最新1-时间序列分析简介
时间序列分析第一章 时间序列 ppt课件
31
例2.3 Poisson过程和Poisson白噪声
如果连续时的随机过程满足 (1) N(0) 0 ,且对任何的t>s≧0和非负整数k,
P ( N ( t ) N ( s ) k ) (( t s ) ) k e x p [ ( t s ) ] ,其 中 是 正 数 k !
n X1,X2,
观测样本:随机序列各随机变量的观测样本。 个有序观
测值 x1,x2,x3 xn
一次实现或一条轨道:时间序列的一组实际观测。 时间序列分析的任务:数学建模,解释、控制或预报。
5
二.时间序列的分解
X t T t S t R t,t 1 ,2 ,
趋势项{T t } ,季节项{ S t } ,随机项{ R t } 注:1.单周期季节项:S(ts)S(t), t 只需要 S1,S2, SS
由季节项和随机项组成, 季节项估计 可由该数据的每个季节平均而得.
{
S
t
}
3. 随机项估计即为
方法一:分段趋势法
1 趋势项(年平均)
8
减去趋势项后,所得数据{Xt Tˆt}
9
2、季节项 {Sˆt }
10
3.随机项的估计 R ˆt x t T ˆt S ˆt,t 1 ,2 , ,2.4
11
方法二:回归直线法
(2){N(t)}有独立增量性:对任何n>1和 0 t0 t1 tn 随机变量 N ( tj) N ( tj 1 ) ,j 1 ,2 ,3 , n
相互独立,则称{N(t)}是一个强度为λ的Poisson过程。 数学期望和方差分别为
E [N ( t) ]t,v a r (N ( t) )t
时间序列分析ppt课件
目录
• 时间序列分析简介 • 时间序列的基本概念 • 时间序列分析方法 • 时间序列分析案例 • 时间序列分析的未来发展
01 时间序列分析简介
时间序列的定义与特点
定义
时间序列是指按照时间顺序排列的一 系列观测值。
特点
时间序列具有动态性、趋势性和周期 性等特点,这些特点对时间序列分析 具有重要的影响。
时间序列的季节性
总结词
时间序列的季节性是指时间序列在固定周期内重复出现的模式,这种模式可能是由于季节性因素、周 期性事件或数据采集的频率所引起的。
详细描述
季节性是时间序列中的一个重要特征,许多时间序列都表现出季节性。例如,一个表示月度销售的序 列可能会在每个月份都出现类似的销售模式。在进行时间序列分析时,需要考虑季节性对模型的影响 ,以便更准确地预测未来的趋势和模式。
时间序列分析在金融领域的应用广泛,如股票价格预测 、风险评估等。未来将进一步探索时间序列分析时间序列分析可用于医学影像分析、疾病 预测等方面。未来将进一步拓展其在健康领域的应用范 围,为医疗保健提供有力支持。
谢谢聆听
时间序列分析的意义
01
预测未来趋势
通过对时间序列进行分析,可以了解数据的变化趋势, 从而预测未来的走势,为决策提供依据。
02
揭示内在规律
时间序列分析可以帮助我们揭示数据背后的内在规律和 机制,进一步理解事物的本质。
03
优化资源配置
通过对时间序列的预测和分析,可以更好地优化资源配 置,提高资源利用效率。
03 时间序列分析方法
图表分析法
总结词
通过图表直观展示时间序列数据,便 于观察数据变化趋势和异常点。
详细描述
数学建模时间序列分析
参数估计值
a ˆ84.699,8b ˆ8.1 92
拟合效果图
2.1.2 非线性拟合
使用场合 长期趋势呈现出非线形特征
参数估计指导思想 能转换成线性模型的都转换成线性模型, 用线性最小二乘法进行参数估计 实在不能转换成线性的,就用迭代法进行 参数估计
常用非线性模型
模型
变换
对趋势平滑的要求 移动平均的期数越多,拟合趋势越平滑
对趋势反映近期变化敏感程度的要求 移动平均的期数越少,拟合趋势越敏感
例2.3:病事假人数的移动平均
时 病事假人 5项移动 时间 病事假 5项移动 时间 病事假 5项移动
间
数
平均
人数
平均
人数
平均
1.1
4
1.2
7
1.3
8
1.4
11
1.5
18
2.1
质或预测序列将来的发展
1.4 时间序列分析软件
常用软件 S-plus,Matlab,Gauss,TSP,Eviews 和SAS
推荐软件——SAS 在SAS系统中有一个专门进行计量经济与时间序列分析 的模块:SAS/ETS。SAS/ETS编程语言简洁,输出功 能强大,分析结果精确,是进行时间序列分析与预测的 理想的软件 由于SAS系统具有全球一流的数据仓库功能,因此在进 行海量数据的时间序列分析时它具有其它统计软件无可 比拟的优势
