则称序{x},Xlimn0n,,nxx,x(n,,)limx,x列按度量收敛于,记为, 或, 此时称为d{x}{x}0n0n0nn,,n x收敛点列,称为的极限. {x}0n大家都知道,若数列在数学分析中,是收敛的,则其极限是唯一的.类似地,在{x}n度量空间也有下面的结论.(X,d)定理 1.1.1 在度量空间中,若是收敛点列,则的极限一定唯{x}{x}nn一.x,y,Xlimx,xlimx,yx,y证明用反证法,假设有,使得,,但,则由nn,,,,nnd(x,y),0d(x,y),0,可知.又由于,因此d(x,y),d(x,x),d(x,y)nnd(x,y),0x,y,但这与假设矛盾,所以由反证法原理可知的极限唯一. {x}n(X,d) 另外,容易看出,在度量空间中,若是收敛点列,则的任意子{x}{x}nn列也是收敛点列,并且极限是一样的.d(x,y),d(x,y)d(x,y)x,xy,y定理 1.1.2 若, ,则. 即是nn00n0n04和的二元连续函数. yx证明由于d(x,y),d(x,x),d(x,y) nnn00n,d(x,x),d(x,y),d(y,y) n0000n因此d(x,y),d(x,y),d(x,x),d(y,y) nn00n0n0同样地,有d(x,y),d(x,y),d(x,x),d(y,y) 00nnn0n0因而|d(x,y),d(x,y)|,d(x,x),d(y,y) nn00n0n0d(x,y),d(x,y)所以,. nn00如果考虑如下的问题呢,(X,d)问题 1.1.1 若 X 是线性空间,为度量空间,加法是否连续呢, 不一定,下面的例子是 D. D. Rothmann [A nearly discrete metric. Amer. Math.Monthly 81 (1974), 1018-1019. ] 作出的.R,(,,,,,)x,y,R例1.1.8 设, 对于任意,定义0,当 x , y 时,,d(x,y)= ,xy,max{||,||}当 x , y 时.,(R,d)则容易验证是一度量空间.1yx,1x,1y,1其实,只要取,,,, 则 ,,nn00n11,d(y,y),d(,,0),,0. d(x,x),d(1,1),0,0n0n0nn1d(x,y,x,y)d(x,y,x,y),d(1,,1),1但, 因此不收敛于0. 所以,虽nn00nn00n5x,yy,yx,x然,, 但是不收敛于. {x,y}00n0n0nn231/23R在空间解析几何中,称{(x,x,x)|(|x,x|),r}是中一个以,i1230i,1rx为球心,为半径的球.同样地,球的概念可以推广到一般的度量空间. 0r(X,d)定义 1.1.3 若为度量空间, 为大于0的实数,则称,{x,X|d(x,x),r}xrU(x,r)U(x,r)是以为球心, 为半径的开球,记为. 而0000 ,{x,X|d(x,x),r}xrB(x,r)称是以为球心,为半径的闭球. 000抽象的度量空间与现实的世界有着较大的区别,下面的问题是很有意思的.问题 1.1.2 在度量空间中,一个半径较小的开球能否真包含一个半径较大的开球,度量空间的开球与真实世界的球有着本质的区别,一个半径为6的开球,可能会真包含在一个半径为4的开球内.22X,{(x,x)|x,x例1.1.9 设X为实数,}, 在上定义度量 |x|,|x|,16121212 221/2,则以x= (0, 0) 为球心4为半径的小球真包含以d(x,y),(|x,y|,|x,y|)01122y= (3, 0)为球心6为半径的大球. 0进一步,还可以考虑下面的问题.r,r,0问题 1.1.3 对于任意,是否都可找到一个度量空间,存在两球,使得小21 U(x,r)U(x,r)球真包含大球呢, 01026利用开球还可以刻画点列的收敛性,类似于数学分析中的数列收敛与开区间的{x},,0n,N联系,序列依度量收敛于当且仅当对于任意,存在,使得xNn0xU(x,,)时, 都包含在开球中. n00,,,1例1.1.10 若为非空集合的平凡度量,则对任意及, Xdx,X0xn,NU(x,,)只包含一个点,因此如果序列收敛于,则必有,使得时,一定xNn00 x,x有. n0r,0 1.1.4 设M是度量空间X定义的子集,若存在 xX,, 使得M包含在,0U(x,,)(X,d)开球中,则称M是的有界集. 0r,0明显地,M是有界集当且仅当存在x及,使得对任意,有x,M0. d(x,x),r0定理 1.1.3 若为度量空间的收敛序列,则是有界的. {x}{x}nnN,,1n,Nlimx,x证明设, 则对于,存在,使得时,有. d(x,x),1n0n0,,nn令, 则对任意的,有,故r,max{1,d(x,x),,,,,d(x,x)},1d(x,x),r010n,10n ,所以是有界的. {x}{x},U(x,r)nn0(X,d)有界集是一个与度量有关的概念,因为对于任意一个度量空间,都可以引M,X入另一度量,使任意子集都是有界集. ,d(x, y),(x,y),M,XX事实上,只需令 ,则容易看出对任意,M都是(,) ,1,d(x, y)d(x,x),0,(x,x),0的有界集,并且有当且仅当. nn7d(x,y)例1.1.11 设s 为全体实数列,对于任意, x,(x),y,(y),sii,|x,y|ii=,试证明(s, d)中序列按度量收敛当且仅当序列按坐标收敛. d,i!(1,|x,y|)ii,i1 (n)(0),|x,x|iix,s证明若 , ,则 d(x, x) =0,,d(x,x),0nn,n0(n)(0)i!(1,|x,x|)i1,ii故对每一个固定的 i,有 0(n)(0)|x,x|ii00,d(x,x) n0(n)(0)i!(1,|x,x|)0ii00因而i!d(x,x)(n)(n)0n0|x,x|, ii001,i!d(x,x)0n0(n)(n)所以 ,即按坐标收敛于. {x}xlimx,xn0ii00,,n,1x若反过来,按坐标收敛于,则对于任意0,,,1,由于级数收{x}0,ni!,i1,1,,敛,因此存在正整数m,使得 . ,i!4im,,n()(0)对于每个i <m,有 N,使得 n > N时,有 .令 N =max {N,...,||x,x,ii 1ii4N },则当 n > N时,有 m-1,(n)(0)m,1m,1|x,x|4ii ,,,(n)(0),i!(1,|x,x|)i,1i,1iii!(1,)43, ,4因此(n)(0)(n)(0)m1,,|x,x||x,x|iiiid(x,x),, n0,,(n)(0)(n)(0)i!(1,|x,x|)i!(1,|x,x|)i1im,,iiii,,3 ,,,.,448limd(x,x),0.所以即依度量收敛到. d{x}xn0n0,,n1.2 度量拓扑在数学分析,对实数集R,已经有了开区间,闭区间,开集和闭集等概念,将这些概(X,d)念推广到一般的度量空间,就可以建立起度量空间的拓扑结构.(X,d)定义 1.2.1 设是度量空间,是X的子集,x,G称为的内点,若存GG0在的某个开球,使得. 若G的每一个点都是的内点,则称GU(x,r)U(x,r),G00 为开集. G, 另外,规定空集是开集,明显地X一定是开集.(X,d)定理 1.2.1 对于任意, 开球是度量空间的开集. x,X,r,0U(x,r)00证明只需证明对于任意的,是的内点. xx,U(x,r)U(x,r)00r',r,d(x,x)d(x,x),rr',0 对于,有,令,则且 x,U(x,r)000d(x,y),r'时, 有,因而 y,U(x,r')d(x,y),d(x,x),d(x,y),d(x,x),r',r 000所以,,即是的内点,由是任意的可知是xxU(x,r'),U(x,r)U(x,r)U(x,r)000开集.下面关于开集的基本性质就是一般拓扑学的公理基础.(X,d)定理 1.2.2 设是度量空间,则(1) 任意个开集的并集是开集;9(2) 有限个开集的交集是开集.(X,d)证明 (1) 设为的一族开集,则对任意,有某个下标, x,:GG,0,,,U(x,r),GU(x,r),G使 ,由于G是开集,因而有开球,因此,故x,G,,,,:000, GG 为的内点, 由是任意的可知是开集. xx::,,,,nG,,,,,Gx,G (2) 设为开集,对于任意,对,有, i,1,2,,,,,nx,G1nii:i,1Gr,min{r|i,1,2,,,,n}U(x,r),Gr由于是开集,因此有使得,令,则 iiiiinnnU(x,r),GU(x,r),GGG,因而, 所以,为的内点,从而为开集.xii:::iiii,1,1i,1例1.2.1 设X是非空集合,为X上的平凡度量,则对任意,开球 dx,X0U(x,1),{x|d(x,x),1},{x}, 因而是开集,所以,X的任意子集 {x}0000G,{x}都是开集. :x问题 1.2.1 任意多个开集的交集是否一定为开集,任意多个开集的交集不一定是开集.11d(x,y),|x,y|例 1.2.2 在实数空间中,,对于任意自然数,G,(,,)Rnnnn,11,:(,,),{0}G是的开集, 但不是开集. Rn:nn,n1C(X,d)F,X定义 1.2.2 度量空间的子集称为闭集,若的余集\是开集. FFF 由上面的定理,容易看出下面定理成立.(X,d)定理 1.2.3 设是度量空间,则,X(1) 和是闭集;10(2) 任意闭集的交集是闭集;(3) 有限个闭集的并集是闭集.与闭集有着密切联系的概念是极限点.(X,d)定义 1.2.3 设F是中的集合,,若包含的任意开集都含有不同x,XxFF于的的点,则称为的极限点. xxFFR 明显地,为的极限点时,不一定属于. 