反比例函数相似三角形锐角三角函数综合

合集下载

苏科版九年级数学下册:《相似三角形》与《锐角三角函数》综合提优训练

苏科版九年级数学下册:《相似三角形》与《锐角三角函数》综合提优训练

《相似三角形》与《锐角三角函数》综合提优训练1、下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形. 其中一定相似的有( ) A.2组 B.3组 C.4组 D.5组2、(1)如果234x y z==,求3x y z y -+=_____________ (2)已知x :y =3:5,y :z =2:3,则zy x zy x +-++2的值为3、应中共中央总书记胡锦涛同志的邀请,中国国民党主席连战先生、亲民党主席宋楚瑜先生分别从台湾来大陆参观访问,先后来到西安,都参观了新建成的“大唐芙蓉园”,该园占地面积约为800000m 2,若按比例尺1:2000缩小后,其面积大约相当于( )A.一个篮球场的面积B.一张乒乓球台台面的面积C.《陕西日报》的一个版面的面积D.《数学》课本封面的面积4、美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女士身高165 cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ) A .4 cm B .6 cm C .8 cm D .10 cm 5、 如图,已知D 、E 分别是ABC ∆的AB 、 AC 边上的点,,DE BC //且1ADEDBCE SS :=:8,四边形 那么:AE AC 等于( )A .1 : 9B .1 : 3C .1 : 8D .1 : 26、如图,△ABC 的各个顶点都在正方形的格点上,则sinA 的值为 .7、在Rt △ABC 中,∠C =90º,AB =10,AC =8,则sin A 的值是( ) A .45B .35C .34 D .43. 8、若3tan (a+10°)=1,则锐角a 的读数为( )A .20°B .30°C .40°D .50°9、如果△ABC 中,sinA=cosB=2,则下列最确切的结论是( ) A. △ABC 是直角三角形 B. △ABC 是等腰三角形 C. △ABC 是等腰直角三角形 D. △ABC 是锐角三角形10、直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )11、 如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接,,BG DE DE 和FG 相交于点O ,设,()AB a CG b a b ==>.下列结论:①BCG DCE ∆≅∆;②BG DE ⊥;③DG GOGC CE=;④22()EFO DGO a b S b S ∆∆-⋅=⋅.其中结论正确的个数是( ) A. 4 B.3 C.2 D. 112、水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度α(α指缠绕中将部分带子拉成图中所示的平面ABCD 时的∠ABC ,其中AB 为管道侧面母线的一部分).若带子宽度为1,水管直径为2,则α的余弦值为 .13、在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12m ,塔影长DE=18m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( ) A .24m B .22m C .20m D .18m14、如图,△ABC 的三个顶点坐标分别为A (-2,4)、B (-3,1)、C (-1,1),以坐标原点O 为位似中心,相似比为2,在第二象限内将△ABC 放大,放大后得到△A ′B ′C ′. (1)画出放大后的△A ′B ′C ′,并写出点A ′、B ′、C ′的坐标.(点A 、B 、C 的对应点为A ′、B ′、C ′)(2)求△A ′B ′C ′的面积.15、一块直角三角形木板,一直角边是1.5米,另一直角边长是2米,要把它加工成面积最大的正方形桌面,甲、乙二人的加式方法分别如左图和右图所示,请运用所学知识说明谁的加工方法符合要求.16、如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高2.0米,且AC =2.17米,设太阳光线与水平地面的夹角为α.当︒=60α时,测得楼房在地面上的影长AE =10米,现有一只小猫睡在台阶的MN 这层上晒太阳.(3取73.1)(1)求楼房的高度约为多少米?(2)过了一会儿,当︒=45α时,问小猫能否还晒到太阳?请说明理由.17、图①是太阳能热水器装置的示意图,利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太光线与玻璃吸热管垂直),请完成以下计算:① ② ③如图②,AB BC ⊥,垂足为点B ,EA AB ⊥垂足为点A ,//CD AB ,10CD =cm , 120DE =cm ,FG DE ⊥,垂足为点G .(1)若3750'θ∠=︒,则AB 的长约为 cm.(参考数据: sin3750'0.61︒≈,cos3750'0.79︒≈,tan3750'0.78︒≈)(2)若30FG =cm ,60θ∠=︒,求CF 的长.18、如图,在直角坐标系中,Rt △OAB 的直角顶点A 在x 轴上,OA =4,AB =3.动点M 从点A 出发,以每秒1个单位长度的速度,沿AO 向终点O 移动;同时点N 从点O 出发,以每秒1.25个单位长度的速度,沿OB 向终点B 移动.当两个动点运动了x 秒(0<x <4)时,解答下列问题: (1)求点N 的坐标(用含x 的代数式表示);(2)设△OMN 的面积是S ,求S 与x 之间的函数表达式;(3)在两个动点运动过程中,是否存在某一时刻,使△OMN 是直角三角形?若存在,求出x 的值;若不存在,请说明理由.19、阅读:如图1把两块全等的含45°的直角三角板ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点D 与三角板ABC 的斜边中点O 重合,把三角板ABC 固定不动,让三角板DEF 绕点D 旋转,两边分别与线段AB 、BC 相交于点P 、Q,易说明△APD ∽△CDQ.猜想(1):如图2,将含30°的三角板DEF (其中∠EDF=30°)的锐角顶点D 与等腰三角形ABC (其中∠ABC = 120°)的底边中点O 重合,两边分别与线段AB 、BC 相交于点P 、Q .写出图中的相似三角形 (直接填在横线上);验证(2):其它条件不变,将三角板DEF 旋转至两边分别与线段AB 的延长线、边BC 相交于点P 、Q .上述结论还成立吗?请你在图3上补全图形,并说明理由.连结PQ ,△APD 与△DPQ 是否相似?为什么?探究(3):根据(1)(2)的解答过程,你能将两三角板改为一个更为一般的条件,使得(1)20、从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,CD 为角平分线,∠A=40°,∠B=60°,求证:CD 为△ABC 的完美分割线. (2)在△ABC 中,∠A=48°,CD 是△ABC 的完美分割线,且△ACD 为等腰三角形,求∠ACB 的度数. (3)如图2,△ABC 中,AC=2,BC=,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD 的长.BE P AC Q F D(O)图1图2D(O) B CFE P Q A 图3AC B21、如图(1),点C 将线段AB 分成两部分,如果AC :AB=BC :AC ,那么称点C 为线段AB 的黄金分割点。

2020-2021中考数学压轴题专题锐角三角函数的经典综合题含详细答案

2020-2021中考数学压轴题专题锐角三角函数的经典综合题含详细答案

2020-2021中考数学压轴题专题锐角三角函数的经典综合题含详细答案一、锐角三角函数1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为»AC 上的动点,且10cos B =. (1)求AB 的长度;(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由.(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.【答案】(1) 10AB (2) 10AD AE ⋅=;(3)证明见解析. 【解析】【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG=13,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,∵AB=AC ,AF ⊥BC ,∴BF=CF=12BC=1, 在RtΔAFB 中,BF=1,∴AB=10cos 10BF B == (2)连接DG ,∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD•AE=AF•AG ,连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG , ∵22AB BF -=3,∴FG=13,∴AD•AE=AF•AG=AF•(AF+FG)=3×10=10;3(3)连接CD,延长BD至点N,使DN=CD,连接AN,∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,∴∠ADC=∠ADN,∵AD=AD,CD=ND,∴△ADC≌△ADN,∴AC=AN,∵AB=AC,∴AB=AN,∵AH⊥BN,∴BH=HN=HD+CD.【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.2.