特别的当 l 1
yT li
yˆTli yTli
,l i ,l i
y ˆT1yTyT1 n yTn1
例2.3
某一观察值序列最后4期的观察值为: 5,5.5,5.8,6.2
(1)使用4期移动平均法预测 xˆT 2。
第一章 时间序列分析简介(人大版)
1.1 引言
最早的时间序列分析可以追溯到 7000年前的古 埃及。
古埃及人把尼罗河涨落的情况逐天记录下来,就构 成所谓的时间序列。对这个时间序列长期的观察使 他们发现尼罗河的涨落非常有规律。由于掌握了尼 罗河泛滥的规律,使得古埃及的农业迅速发展,从 而创建了埃及灿烂的史前文明。
按照时间的顺序把随机事件变化发展的过程记 录下来就构成了一个时间序列。对时间序列进 行观察、研究,找寻它变化发展的规律,预测 它将来的走势就是时间序列分析。
G.U.Yule
1927年,AR模型 1931年,MA模型,ARMA模型
G.T.Walker
核心阶段
G.E.P.Box和 G.M.Jenkins
1970年,出版《Time Series Analysis Forecasting and Control》 提出ARIMA模型(Box—Jenkins 模型) Box—Jenkins模型实际上是主要运用于单变 量、同方差场合的线性模型
1.2 时间序列的定义
随机序列:按时间顺序排列的一组随机变量
观察值序列:随机序列的 n 个有序观察值,称之 为序列长度为 n 的观察值序列 x1 , x2 ,, xt 随机序列和观察值序列的关系
, X 1 , X 2 ,, X t ,
观察值序列是随机序列的一个实现 我们研究的目的是想揭示随机时序的性质 实现的手段都是通过观察值序列的性质进行推断
中国人民大学出版社
中国人民大学音像出版社
《应用时间序列分析》
目
录
第一章 第二章 第三章 第四章 第五章 第六章
时间序列分析基础
时间序列分析基础时间序列分析是一种重要的统计分析方法,用于研究时间序列数据的规律性、趋势性和周期性。
时间序列数据是按照时间顺序排列的一系列数据点,例如股票价格、气温变化、销售额等。
通过时间序列分析,我们可以揭示数据中的模式、趋势和周期性,从而进行预测和决策。
本文将介绍时间序列分析的基础知识,包括时间序列数据的特点、常见的时间序列模型以及时间序列分析的步骤。
一、时间序列数据的特点时间序列数据具有以下几个特点:1. 趋势性:时间序列数据通常会呈现出长期的趋势,即数据随着时间的推移呈现出逐渐增长或逐渐减小的规律。
2. 季节性:时间序列数据可能会呈现出周期性的波动,这种波动通常是由季节因素引起的,例如节假日、季节变化等。
3. 周期性:除了季节性波动外,时间序列数据还可能存在其他周期性的波动,这种波动的周期可能不固定。
4. 随机性:时间序列数据中通常还包含一定程度的随机波动,这些波动是由各种随机因素引起的,难以预测。
二、常见的时间序列模型在时间序列分析中,常用的时间序列模型包括:1. 移动平均模型(MA):移动平均模型是一种利用过去若干期数据的加权平均来预测未来数据的模型,通常用MA(q)表示,其中q为移动平均阶数。
2. 自回归模型(AR):自回归模型是一种利用过去若干期数据的线性组合来预测未来数据的模型,通常用AR(p)表示,其中p为自回归阶数。
3. 自回归移动平均模型(ARMA):自回归移动平均模型是自回归模型和移动平均模型的结合,用于处理同时具有自相关和滞后相关的时间序列数据。
4. 差分自回归移动平均模型(ARIMA):差分自回归移动平均模型是对非平稳时间序列数据进行差分处理后应用ARMA模型的一种方法,用于处理非平稳时间序列数据。
5. 季节性自回归移动平均模型(SARIMA):季节性自回归移动平均模型是对具有季节性波动的时间序列数据应用ARIMA模型的一种方法,用于处理具有季节性的时间序列数据。
三、时间序列分析的步骤进行时间序列分析时,通常需要按照以下步骤进行:1. 数据收集:首先需要收集时间序列数据,确保数据的完整性和准确性。
一章时间序列分析简介
非常有用的动态数据分析方法,但是由于分析方法复杂,结 果抽象,有一定的使用局限性
1.21 时域分析方法
原理
事件的发展通常都具有一定的惯性,这种惯性用统计 的语言来描述就是序列值之间存在着一定的相关关系, 这种相关关系通常具有某种统计规律。
目的
寻找出序列值之间相关关系的统计规律,并拟合出适 当的数学模型来描述这种规律,进而利用这个拟合模 型预测序列未来的走势
14.26