例如在实数空间中,0是 F = xx 1{| n = 1, 2,… , n,… }的极限点,但. 0,FnF容易看出,有几种方法可以检查一个点是否为的极限点. xx,X(X,d)定理 1.2.4 设为度量空间, , ,则下列条件等价: F,X0F (1) x为的极限点; 0F(2) 包含x的任何一个开集都含有异于x的无穷多个点; 00x,x,xlimx,x.F (3) 在中存在序列,且 nn0n0,,n(X,d)FF定义 1.2.4 设是度量空间,,称的极限点全体为的导集,记F,XF,F:F'F'F为.称为的闭包.F,FF,[1,2]:{3,4}F',[1,2]例1.2.3 在实数空间中,若,则,且. R(X,d)FX定理 1.2.5 设是度量空间,为的子集,则下列条件等价:F (1) 是闭集;F',F(2) ;F,F(3) .CF,FF',F 证明 (1)(2) 若是闭集,则是开集. 如果,则. 如果 F',,x,F'x,F,, 则对任意,必有. F',CCCx,Fx,FF:F,F,不然,假设,则有,由于是开集,且, 但这与11x,F'矛盾.F,F:F',F(2)(3) 若F',F,则. ,CF,F,F:F',F,(3)(1) 若,则F',F.如果,则是闭集; F,X,CCx,FF,x,F',如果,则对任意,由F',F可知,因而存在开球CCCFFU(x,r):F,,F, 故,即是的内点,因此是开集,所以是闭xU(x,r),F 集.x,X(X,d)定理 1.2.6 设是度量空间,,,则下列条件等价: F,X(1) ; x,F(2) 的每个开球都包含有的点; Fxlimx,x.{x},F(3) 有序列,使得 nn,,nx,F,F:F'x,FU(x,r)证明 (1)(2) 对,若,则明显地对每个开球, ,xx,F'U(x,r)U(x,r)U(x,r)包含有的点.若,则对于的每个开球,必含有的FFx U(x,r)异于的点,所以一定含有的点. Fx11x (2)(3) 对于任意正整数,中含有的点,因而dxx,所U(x,)F,(,),nnnnn limx,x.以, n,,n{x},Fx,Flimx,x. (3)(1) 设存在,使得如果,则明显地有,nn,,nx,x{x},Fx,Fx,Flimx,x..如果,则由可知,因而由可知nnn,,nx,Fx,F',所以,.容易证明,的闭包就是包含的最小闭集,因此需要考虑下面的问题. FFU(x,r)(X,d)问题 1.2.2 在度量空间中,开球的闭包是否一定是闭球0B(x,r), 0rU(x,r)(X,d)B(x,r)x在度量空间中,都以为球心,为半径的开球和闭球 00012虽然半径一样,但开球的闭包不一定是闭球.R,(,,,,,)例1.2.4 在上,定义平凡度量,0,当 x , y 时,d(x,y)= ,1,当 x , y 时.,U(0,1)U(0,1),{0}则对于开球,由于是闭集,因此它的闭包仍是{0},不是闭球B(0,1),(,,,,,).(X,d)定义 1.2.5 设是度量空间,, 称的内点全体为的内部,记GGG,X0G为.容易证明,对于的内部和闭包,有下面的定理成立. G(X,d)F,X定理 1.2.7 设为度量空间,, ,则 G,X0G,G (1) 是开集当且仅当; G0G,G,G (2) ;00G,FG,F(3) 当G,F时,一定有, .利用闭包这一概念,还可以引进一些与闭包有关的概念.F,X(X,d)定义 1.2.6 设X为度量空间的子集,若,则称在中稠密. FFF(X,d)定义 1.2.7 设为度量空间的子集,若不包含任何内点,则称称在FFX中是疏朗的.R,(,,,,,)例1.2.5 全体有理数Q在实数空间中是稠密的,而全体自然数在中是疏朗的. ZR(X,d)在度量空间d中,利用度量,可以定义开集,闭集,闭包,内部等概念,也可13以利用开集来刻画序列依度量收敛于. dx{x}0nF. Hausdorff (1868-1942)发现对于一个给定的点集,可以不必引进度量,也能用某种方式来确定某些子集为开集,然后利用开集就可以建立闭集,闭包和序列收敛等概念,F. Hausdorff 利用这些概念建立了拓扑空间的完整理论.定义 1.2.8 设X是一个非空集合,是X的一族子集,若满足下面的三个公,,理,则称(X,)是拓扑空间 ,X,,,(1) ,,,;(2) 中任意个集合的并集属于; ,,(3) 中任意有限个集合的交集属于. ,,此时称中每一个集合为开集,则称为拓扑. ,,(X,,)(X,d)明显地,若是度量空间,为度量空间中的全体开集,则为拓扑,空间,称为度量d产生的拓扑. ,(X,,)XX例1.2.6 设是一个非空集合,为的子集的全体,则是一个拓扑,X空间,此时称为的离散拓扑.此时,对于任意,都是开集.若d为上的平凡x,Xx, X度量,则度量d产生的拓扑就是的离散拓扑.(X,,)X,{x,y,z}X,{x},{x,y},{x,z}},例1.2.7 设,={,,则为一拓扑空,z(X,,)UUy间. 但在中,对含有点和含有点的任意开集和,都有 zyU:U,,. yz 1x,y,X(X,d)明显地,在度量空间中,对于任意,只需取, 则r,d(x,y)4U(x,r):U(y,r),,,具有这种性质的拓扑空间称为Hausdorff 空间.14(X,,)定义 1.2.9 拓扑空间称为Hausdorff 空间,若对于中的任意,Xx,yx,yUx,U,,存在两个开集和, 使得,,且. UU:U,y,Uxxyxyy(X,d)另外,度量空间还具有下面例题中的性质,而具有这种性质的拓扑空间为正规空间.(X,d)FFF:F,,例题 1.2.1 设,是度量空间中的两个闭集,且,试证明1212UUF,UF,UU:U,,存在开集,,使得,,且. 12112212ccF:F,,F证明: 由于,因此.由是闭的可知是开集,故对于任意 FF,F122122 cx,Fr,0,存在,使. U(x,r),F1x2xrxUF,UU,U(x,)令,则是开集,且. 1111:2,xF1rycy,F,(,)UUy类似地,对于任意,存在,使得U(y,r),F,令,则r,0221yy:2,xF2UF,U是开集,且. 222rryx:(,)z,U:UUx:,如果存在,则由可知一定有:(,)Uy,122,xF2,yF12rryxx,F(,)z,Uy(,)y,Fz,Ux,,使且. 1222因此rryxd(x,y),d(x,z),d(y,z),,,max{r,r} xy22cy,Fd(x,y),r但这是不可能的,因为若,则与矛盾;若d(x, y) <y,U(x,r),Fx22xcx,Fx,U(y,r),Fr, 则与矛盾. y11yU:U,,F,UF,U因此由上面讨论可知,所以存在开集,且121122U:U,,. 1215(X,,)Paul S. Uryosohn (1892-1924) 还证明了每一个正规的拓扑空间都可以引进度量,使得产生的拓扑与是一致的,即每一个正规的拓扑空间都是可度量d, 化的.1.3 连续算子M. Frechet在他1906年的博士论文中,考察了一类空间,在空间中定义了LL泛函的连续性和一致收敛性等,在空间中引进并研究了列紧性,证明了在列紧集L 上的连续泛函是有界的,并在列紧上达到它的极大(小)值,这样就将实变函数的许多结果进行推广.其实,依照数学分析中函数的连续性,在度量空间中很容易引入算子的连续性.(X,d)定义 1.3.1 设和(Y,)都是度量空间,为X到Y的算子,x,X,若对,T0x,,0d(x,x),,,(Tx.Tx),,任意,存在,使得时,有,则称算子在点连续,T,,0000 XX若在上的任意点都连续,则称在上连续. TT例1.3.1 设 c 为所有收敛于0的实数列的全体,在度量 d(x, y) = sup |x - y| 0ii下是度量空间,若 T 为 c 到 c 的算子,T x = 3x + y,这里 y 为 c 的一个固定00000元,则 T 为连续映射.事实上,由于 c 是线性空间,且由d的定义可知d(x, y) = d(x - y, 0),因而对任0,,,,意 >0, 只须取 = ,则当 d(x, x) <时,有 d(Tx, Tx) = d(3x+y, 3x + y) = 000006,3d(x, x) <,因而T在x点连续,而x是c的任意点,所以T在X上连续. 0000 x(X,d) 容易看出,若是到(Y,)的算子,则在点连续当且仅当对于任意T,T016x{x}limTx,Tx.收敛于的序列,有 0nn0,,n,还可以利用开集来刻画的连续性. 另外T(X,d)Y定理 1.3.1 设和(Y,)是度量空间,则在上连续当且仅当中每X,T个开集的逆象在中是开集. X,1,1GY,证明若是的开集,则不妨设,对任意,有x,T(G)T(G),0Tx,GG,由于是开集,因此存在,因为是连续的,所以存在> 0,,TU(Tx,,),G00,1,1x,U(x,,)Tx,U(Tx,,)U(x,,),T(U(Tx,,)),T(G)使得时,有,因而, 0000 ,1,1,1故x是的内点,所以,由x是的任意点,可知是开集. T(G)T(G)T(G)00 ,1x,XGY 反之,若对于中的每个开集,都是X的开集,则对于任意 T(G)011,,,,0和任意,T(U(Tx,,))为X的开集,因此存在U(x,,),T(U(Tx,,)), 即对000d(Tx,Tx),,,,0d(x,x),,,x于任意,存在>0,使得时,有, 所以在点连续,T000 X因而在上连续. T在实数空间中,[a, b] 上的连续函数一定有界并达到它的上下界. 但在度量R 空间中,有界闭集上的连续函数不一定能达到它的上、下界,因此需要引入列紧性这一概念,列紧性是 M. Frechet在1904年发表在 Comptes Rendus 的论文引进的.下面的列紧性与紧性在实数中可由Heine-Borel-Lebesgue定理和 RBolzano-Weierstrass定理来表现.Heine-Borel-Lebesgue 定理指的是闭区间 [a, b] 为一族开区间所覆盖时,它一定为这一族中的有限个开区间所覆盖,而Bolzano-Weierstrass定理指的是有限区间中每个点列必有子列收敛于区间中的一点.