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.(1)求证:四边形是菱形;(2)若,,,求的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP试题解析:(1)∵AE平分∠BAD BF平分∠ABC∴∠BAE=∠EAF ∠ABF=∠EBF∵AD//BC∴∠EAF=∠AEB ∠AFB=∠EBF∴∠BAE=∠AEB ∠AFB=∠ABF∴AB=BE AB=AF∴AF=AB=BE∵AD//BC∴ABEF为平行四边形又AB=BE∴ABEF为菱形(2)作PH⊥AD于H由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5∴tan∠ADP=考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数3.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定4.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.【答案】(1)证明见解析;(2)①证明见解析;②123【解析】【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【详解】(1)由翻折可知:∠DFP=∠DFQ,∵PF∥BC,∴∠DFP=∠ADF,∴∠DFQ=∠ADF,∴△DEF是等腰三角形;(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,∵∠P′DF′=∠PDF,∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,∴∠P′DC=∠F′DB,由旋转的性质可知:△DP′F′≌△DPF,∵PF∥BC,∴△DPF∽△DCB,∴△DP′F′∽△DCB∴''DC DP DB DF = , ∴△DP'C ∽△DF'B ;②当∠F′DB=90°时,如图所示, ∵DF′=DF=12BD , ∴'12DF BD =, ∴tan ∠DBF′='12DF BD =;当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意; 当∠DF′B=90°时,如图所示,∵DF′=DF=12BD , ∴∠DBF′=30°,∴tan ∠DBF′=33.【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.5.如图13,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若,.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.【答案】(1)详见解析;(2)①②和走完全程所需时间为【解析】试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.试题解析:解:(1)证明:四边形是矩形.与交于点O,且关于对称四边形是菱形.(2)①连接,直线分别交于点,交于点关于的对称图形为在矩形中,为的中点,且O为AC的中点为的中位线同理可得:为的中点,②过点P 作交于点由运动到所需的时间为3s由①可得,点O 以的速度从P 到A 所需的时间等于以从M 运动到A即:由O 运动到P 所需的时间就是OP+MA 和最小.如下图,当P 运动到,即时,所用时间最短.在中,设解得:和走完全程所需时间为考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】 【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =,∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.7.(2013年四川攀枝花12分)如图,在平面直角坐标系中,四边形ABCD 是梯形,AB ∥CD ,点B (10,0),C (7,4).直线l 经过A ,D 两点,且sin ∠.动点P 在线段AB 上从点A 出发以每秒2个单位的速度向点B 运动,同时动点Q 从点B 出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)点A的坐标为,直线l的解析式为;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.【答案】解:(1)(﹣4,0);y=x+4.(2)在点P、Q运动的过程中:①当0<t≤1时,如图1,过点C作CF⊥x轴于点F,则CF=4,BF=3,由勾股定理得BC=5.过点Q作QE⊥x轴于点E,则BE=BQ•cos∠CBF=5t•35=3t.∴PE=PB﹣BE=(14﹣2t)﹣3t=14﹣5t,S=12PM•PE=12×2t×(14﹣5t)=﹣5t2+14t.②当1<t≤2时,如图2,过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t﹣5,PE=AF﹣AP﹣EF=11﹣2t﹣(5t﹣5)=16﹣7t.S=1 2PM•PE=12×2t×(16﹣7t)=﹣7t2+16t.③当点M与点Q相遇时,DM+CQ=CD=7,即(2t﹣4)+(5t﹣5)=7,解得t=167.当2<t<167时,如图3,MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,S=12PM•MQ=12×4×(16﹣7t)=﹣14t+32.综上所述,点Q与点M相遇前S与t的函数关系式为()()225t14t0<t1S{7t16t1<t21614t322<t<7-+≤=-+≤⎛⎫-+ ⎪⎝⎭.(3)①当0<t≤1时,22749S5t14t5t55⎛⎫=-+=--+⎪⎝⎭,∵a=﹣5<0,抛物线开口向下,对称轴为直线t=75,∴当0<t≤1时,S随t的增大而增大.∴当t=1时,S有最大值,最大值为9.②当1<t≤2时,22864S7t16t7t77⎛⎫=-+=--+⎪⎝⎭,∵a=﹣7<0,抛物线开口向下,对称轴为直线t=87,∴当t=87时,S有最大值,最大值为647.③当2<t<167时,S=﹣14t+32∵k=﹣14<0,∴S随t的增大而减小.又∵当t=2时,S=4;当t=167时,S=0,∴0<S<4.综上所述,当t=87时,S有最大值,最大值为647.(4)t=209或t=125时,△QMN为等腰三角形.【解析】(1)利用梯形性质确定点D的坐标,由sin∠DAB=2,利用特殊三角函数值,得到△AOD为等腰直角三角形,从而得到点A的坐标;由点A、点D的坐标,利用待定系数法求出直线l的解析式:∵C(7,4),AB∥CD,∴D(0,4).∵sin∠DAB=22,∴∠DAB=45°.∴OA=OD=4.∴A(﹣4,0).设直线l的解析式为:y=kx+b,则有4k b0{b4-+==,解得:k1{b4==.∴y=x+4.∴点A坐标为(﹣4,0),直线l的解析式为:y=x+4.(2)弄清动点的运动过程分别求解:①当0<t≤1时,如图1;②当1<t≤2时,如图2;③当2<t<167时,如图3.(3)根据(2)中求出的S表达式与取值范围,逐一讨论计算,最终确定S的最大值.(4)△QMN为等腰三角形的情形有两种,需要分类讨论:①如图4,点M在线段CD上,MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,MN=DM=2t﹣4,由MN=MQ,得16﹣7t=2t﹣4,解得t=209.②如图5,当点M运动到C点,同时当Q刚好运动至终点D,此时△QMN为等腰三角形,t=125.∴当t=209或t=125时,△QMN为等腰三角形.考点:一次函数综合题,双动点问题,梯形的性质,锐角三角函数定义,特殊角的三角函数值,由实际问题列函数关系式,一次函数和二次函数的性质,等腰三角形的性质,分类思想的应用.8.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆.设点运动了秒,求:(1)点的坐标(用含的代数式表示);(2)当点在运动过程中,所有使与菱形的边所在直线相切的的值.【答案】解:(1)过作轴于,,,,,点的坐标为.(2)①当与相切时(如图1),切点为,此时,,,.②当与,即与轴相切时(如图2),则切点为,,过作于,则,,.③当与所在直线相切时(如图3),设切点为,交于,则,,.过作轴于,则,,化简,得,解得,,.所求的值是,和.【解析】 (1)过作轴于,利用三角函数求得OD 、DC 的长,从而求得点的坐标⊙P 与菱形OABC 的边所在直线相切,则可与OC 相切;或与OA 相切;或与AB 相切,应分三种情况探讨:①当圆P 与OC 相切时,如图1所示,由切线的性质得到PC 垂直于OC ,再由OA=+t ,根据菱形的边长相等得到OC=1+t ,由∠AOC 的度数求出∠POC 为30°,在直角三角形POC 中,利用锐角三角函数定义表示出cos30°=oc/op ,表示出OC , 等于1+t 列出关于t 的方程,求出方程的解即可得到t 的值;②当圆P 与OA ,即与x 轴相切时,过P 作PE 垂直于OC ,又PC=PO ,利用三线合一得到E 为OC 的中点,OE 为OC 的一半,而OE=OPcos30°,列出关于t 的方程,求出方程的解即可得到t 的值;③当圆P 与AB 所在的直线相切时,设切点为F ,PF 与OC 交于点G ,由切线的性质得到PF 垂直于AB ,则PF 垂直于OC ,由CD=FG ,在直角三角形OCD 中,利用锐角三角函数定义由OC 表示出CD ,即为FG ,在直角三角形OPG 中,利用OP 表示出PG ,用PG+GF 表示出PF ,根据PF=PC ,表示出PC ,过C 作CH 垂直于y 轴,在直角三角形PHC 中,利用勾股定理列出关于t 的方程,求出方程的解即可得到t 的值,综上,得到所有满足题意的t 的值.9.