4季 19.3 18.9 21 21.6 20.8
20.32
S j 1.2769230.9497440.7312821.042051
用k表示年数, n表示一年的月(季)数。
k5 n4
(2)计算全期的平均数。
1)直接平均法:
(1)计算各年同月(平季均)数。
y
yj n
2 .9 4 1 .5 8 4 1 2 .2 4 2 6 .3 0 1 2 .5 9
(3)计算季节指数。
k
yij
yj
i1 k
(j1,2,3,n)
Sjyyj
(j1,2,3, n)
2)比率平均法
A、计算第 i年平均数;(行平均)
y i N 1jN 1y ij i 1 ,2 , k ;j 1 ,2 , N
B、将历年各月(季)的实际数据同其本年的平均数相比,计算
( i 表示年度,j 表示季或月)季节比率: y ij
假定四种变动因素之间存在着交互作用,数 列各时期发展水平是各构成因素之乘积。
1.7 趋势拟合方法--平滑法
时间序列分析的平滑法主要有三类 : (1)移动平均法
设某一时间序列为 y1,y2,…,yt,则t 时刻的简单滑动平均为
y ˆt 1 n n j 1 0 y t j y t y t 1 n y t n 1 y ˆt 1 1 n (y t y t n )
第10章-时间序列分析
67885
•1991~1996年平均国内生产总值:
•时期数列
•2023/5/3
•【例】
年份
•19941998年中 国能源生产 总量
1994 1995 1996 1997 1998
能源生产总量(万吨标 准煤) 118729 129034 132616 132410 124000
•2023/5/3
❖2.绝对指标时点数列的序时平均数
如:1991—1996年间,我国逐年的GDP,构
成一个时间序列。
记:a1 , a2 , … , an ( n项 ) 或:a0 , a1 , a2 , … , an ( n+1项 )
•2023/5/3
•
时间数列的构成要素:
1. 现象所属的时间;
2. 不同时间的具体指标数值。
•2023/5/3
例如
年底人数
(万 人)
8350 9949 11828 14071 16851 18375
间隔年数 3 2 3 2 2
•间断时点数列(间隔不等)
•2023/5/3
•我国第三产业平均从业人数:
•2023/5/3
•【例】 •某地区1999年社会劳动者人数资料如下
:
•单位:万人
时间 1月1日 5月31日 8月31日 12月31日
•2023/5/3
•定基和环比发展速度相互关系
•2023/5/3
【例】
❖ 某产品外贸进出口量各年环比发展速度资料如下: ❖ 1996年为103.9%,1997年为100.9%, ❖ 1998年为95.5%,1999年为101.6%,2000年为
108%,试计算2000年以1995年为基期的定基发 展速度。 ❖ (109.57%)
时间序列分析
时间序列分析时间序列分析是一种重要的统计学方法,用于研究随时间变化的数据。
它可以帮助我们了解数据的趋势、周期性和季节性,预测未来的变化趋势,并做出相应的决策。
本文将介绍时间序列分析的基本概念、常见的方法和应用领域。
一、时间序列的基本概念时间序列是按时间先后顺序排列的一组观察数据。
它可以是连续的,例如每天的股票价格;也可以是离散的,例如每月的销售量。
时间序列的分析要求数据点之间存在一定的相关性和规律性。
二、时间序列的组成部分时间序列通常由三个主要组成部分构成:趋势、季节性和随机性。
趋势是时间序列在长期内呈现的整体变化趋势;季节性是时间序列在较短的时间内出现的重复周期性变化;随机性是时间序列中无法解释的随机波动。
三、时间序列分析的方法1. 描述性分析描述性分析是对时间序列数据进行可视化和概括的方法。
常用的方法包括绘制折线图、直方图和自相关图等,以帮助我们了解数据的分布和相关性。
2. 平稳性检验平稳性是时间序列分析的基本假设。
平稳序列的统计特性在时间上是不随时间变化的,包括均值、方差和自相关性等。
常见的平稳性检验方法有单位根检验和ADF检验。
3. 建立模型建立时间序列模型是对数据进行预测和分析的关键步骤。
常用的时间序列模型有ARIMA模型、AR模型和MA模型等。
通过对历史数据的拟合,我们可以得到模型的参数,从而进行未来值的预测。
4. 模型诊断与改进在建立模型之后,需要对其进行诊断和改进。
常见的诊断方法包括残差检验、模型稳定性检验和模型比较等。
根据诊断结果,我们可以对模型进行改进,提高预测的准确性。