(X,d)XX定义 1.3.2 设为度量空间,为的子集,若的任何序列都有在FF17中收敛的子序列,并且是闭的,则称为列紧集. F(X,d)定义 1.3.3 设为度量空间,的子集称为紧的,若的每个开覆盖XFF都有有限的子覆盖, 即如果是的一族(可列或不可列)开集,且,XGG,F,,:,1 n:G,F则一定存在有限个开集, ,使得. GG,,,,,G,,,,i2n1i,1(X,d) 在度量空间中,的子集的列紧性与紧性是一致的. X(X,d)定理 1.3.2 设是度量空间, F,X,则是列紧的当且仅当是紧FF的.由紧集的定义容易得到下列的简单性质.(X,d)定理 1.3.3 设是度量空间,则(1) 只有有限个点的子集是紧集;(2) 紧集是有界闭集;(3) 紧集的任意闭子集是紧的;(4) 任意一族紧集的交集是紧集.X,{1,2,3,,,,,n,,,,} 但度量空间的有界闭集不一定是紧的,如在中,定义平凡度F,{2,4,6,,,,,2k,,,,}d(x,y)量,则为的有界集,且是闭的,但不是紧集. XF(X,d) 度量空间的紧集上的连续函数具有许多闭区间上连续函数所具有的性质.Y(X,d)XX定理 1.3.4 设和(Y,)为度量空间,为的紧集,为到的连,FTT(F)续算子,则是紧集.y,Tx{y}{x},FT(F)证明设为的任意序列,则有,使得.由于是紧Fnnnn18x,Flimx,x的. 因此存在,使得,且.因为在点连续,所以x{x}T00n0nkkk,,limy,limTx,y,故为紧集. ,T(F)T(F)nn0kk,,,,kkf(X,d)定理 1.3.5 若为度量空间,为的紧集,为到实数的连续函XXFRf数,则一定有界,并且在X上达到上、下确界.f(F)f(F)证明由上面的定理可知,为实数的紧集,因此有界,故存在M > 0,R|f(x)|,Mf(F)f(F)使得对任意 x,有.由于为实数的紧集,因而包含上确界Rf(x),yf(x),yyyx,x,F和下确界,所以存在,使得,. 11221212(X,d)由上面定理可知,若为度量空间, 为紧集,则上每个实值连续函数FF都是有界的,但下面的问题又如何呢,(X,d)问题 1.3.1 设为度量空间,若X上的每个实值连续函数都是有界的,则X是否一定是紧的呢,XX E. Hewitt 在1948年肯定地回答了上述问题,他证明了是紧的当且仅当上的每个实值连续函数都是有界的.Émile Borel在1895年首先给出并证明了现在的Heine–Borel定理,Pierre Cousin (1895), Lebesgue (1898) 和Schoenflies (1900)推广和完善了该定理.nR定理 1.3.6 (Heine–Borel theorem)空间中的子集是紧的当且仅当是有FF 界闭集.证明当是紧集时,明显地是有界闭集. FFnRd(x,0),x,F 反过来,若是的有界闭集,则存在M > 0,使得对于任意,有 F19nnk()21/221/2(|x|),Md(0,x),(|x|),M.故对于中的任意序列, 有,因F{x}ikik,,ii,1,1(k)(k)(k)ki{x},R而对于每个固定的,有 |对任意成立,由及{x}为有界数x|,Miii(k)Ri,1列可知它一定有收敛子序列. 对于, 在中一定有收敛的子序列{x}1 (k)(k)mmRi,2;同样,对于, 在中一定有收敛的子序列,不妨仍记为{x}{x}12 (k)(k)(k)(k)mmmm,依照同样的方法,可以找到个子序列,即, ,...,n{x}{x}{x}{x}n122nR都收敛.由中度量的定义容易知道的子序列一定收敛,所以,是紧{x}F{x}kkm 集.紧集上的连续算子还具有一些关于不动点的性质.下面先看看不动点的定义和一个非常简单的例子.x,F(X,d)F,XT定义 1.3.4 设为度量空间,,为到的映射,若,使FF0Tx,xxT得 ,则称为的不动点. 000先看看下面很有意思的例子.xff例 1.3.2 若是[0,1]到[0,1]的连续函数,则在[0,1]一定有不动点,使得0f(x),x. 00f(0),0f(1),1f实际上,如果或,则明显地,在[0,1]一定有不动点.假如g(0),0f(0),0f(1),1g(x),f(x),x和都不成立,那么对于,有,并且x,(0,1)g(x),f(x),x,0g(1),0,有连续函数的中值定理可知,存在,使得,0000 f所以,在[0,1]一定有不动点.容易知道,[0,1]是R上的闭凸集,将上面的结果推广到[0,1]上的紧凸集,就得nR到了Brouwer不动点定理,L. E. J. Brouwer 在1912年证明了欧几里得空间的不20动点定理.nnRR定理 1.3.7 (Brouwer不动点定理) 设为欧几里得空间,为的紧凸集,若F Tx,xx,FT为到的连续映射,则存在,使得. FF000x,y,XFF,X 设为线性空间,,则是凸集指的是对于任意的,及任意X,x,(1,,)y,F,有. ,,(0,1)凸集非凸集1922年,G. D.Birkhoff 和O. Kellogg证明在中不动点定理成立. J. Schauder l2在1930年还把上述不动点定义推广到赋范空间,即赋范空间中的任一紧凸集具有不动点性质,而Tychonoff进一步证明局部凸空间的任一紧凸集也具有不动点性质.1.4 完备性与不动点定理{x}在数学分析讨论实数数列的极限时,大家都知道数列是Cauchy列当且仅n {x}当为收敛数列,Cauchy列这一概念亦可推广到度量空间. n,,0{x}(X,d)X定义 1.4.1 设是度量空间,为的序列,若对任意, 存在正n{x}m,n,Nd(x,x),,N整数,使得时,有,则称为Cauchy列. mnn21{x}{x}(X,d)明显地,若为度量空间的收敛列,则一定是Cauchy列,但反之nn 不然.d(x,y),|x,y|(Q,d)例1.4.1 设为全体有理数,,则为度量空间,且Q11nn(Q,d)Cauchy列,但在度量空间中不是收敛列. ,,{(1)}{(1)}nn(X,d)定义 1.4.2 若度量空间的每一个Cauchy列都收敛于中的点,则称 X(X,d)为完备的度量空间.完备的度量空间具有很好的性质,M.Frechet在他的博士论文中就已经仔细地区别完备与非完备的度量空间了.d(x,y),sup|x,y|例1.4.2 所有实数收敛数列全体c在度量下是一个完备ii的度量空间.nR{x}例1.4.3 欧几里得空间是完备的度量空间,事实上,如果是Cauchy列,k则对于每个固定的,由 in(l)(m)(l)(m)21/2|x,x|,(|x,x|),d(x,x) ,iiiilm,i1(k)(k)xx,(x){x}可知是中的Cauchy列,因而存在,使得令,Rlimx,x.iiiii,,k nRlimx,x则,所以,是完备的度量空间. k,,k常见的序列空间c,l,l(1,p,,)都是完备的度量空间. 01p{[a,b]}在数学分析中,大家都知道闭区间套定理:如果闭区间列满足如下条nn 件:22[a,b],[a,b](1) ,; n,1,2,3,,,,n,1n,1nnlim|a,b|,0(2) . nnn,,,,[a,b](n,1,2,3,,,,)lima,limb,,则存在唯一的,使得. nnnnn,,n,,在完备的度量空间,有类似的结论.(X,d)定理 1.4.1 设是完备的度量空间,, B,{x|d(x,x),r}nnn,B,B,,,,,B,B,,,,,并且limr,0.则必有唯一的. x,:B12nn,1nn1n,n,,r,,,,0limr,0n,NN证明由于,因此对于任意的,存在,使得时,有. nnk,,{x}d(x,x),r,,m,n,N对于,由 ,可知,因而是Cauchy 列.因为B,Bnmnnmnlimx,xX是完备的度量空间,所以有,使. x,Xn,,n,d(x,x),r由,可知对任意成立,因此x,:B. d(x,x),rnnnn,pnnn1n,,,d(y,x),ry,:Blimx,y 假设,则由可知,所以,即,:Bx,ynnn1nn,nn,1n,,中只含有一点.该定理的几何意义是很明显的,如果有一列闭球,像洋葱一样,闭球内还有闭球,并且半径越来越小趋于0, 则一定有一点,在所有的球里面.(X,d)X例题 1.4.1 设是一个度量空间,若对中任意一列闭球B,B,,,,,B,B,,,limr,0, 这里,当时,一定有B,{x|d(x,x),r}12nn,1nnnnk,, ,(X,d)唯一的,试证明是完备的度量空间. x,:Bn1n,1xn,NNX证明设是的Cauchy列,则对,存在,使得时,有 ,,nkkkkk,12n,n,,,,,n,,,,nd(x,x),,.不妨把取为. 12kknnkkk,1231y,B令 ,则当时,有 B,{x|d(x,x),}k,1knkk2111 d(y,x),d(y,x),d(x,x),,,nnnnk,1k,1kkk,1k,1k222B,B因而. kk,111,由可知存在唯一的,从而,因此limr,,0x,:Bd(x,x),k1kk,kkkk,,22{x}(X,d)limx,xlimx,x,由是Cauchy列可知,所以度量空间是完备的. nkn,,,,knlimr,0思考题 1.4.1 在上面定理中,若去掉条件,定理是否成立, nk,,x,y,X实际上,设为所有的正整数全体,对任意,定义 X1,1,,当 x,y 时,,,x,y,(x,y), ,,0,当 x,y 时.,,则是X上的一个度量,容易验证(X,,)是完备的度量空间.