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8. (1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y . 【解析】 【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BOPD MO=,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32. 【详解】解:(1)把0x =代入4y kx =+,4y =, ∴4BO =, 又∵4ABO S ∆=,∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+, 得044k =-+, 解得1k =. 故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒, ∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =, ∴90POD EOC ∠+∠=︒, ∴OPD EOC ∠=∠, ∴POD OCE ∆≅∆, ∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒, ∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠, ∴BT TO =, ∵90BTO ∠=︒, ∴90TPO TOP ∠+∠=︒, ∵PO BM ⊥, ∴90BNO ∠=︒, ∴BQT TPO ∠=∠, ∴QTB PTO ∆≅∆, ∴QT TP =,PO BQ =, ∴PQT QPT ∠=∠, ∵PO PK KB =+,∴QB PK KB =+,QK KP =, ∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠, ∴KPB BPN ∠=∠, 设KPB x ∠=︒, ∴BPN x ∠=︒,∵2PMB KPB ∠=∠, ∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠, ∴PO PM =,过点P 作PD x ⊥轴,垂足为点D , ∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠, tan tan OPD BMO ∠=∠, OD BO PD MO =,442t t t =+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==, ∴CM y P 轴,∵90PNM POC ∠=∠=︒, ∴BM OC P ,∴四边形BOCM 是平行四边形, ∴4832BOCM S BO OM =⨯=⨯=Y . 故答案为32. 【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.10.如图,在平面直角坐标系xOy 中,点P 是⊙C 外一点,连接CP 交⊙C 于点Q ,点P 关于点Q 的对称点为P ′,当点P ′在线段CQ 上时,称点P 为⊙C “友好点”.已知A (1,0),B (0,2),C (3,3) (1)当⊙O 的半径为1时,①点A ,B ,C 中是⊙O “友好点”的是 ;②已知点M 在直线y +2 上,且点M 是⊙O “友好点”,求点M 的横坐标m 的取值范围;(2)已知点D 0),连接BC ,BD ,CD ,⊙T 的圆心为T (t ,﹣1),半径为1,若在△BCD 上存在一点N ,使点N 是⊙T “友好点”,求圆心T 的横坐标t 的取值范围.【答案】(1)①B;②0≤m≤3;(2)﹣4+33≤t<33.【解析】【分析】(1))①根据“友好点”的定义,OB=<2r=2,所以点B是⊙O“友好点”;②设M(m,﹣3m+2 ),根据“友好点”的定义,OM=223222m m⎛⎫+-+≤⎪⎪⎝⎭,由此求解即可;(2)B(0,2),C(3,3),D(23,0),⊙T的圆心为T(t,﹣1),点N是⊙T“友好点”,NT≤2r=2,所以点N只能在线段BD上运动,过点T作TN⊥BD于N,作TH∥y轴,与BD交于点H.易知∠BDO=30°,∠OBD=60°,NT=3HT,直线BD:y=﹣3x+2,可知H(t,﹣3t+2),继而可得NT=﹣12t+33,由此可得关于t的不等式,解出t的范围即可.【详解】(1)①∵r=1,∴根据“友好点”的定义,OB=<2r=2,∴点B是⊙O“友好点”,∵OC=2233+=32>2r=2,∴点C不是⊙O“友好点”,A(1,0)在⊙O上,不是⊙O“友好点”,故答案为B;②如图,设M (m ,﹣33m +2 ),根据“友好点”的定义, ∴OM =223222m m ⎛⎫+-+≤ ⎪ ⎪⎝⎭, 整理,得2m 2﹣23m ≤0,解得0≤m ≤3;∴点M 的横坐标m 的取值范围:0≤m ≤3;(2)∵B (0,2),C (3,3),D (23,0),⊙T 的圆心为T (t ,﹣1),点N 是⊙T “友好点”, ∴NT ≤2r =2,∴点N 只能在线段BD 上运动,过点T 作TN ⊥BD 于N ,作TH ∥y 轴,与BD 交于点H .∵tan ∠BDO =323OB OD == ∴∠BDO=30°,∴∠OBD =60°,∴∠THN=∠OBD=60°,∴NT =HT•sin ∠THN=32HT , ∵B (0,2),D 30),∴直线BD :y 3+2, ∵H 点BD 上,∵H (t ,﹣33t +2), ∴HT 3+2﹣(﹣1)3+3,∴NT=32HT=32(﹣33t+3)=﹣12t+332,∴﹣12t+33≤2,∴t≥﹣4+33,当H与点D重合时,点T的横坐标等于点D的横坐标,即t=33,此时点N不是“友好点”,∴t<33,故圆心T的横坐标t的取值范围:﹣4+33≤t<33.【点睛】本题是圆的综合题,正确理解“友好点”的意义,熟练运用相似三角形的性质与特殊三角函数是解题的关键.11.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度为1:3,DE =3米,点C在DE上,CD=0.5米,CD是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41,3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】解:由题意得,3 tan3B=∵MN∥AD,∴∠A=∠B,∴tan A=3,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=3.在Rt△CEF中,设EF=x,CF x(x>0),CE=2.5,代入得(52)2=x2+3x2,解得x=1.25,∴CFx≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.12.已知:如图,AB为⊙O的直径,AC与⊙O相切于点A,连接BC交圆于点D,过点D 作⊙O的切线交AC于E.(1)求证:AE=CE(2)如图,在弧BD上任取一点F连接AF,弦GF与AB交于H,与BC交于M,求证:∠FAB+∠FBM=∠EDC.(3)如图,在(2)的条件下,当GH=FH,HM=MF时,tan∠ABC=34,DE=394时,N为圆上一点,连接FN交AB于L,满足∠NFH+∠CAF=∠AHG,求LN的长.【答案】(1)详见解析;(2)详见解析;(3)4013 NL【解析】【分析】(1)由直径所对的圆周角是直角,得∠ADC=90°,由切线长定理得EA=ED,再由等角的余角相等,得到∠C=∠EDC,进而得证结论.(2)由同角的余角相等,得到∠BAD=∠C,再通过等量代换,角的加减进而得证结论.(3)先由条件得到AB=26,设HM=FM=a,GH=HF=2a,BH=43a,再由相交弦定理得到GH•HF=BH•AH,从而求出FH,BH,AH,再由角的关系得到△HFL∽△HAF,从而求出HL,AL,BL,FL,再由相交弦定理得到LN•LF=AL•BL,进而求出LN的长.【详解】解:(1)证明:如图1中,连接AD.∵AB是直径,∴∠ADB=∠ADC=90°,∵EA、ED是⊙O的切线,∴EA=ED,∴∠EAD=∠EDA,∵∠C+∠EAD=90°,∠EDC+∠EDA=90°,∴∠C=∠EDC,∴ED=EC,∴AE=EC.(2)证明:如图2中,连接AD.∵AC是切线,AB是直径,∴∠BAC=∠ADB=90°,∴∠BAD+∠CAD=90°,∠CAD+∠C=90°,∴∠BAD=∠C,∵∠EDC=∠C,∴∠BAD=∠EDC,∵∠DBF=∠DAF,∴∠FBM+∠FAB=∠FBM+∠DAF=∠BAD,∴∠FAB+∠FBM=∠EDC.(3)解:如图3中,由(1)可知,DE=AE=EC,∵DE=394,∴AC=392,∵tan∠ABC=34=ACAB,∴39 32 4AB ,∴AB=26,∵GH=FH,HM=FN,设HM=FM=a,GH=HF=2a,BH=43a,∵GH•HF=BH•AH,∴4a2=43a(26﹣43a),∴a=6,∴FH=12,BH=8,AH=18,∵GH=HF,∴AB⊥GF,∴∠AHG=90°,∵∠NFH+∠CAF=∠AHG,∴∠NFH+∠CAF=90°,∵∠NFH+∠HLF=90°,∴∠HLF=∠CAF,∵AC∥FG,∴∠CAF=∠AFH,∴∠HLF=∠AFH,∵∠FHL=∠AHF,∴△HFL∽△HAF,∴FH2=HL•HA,∴122=HL•18,∴HL=8,∴AL=10,BL=16,FL=22=413,FH HL∵LN•LF=AL•BL,∴413•LN=10•16,∴LN=4013.13【点睛】本题考查了圆的综合问题,涉及到的知识有:切线的性质;切线长定理;圆周角定理;相交弦定理;相似三角形性质与判定等,熟练掌握圆的相关性质是解题关键.13.