四、时间序列分析的应用领域时间序列分析在许多领域都有广泛的应用,例如经济学、金融学、气象学和市场营销等。
在经济学中,时间序列分析可以用于预测经济增长趋势和通货膨胀率。
在金融学中,它可以帮助我们预测股票价格和利率走势。
在气象学中,时间序列分析可以用于预测天气变化和自然灾害。
在市场营销中,它可以帮助我们预测销售量和用户行为。
时间序列分析的理论与应用
时间序列分析的理论与应用时间序列分析是指对时间序列数据的一种分析方法,它是一种探究随时间变化而发生的现象的分析方法。
时间序列分析可以帮助人们对这些数据进行深入研究并找到内在规律性,进而进行预测和决策。
本文主要介绍时间序列分析的理论与应用。
一、时间序列分析的基本概念时间序列是具有一定时间顺序的一连串数据,通常是一定间隔的一系列数据,例如每日、每月、每年等等。
时间序列分析是指对时间序列数据进行统计分析、建模和预测的方法。
一般包括时间序列的描述性统计、时间序列的平稳性检验、时间序列的自回归模型、时间序列的移动平均模型、时间序列的ARMA模型、时间序列的ARIMA模型等。
二、时间序列分析的应用领域时间序列分析在经济学、金融学、工程学、自然科学等领域的应用非常广泛。
其中,最常见的应用场景是经济学领域的宏观经济预测和股票价格预测。
1、经济学在经济学中,时间序列分析可以预测经济学中的各种变量,如GDP、物价指数等。
时间序列分析还可以用来分析和预测销售数据、市场份额和客户需求等重要数据。
此外,时间序列分析也被广泛应用于宏观经济研究、金融预测和风险管理等方面。
2、金融学在金融学中,时间序列分析可以用来预测股票价格、商品价格和汇率等金融市场的变化。
时间序列分析也可以用来研究人类在市场中的行为和决策,包括市场价格的波动和交易量的变化等。
3、工程学在工程学中,时间序列分析可以用来分析和预测工业生产中的各种变量,如生产量、质量的变化等。
时间序列分析还可以应用于工业装备的维护和修理。
4、自然科学在自然科学中,时间序列分析可以用来预测气候变化和地震发生等自然现象。
时间序列分析可以在全球范围内追踪大气的变化,从而加强对环境变化的预测和管理。
三、时间序列分析的原理时间序列分析的统计方法涵盖了很多内容。
下面简单介绍几种常用的时间序列分析方法。
1、AR模型AR模型即自回归模型,是最简单的时间序列分析模型之一,它用时间序列的过去观测值来预测未来观测值。
时间序列分析试验1-SAS简介
6/17/2020
2
1、SAS版本
目前最新版本SAS 9.3,要近20G。
一般个人用版本SAS 8.1(2) (300M多)(低 版本对中文支持不好),由数十个模块构成, 功能包括数据访问、数据储存及管理、应 用开发、图形处理、数据分析、报告编制、 运筹学方法、计量经济学与预测等。
//建库,库名即文件夹名,文件夹要先建好。
data 文件夹名 .example1;
//将数据集存入库中。
6/17/2020
15
三、时间序列数据集的处理
1、间隔函数—自动产生等时间间隔的时间数据
time=intnx('month','01jan2005'd,_n_-1); 第一参数:等时间间隔,常用的:
DATA example1;//标志数据步开始;并定义或打开
数据集名
INPUT 变量名表; //为数据定义变量名;确定变量格式和
读入方式;读入指定数据列。
三种方式: (1)自由格式
input name $ age height@@; 注:$--标示name为字符型变量;@@连续读入记 录,否则只读一次。
库标记─SAS数据库的逻辑名字; 数据集名字─SAS数据集的名字; 成员类型─即扩展名,指DATA或view 。使用时一般不必给出,默 认DATA。
如 WWW.SAMPLE1
6/17/2020
9
3、SAS的存储方式
两类:永久数据集和 临时数据集。
一个SAS数据集是临时或永久,取决于该数据集所附 属的SAS数据库是临时的或永久的。
什么是时间序列分析
什么是时间序列分析关键信息项:1、时间序列分析的定义2、时间序列分析的目的3、时间序列分析的常用方法4、时间序列数据的特点5、时间序列分析的应用领域6、时间序列分析的步骤7、时间序列分析的局限性11 时间序列分析的定义时间序列分析是一种用于研究数据随时间变化规律的统计方法。
它通过对一系列按时间顺序排列的数据点进行分析,以揭示数据中的趋势、季节性、周期性和随机性等特征。
时间序列分析在经济学、金融学、气象学、工程学等多个领域都有广泛的应用。