对任意正整数,取,n 1B,B,,,,,B,B,,,,就有,但B,{x|d(n,x),1,},{n,1,n,2,,,,}12nn,1n2n ,为空集. :Bnn,1思考题 1.4.2 在上面定理中,若去掉度量空间完备的条件,定理是否成立, 一个度量空间如果不是完备的,则用起来比较困难,好在F. Hausdorff早就证明一个度量空间能够,并且只能够按一种方式扩展成一个完备的度量空间.x,f(x)把某些方程写成的形式,把求解问题转化为求算子的不动点,然后利用逐次逼近法来求不动点,是一种很早就使用的方法,牛顿求代数方程的根时用的切线法就是这种方法,后来Picard用逐次逼近来求解常微分方程,S. Banach在1922年用度量空间及压缩算子描述这个方法,这就是Banach不动点定理.24(X,d)T定义 1.4.5 设是度量空间,是到的算子,若存在实数[0, XX,,x,yx,y,X,,都有 1),使得对一切d(Tx,Ty),,d(x,y)T则称为压缩算子.f|f'(x)|,,,1例1.4.4 设为实数上的可微函数,且在上有,则 RR,f(y)|,|f'(,)||x,y|,,d(x,y)d(f(x),f(y)),|f(x)f,为到的压缩算子,RR x如就是到的压缩算子. f(x),,1RR3ff反过来,若为实数上的可微函数,为到的压缩算子,则一定有RRRx,R|f'(x)|,,,1对所有的.实际上,由于fxxfxxxx,|(,,),()||(,,),|fx |'()|,lim,lim,,,1,x,0,x,0xx,,x,R|f'(x)|,,,1因此,对所有的都成立.T(X,d)T明显地,若是度量空间的压缩算子,则一定是连续的.事实上,若x,xd(Tx,Tx),,d(x,x),0T,则,因而是连续的. n0n0n0压缩算子最重要的性质是它在完备度量空间的Banach不动点定理.(X,d)TT定理 1.4.2 设度量空间是完备的,是压缩算子,则有唯一的不动点, Tx,xx即存在唯一的,使得.Xx证明在上取一固定的点,令 02nx,Tx,,,,x,Tx,Txx,Tx,Tx,, 10,10nn210p,1则对正整数n,1及,有25d(x,x),d(x,x),d(x,x)n,pnn,pn,p,1n,p,1n,d(x,x),d(x,x),d(x,x)n,pn,p,1n,p,1n,p,2n,p,2n,,,,,d(x,x),d(x,x),,,,,d(x,x)n,pn,p,1n,p,1n,p,2n,1n1121n,pn,p,n,p,n,p,n,n ,d(Tx,Tx),d(Tx,Tx),,,,,d(Tx,Tx)000000 12231n,p,n,p,n,p,n,p,nn, ,,d(Tx,Tx),,d(Tx,Tx),,,,,,d(Tx,Tx)000000,,,,12n,p,n,p,n ,,d(Tx,x),,d(Tx,x),,,,,,d(Tx,x)000000n, . ,d(x,x)10,,1(X,d)由0,,1可知为Cauchy列,因为是完备的,所以存在,使,{x}x,Xnx,Txx,TxTlimx,x.由,可知,因此为的不动点. xn,1nn,,nyx,yd(x,y),d(Tx,Ty),,d(x,y)T 假设是的另一个不动点,并且,则 ,d(x,y)T,矛盾,所以是唯一的不动点. x22TT容易看出,若是压缩算子,则也是压缩算子.但是压缩算子时,不一定TT是压缩算子.nT例1.4.5 不是压缩算子时,可能存在,使得是压缩算子. Tn,NtTx(t),x(u)dux,C[0,1]C[0,1]C[0,1]设是从空间到内的映射,对于,, T,0 d(x,y),max|x(t),y(t)|C[0,1]0,t,1.这里的度量为. 明显地,有tt d(Tx,Ty),max|x(u)du,y(u)du|,d(x,y),,0026x(t),A,y(t),B令,这里A和B为常数,则ttd(Tx,Ty),max|Adu,Bdu| ,,000,t,1,|A,B|,d(x,y),,[0,1)因此,不存在,使得d(Tx,Ty),,d(x,y)从而不是压缩算子. Tx,y,C[0,1] 对任意,有tu22d(Tx,Ty),max|[x(v),y(v)]dvdu| ,,000,t,1t1 . ,max|ud(x,y)du|,d(x,y),00,,1t22T所以,是压缩算子.A(X,d)XX推论 1.4.1 设是完备度量空间,为到的算子,若存在某个正nAA整数n,1,使得是压缩算子,则有唯一的不动点.nnnx,yT,Ad(Ax,Ay),,d(x,y)证明若,对任意的x,y,X,成立, 则令,Tx,x由上面定理可知存在唯一的,使得.. Tx,Xnn,1Tx,x,AxTAx,Ax,Ax,则由,及,可知假如x,Axd(x,Ax),d(Tx,TAx),,d(x,Ax),d(x,Ax)yyx,AxxAA矛盾,从而,即为的不动点,并且当是的另一个不动点时,一x,yxA定是的不动点, 因而,所以只有唯一的不动点. T27nxxAA 另外, 明显地,若是的不动点,则对于任意正整数,也是的不n,100动点.x,2,2,2,x例题 1.4.2 试求方程的根.X,[0,,,),d(x,y),|x,y|(X,d) 解令,则是完备的度量空间,定义T:X,X,Tx,2,x,容易验证1d(Tx,Ty),d(x,y) 2x,2xTx,x因而,存在不动点,使得,并且. 000033x,2T:X,X,Tx,2,2,2,x 明显地, 也是的不动点,0x,2x,2,2,2,x所以,方程有根. 0(X,d)思考题 1.4.3 在不动点定理中,若条件“度量空间完备”去掉,则定理成立否,d(Tx,Ty),思考题 1.4.5 在不动点定理中,若条件“存在 0<1使得 ,,,d(x,y)d(Tx,Ty),d(x,y)对任意都成立”换为“对任意都成立”,则x,yx,y定理成立否,容易找到例子,上面两个问题的答案都是否定的.x,Tx上面在证明不动点定理时,采用进行逐次迭代的方法,这是一种在n,1n。
第三章有界线性算子
第三章有界线性算子第三章有界线性算子一有界线性算子与有界线性泛函 1 定义与例设1,X X 是赋范空间,T 是X 中线性子空间)(T D 上到1X 中的映射,满足条件:对于任意)(,T D y x ∈,K ∈α,)(Ty Tx Y x T +=+Tx x T αα=)(称T 是X 中到1X 中的线性算子。
称)(T D 是T 的定义域。
特别地,称赋范空间X 上到数域K 中的线性算子为线性泛函,并且它们是到实数域或复数域分别称为实线性泛函与复线性泛函。
如果一个线性泛函f 是有界的,即)( |||||)(|M x x M x f ∈≤称为f 有界线性泛函。
此外取算子范数作为空间中的范数。
定理1.1 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,如果T 在某一点X x ∈0连续,则T 是连续的。
定理1.2 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,则T 是连续的,当且仅当,T 是有界的。
2 有界线性算子空间设1,X X 是赋范空间,用),(1X X β表示所有X 上到1X 中的有界线性算子全体。
在),(1X X β中可以自然地定义线性运算,即对于任意∈B A ,),(1X X β及K ∈α,定义Bx Ax x B A +=+))((Ax x A αα=))((不难到,两个有界线性算子相加及数乘一个有界线性算子仍有界线性算子。
此个取算子范数作为空间),(1X X β的范数,具体见)(77P 。
由此可知,),(1X X β是一个赋范线性空间,如果1X X =,把),(1X X β简记为)(X β。
在空间),(1X X β中按范数收敛等价于算子列在X 中的单位球面上一致收敛。
事实上,设∈nA A ,),(1X X β,...)2,1(=n 及}1||:||{=∈=X X x S 。
如果)(∞→→n A A n ,则对任意0>ε,存在N ,当N n >时,对于每一个S x ∈≤-||||Ax x A n1||||sup =x ||||Ax x A n -=||||A A n-ε<。
有界线性算子和连续线性泛函.ppt
Tx c x
(3)
则称 T是 A(T )到 Y 中的有界线性算子,当 A(T) X时,称 T 为X 到 Y中的有界线性
算子,简称为有界算子,对于不 满足条件(3)的算子,称为无界算子。本书主要 讨论有界算子。
定理1 设 T是赋范空间 X 到赋范空间 Y中的线性算子, 则 T 为有界算子的充要条件为 T 是 X 上连续算子。
t nd ,t [a, a 1 ]
a
n
a
1 n
n
d
,
t
(a
1
,b]
a
n
因此
n(t a),t [a,
1,t (a 1
a ,b]
1 n
]
n
bt
Tfn 1 a a fn ( )d dt
a1 t
bt
a n a fn ( )d dt a1 a fn ( )d dt
(1)
T (x) T (x)
(2)
则称T为 A 到Y中的线性算子,其中 A 称为T 的定义域,记为A(T ),TA 称为 T 的值域,记为
R(T ),当 T 取值于实(或复)域时,就称 T 为实(或复)的线性泛函。如果 T为线性算子,
在(2)中取 0,立即可得 T 0 0,即0 (T ),其中 (T )表示算子 T 的零空间
证明 若 T 有界,由(3)式,当 xn x(n ) 时,因为 Txn Tx c xn x
所以 Txn Tx 0 ,即 Txn Tx(n ) ,因此 T 连续。 反之若 T在 X 上连续,但 T 无界,这时在 X 中必有一列向量 x1, x2, x3,,使 xn 0
但
Txn n xn
定 理 5 设T是DT 上的有界线性算子,那么成立着
泛函分析之B空间上的有界线性算子
Banach空间的有界线性算子定义:E及E1都是实的线性空间,T:D⊂E→F⊂E1,IF,∀x,y∈D,T(x+y)=Tx+Ty,则T是可加的,IF∀实数α&&x∈D,有T(αx)=αTx,则T是齐次的。
可加齐次的映射称为线性映射或线性算子。
T是连续的,则T为连续线性算子。
IF T将D中任一有界集映成有界集,则T是有界的,ELSE,T是无界的定理:E,E1是实赋范线性空间,T是由E的子空间D到E1中的连续可加算子,则T满足齐次性,因此T是连续线性算子。
E,E1是赋范线性空间,T是由E的子空间D到E1中的线性算子,则T有界的充要条件是∃M>0,ST,∀x∈D,||Tx||≤M||x||。