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,3∴0 tan30ODPD,解得OD=1,∴22=+=2,PO PD OD∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.14.兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB与水平桥面的夹角是31°,拉索AB的长为152米,主塔处桥面距地面7.9米(CD的长),试求出主塔BD的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【答案】主塔BD的高约为86.9米.【解析】【分析】根据直角三角形中由三角函数得出BC相应长度,再由BD=BC+CD可得出.【详解】在Rt△ABC中,∠ACB=90°,sin BCAAB=.∴sin152sin311520.5279.04BC AB A︒=⨯=⨯=⨯=.79.047.986.9486.9BD BC CD=+=+=≈(米)答:主塔BD的高约为86.9米.【点睛】本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.15.已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.(1)求AE的长及sin∠BEC的值;(2)求△CDE的面积.【答案】(1)2,sin∠BEC=35;(2)754【解析】【分析】(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,2,设AE=CE=x,则222-x,在Rt△CEF中,利用勾股定理求出x的值即可求得答案;(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得S△CDE=S△AED=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求出y,继而可求得答案.【详解】(1)如图,作CF⊥BE于F点,由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,又∵点C是OB中点,∴OC=BC=6,CF=BF=32,设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,CE2=CF2+EF2,即x2=(92-x)2+(32)2,解得:x=52,故可得sin∠BEC=35CFCE,AE=52;(2)如图,过点E作EM⊥OA于点M,则S△CDE=S△AED=12AD•EM=12AD×AEsin∠EAM=12AD•AE×sin45°=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,解得:y=152,即AD=152,故S△CDE=S△AED=24AD×AE=754.【点睛】本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.。

济南市九年级数学下册第二十八章《锐角三角函数》综合经典习题(培优练)

济南市九年级数学下册第二十八章《锐角三角函数》综合经典习题(培优练)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若菱形的边长为2cm ,其中一内角为60°,则它的面积为( )A .232cmB .23cmC .22cmD .223cm 2.如图,在矩形ABCD 中,G 是AB 边上一点,连结GC ,取线段CG 上点E ,使ED DC =且90AED ∠=︒,AF CG ⊥于F ,2AF =,1FG =,则EC 的长( )A .4B .5C .163D .833.国家电网近来实施了新一轮农村电网改造升级工程,解决了农村供电“最后1公里”问题,电力公司在 改造时把某一输电线铁塔建在了一个坡度为1:0.75的山坡CD 的平台BC 上(如图),测得52.5,5AED BC ︒∠==米,35CD =米,19DE =米,则铁塔AB的高度约为( )(参考数据:52.50.79,52.50.61,52.5 1.30sin cos tan ︒︒︒≈≈≈)A .7.6 米B .27.5 米C .30.5 米D .58.5 米 4.菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为( )A .5:1B .4:1C .3:1D .2:1 5.如图,已知第一象限内的点A 在反比例函数2y x=的图象上,第二象限的点B 在反比例函数kyx的图象上,且OA⊥OB,tanA=2,则k的值为()A.4 B.8 C.-4 D.-86.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=22;③DF=DC;④△AEF∽△CAB;⑤S四边形CDEF=52S△ABF ,其中正确的结论有()A.2个B.3个C.4个D.5个7.如图,在矩形ABCD中,AB=3,做BD的垂直平分线E,F,分别与AD、BC交于点E、F,连接BE,DF,若EF=AE+FC,则边BC的长为()A.23B.33C.63D.93 28.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于()A.43B.34C.45D.359.一把5m长的梯子AB斜靠在墙上,梯子倾斜角α的正切值为34,考虑安全问题,现要求将梯子的倾斜角改为30°,则梯子下滑的距离AA'的长度是()A.34m B.13m C.23m D.12m10.三角形在正方形网格纸中的位置如图所示,则cos 的值是()A.34B.43C.35D.4511.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.BDBCB.BCABC.ADACD.CDAC12.如图,一块矩形木板ABCD斜靠在墙边,( OC⊥OB,点A、B、C、D、O在同一平面内),已知AB a,AD b,∠BCO=α.则点A到OC的距离等于()A.asinα+bsinαB.acosα+bcosαC.asinα+bcosαD.acosα+bsinα13.如图,在平面直角坐标系中,Rt OAB的斜边OA在第一象限,并与x轴的正半轴夹角为30度,C为OA的中点,BC=1,则A点的坐标为()A .()3,3B .()3,1C .()2,1D .()2,3 14.如图,正方形ABCD 的边长为1,点A 与原点重合,B 在y 轴正半轴上,D 在x 轴负半轴上,将正方形ABCD 绕着点A 逆时针旋转30至AB C D ''',CD 与B C ''相交于点E ,则E 坐标为( )A .31,3⎛⎫- ⎪ ⎪⎝⎭ B .11,2⎛⎫- ⎪⎝⎭ C .31,2⎛- ⎝⎭ D .21,3⎛⎫- ⎪⎝⎭二、填空题15.某斜坡的坡度33i =,则它的坡角是__________度.16.在平面直角坐标系xOy 中,已知一次函数y =kx +b (k ≠0)的图象过点P (1,1),与x 轴交于点A ,与y 轴交于点B ,且tan ∠ABO =2,那么点A 的坐标是_____. 17.某人顺着山坡沿一条直线型的坡道滑雪,当他滑过130米长的路程时,他所在位置的竖直高度下降了50米,则该坡道的坡比是_________.18.如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45和30.若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米(结果保留根号).19.如图,长方形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C’处,BC’交AD于点E,则线段DE的长为____.20.如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为_____.21.如图,已知直线l:33y x=,过点()0,1A作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点1A;过点1A作y轴的垂线交直线l于点1B,过点1B作直线l的垂线交y轴于点2A;…;按此作法继续下去,则点2020A的坐标为__________.22.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=____.23.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为1的等边三角形,点A 在x 轴上,点O ,B 1,B 2,B 3,…都在直线l 上,则点A 2016的坐标是______.24.如图,矩形ABCD 中,AD=1,CD=3,连接AC ,将线段AC 、AB 分别绕点A 顺时针旋转90°至AE 、AF ,线段AE 与弧BF 交于点G ,连接CG ,则图中阴影部分面积为__.25.如图,已知2AB a =,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE .点P ,C ,E 在一条直线上,60DAP ∠=︒,M 、N 分别是对角线AC 、BE 的中点.当点P 在线段AB 上移动时,点M 、N 之间的距离最短为_______.26.如图,在ABC ∆中10AB AC ==,以AB 为直径的圆O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且12CBF A ∠=∠,1tan 3CBF ∠= ,则BC 的长为__________.三、解答题27.如图,在ABC 中,AD BC ⊥,BE AC ⊥,垂足分别为D ,E ,AD 与BE 相交于点F .