111 时间序列数据的特点时间序列数据具有以下几个主要特点:1111 顺序性:数据是按照时间顺序依次记录的,时间顺序对于分析结果具有重要影响。
1112 相关性:相邻时间点的数据之间往往存在一定的相关性。
1113 趋势性:数据可能呈现出长期的上升、下降或稳定的趋势。
1114 季节性:某些数据在一年内的特定时间段内会表现出相似的模式,如销售数据在节假日期间的增加。
1115 随机性:数据中还包含了一些无法预测的随机波动。
12 时间序列分析的目的时间序列分析的主要目的包括:121 预测未来值:通过对历史数据的分析,预测未来一段时间内数据的可能取值,为决策提供依据。
122 理解数据的动态特征:揭示数据的趋势、季节性和周期性等模式,帮助人们更好地理解数据产生的机制。
123 监测和控制:用于监测系统的运行状态,及时发现异常情况并采取相应的控制措施。
124 评估政策和干预的效果:在政策实施或干预措施执行后,通过时间序列分析评估其对相关数据的影响。
13 时间序列分析的常用方法常用的时间序列分析方法包括:131 移动平均法:通过计算一定时期内数据的平均值来平滑数据,消除随机波动。
132 指数平滑法:对历史数据进行加权平均,给予近期数据更高的权重,以更好地反映数据的最新变化。
133 自回归模型(AR):利用数据自身的滞后值来预测当前值。
134 移动平均自回归模型(ARMA):结合自回归和移动平均的特点进行建模。
时间序列分析与方法
时间序列分析与方法时间序列分析是一种用来研究时间序列数据的方法和技术。
它涉及收集、整理、分析和解释时间相关的数据以推断未来发展趋势的能力。
这种分析方法广泛应用于各个领域,包括经济学、金融学、气象学、工程学等等。
本文将介绍时间序列分析的基本概念、方法和应用。
一、时间序列分析的概念时间序列是根据时间顺序排列的一组数据点组成的数据序列。
在时间序列中,时间是自变量,而观测值是因变量。
时间序列数据可以是连续的,如每小时的股票价格,也可以是离散的,如每月的销售额。
时间序列分析的目的是识别数据中的模式和趋势,并基于这些模式和趋势进行预测。
时间序列分析方法包括描述性分析、平稳性检验、时间序列模型、预测方法等。
描述性分析旨在了解数据的总体特征,如数据的分布、均值、标准差等。
平稳性检验可以帮助确定数据是否具有平稳性,即数据的均值、方差和协方差是否与时间无关。
时间序列模型可以根据数据的特征选择合适的模型,如自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)等。
预测方法用于识别数据中的模式,并基于这些模式进行未来值的预测。
二、时间序列分析的应用1. 经济学时间序列分析在经济学中扮演着重要的角色。
例如,通过分析过去几年的GDP数据,经济学家可以预测未来的经济增长趋势。
此外,时间序列分析还可以用于研究通货膨胀、利率、就业等宏观经济指标的变化趋势。
2. 金融学金融市场中的股票价格、汇率等数据是时间序列数据的典型例子。
通过时间序列分析,投资者可以识别出价格的波动模式,并作出相应的交易决策。
此外,时间序列分析还可以用于风险管理、期权定价等方面。
3. 气象学气象学家使用时间序列分析来预测天气和气候变化。
他们收集和分析历史气象数据,并建立模型以预测未来的天气趋势。
这对于农业、能源和交通等行业的规划和决策非常重要。
4. 工程学在工程学中,时间序列分析被广泛应用于监测和预测物理系统的变化。
例如,通过对地震波形的时间序列分析,地质学家可以预测地震的发生概率和强度,从而提前采取措施来减少地震造成的损失。
时间序列分析和预测
时间序列分析和预测一、引言时间序列是指将某个变量在不同时间点的取值按照时间的先后顺序排列而组成的数据序列。
在很多领域都有重要应用,如经济学、金融学、物理学等。
时间序列分析和预测是时间序列应用的重要方向,它可以帮助我们更好地理解时间序列数据的规律和趋势。
本文将介绍时间序列的基本概念、分析方法和预测模型。
二、时间序列的基本概念1. 时间序列的定义时间序列就是按时间顺序列出的同一被观测变量的取值序列,它通常是一个连续时间段内的一系列数据点。
2. 时间序列的类型时间序列可以分为以下两种类型:(1)离散型时间序列离散型时间序列指的是在给定时间点处对变量的观察值进行测量得到的数据,这些数据对应于离散时间点上的一个点。
(2)连续型时间序列连续型时间序列指的是在一段时间内对变量的观察值进行测量得到的数据,这些数据对应于连续时间点上的一个点。