E,E1是赋范线性空间,T是由E的子空间D到E1中的线性算子,IF T在某点x0∈D连续,则T在D连续。
E,E1是赋范线性空间,T是由E的子空间D到E1中的线性算子,则T连续的充要条件是T有界。
定义:E,E1是赋范线性空间,T是由E的子空间D到E1中的线性算子。
ST ||Tx||≤M||x||对∀x∈D都成立的整数M的下确界为T的范数,记||T||.定理:E,E1是赋范线性空间,在B(E,E1)中定义线性运算:(T1+T2)x=T1x+T2x.(αT)x=α(Tx)则B(E,E1)是一赋范线性空间。
定义:称B(E,E1)为线性算子空间,B(E)称为定义在E上的有界线性算子。
T,Tn∈B(E,E1),IF Lim||Tn-T||=0,则{Tn}按算子范数(一致算子拓扑)收敛于T定理:Tn,T∈B(E,E1),{Tn}按一致算子拓扑收敛于T的充要条件是{Tn}在任意有界集上一致收敛于TE1是B空间,则B(E,E1)也是B空间。
定义:T,Tn∈B(E,E1),IF∀x∈E,Lim||Tnx-Tx||=0,则{Tn}强(强算子拓扑)收敛于T开映射定理:有界线性算子T将B空间E映射成B空间E1中的某个第二类集F,则F=E1且∃M0>0,ST,∀y∈E1,∃x∈E,Tx=y&&||x||≤M0||Tx||推论:有界线性算子T将B空间E映射成B空间E1中的某个第二类集F,则T将E 中任何开集映成E1中的开集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 有界线性算子音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可 改善物质生活,但数学能给予以上的一切.Klein F .(克萊恩) (1849-1925,德国数学家)Banach S .在1922年建立了完备赋范线性空间的公理,证明了一些基本定理后,就讨论了定义在一个完备赋范线性空间上而取值为另一个完备赋范线性空间的算子,在这类算子中最重要的是连续加法算子,所谓加法算子是指对所有x ,y ,都有Ty Tx y x T +=+)(.容易证明,T 是连续加法算子时,必有Tx x T αα=)(成立.Banach S .证明了若T 是连续的加法算子,则存在常数0>M ,使得||||||||x M Tx ≤.另外他还证明了若}{n T 是连续加法算子序列,T 也是加法算子,且对任意X x ∈,都有Tx x T n n =∞→lim ,则T 也是连续的.Hahn H .在1922年证明了,若X 是一个完备赋范空间,}{n f 为X 上的一列线性连续泛函,且对任意X x ∈,)}({x f n 都有上界,则||}{||n f 一定是有界的.Banach S .和Steinhaus H .在1927年证明了,若n T 为完备赋范空间X 到赋范空间Y的线性连续算子,且对任意X x ∈,||}{||x T n 都有界,则||}{||n T 一定有界,这就是Banach 空间理论中最重要的定理之一,即一致有界原理.Neumann Von J ..在1929年至1930年还引进并讨论了算子的几种收敛性.在1932年,Banach S .出版了线性算子理论(aires e lin rations e op des orie e Th ''')一书,书中包括了当时有关赋范线性空间的绝大部分结果,而非常著名闭图像定理就是该书中一个定理的推论.3.1 有界线性算子算子就是从一个空间到另一个空间映射,算子可分为线性算子与非线性算子.定义3.1.1 设X 和Y 都是赋范空间,T 是从X 到Y 的算子,且满足(1) Ty Tx y x T +=+)(, X y x ∈,任意; (2) Tx x T αα=)(, K X x ∈∈α,任意.则称T 为X 到Y 的线性算子.明显地,若Y 是数域K ,则X 到K 的线性算子就是线性泛函.例 3.1.1 定义从∞l 到0c 算子)2()(i i i xx T =则对任意∈)(i x ∞l ,有0>M ,使得∞<≤M x i ||sup .故)0(02|2|→→≤i M x i i i .因此0)(c x T i ∈ ,即T 是∞l 到0c 的算子,并且Ty Tx y x y x y x T iii i iii βαβαβαβα+=+=+=+)2()2()2()( 所以T 是∞l 到0c 的线性算子.例 3.1.2 设T 是从0c 到nR 的算子,且对任意0)(c x x i ∈=,定义)(i y Tx =,这里n i ≤时,i i x y =, n i >时,0=i y ,则T 是从0c 到nR 的线性算子.类似于线性连续泛函,对于线性连续算子,容易看出下面定理成立.定理 3.1.1 设T 是赋范空间X 到Y 的线性算子,则T 在X 上连续当且仅当T 在某个X x ∈0处连续.线性算子的连续与有界性有着密切的联系.定义 3.1.2 设T 是赋范空间X 到Y 的线性算子,若存在数0>M ,使得||||||||x M Tx ≤,X x ∈对任意成立.则称T 是有界线性算子,否则称为无界的.类似于线性有界泛函,有下面的定理.定理3.1.2 设T 是赋范空间X 到Y 的线性算子,则T 是有界的当且仅当T 是连续的.由上面定理可知,当T 是X 到Y 的线性连续算子时,必有0>M ,使得||||||||x M Tx ≤由此对0≠x ,有+∞<≤M x Tx ||||||||. 定义3.1.3 若T 是X 到Y 的线性连续算子,则称||||||||sup||||0x Tx T x ≠= 为T 的范数.容易看出,||||sup ||||sup ||||sup ||||1||||1||||1||||Tx Tx Tx T x x x <≤====.例 3.1.3 设X 是赋范空间,I 是X 到X 的恒等算子,则I 是连续的,且1||||sup ||||sup ||||1||||1||||=====x Ix I x x .有限维赋范空间上的线性算子的连续性显得特别简单明了.定理 3.1.3 若X 是有限维赋范空间,Y 是任意赋范空间,则X 到Y 的任意线性算子T 都是连续的.证明 设X 是n 维赋范空间,},,{1n e e 是X 的Schauder 基,则对任意X x ∈,有∑==ni i i e x 1α.由于T 是线性的,故∑==ni i i Te Tx 1α).||||}(max{||||||||||||||||111∑∑∑===≤≤=ni ii i ni ini ii Te Te TeTx ααα对任意X x ∈,定义∑==ni ix 11||||||α,则1||||⋅是X 上的范数,因此1||||⋅与||||⋅等价,即存在0>C ,使得||||||||||11x C x ni i≤=∑=α令||}m ax {||i Te C M =,则||||||||x M Tx ≤所以,T 是X 到Y 的连续线性算子.若用),(Y X L 记所有从赋范空间X 到赋范空间Y 的线性连续算子,则),(Y X L 在线性运算x T x T x T T 2121)(βαβα+=+下是一个线性空间,在空间),(Y X L 中,由算子范数的定义有||||||||||||2121T T T T +≤+和||||||||||T T λλ=,以及0||||=T 时0=T 成立.因此),(Y X L 在算子范数||||⋅下是一个赋范空间,并且当Y 是Banach 空间时,),(Y X L 也是Banach 空间.定理 3.1.4 设X 是赋范空间,Y 是Banach 空间,则),(Y X L 是Banach 空间. 证明 设}{n T 为),(Y X L 的Cauchy 列,因此对任意0>ε,存在N ,使得N n m >,时ε<-||||n m T T对任意X x ∈,有||||||||||||||)(||||||x x T T x T T x T x T n m n m n m ε<⋅-≤-=-因此}{x T n 为Y 中的Cauchy 列,由Y 的完备性质可知,存在Y y ∈,使得y x T n n =∞→lim定义X 到Y 的算子, x T y Tx n n ∞→==lim ,易知T 是线性的.由于0||||||||||||||→-≤-n m n m T T T T ,因此||}{||n T 为R 中的Cauchy 列,从而存在0>M ,使得.,||||都成立对任意N n M T n ∈≤故||||||||lim ||||x M x T Tx n m ≤=∞→,从而T 是X 到Y的线性连续算子.由上面证明可知对任意0>ε,存在N ,使得N n m >,时,有都成立对任意X x x x T T x T x T n m n m ∈<⋅-≤-||,||||||||||||||ε.令∞→m ,则 因此ε<-=-∈≠||||||||||||,0x Tx x T SupT T n Xx x n对任意N n >成立,从而T T n →,所以,),(Y X L 是完备的. 由于数域K 完备,因此容易看到下面结论成立.推论3.1.1 对于任意赋范空间X ,),(K X L 一定完备.后面都将),(K X L 记为*X ,称之为X 的共轭空间,因此所有赋范空间X 的共轭空间*X 都是完备的.3.2 一致有界原理设X 和Y 是Banach 空间.}|{∧∈ααT 是),(Y X L 中的一族有界线性算子,一致有界原理指的是若对于任意}|||{||,∧∈∈ααx T X x 是有界集,则}|||{||∧∈ααT 一定是有界集,即+∞<∧∈||||sup ααT .其实,这一定理的一些特殊情形,许多数学家早就注意到了,如Hellinger Lebesgue ,和Toeplitz 等,Hahn H .在1922年总结了他们的结果,证明了对Banach 空间X 上的一列线性泛函}{n f ,若任意|})({|,x f X x n ∈有界,则||}{||n f 一定有界.独立地,Banach S .证明了比Hahn H .