(1)求证:ACD △∽BFD △;(2)当tan 1ABD ∠=,3AC =时,求BF 的长.28.我市里运河有一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1:1,文化墙PM 在天桥底部正前方8米处(PB 的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:3.有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM 是否需要拆除?请说明理由.(参考数据:2=1.414,3=1.732)29.如图,河对岸有铁塔AB ,在C 处测得塔顶A 的仰角为30°,向塔前进14米到达D ,在D 处测得A 的仰角为45°,求铁塔AB 的高.30.计算:(1)()2222cos30sin 45cos 601tan 60tan 45-+︒+-︒︒︒︒(2)23260x x --=(3)2(1)5(1)140x x -+--=【参考答案】一、选择题1.D2.C3.C4.A5.D6.D7.B8.C9.D10.D11.C12.D13.B14.A二、填空题15.30【分析】根据坡度与坡角的关系及特殊角正切的值可得解答【详解】解:设斜坡的坡角为则有∵故答案为【点睛】本题考查锐角三角函数值的应用正确理解坡度与坡角的意义及特殊角的三角函数值是解题关键16.(﹣10)或(30)【分析】依题意得即可得一次函数解析式为所以由tan∠ABO=2得到且可解得或进而求得结论【详解】解:∵一次函数的图象经过点∴即∴一次函数解析式为∴一次函数与x轴y轴的交点坐标为(17.【分析】首先根据勾股定理求得滑行的水平距离然后根据坡比的定义即可求解【详解】解:滑行的水平距离是:=120(米)故坡道的坡比是:50:120=故答案是:【点睛】本题考查了勾股定理以及坡比的定义正确求18.【解析】【分析】在和中利用锐角三角函数用CH表示出AHBH的长然后计算出AB的长【详解】由于在中米在米米故答案为【点睛】本题考查了解直角三角形的应用——仰角俯角问题题目难度不大解决本题的关键是用含C19.375【分析】首先根据题意得到BE=DE然后根据勾股定理得到关于线段ABAEBE的方程解方程即可解决问题【详解】设ED=x则AE=6﹣x∵四边形ABCD为矩形∴AD∥BC∴∠EDB=∠DBC由题意得20.2+【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC==BC=OB﹣OC=2﹣在Rt△ABC中根据tan∠ABO=可得答案【详解】如图连接OA过点A 作AC⊥OB于点21.【分析】先求出点B的坐标为(1)得到OA=1OB=求出∠AOB=60°再求出∠得到求出(04);同理得到(0);由此得到规律求出答案【详解】将y=1代入中得x=∴B(1)∴OA=1OB=∴tan∠A22.5【分析】过P作PD⊥OB交OB于点D在直角三角形POD中利用锐角三角函数定义求出OD的长再由PM=PN利用三线合一得到D为MN中点根据MN求出MD的长由OD-MD 即可求出OM的长【详解】过P作PD23.(10091008)【分析】根据题意得出直线OB1的解析式为y=x进而得出OB1B2B3坐标进而得出坐标变化规律进而得出答案【详解】过B1向x轴作垂线B1C垂足为C由题意可得:A(10)AO∥A1B24.﹣【分析】由勾股定理得到AC=2由三角函数的定义得到∠CAB=30°根据旋转的性质得到∠CAE=∠BAF=90°求得∠BAG=60°然后根据图形的面积即可求得【详解】在矩形ABCD中∵AD=1CD=25.【分析】连接PMPN根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x则PB=2a -x然后利用锐角三角函数求出PM和P26.【分析】连接AE根据AB是直径得出AE⊥BCCE=EB依据已知条件得出∠CBF=∠EABFB 是圆的且线进而得出CB的长【详解】解:连接AE∵AB为直径∴AE⊥BC∵AB=AC∴∠EAB=∠CABEB三、解答题27.28.29.30.【参考解析】一、选择题1.D解析:D【分析】连接AC,过点A作AM⊥BC于点M,根据菱形的面积公式即可求出答案.【详解】连接AC,过点A作AM⊥BC于点M,∵菱形的边长为2cm,∴AB=BC=2cm,∵有一个内角是60°,∴∠ABC=60°,∴AM=ABsin60°,∴此菱形的面积为:=2cm ).故选:D .【点睛】本题考查菱形的性质,特殊角的三角函数值,解题的关键是熟练运用菱形的性质. 2.C解析:C【分析】如图,过D 作DP CE ⊥于,P 证明:,EP CP EDP CDP =∠=∠,,DEC DCE ∠=∠再证明,AEF BCG EDP ∠=∠=∠ 结合矩形的性质证明:,AFG EFA ∽利用相似三角形的性质可得4EF =,再求解,AG AE ,设,BG x = 可得2,DE x AD x =+= 利用勾股定理求解,x 再由,BCG EDP ∠=∠可得:1,2EP DP =设,EP m = 则2,DP m = 由勾股定理求解m , 从而可得答案.【详解】解:如图,过D 作DP CE ⊥于,P,DE DC =,EP CP EDP CDP ∴=∠=∠, ,DEC DCE ∠=∠90,AED DCB ∠=︒=∠90,AEF DEC DCE BCG DEC EDP ∴∠+∠=︒=∠+∠=∠+∠,AEF BCG EDP ∴∠=∠=∠,,90AGF CGB AF CG B ∠=∠⊥∠=︒,,FAG BCG ∴∠=∠,FAG AEF ∴∠=∠90AFG EFA ∠=∠=︒,,AFG EFA ∴∽,AF FG EF FA∴= 21AF FG ==,,21,2EF ∴= 4EF ∴=,AE ∴== AG == 设BG x =,则5,AB CD x DE ==+=AEF BCG ∠=∠,1tan tan ,2AF AEF BCG EF ∴∠=∠== 1,2BG BC ∴= 2,BC x AD ∴== ()()()2222255,x x ∴=++235250,x x ∴--=55x ∴=5x = 55855DE ∴== ,EDP BCG ∠=∠1,2EP DP ∴= 设,EP m = 则2,DP m =()22285+2,3m m ⎛∴= ⎝⎭ 83m ∴=(负根舍去) 162.3EC EP ∴==故选:.C【点睛】 本题考查的是矩形的性质,勾股定理的应用,等腰三角形的性质,三角形相似的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键.3.C解析:C【分析】延长AB交ED于G,过C作CF⊥DE于F,得到GF=BC=5,设DF=3k,CF=4k,解直角三角形得到结论.【详解】解:延长AB交ED于G,过C作CF⊥DE于F,则四边形BGFC是矩形∴GF=BC=5,∵山坡CD的坡度为1:0.75,∴设DF=3k,CF=4k,∴CD=5k=35,∴k=7,∴DF=21,BG=CF=28,∴EG=GF+DF+DE=5+21+19=45,∵∠AED=52.5°,∴AG=EG•tan52.5°=45×1.30=58.5,∴AB=AG-BG=30.5米,答:铁塔AB的高度约为30.5米.故选:C.【点睛】本题考查了解直角三角形的应用-坡度坡角问题和解直角三角形的应用-坡度坡角问题,难度适中,通过作辅助线,构造直角三角形,利用三角函数求解是解题的关键.4.A解析:A【分析】先根据菱形的性质求出菱形的边长,再根据菱形的高与边长的关系求出∠A,进而可求出∠ADC,从而可得答案.【详解】解:如图,DE是菱形ABCD的高,DE=1cm,∵菱形ABCD的周长是8cm,∴AD=2cm,在Rt△ADE中,∵DE=12AD,∴∠A=30°,∵AB∥DC,∴∠A+∠ADC=180°,∴∠ADC=150°,∴∠ADC:∠A=150°:30°=5:1.故选:A.【点睛】本题考查了菱形的性质和30°角的直角三角形的性质,属于基本题型,熟练掌握上述知识是解题的关键.5.D解析:D【分析】过点A、B分别作AC⊥x轴、BD⊥x轴,垂足分别为点C、D,如图,易证△AOC∽△OBD,则根据相似三角形的性质可得214AOCBODS OAS OB⎛⎫==⎪⎝⎭△△,再根据反比例函数系数k的几何意义即可求出k的值.【详解】解:过点A、B分别作AC⊥x轴、BD⊥x轴,垂足分别为点C、D,如图,则∠ACO=∠BDO=90°,∠OAC+∠AOC=90°,∵OA⊥OB,tan∠BAO=2,∴∠AOC+∠BOD=90°,OA:OB=1:2,∴∠OAC=∠BOD,∴△AOC∽△OBD,∴221124 AOCBODS OAS OB⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭△△,∵1212AOCS⨯==,12BODS k=△,∴11142k =,∴8k =, ∵k <0,∴k=﹣8.故选:D .【点睛】本题考查了反比例函数系数k 的几何意义、相似三角形的判定和性质以及三角函数的定义等知识,熟练掌握所学知识、明确解答的方法是解题的关键.6.D解析:D【分析】依据△AEF ∽△CBF ,即可得出CF=2AF ;依据△BAE ∽△ADC ,即可得到tan ∠ ;过D 作DM ∥BE 交AC 于N ,依据DM 垂直平分CF ,即可得出DF=DC ;依据∠EAC=∠ACB ,∠ABC=∠AFE=90°,即可得到△AEF ∽△CAB ;设△AEF 的面积为s ,则△ABF 的面积为2s ,△CEF 的面积为2s ,△CDE 的面积为3s ,四边形CDEF 的面积为5s ,进而得出S 四边形CDEF =52S △ABF 【详解】解:∵AD ∥BC ,∴△AEF ∽△CBF , AE AF BC CF∴= ∵AE=12AD= 12BC , 12AF CF ∴= ∴CF=2AF ,故①正确;设AE=a ,AB=b ,则AD=2a ,∵BE ⊥AC ,∠BAD=90°,∴∠ABE=∠ADC ,而∠BAE=∠ADC=90°,∴△BAE ∽△ADC ,2b aa b∴=,即b ∴=22CD tan CAD AD b a =∠=∴=,故②正确;如图,过D 作DM ∥BE 交AC 于N ,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故④正确;如图,连接CE,由△AEF∽△CBF,可得12AFCF EFBF==设△AEF的面积为s,则△ABF的面积为2s,△CEF的面积为2s,∴△ACE的面积为3s,∵E是AD的中点,∴△CDE的面积为3s,∴四边形CDEF的面积为5s,∴S四边形CDEF=52S△ABF,故⑤正确.