3. 时间序列的组成时间序列通常是由三个基本成分构成,分别是趋势、季节变动和随机波动。
(1)趋势趋势反映的是时间序列长期的发展趋势。
它可以是上升的、下降的或平稳的。
在趋势分析中,我们通常使用线性趋势模型或非线性趋势模型。
(2)季节变动季节变动指的是在周期性的时间范围内出现的周期性变动。
在季节变动分析中,我们通常使用季节性趋势模型。
(3)随机波动随机波动指的是在趋势和季节变动之外的各种随机因素引起的随机变动。
在随机波动分析中,我们通常使用白噪声模型。
三、时间序列的分析方法时间序列的分析方法包括时间域分析和频域分析两种方法。
1. 时间域分析时间域分析是指对时间序列数据进行的统计分析。
它可以帮助我们了解时间序列的趋势、季节性变动和随机波动。
(1)平均数时间序列中的平均数可以帮助我们了解时间序列数据的中心趋势。
平均数可以是简单平均数、加权平均数或移动平均数。
(2)方差和标准差方差和标准差都是用来衡量时间序列数据变化的程度。
方差越大,说明时间序列的波动越大;标准差越大,说明数据的离散度越大。
时间序列分析试验1-SAS简介
目录
• SAS简介 • 时间序列分析基本概念 • SAS在时间序列分析中的应用 • 时间序列分析试验流程 • SAS在时间序列分析中的优势和不
足 • 时间序列分析试验案例展示
01
SAS简介
SAS的发展历程
1976年,SAS软件创始人创立公司 SAS研究所,推出SAS1.0版本。
了解时间序列分析的基本概念,掌握SAS软件的 基本操作,能够独立完成时间序列数据的处理和 分析。
试验步骤和方法
步骤一:数据准备
2. 数据清洗:对数据进行 预处理,如缺失值填充、 异常值处理等。
1. 数据收集:收集时间序 列数据,确保数据准确、 完整。
试验步骤和方法
步骤二
数据导入和整理
2. 数据整理
试验结果分析和讨论
结果分析
对试验结果进行详细分析,包括模型的拟合效果、预测准确性等。
结果讨论
根据试验结果进行讨论,总结时间序列分析的优缺点和应用场景。
SAS在时间序列分析中的优
05
势和不足
SAS在时间序列分析中的优势
01
强大的数据处理能 力
SAS拥有强大的数据处理能力, 可以高效地处理大规模的时间序 列数据。
自动化和定制化
SAS提供自动化和定制化的功 能,可以根据用户需求定制报 表和数据分析流程。
SAS与其他软件的比较
与Excel相比
SAS在数据管理、统计分析等方面比Excel更加强大和 灵活。
与SPSS相比
SAS在数据处理和分析方面更加全面和灵活,同时提 供了更多的可视化功能。
与Python相比
SAS在数据分析和可视化方面相对较弱,但SAS提供 了更加易用的界面和更加全面的统计分析功能。
1-时间序列分析简介
Sunday, May 03, 2020
Properties of Time Series Data
• Property #1: Time series data have autoregressive (AR), moving average (MA), and seasonal dynamic processes.
观察值序列:随机序列的 n个有序观察值,称
之为序列长度为 n的观察值序列 x1, x2 , , xn
随机序列和观察值序列的关系
观察值序列是随机序列的一个实现 研究的目的是想揭示随机时序的性质 实现的手段都是通过观察值序列的性质进行推断
Sunday, May 03, 2020
What is time series data?
• Because time series data are ordered in time, past values influence future values.
U.S. Monthly Presidential Approval Data, 1978:1-2004:7
100
80
60
40
20
• Property #4: Events in a time series can cause structural breaks in the data series. We can estimate these changes with intervention analysis, transfer function models, regime switching/Markov models, etc.
Sunday, May 03, 2020
Sunday, May 03, 2020
什么是时间序列分析?有哪些应用场景?