更一般的情形,即设}{n T 是Banach 空间X 到Banach 空间Y 的一列算子,若对任意||}{||,x T X x n ∈有界,则||}{||n T 一定有界,最后在1927年Banach S .与Steinhaus H .利用Baire 在1899年证明的一个引理,证明了一致有界原理.||||||||x x T x T n ε<-引理 3.2.1 (Baire 引理) 设}{n F 是Banach 空间X 中的一列闭集,若≠∞=01)( n n F φ,则存在某个N 使得≠0N F φ.下面举两个例子.例 3.2.1 在R 中,]12,11[n n F n -+=, 则)2,1(1=∞= n n F 有内点,故必有某个≠0N F φ.例 3.2.2 在R 中,},,2,1{n F n =,则对任意n ,=0N F φ,且,,2,1{1=∞=n nF},1, +n n , 所以=∞=01)( n n F φ.在1912年,Helly 建立了],[b a C 上的一致有界性原理,Banach 空间上的一致有界性原理是Banach [1922],Hahn [1922]和t Hildebrand 给出的,Steinhaus H .1927年以B a n a c h 和他两个人的名义在《数学基础》第9卷上发表了该定理.它断言,在Banach 空间X 上,如果有一列算子n T ,能对每个X x ∈,数列),2,1||}({|| =n x T n 都有上界x M ,那么必存在常数M ,使得||}{||n T 有界.这个由各点x 的局部有界性推广到在一个单位球上整体地一致有界性的深刻定理就叫Steinhaus Banach -定理.定理 3.2.1 (一致有界原理) 设X 是Banach 空间,Y 是赋范线性空间,}|{∧∈ααT 是),(Y X L 中的一族有界线性算子,若对任意X x ∈,有+∞<||}sup{||x T α则+∞<||}sup{||αT证明 对任意n ,令 ∧∈≤∈=αα}|||||{n x T X x F n ,则n F 是X 闭集,且X F n n =∞= 1,由于≠=∞=001)(X F n n φ,因此由Baire 引理可知存在某个N ,使得≠0N F φ,故存在n F x ∈0及0>r ,使得N F r x U ⊂),(0,因为N F 是闭集,所以N F r x B r x U ⊂=),(),(00因此对于任意X x ∈, 1||||=x ,有N F r x B rx x ⊂∈+),(00故对任意α,有N rx x T ≤+||)(||0α又由于||)(||||||||||00rx x T x T x rT +≤-ααα, 故+∞<+≤+≤∧∈||)||sup (1||)||(1||||00x T N r x T N r x T αααα令||)||sup (10x T N r M αα∧∈+=,则M 与x 无关,且+∞<M .所以+∞<≤==M x T T x ||||sup ||||1||||αα问题 3.2.1 在一致有界原理中,X 的完备性能否去掉? 例 3.2.3 设X 为全体实系数多项式,对任意X x ∈||max ||||,)(111i ni i ni i x tt x x αα≤<-====∑ ,则||)||,(⋅X 是赋范空间,但不完备,在X 上一致有界原理不成立.事实上,对任意X x ∈,x 可以写成11)(-=∑=i ni i tt x α,这里存在某个x N ,使得xN i >时,0=i α,在X 上定义一列泛函n f :∑==ni in x f 1)(α, 这里11)(-=∑==i ni i tt x x α由|||||||)(|1x n x f ni in ≤=∑=α可知),(R X L f n ∈,且对于任意X x ∈,有∑∑∞=--===1111i i i i mi i ttx αα故∑∑==≤=ni ini i n x f 11|||||)(|αα(对于固定的n x ,是固定的),因此+∞<≤∞<≤|||||)(|sup 1x m x f n n . 但对于任意N k ∈,取kt t t x +++= 1)(0,有1}1,,1,1,1m ax {||||0=⋅⋅⋅=x ,且.)(|})(sup{|||}sup{||00k x f x f f k n n =≥≥由k 的任意性可知}||sup{||+∞=n f ,因此,}{n f 不是一致有界的.推论3.2.1 设X 是赋范空间,X x ⊂∧∈}|{αα,若对任意*∈X f ,有+∞<∧∈|)(|sup ααx f ,则+∞<∧∈||||sup ααx .证明 定义R X T →*:α为)()(ααx f f T =则αT 是线性算子,且对固定的α,有|||||||||)(||)(|αααx f x f f T ⋅≤=故αT 是线性有界算子.由于+∞<=∧∈∧∈|)(|sup |)(|sup ααααx f f T ,对任意固定的*∈X f 都成立,并且*X 是完备的,所以由一致有界原理可知+∞<∧∈||||sup ααT但|||||)(|sup |)(|sup ||||1||||1||||ααααx x f f T T f f =====,所以+∞<∧∈||||sup ααx .Neumann Von J ..在赋范空间),(Y X L 中引进几种不同的收敛性.定义3.2.1 设X ,Y 是赋范空间,),(Y X L T n ∈, ),(Y X L T ∈,则(1) 若0||||→-T T n ,称n T 一致算子收敛于T ,记为T T n −→−⋅||||; (2) 若对任意 0||||,→-∈Tx x T X x n ,称n T 强算子收敛于T ,记为T T sn −→−; (3)若对任意X x ∈, *∈Y f ,有0|)()(|→-Tx f x T f n ,称n T 弱算子收敛于T ,记为T wT n −→−.由上面的定义容易看出,算子的收敛性有如下关系:定理 3.2.2 (1) 若T T n −→−⋅||||,则T T sn −→−;(2) 若T T s n −→−,则T T wn −→−.值得注意的是上定理中反方向的推导一般不成立.例3.2.4 在1l 中,定义11:l l T n →为),,,0,,0(21 ++=n n n x x x T则),(11l l L T n ∈,且对任意 1l x ∈,有∑∞+=++→==-1210||||),,,0,,0(||||||n i in n n xx x x x T θ因此θ−→−sn T ,但 1||),0,1,0,,0(||||||||sup ||||11||||==≥=-+= n n n x n e T x T T θ所以,n T 不一致收敛于零算子θ.定理 3.2.3 设X 是Banach 空间,X 是赋范空间),(Y X L T n ∈,若对任意}{,x T X x n ∈收敛,则一定存在),(Y X L T ∈,使得n T 强算子收敛于T .证明 由于}{x T n 的收敛对任意x 都成立,故可定义x T Tx n n ∞→=lim ,由n T 的线性可知T 是线性的.由于对任意}{,x T X x n ∈收敛,因此||}{||x T n 也是收敛的,从而+∞<||}sup{||x T n ,根据一致有界原理,有+∞<≤M T n }||sup{||,因而||||||||||||sup ||||lim ||||x M x T x T Tx n n n ≤≤=∞→.即),(Y X L T ∈,显然T T sn −→−.定理 3.2.4 设X , Y 是Banach 空间,),(Y X L T n ∈, 则}{n T 强算子收敛的充要条件为(1)存在0>C ,使得+∞<≤C T n ||}sup{||;(2)存在 X M ⊂,使得X M =且对于任意 }{,x T M x n ∈收敛.证明 若T T sn −→−,则(2)明显成立. 若对于任意 X x ∈,有Tx x T n n =∞→lim . 故+∞<||}sup{||x T n ,由一致有界原理可知||}{||n T |是有界的.反之,若(1),(2)成立, 对任意X x ∈及任意0>ε,由X M =知一定存在M y ∈,使得Cy x 3||||ε<-因为对任意M y ∈,}{y T n 收敛,所以存在N ,使得N n m >,时,有3||||ε<-y T y T n m故CCCCy x T y x T x T y T y T y T y T x T x T x T n m n n n m m m n m 333||||||||3||||||||||||||||||||||||εεεε++≤-++-≤-+-+-≤-.由于Y 是完备的,因而}{x T n 是收敛的,定义x T Tx n n ∞→=lim ,则),(Y X L T ∈,所以 T T sn −→−. 推论3.2.2 设X 是Banach 空间,Y 是赋范空间,),(Y X L T n ∈,若T T sn −→−,则 ||||lim ||||n n T T ∞→≤证明 由T T sn −→−可知,对任意X x ∈,有 x T Tx n n ∞→=lim由于是Banach 空间,并对任意X x ∈,有∞<||}sup{||x T n ,因此∞<||}s up {||n T,从而,||||||||lim ||||lim ||||lim ||||x T x T x T Tx n n n n n n ⋅≤==∞→∞→∞→,所以||||lim ||||n n T T ∞→≤.例题3.2.1设X 是有限维范空间,Y 是赋范空间,∧∈∈αα),,(Y X L T . 若对任意X x ∈,有+∞<∧∈||||sup x T αα,试不用一致有界原理证明+∞<∧∈||||sup ααT .证明 在X 上定义||}||sup ||,max{||||||1x T x x αα∧∈=. 