故选:D.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.7.B解析:B【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF 是菱形,所以可求出BE ,AE ,进而可求出BC 的长.【详解】解:∵四边形ABCD 是矩形,//,DE BF ∴,,DEO BFO EDO FBO ∴∠=∠∠=∠ EF 垂直平分BD ,OB OD ∴=,BOF DOE ∴∆∆≌,,OE OF ∴=∴ 四边形BEDF 是菱形,∵四边形ABCD 是矩形,四边形BEDF 是菱形,∴∠A=90°,AD=BC ,DE=BF ,OE=OF ,EF ⊥BD ,∠EBO=FBO ,∴AE=FC .又EF=AE+FC ,∴EF=2AE=2CF ,又EF=2OE=2OF ,AE=OE ,∴△ABE ≌OBE , ∴∠ABE=∠OBE ,∴∠ABE=∠EBD=∠DBC=30°,∴BE= cos30BO ︒= ∴BF=BE=∴∴BC=BF+CF=故选B .【点睛】本题考查了矩形的性质、菱形的性质以及在直角三角形中30°角所对的直角边时斜边的一半,解题的关键是求出∠ABE=∠EBD=∠DBC=30°. 8.C解析:C【解析】∵∠C=90°,AC=4,BC=3,∴AB=5,∴sinB=45AC AB = , 故选C. 9.D解析:D【分析】设AC=3k,BC=4k,根据勾股定理得到AB=22AC BC+=5k=5,求得AC=3m,BC=4m,根据直角三角形的性质健康得到结论.【详解】解:如图,∵梯子倾斜角α的正切值为34,∴设AC=3k,BC=4k,∴AB=22AC BC+=5k=5,∴k=1,∴AC=3m,BC=4m,∵A′B′=AB=5,∠A′B′C=30°,∴A′C=12A′B′=52,∴AA′=AC﹣A′C=3﹣52=12m,故梯子下滑的距离AA'的长度是12 m,故选:D.【点睛】本题考查了解直角三角形在实际生活中的应用,本题中根据梯子长不会变的等量关系求解是解题的关键,属于中考常考题型.10.D解析:D【分析】根据锐角三角函数的定义得出cosα=BCAB进而求出即可.【详解】解:如图所示:∵AC=3,BC=4,∴AB=5,∴cosα=45BC AB . 故选:D .【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,正确构造直角三角形是解题关键. 11.C解析:C【分析】利用垂直的定义以及互余的定义得出∠α=∠ACD ,进而利用锐角三角函数关系得出答案.【详解】解:∵AC ⊥BC ,CD ⊥AB ,∴∠α+∠BCD =∠ACD +∠BCD ,∴∠α=∠ACD ,∴cosα=cos ∠ACD =BD BC =BC AB =DC AC, 只有选项C 错误,符合题意.故选:C .【点睛】 此题主要考查了锐角三角函数的定义,得出∠α=∠ACD 是解题关键.12.D解析:D【分析】根据题意,做出合适的辅助线,然后利用锐角三角函数即可表示出点A 到OC 的距离即可求解.【详解】解:作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=α,∴∠EAB=α,∴∠FBA=α,∵AB=a ,AD=b ,∴FO=FB+BO=a•cosα+b•sinα,故选:D .【点睛】本题考查解直角三角形、三角函数的定义、矩形的性质,解答本题的关键是明确题意,正确做出辅助线,利用数形结合的思想解答.13.B解析:B【分析】根据题画出图形,再根据直角三角形斜边上的中线等于斜边的一半可得AB 的值,再根据勾股定理可得OB 的值,进而可得点A 的坐标.【详解】解:如图,过A 点作AD x ⊥轴于D 点,Rt OAB ∆的斜边OA 在第一象限,并与x 轴的正半轴夹角为30.30AOD ∴∠=︒,12AD OA ∴=, C 为OA 的中点,1AD AC OC BC ∴====,2OA ∴=,3OD ∴=,则点A 的坐标为:(31).故选:B .【点睛】本题考查了解直角三角形、坐标与图形性质、直角三角形斜边上的中线,解决本题的关键是综合运用以上知识.14.A解析:A【分析】连接AE,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADE≌Rt△AB′E得∠DAE=12∠B′AD=30°,由DE=ADtan∠DAE可得答案.【详解】如图:连接AE∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB C D''',∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADE和Rt△A B′E中,∵AD AB AE AE'=⎧⎨=⎩∴Rt△ADE≌Rt△AB′E(HL),∴∠DAE=∠B′AE=12∠B′AD=30°,∴DE=ADtan∠33∴点E的坐标为(-13故选:A【点睛】本题考查了正方形的性质、坐标与图形旋转.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.二、填空题15.30【分析】根据坡度与坡角的关系及特殊角正切的值可得解答【详解】解:设斜坡的坡角为则有∵故答案为【点睛】本题考查锐角三角函数值的应用正确理解坡度与坡角的意义及特殊角的三角函数值是解题关键解析:30【分析】根据坡度与坡角的关系及特殊角正切的值可得解答.【详解】解:设斜坡的坡角为α,则有()tan 3i α==,∵()tan 3030α︒=∴=︒, 故答案为30 .【点睛】本题考查锐角三角函数值的应用,正确理解坡度与坡角的意义及特殊角的三角函数值是解题关键 .16.(﹣10)或(30)【分析】依题意得即可得一次函数解析式为所以由tan ∠ABO =2得到且可解得或进而求得结论【详解】解:∵一次函数的图象经过点∴即∴一次函数解析式为∴一次函数与x 轴y 轴的交点坐标为(解析:(﹣1,0)或(3,0)【分析】依题意得1k b =+,即1b k =-,可得一次函数解析式为1y kx k =+-,所以1k OA k -=,1OB k =-,由tan ∠ABO =2得到121k k k -=-且1k ≠可解得12k =或12k =-,进而求得结论. 【详解】解:∵一次函数y kx b =+的图象经过点()1,1P ,∴1k b =+,即1b k =-,∴一次函数解析式为1y kx k =+-,∴一次函数1y kx k =+-与x 轴、y 轴的交点坐标为(1k k -,0)、(0,1k -), ∴1k OA k-=,1OB k =-, ∵tan 2OA ABO OB ∠==, ∴121k k k-=-且1k ≠, 解得,12k =或12k =-, 当12k =时,OA=1,此时点A 在x 轴负半轴上,所以点A 坐标为(﹣1,0),当12k=-时,OA=3,此时点A在x轴正半轴上,所以点A坐标为(3,0),∴A点的坐标是1,0或3,0故答案为:(﹣1,0)或(3,0).【点睛】本题考查了一次函数图象上点的坐标特征,解答本题的关键是求出函数图象与x轴、y轴的交点坐标.解决本题时要注意点A的坐标有两种情况,不要漏解.17.【分析】首先根据勾股定理求得滑行的水平距离然后根据坡比的定义即可求解【详解】解:滑行的水平距离是:=120(米)故坡道的坡比是:50:120=故答案是:【点睛】本题考查了勾股定理以及坡比的定义正确求解析:5 12【分析】首先根据勾股定理求得滑行的水平距离,然后根据坡比的定义即可求解.【详解】2213050-(米),故坡道的坡比是:50:120=512.故答案是:5 12.【点睛】本题考查了勾股定理,以及坡比的定义,正确求得滑行的水平距离是关键.18.【解析】【分析】在和中利用锐角三角函数用CH表示出AHBH的长然后计算出AB的长【详解】由于在中米在米米故答案为【点睛】本题考查了解直角三角形的应用——仰角俯角问题题目难度不大解决本题的关键是用含C解析:()120031【解析】【分析】在Rt ACH和Rt HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.【详解】由于CD//HB,CAH ACD 45∠∠∴==,B BCD 30∠∠==,在Rt ACH 中,CAH 45∠∴=,AH CH 1200∴==米,在Rt HCB ,CH tan B HB∠=, CH 12001200HB tan B tan303∠∴====米), )AB HB HA 120012001∴=-==米,故答案为)12001. 【点睛】本题考查了解直角三角形的应用——仰角、俯角问题,题目难度不大,解决本题的关键是用含CH 的式子表示出AH 和BH .19.375【分析】首先根据题意得到BE=DE 然后根据勾股定理得到关于线段ABAEBE 的方程解方程即可解决问题【详解】设ED=x 则AE=6﹣x ∵四边形ABCD 为矩形∴AD ∥BC ∴∠EDB=∠DBC 由题意得解析:3.75【分析】首先根据题意得到BE =DE ,然后根据勾股定理得到关于线段AB 、AE 、BE 的方程,解方程即可解决问题.【详解】设ED =x ,则AE =6﹣x .∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠EDB =∠DBC .由题意得:∠EBD =∠DBC ,∴∠EDB =∠EBD ,∴EB =ED =x .由勾股定理得:BE 2=AB 2+AE 2,即x 2=9+(6﹣x )2,解得:x =3.75,∴ED =3.75. 故答案为3.75.【点睛】本题考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.20.2+【分析】连接OA 过点A 作AC ⊥OB 于点C 由题意知AC=1OA=OB=2从而得出OC==BC=OB ﹣OC=2﹣在Rt △ABC 中根据tan ∠ABO=可得答案【详解】如图连接OA 过点A 作AC ⊥OB 于点解析:.【分析】连接OA ,过点A 作AC ⊥OB 于点C ,由题意知AC=1、OA=OB=2,从而得出、BC=OB ﹣OC=2Rt △ABC 中,根据tan ∠ABO=AC BC可得答案.【详解】如图,连接OA ,过点A 作AC ⊥OB 于点C ,则AC=1,OA=OB=2,∵在Rt △AOC 中,222221OA AC -=-3∴BC=OB ﹣OC=23∴在Rt △ABC 中,tan ∠ABO=23AC BC =-3 故答案是:3【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO 为内角的直角三角形是解题的关键. 21.【分析】先求出点B 的坐标为(1)得到OA=1OB=求出∠AOB=60°再求出∠得到求出(04);同理得到(0);由此得到规律求出答案【详解】将y=1代入中得x=∴B (1)∴OA=1OB=∴tan ∠A解析:()20200,4【分析】先求出点B 31),得到OA=1,3∠AOB=60°,再求出∠130OA B =得到133AA =,求出1A (0,4);同理得到1143A B =1211312A A A B ==,2A (0,24);由此得到规律求出答案.【详解】将y=1代入3y x =中得3 ∴B 3,1),∴OA=1,3∴tan ∠AOB=3AB OA=, ∴∠AOB=60°,∵∠A 1BO=90°, ∴∠130OA B =, ∴133AA =,∴14OA =,∴1A (0,4); 同理:1143A B =,1211312A A AB ==, ∴2OA =1624=,∴2A (0,24);,∴点2020A 的坐标为()20200,4,故答案为:()20200,4. 【点睛】此题考查图形类规律的探究,一次函数的实际应用,锐角三角函数,根据图形的规律求出点的坐标得到点坐标的表示规律是解题的关键. 22.5【分析】过P 作PD ⊥OB 交OB 于点D 在直角三角形POD 中利用锐角三角函数定义求出OD 的长再由PM=PN 利用三线合一得到D 为MN 中点根据MN 求出MD 的长由OD-MD 即可求出OM 的长【详解】过P 作PD解析:5.【分析】过P 作PD ⊥OB ,交OB 于点D ,在直角三角形POD 中,利用锐角三角函数定义求出OD 的长,再由PM=PN ,利用三线合一得到D 为MN 中点,根据MN 求出MD 的长,由OD-MD 即可求出OM 的长.【详解】过P 作PD ⊥OB ,交OB 于点D ,在Rt △OPD 中,cos60°12OD OP ==,OP =12, ∴OD =6.∵PM =PN ,PD ⊥MN ,MN =2,∴MD =ND 12=MN =1, ∴OM =OD ﹣MD =6﹣1=5.故答案为:5.【点晴】本题考查的是勾股定理,含30度直角三角形的性质,等腰三角形的性质等知识,熟练掌握直角三角形的性质是解本题的关键.23.(10091008)【分析】根据题意得出直线OB1的解析式为y=x 进而得出OB1B2B3坐标进而得出坐标变化规律进而得出答案【详解】过B1向x 轴作垂线B1C 垂足为C 由题意可得:A (10)AO ∥A1B解析:(1009,10083) 【分析】 根据题意得出直线OB 1的解析式为y=3x ,进而得出O ,B 1,B 2,B 3坐标,进而得出坐标变化规律,进而得出答案.【详解】过B 1向x 轴作垂线B 1C ,垂足为C ,由题意可得:A (1,0),AO ∥A 1B 1,∠B 1OC =30°,∴CB 1=OB 1cos30°=32, ∴B 1的横坐标为:12,则B 1的纵坐标为:32, ∴点B 1,B 2,B 3,…都在直线y =3x 上,∴B 1(12,32), 同理可得出:A 的横坐标为:1,∴y =3,∴A 2(2,3),…A n (1+2n ,32n ). ∴A 2016(1009,10083),故答案为:(1009,10083)【点睛】此题主要考查了一次函数图象上点的坐标特征以及规律探究,得出A 点横纵坐标变化规律是解题关键.24.﹣【分析】由勾股定理得到AC=2由三角函数的定义得到∠CAB=30°根据旋转的性质得到∠CAE=∠BAF=90°求得∠BAG=60°然后根据图形的面积即可求得【详解】在矩形ABCD 中∵AD=1CD=解析:2π【分析】由勾股定理得到AC=2,由三角函数的定义得到∠CAB=30°,根据旋转的性质得到∠CAE=∠BAF=90°,求得∠BAG=60°,然后根据图形的面积即可求得.【详解】在矩形ABCD 中,∵AD=1,,∵AC=2,tan ∠CAB=3BC AD AB CD ==, ∴∠CAB=30°,∵线段AC 、AB 分别绕点A 顺时针旋转90°至AE 、AF ,∴∠CAE=∠BAF=90°,∴∠BAG=60°,∵,∴阴影部分面积=S △ABC +S 扇形ABG -S △ACG 1112222π=+=-故答案为:2π 【点睛】考查了扇形的面积计算,解题关键是灵活运用矩形、旋转的性质和熟记扇形的面积计算公式. 25.【分析】连接PMPN 根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x 则PB=2a -x 然后利用锐角三角函数求出PM 和P【分析】连接PM 、PN ,根据菱形的性质求出∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30°,从而求出∠MPN=90°,设AP=x ,则PB=2a -x ,然后利用锐角三角函数求出PM 和PN ,然后利用勾股定理求出MN 2与x 的函数关系式,化为顶点式即可求出MN 2的最小值,从而求出结论.【详解】解:连接PM 、PN∵四边形APCD 和四边形PBFE 为菱形,60DAP ∠=︒∴∠CPA=180°-∠DAP=120°,∠EPB=∠DAP=60°,PM ⊥AC ,PN ⊥EB ,AC 平分∠DAP ,PM 平分∠APC ,PN 平分∠EPB∴∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30° ∴∠MPN=∠MPC +∠EPN=90°设AP=x ,则PB=2a -x ∴PM=AP·sin ∠CAP=12x ,PN=PB·cos ∠32a -x ) 在Rt △MON 中MN 2= PM 2+PN 2=214x +34(2a -x )2=(x -32a )2+34a 2 当x=32a 时,MN 2取最小值,最小为34a 2 ∴MN 3 3. 【点睛】 此题考查的是菱形的性质、锐角三角函数、勾股定理和二次函数的应用,掌握菱形的性质、锐角三角函数、勾股定理和利用二次函数求最值是解决此题的关键.26.【分析】连接AE 根据AB 是直径得出AE ⊥BCCE=EB 依据已知条件得出∠CBF=∠EABFB 是圆的且线进而得出CB 的长【详解】解:连接AE ∵AB 为直径∴AE ⊥BC ∵AB=AC ∴∠EAB=∠CABEB 解析:10【分析】连接AE ,根据AB 是直径,得出AE ⊥BC ,CE=EB ,依据已知条件得出∠CBF=∠EAB ,FB 是圆的且线,进而得出CB 的长.【详解】解:连接AE ,∵AB 为直径,∴AE ⊥BC ,∵AB=AC ,∴∠EAB=12∠CAB ,EB=CE=12CB , ∵∠CBF=12∠CAB ,tan ∠CBF=13, ∴∠CBF=∠EAB ,tan ∠EAB=EB AE =13, ∴∠CBF+∠ABC=∠EAB+∠ABC=90°,∴FB 是⊙O 的切线,∴FB 2=FD•FA ,在RT △AEB 中,AB=10, ∴10,∴10,故答案为:10.【点睛】此题考查圆周角的性质,解直角三角形,求得FB 是圆的切线是解题的关键.三、解答题27.(1)见解析;(2)3【分析】(1)由90C DBF ∠+∠=︒,90C DAC ∠+∠=︒,推出DBF DAC ∠=∠,由此即可证明;(2)先证明AD BD =,由ACD △∽BFD △,得1AC AD BF BD ==,即可解决问题. 【详解】(1)证明:∵AD BC ⊥,BE AC ⊥,∴90BDF ADC BEC ∠=∠=∠=︒,∴90C DBF ∠+∠=︒,90C DAC ∠+∠=︒,∴DBF DAC ∠=∠,∴ACD △∽BFD △.(2)∵tan 1ABD ∠=,90ADB ∠=︒, ∴1AD BD=, ∴AD BD =,∵ACD △∽BFD △, ∴1AC AD BF BD==, ∴3BF AC ==.【点睛】 本题考查相似三角形的判定和性质、三角函数等知识,解题的关键是熟练掌握相似三角形的判定和性质,属于中考常考题型.28.该文化墙PM 不需要拆除,见解析【分析】首先过点C 作CD ⊥AB 于点D ,则天桥高CD=6,由新坡面的坡度为13tanα=tan ∠CAB=33==,然后由特殊角的三角函数值来求AD ,BD 的长;由坡面BC 的坡度为1:1,新坡面的坡度为13AD ,BD 的长,继而求得AB=AD-BD 的长,则可求得PA 答案.【详解】解:该文化墙PM 不需要拆除,理由:设新坡面坡角为α,新坡面的坡度为13, ∴tanα33==,∴α=30°.作CD ⊥AB 于点D ,则CD =6米, ∵新坡面的坡度为13∴tan ∠CAD CD 6AD AD 3===解得,AD =63,∵坡面BC 的坡度为1:1,CD =6米,∴BD =6米,∴AB =AD ﹣BD =(3-6)米,又∵PB =8米,∴PA =PB ﹣AB =8﹣(3-6)=14﹣63≈14﹣6×1.732≈3.6米>3米,∴该文化墙PM 不需要拆除.