时间序列分析是一种统计方法,专门用于研究有序时间点上观测到的数值数据。
这些数据点按照时间顺序排列,形成了一条时间序列。
时间序列分析旨在揭示这些数据随时间变化的模式、趋势和周期性,并预测未来的走势。
这一方法广泛应用于各个领域,包括但不限于金融、经济、气象、生物学、医学、社会科学和工程等。
**一、时间序列分析的基本概念**1. **时间序列的定义**:时间序列是一组按时间顺序排列的数据点,通常用于反映某个或多个变量随时间的变化情况。
这些数据点可以是连续的(如每秒的气温),也可以是离散的(如每天的股票价格)。
2. **时间序列的构成**:时间序列通常由四个部分组成:趋势(Trend)、季节性(Seasonality)、周期性(Cyclicality)和随机性(Randomness)。
* **趋势**:长期变化的方向,可以是上升、下降或平稳的。
* **季节性**:由外部因素(如季节变化)引起的周期性变化。
* **周期性**:由内部因素(如经济周期)引起的周期性变化。
* **随机性**:无法预测的随机波动。
3. **时间序列的类型**:根据数据的性质和分析目标,时间序列可以分为平稳时间序列和非平稳时间序列。
平稳时间序列的统计特性(如均值和方差)不随时间变化,而非平稳时间序列则可能存在长期趋势或其他非恒定特性。
**二、时间序列分析方法**1. **描述性统计**:通过计算时间序列的均值、方差、标准差等指标,初步了解数据的分布情况。
2. **时间序列图**:通过绘制时间序列图,可以直观地观察数据的趋势、季节性和周期性。
3. **时间序列模型**:常用的时间序列模型包括自回归模型(AR)、移动平均模型(MA)和自回归移动平均模型(ARMA)等。
这些模型通过拟合历史数据来预测未来的趋势。
**三、时间序列分析的应用场景**1. **金融市场分析**:时间序列分析在金融市场分析中具有重要意义。
股票价格、汇率、债券收益率等金融数据都是典型的时间序列数据。
时间序列分析
时间序列分析时间序列分析是一种用来研究时间相关数据的统计方法。
它可以帮助我们了解时间序列的趋势、周期性和季节性,以及预测未来的发展趋势。
在此,我将介绍时间序列分析的基本原理、常用模型和实际应用。
时间序列分析的基本原理可以总结为以下几个步骤:收集时间序列数据、检验序列的平稳性、拟合适当的模型、进行模型诊断、进行预测和模型评估。
首先,收集时间序列数据是进行时间序列分析的前提。
时间序列数据是按照时间顺序排列的一组观测值,例如经济指标、股票价格或气温记录等。
接下来,我们需要检验时间序列的平稳性。
平稳性是指时间序列在统计特征上不随时间变化而变化的性质。
平稳时间序列的均值和方差是恒定的,并且自相关系数不随时间而变化。
然后,我们可以选择适当的时间序列模型来拟合数据。
常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)和季节性自回归积分移动平均模型(SARIMA)等。
在拟合模型之后,我们需要进行模型诊断来检验模型的拟合优度。
模型诊断的目标是检查模型的残差是否符合模型假设。
常用的诊断方法包括检查残差的自相关性、偏自相关性和正态性等。
最后,我们可以利用拟合好的模型进行预测。
预测是时间序列分析中最常用的应用之一,可以帮助我们预测未来的发展趋势。
常用的预测方法包括滚动预测和动态预测等。
时间序列分析具有广泛的应用领域。
在经济学中,时间序列分析被广泛应用于金融市场的预测、货币政策的研究以及宏观经济的分析等。
在气象学中,时间序列分析可以帮助我们预测天气的变化和气候的长期趋势。
在医学领域,时间序列分析可以用来研究疾病的发展趋势和预测疾病的传播范围。
总之,时间序列分析是一种强大的工具,可以帮助我们理解时间序列数据的特征,预测未来的发展趋势,并从中获得有用的信息。
在实际应用中,研究人员需要根据具体问题选择合适的模型和方法,并进行模型诊断和评估。
通过深入研究时间序列分析,我们将能够更好地理解时间序列的本质,为实际问题提供更准确的预测和决策支持。
二十六、时间序列分析
二十六、时间序列分析1、时间序列及其分类时间序列,也称动态数列,是将某一统计指标在各个不同时间上的数值按时间先后顺序编制形成的序列。
①时间序列由两个基本因素构成:1)被研究现象所属时间;2)反映该现象一定时间条件下数量特征的指标值。
同一时间序列中,各指标值的时间单位一般要求相等。
②时间序列按照其构成要素中统计指标值的表现形式,分为绝对数时间序列、相对数时间序列和平均数时间序列三种类型。
绝对数时间序列,是由绝对数指标值按时间先后顺序排列后形成的序列。
依据指标值的时间特点,绝对数时间序列又分为时期序列、时点序列。
时期序列,每一指标值反映现象在一段时期内发展的结果,即“过程总量”如国内生产总值。
时点序列,每一指标值反映现象在一定时点上的瞬间水平,如年底总人口数。
由绝对数时间序列可以派生出相对数时间序列、平均数时间序列。
它们是由同类相对数或平均数指标值按时间先后顺序排列后形成的序列。
前者如城镇人口比重,后者如人均国内生产总值。
2、时间序列的水平分析分为:发展水平、平均发展水平、增长量与平均增长量。
3、发展水平,时间序列中对应于具体时间的指标数值。
时间序列中第一项的指标值称为最初水平,最末项的指标值称为最末水平,处于二者之间的各期指标值称为中间水平。
根据各期指标值在计算动态分析指标时的作用来划分,又可以分为基期水平、报告期水平。
4、平均发展水平,也称序时平均数或动态平均数,是对时间序列中各时期发展水平计算的平均数,它可以概括性描述现象在一段时期内所达到的一般水平。
时间序列类型不同,计算方法也不同。
5、绝对数时间序列序时平均数的计算①由时期序列计算序时平均数。
对于时期序列,序时平均数计算公式为:②由时点序列计算序时平均数第一种情况,由连续时点计算。
又分为两种情形。
一种是资料逐日登记且逐日排列,可采用简单算术平均数方法计算,计算公式同上:另一种情形是,资料登记的时间单位仍然是l天,但实际上只在指标值发生变动时才记录一次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年9月25日
Plan
时间序列分析简介 R语言介绍(New) 时间序列的预处理 平稳时间序列分析 ➢ 线性模型 ➢ 非线性模型 非平稳序列分析 多元时间序列分析
Number of Militarized Interstate Disputes (MIDs), 1816-2001
1980m1
1985m1
1990m1
1995m1
date
2000m1
2005m1
Properties of Time Series Data
• Property #2: Time series data often have timedependent moments (e.g. mean, variance, skewness, kurtosis).