由于(1)对任意X x ∈, +∞<≤1||||0x ;(2)当0||||1=x 时,0||||=x 从而0=x .且0=x 时,显然有0||||1=x ;(3)11||||||||||x x αα=;(4)||})(||sup ||,max{||||||1y x T y x y x ++=+α||}||sup ||,max{||||}||sup ||,max{||||}||sup ||||sup ||,max{||y T y x T x y T x T y x αααα+≤++≤11||||||||y x +=因此,1||||⋅是X 上的一个范数.由于X 是有限维范空间,因此范数||||⋅和1||||⋅是等价的,故存在0>C ,使得||||||||1x C x ≤,对所有的X x ∈都成立,因而||||||||sup x C x T <∧∈αα,所以+∞<∧∈||||sup ααT .3.3 开映射定理与逆算子定理定义 3.3.1 设X 和Y 是赋范空间,Y X T →:, 若T 把X 中的开集映成Y 中的开集,则称T 为开映射.例 3.3.1 设X 是实赋范空间,则X 上的任意非零线性泛函f f ,一定是X 到R 的开映射.问题 3.3.1 设X ,Y 是Banach 空间,),(Y X L T ∈, 问T 何时一定是开映射?定理 3.3.1 (开映射定理)设X 和Y 是Banach 空间,),(Y X L T ∈,若T 是满射,即Y TX =,则T 是开映射.开映射定理的证明要用到下面的引理, 它是Schauder 在1930年得到的.引理 3.3.1 设X ,Y 是Banach 空间,),(Y X L T ∈,若Y TX =,则存在0>ε,使得)1,0(),0(TU U ⊂ε.引理的几何意义是如果)1,0(U 是X 中的开球,则)1,0(TU 为Y 中的点集,且Y 中的0点一定是)1,0(TU 的内点.开映射定理的证明设U 是X 中的任意开集,则对任意TU y ∈0,存在U x ∈0,使得00Tx y =,下面只须证明0Tx 为)(U T 的内点.由于U 是开集,因此存在0>r ,使得U r x U ⊂),(0,故),0(),0()},0(|{)},0(|{),(00000r TU y r TU Tx r U x Tx Tx r U x x x T r x TU TU +=+=∈+=∈+=⊃.由上面引理可知,存在0>ε,使得)1,0(),0(TU U ⊂ε,因此),0(),0(r TU r U ⊂ε, 所以),(),0(),0(000εεr y U r U y r TU y TU =+⊃+⊃,即0y 为TU 的内点, 因而 TU 为 Y 的开集.推论3.3.2 若X 是Banach 空间,则对所有f f X f ,0,≠∈*一定是开映射.证明 不失一般性,不妨设R K =,则由于0≠f ,因此存在X x ∈0,使得1)(0=x f ,故对任意R ∈α,有X x y ∈=0α,使得αα==)()(0x f y f ,因而f 是X 到R 的满射.所以,由开映射定理可知f 为开映射.思考题3.3.1 若f 是开映射,则1-f存在时是否1-f 一定连续?定义 3.3.2 若X ,Y 为赋范空间,),(Y X L T ∈,若对任意y x X y x ≠∈,,时,必有Ty Tx ≠,则算子X TX T →-:1, 称为T 的逆算子.明显地,若),(Y X L T ∈,1-T 存在,则1-T 也是线性的.例题 3.3.1 设X ,Y 是赋范空间,),(Y X L T ∈,则),(1X Y L T ∈-,当且仅当存在),(X Y L S ∈,使得Y X I S T I T S =⋅=⋅,且此时一定有S T=-1. 证明 若),(1X Y L T ∈-,令1-=T S ,明显地,有Y X I T T S T I T T T S =⋅=⋅=⋅=⋅--11,反之,如果存在),(X Y L S ∈,使得Y X I S T I T S =⋅=⋅,则对任意y x ≠,有Ty S y x Tx S ⋅=≠=⋅,因此Ty Tx ≠,故T 是单射,从而1-T 存在.对任意Y y ∈,有X Sy ∈故y y I Sy T Y ==)()(,令Sy x =,则y Tx =,因而T 是满射,明显地,1-T 是线性的,因此1-T 为Y 到X 的线性算子,又因为S S T T S T T I T Y =⋅⋅=⋅=---)()(111,所以 S T =-1),(X Y L ∈.逆算子定理是Banach S .在1929年给出的,利用开映射定理,容易证明逆算子定理成立.定理3.3.5. (Banach 逆算子定理)设X ,Y 是Banach 空间,),(Y X L T ∈,若T 是双射,则1-T 存在,且),(1X Y L T ∈-.证明 由于T 是一一对应,且满的,因此1-T 存在且是线性的.由于X ,Y 是Banach 空间,且Y TX =,因而由开映射定理可知T 开映射,从而对任意开集X U ⊂,有TU U T =--11)(也是开集,所以1-T 连续,即),(1X Y L T ∈-.在逆算子定理中,完备性的条件必不可少.例 3.3.2 设},0,,|)0,,0,,,{(1=≥∈=i i n x n i n R x x x X 时对某个 ||sup ||||i x x =,则||)||,(⋅X 是赋范空间.定义X X T →:为),31,21,(321 x x x Tx =则),(X X L T ∈,且1-T 存在,但1-T 是无界的,这是因为对X x n ∈=),0,1,,0( , 有n x T n x T n n ==--||||),,0,,,0(11 ,因此n T ≥-||||1对任意n 成立,所以1-T 不是连续线性算子.推论 3.3.3 设||||⋅和1||||⋅是线性空间上的两个范数,且||)||,(⋅X 和)||||,(1⋅X 都是Banach空间,若存在0>β, 使得||||||||1x x β≤,则||||⋅与1||||⋅等价. 证明 定义恒等算子→⋅||)||,(:X I )||||,(1⋅X 为x Ix =,则由||||||||||||11x x Ix β≤=可知I 是连续的.显然I 是双射,因而由逆算子定理可知,1-I存在且有界. 令||||11-=I α,则 111||||||||||||||||x I x x I --≤= 所以11||||||||||||1x x I ≤-, 即||||||||||||1x x x βα≤≤.问题 3.3.1 设X 为[0,1]上的全体实系数多项式,对任意X x ∈,,)(11-=∑==i n i it t x x α定义∑=≤≤==n i i t x t x x 12101|||||||,)(|sup ||||α ,则21||||||||⋅⋅和都是X 的范数,并且21||||||||x x ≤对所有的X x ∈成立,但11||||||||⋅⋅和不是等价的范数,为什么?实际上,对于,)1()(1211-=+∑-==i n i i t t x x 则1|)(|sup ||||101==≤≤t x x t , n x ni i 2||||||12==∑=α,因此不存在常数0>β,使得12||||||||x x β≤对所有的X x ∈成立,所以21||||||||⋅⋅和不是等价的范数.3.4 闭线性算子与闭图像定理在量子力学和其他一些实际应用中,有一些重要的线性算子并不是有界的,例如有一类在理论和应用中都很重要的无界性算子--闭线性算子,在什么条件下闭线性算子是连续呢?这一问题的研究,Hellinger E .和Toeplitz O .1910年在关于Hilbert 空间对称算子的工作中就开始了,然后是Hilbert 空间中共轭算子连续性的研究,1932年才发展成闭线性算子在赋范空间上的结果,这就是非常著名闭图像定理.若||)||,(⋅X 和||)||,(⋅Y 是赋范线性空间,则在乘积Y X ⨯空间中可以定义范数,使之成为赋范空间,对),(11y x 和K Y X y x ∈⨯∈λ,),(22,线性空间Y X ⨯的两种代数运算是),(),(),(21212211y y x x y x y x ++=+),(),(y x y x λλλ=并且范数定义为||||||||||),(||y x y x +=例3.4.1 乘积空间},|),{(2R y x y x R R R ∈=⨯=,且||||||||||),(||y x y x +=.明显地,有如下的结论.定理 3.4.1 设X 和Y 都是赋范空间Y X y x z n n n ⨯∈=),(,则),(y x z z n =→Y X ⨯∈当且仅当Y y X x n n ∈∈,且y y x x n n →→,.定理3.4.2 若X 和Y 都是Banach 空间,则Y X ⨯也是Banach 空间.在下面,考虑从定义域X T D ⊂)(到Y 的线性算子,)(T D 为X 的子空间.定义3.4.1 设X ,Y 是赋范空间,Y T D T →)(:是定义域X T D ⊂)(上的线性算子,若T 的图像}),(|),{()(Tx y T D x y x T G =∈=在赋范空间Y X ⨯中是闭的,则称T 为闭线性算子.定理3.4.3 设X ,Y 是赋范空间,Y T D T →)(:是线性算子,则T 是闭线性算子当且仅当对任意)(}{T D x n ⊂,满足y Tx x x n n →→,时,必有)(T D x ∈且y Tx =.证明 若T 是闭线性算子,则是)(T G 闭集,则对于任意)(T D x n ∈,当y Tx x x n n →→,时, 有),(),(y x Tx x n n →,因此)(),(T G y x ∈,由)(T G 的定义,有)(T D x ∈,y Tx =.反之,若)(),(T G Tx x n n ∈,且),(),(y x Tx x n n →时一定有)(T D x ∈,y Tx =, 从而)(),(),(T G Tx x y x ∈=.所以,)(T G 是闭集,即T 是闭线性算子.定理3.4.4 设X ,Y 是赋范空间,Y T D T →)(:是线性连续算子,若)(T D 是闭集,则T 一定是闭线性算子.证明 设)(T D x n ∈,y Tx x x n n →→,,则由T 是连续的知Tx Tx n →,故Tx y =. 由于)(T D 是闭集,因此)(T D x ∈,所以T 是闭线性算子.推论3.4.1 若Y X T →:是线性连续算子,则T 一定是闭线性算子.这是因为这时X T D =)(是闭集,反过来,一般来说,闭线性算子不一定连续.例3.4.2 设)(|)({]1,0[1t x t x C =为]1,0[上具有连续导数的},|)(|sup ||||10t x x t ≤≤=,则 ||)||],1,0[(1⋅C 是一个赋范空间,在]1,0[1C 上定义线性算子T 如下:]1,0[]1,0[:1C C T →]1,0[)(],1,0[),()(1C t x x t t x dt d t Tx ∈=∈=任意任意 则T 是]1,0[1C 到]1,0[C 的闭线性算子,但T 不是线性连续的.事实上,若]1,0[1C x n ∈ , y Tx x x n n →→,,则)(t x n 在]1,0[上“一致收敛”于)(t x ,并且n x '在]1,0[上也“一致收敛”于)(t y ,因而)(t x 具有连续的导函数)('t x ,且)()('t y t x =,所以]1,0[1C x ∈,且y Tx =,即T 是闭线性算子.令n n n t t x x ==)(,则]1,0[1C x n ∈且1||sup ||||10==≤≤n t n t x ,但n nt Tx n t n ==-≤≤||sup ||||110,因此T 不是线性连续算子.问题3.4.1 若T 是X T D ⊂)(到Y 的闭线性算子,则T 是否把闭集映为闭集呢? 例3.4.3 对任意0)(c x x i ∈=,定义线性算子00:c c T →为)2(i ix Tx = 则T 是0c 到0c 的线性连续算子,且0)(c T D =,因此T 是闭线性算子.对于闭集0c ,0Tc 不是0c 的闭子集.事实上,对于)0,,0,21,,21,21(2 n n y =, 0c y n ∈,且有)0,,0,1,,1,1( =n x ,0c x n ∈,使得n n y Tx =,故0Tc y n ∈,但因为n y 趋于),21,21,,21,21(12 +=n n y ,故不存在0c x ∈,使得y Tx =,所以0Tc y ∉,即0Tc 不是0c 的闭子集.在什么条件下闭线性算子一定是连续呢?这就是闭图像定理所研究的问题.定理3.4.5(闭图像定理)设X 与Y 是Banach 空间,Y T D T →)(:是闭线性算子,(这里X T D ⊂)(),若)(T D 在X 中是闭集,则T 一定是)(T D 到Y 的线性连续算子.证明 由于X 和Y 是Banach 空间,因此Y X ⨯也是Banach 空间,又由于X 是Banach 空间,且)(T D 是X 的闭子集,因此)(T D 作为X 子空间是完备的.由T 是闭线性算子可知)(T G 是Y X ⨯的闭子集,由于T 是线性的,因而)(T G 是Y X ⨯的子空间,从而)(T G 是Y X ⨯的完备子空间.定义从Banach 空间)(T G 到Banach 空间)(T D 的线性算子P :)()(:T D T G P →).(),(,),(T G Tx x x Tx x P ∈=任意则P 是线性算子,且||),(||||||||||||||||),(||Tx x Tx x x Tx x P =+≤=.故1||||≤P ,从而))(),((T D T G L P ∈.由P 的定义可知P 是双射,因而由逆算子定理可知1-P 存在,且))(),((1T D T G L P∈-,故对任意)(T D x ∈,有 ||||||||||||||),(||||||||||||||11x P x P Tx x Tx x Tx ⋅≤==+≤--所以,T 是)(T D 到Y 的线性连续算子.若T 的定义域X T D =)(,即T 是X 到Y 的线性算子,则闭图像定理有下面简明形式. 推论 3.4.2 设X ,Y 是Banach 空间,且T 是X 到Y 的线性算子,则),(Y X L T ∈当且仅当T 是闭线性算子.例题 3.4.1 设X ,Y ,Z 是Banach 空间,若),(Z X L A ∈,),(Z Y L B ∈,并对任意的 X x ∈,方程By Ax =都有唯一解y ,试证明由此定义的算子y Tx Y X T =→,:,有),(Y X L T ∈.证明 容易验证T 是线性算子,要证明T 是线性连续算子,只需证明T 是闭算子.对于X x n ∈, Y y Tx x x n n ∈→→,,有n n BTx Ax =.由于B A ,都是连续的,因此By BTx Ax Ax n n n n ===∞→∞→lim lim从而y Tx =所以,T 是闭算子,由闭图像定理可知,),(Y X L T ∈.习题三3.1 设算子0:c l T →∞,∞∈==l x x x Tx i i i)(),2(任意,试证明T 是线性有界算子,并求||||T . 3.2 设1)(l x i ∈,算子11:l l T →, 1)(),3(l x x x Tx i ii ∈==任意,试证明T 是线性有界算子,并求||||T . 3.3 对任意0c x ∈,定义∑∞==1!)(i i i x x f ,试证明*∈0c f ,并求||||f . 3.4 设),(Y X L T ∈,试证明||||sup ||||1||||Tx T x <=.3.5 设X 和Y 是实赋范空间,T 为X 到Y 的连续可加算子,试证明),(Y X L T ∈.3.6 设c 是所有收敛实数列全体,范数||sup ||||i x x =,}{i α为实数列,若对任意c x ∈,都有∞<=∑∞=|||)(|1i i i x x f α,试证明i i i x x f ∑∞==1)(α为c 上的线性连续泛函,并且∞<=∑∞=||||||1i i f α.3.7 设X ,Y 是赋范空间,}0{≠X , 试证明Y 是Banach 空间当且仅当),(Y X L 是Banach 空间.3.8 设X 是Banach 空间,*X f n ∈且对任意)()(lim ,x f x f X x n n =∈∞→,试证明*∈X f . 3.9设X 是实赋范空间,X x n ⊂}{, 试证明对所有的*∈X f ,都有∞<∑∞=|)(|1i i x f 当且仅当存在0>M ,使得对任意的正整数n 和1±=i δ,都有M x in i i <∑=||||1δ. 3.10 设X ,Y 是赋范空间,Y X T →:是线性算子,且T 是满射,若存在0>M ,使得||||||||x M Tx ≥对任意X x ∈成立,试证明1-T 是线性连续算子,且MT 1||||1≤-. 3.11 设T 为赋范空间X 到赋范空间Y 的闭线性算子,且1-T 存在,试证明1-T 是闭线性算子.3.12 设X 是Banach 空间,f 是X 上的非零线性泛函,试证明f 一定是开映射.3.13 设X 是赋范空间,T 是从X 到X 的线性算子,X T D =)(,S 是从*X 到*X 的线性算子,*=X S D )(若对任意*∈∈X f X x ,,有)())((Tx f x Sf =,试证明T 和S 都是线性连续算子.3.14 设X ,Y 是赋范空间,T 为X 到Y 的闭线性算子,F 为X 的紧集,试证明)(F T 为Y 的闭集.3.15 设X 为Banach 空间,T 为X 到X 的线性算子,若T T =2,且)(T N 和)(T R 都是闭的,试证明),(X X L T ∈.3.16 设X ,Y 赋范空间,),(,Y X L T T n ∈,若n T 强收敛于T ,试证明n T 弱收敛于T .3.17 设22:l l P n →,)0,,0,,,,(),,,,,(21121 n n n n x x x x x x x P =+,试证明n P 强收敛于I ,但n P 不一致收敛于I .哈恩Hans Hahn 于1879年9月27日出生于奥地利的维也纳,他在维也纳大学跟Gustav Ritter von Escherich攻读博士学位, 1902获得博士学位,博士论文题目为Zur Theorie der zweiten Variationeinfacher Integrale.他是切尔诺夫策(Chernivtsi)大学(1909–1916),波恩大学(1916–1921)和维也纳大学(1921–1934)的教授.Hahn的最早的结果对古典的变分法做出贡献,他还发表了关于非阿基米德系统的重要论文, Hahn是集合论和泛函分析的创始人之一,泛函分析的重要定理之一, Hahn-Banach定理就是Hans Hahn(1879-1934) 以他的名字命名的.他在1903 到1913间对变分法做出了重要的贡献.在1923他引进了Hahn 序列空间.他还写了关于实函数的两本书Theorie der reellen Funktionen (1921)和Reelle Funktionen (1932).Hahn获得过很多荣誉,包括1921年的Lieban奖,他是奥地利科学院院士,他还是Calcutta 数学学会名誉会员.Hahn对数学的成就主要包括著名的Hahn-Banach定理, 其实很少人知道,实际上Hahn 独立地证明了(Banach和斯坦豪斯得出的)一致有界原理. 其他定理还有Hahn分离定理、维他利-哈恩-萨克斯定理(Vitali-Hahn-Saks theorem)、哈恩-马祖凯维奇定理(Hahn-Mazurkiewicz theorem)和哈恩嵌入定理(Hahn embedding theorem)等. Hahn的数学贡献不限于泛函分析,他对拓扑学、集合论、变分法、实分析等都有很好的贡献.同时,他也活跃于哲学界,是维也纳学派的一员.。