• P. J. Brockwell and R. A. Davis (2006) Time Series: Theory and Methods (2nd Edition) ,Springer.
• Time Series Analysis and its Applications. With R Examples, Shumway and Stoffer. 2nd Edition. 2006.
• Because time series data are ordered in time, past values influence future values.
U.S. Monthly Presidential Approval Data, 1978:1-2004:7
100
80
60
40
20
of the time series.
Predicted value
2020年9月25日
8
不同的时间序列有不同的特征
X
Weak linear trend
5
4
3
2
1
0
-1
-2
-3
0.0
0.2
0.4
0.6
0.8
1.0
Time
Strong linear trend
100
80
60
40
20
0
0.0
0.2
0.4
2020年9月25日
2020年9月25日
2020年9月25日
Properties of Time Series Data
• Property #1: Time series data have autoregressive (AR), moving average (MA), and seasonal dynamic processes.
• 按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时 间序列。对时间序列进行观察、研究,找寻它变化发展的规律,预测 它将来的走势就是时间序列分析。
• 时间序列分析与金融和经济生活密切相关
2020年9月25日
We analyze time series to detect patterns. The patterns help in forecasting future values
2020年9月25日
第一章 时间序列分析简介
1.1 引言 1.2 时间序列的定义 1.3 时间序列分析方法简介 1.4 时间序列分析软件
2020年9月25日
1.1 引 言
• 最早的时间序列分析可追溯到7000年前的古埃及 – 古埃及人把尼罗河涨落的情况逐天记录下来,就构成所谓的时间 序列。对这个时间序列长期的观察使他们发现尼罗河的涨落的规 律。
1-时间序列分析简介
考核方式
• 平时:Project:30%(2人一组)+作业10% • 期末: 60% 作业:理论+实际数据
2020年9月25日
教材
• 时间序列分析及应用 R语言 Cryer and Chan 机械工业出版社 2010
2020年9月25日
参考书目
• Ruey S. Tsay(2011)王辉 潘家柱 译 金融时间序列分析 (第二版) 人民邮电出版社
• The mean or variance of many time series increases over time.
• This is a property of time series data called nonstationarity.
• As Granger & Newbold (1974) demonstrated, if two independent, nonstationary series are regressed on each other, the chances for finding a spurious relationship are very high.
之为序列长度为 n的观察值序列 x1,x2,,xn
随机序列和观察值序列的关系
观察值序列是随机序列的一个实现 研究的目的是想揭示随机时序的性质 实现的手段都是通过观察值序列的性质进行推断
2020年9月25日
What is time series data?
• We can think of time series as being generated by a stochastic process, or the data generating process (DGP).
500 0 0.0
Time-dependent variance
0.2
0.4
0.6
0.8
1.0
Time
8
Log-transformed data
642来自0-20.0
0.2
0.4
0.6
0.8
1.0
Time
1.2 时间序列的定义
随机序列:按时间顺序排列的一组随机变量
,X1,X2, ,Xt,
观察值序列:随机序列的 n个有序观察值,称
0.6
0.8
1.0
Time
N on-linear trend
5.0
2.5
X
0.0
-2.5
-5.0
0.0
0.2
0.4
0.6
0.8
1.0
Time
Changing variance
3
2
1
X
0
-1
-2
-3
0.0
0.2
0.4
0.6
0.8
1.0
Time
X Log(X)
3000 2500 2000 1500 1000