【点睛】此题考查了坡度坡角的知识.注意根据题意构造直角三角形,利用好坡比,会解直角三角形是关键.29. AB=7)31米. 【分析】首先根据题意分析图形;本题涉及到两个直角三角形,设AB=x (米),再利用CD=BC-BD=14的关系,进而可解即可求出答案.【详解】解:在Rt △ABD 中,∵∠ADB=45°,∴3.在Rt △ABC 中,∵∠ACB=30°, ∴BC=AB .设AB=x (米),∵CD=14,∴BC=x+14.∴3x∴x=7)31 即铁塔AB 的高为7)31米. 【点睛】 本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.30.(1)15342--2)11193x +=,21193x -=;(3)13x =,26x =-; 【分析】(1)原式利用特殊角的三角函数值,以及乘方的意义计算即可得到结果;(2)利用求根公式计算即可;(3)将(x -1)看作整体,然后利用因式分解法解方程即可.【详解】(1)解:222cos30sin 45cos 60tan 45-+︒+︒︒︒=214()1222-++⨯=14++1)124---=1542--; (2)解:23260x x --=,∵3,2,6a b c ==-=-,∴2(2)43(6)472760,∆=--⨯⨯-=+=>∴方程有两个不相等的实根,∴x ==∴113x =,213x =; (3)解:2(1)5(1)140x x -+--=,[][](1)7(1)20,x x -+--=∴60x +=或30x -=,∴126,3x x =-=.【点睛】本题考查了特殊角的三角函数值、实数的运算以及一元二次方程的解法,常用的解一元二次方程的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握运算法则是解本题的关键.。

中考数学锐角三角函数综合经典题含答案

中考数学锐角三角函数综合经典题含答案

中考数学锐角三角函数综合经典题含答案一、锐角三角函数1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.【答案】553【解析】【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【详解】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∠COD=30°,∴∠COP=12∴QM=OP=OC•cos30°=3∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=1OA=5(分米),2∴AM=AQ+MQ=5+3∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=23(分米),在Rt△PKE中,EK=22-=26(分米),EF FK∴BE=10−2−26=(8−26)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=23(分米),在Rt△FJE′中,E′J=22-(2)=26,63∴B′E′=10−(26−2)=12−26,∴B′E′−BE=4.故答案为:5+53,4.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt △ACD 中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B 港口之间的距离CB 的长为海里.考点:解直角三角形的应用-方向角问题.3.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm )?【答案】【解析】过A 作AF CD ⊥于F ,根据锐角三角函数的定义用θ1、θ2表示出DF 、EF 的值,又可证四边形ABCE为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可.4.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定5.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.6.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【答案】(1)tan∠DBC=;(2)P(﹣,).【解析】试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).试题解析:(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,解得 x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).当x=3时,y=﹣32+3×3+4=4,∴D(3,4).如图,连接CD,过点D作DE⊥BC于点E.∵C(0,4),∴CD//AB,∴∠BCD=∠ABC=45°.在直角△OBC中,∵OC=OB=4,∴BC=4.在直角△CDE中,CD=3.∴CE=ED=,∴BE=BC﹣DE=.∴tan∠DBC=;(2)过点P作PF⊥x轴于点F.∵∠CBF=∠DBP=45°,∴∠PBF=∠DBC,∴tan∠PBF=.设P(x,﹣x2+3x+4),则=,解得 x1=﹣,x2=4(舍去),∴P(﹣,).考点:1、二次函数;2、勾股定理;3、三角函数7.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆.设点运动了秒,求:(1)点的坐标(用含的代数式表示);(2)当点在运动过程中,所有使与菱形的边所在直线相切的的值.【答案】解:(1)过作轴于,,,,,点的坐标为.(2)①当与相切时(如图1),切点为,此时,,,.②当与,即与轴相切时(如图2),则切点为,,过作于,则,,.③当与所在直线相切时(如图3),设切点为,交于,则,,.过作轴于,则,,化简,得,解得,,.所求的值是,和.【解析】(1)过作轴于,利用三角函数求得OD、DC的长,从而求得点的坐标⊙P 与菱形OABC 的边所在直线相切,则可与OC 相切;或与OA 相切;或与AB 相切,应分三种情况探讨:①当圆P 与OC 相切时,如图1所示,由切线的性质得到PC 垂直于OC ,再由OA=+t ,根据菱形的边长相等得到OC=1+t ,由∠AOC 的度数求出∠POC 为30°,在直角三角形POC 中,利用锐角三角函数定义表示出cos30°=oc/op ,表示出OC ,等于1+t 列出关于t 的方程,求出方程的解即可得到t 的值;②当圆P 与OA ,即与x 轴相切时,过P 作PE 垂直于OC ,又PC=PO ,利用三线合一得到E 为OC 的中点,OE 为OC 的一半,而OE=OPcos30°,列出关于t 的方程,求出方程的解即可得到t 的值;③当圆P 与AB 所在的直线相切时,设切点为F ,PF 与OC 交于点G ,由切线的性质得到PF 垂直于AB ,则PF 垂直于OC ,由CD=FG ,在直角三角形OCD 中,利用锐角三角函数定义由OC 表示出CD ,即为FG ,在直角三角形OPG 中,利用OP 表示出PG ,用PG+GF 表示出PF ,根据PF=PC ,表示出PC ,过C 作CH 垂直于y 轴,在直角三角形PHC 中,利用勾股定理列出关于t 的方程,求出方程的解即可得到t 的值,综上,得到所有满足题意的t 的值.8.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C ,连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα︒<<︒,得到矩形ADEF ,点,,O C B 的对应点分别为,,D E F .(Ⅰ)如图,当点D 落在对角线OB 上时,求点D 的坐标;(Ⅱ)在(Ⅰ)的情况下,AB 与DE 交于点H .①求证BDE DBA ∆≅∆;②求点H 的坐标.(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为5472(,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258);(Ⅲ)60α=︒或300︒.【解析】【分析】 (Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数.【详解】(Ⅰ)∵点()30A ,,点()04C ,, ∴3,4OA OC ==.∵四边形OABC 是矩形,∴AB=OC=4,∵矩形DAFE 是由矩形AOBC 旋转得到的∴3AD AO ==.在Rt OAB ∆中,225OB OA AB =+=, 过A D 、分别作B,DN OA AM O ⊥⊥在Rt ΔOAM 中,OM OA 3cos BOA OA OB 5∠===, ∴9OM 5= ∵AD=OA ,AM ⊥OB , ∴18OD 2OM 5==. 在Rt ΔODN 中:DN 4sin BOA OD 5∠==,cos ∠BOA=ON OD =35, ∴72DN 25=,54ON 25=. ∴点D 的坐标为5472,2525⎛⎫⎪⎝⎭.(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的,∴OA AD 3,ADE 90,DE AB 4∠===︒==.∴OD AD =.∴DOA ODA ∠∠=.又∵DOA OBA 90∠∠+=︒,BDH ADO 90∠∠+=︒∴ABD BDE ∠∠=. 又∵BD BD =,∴ΔBDE ΔDBA ≅.②由ΔBDE ΔDBA ≅,得BEH DAH ∠∠=,BE AD 3==,又∵BHE DHA ∠∠=,∴ΔBHE ΔDHA ≅.∴DH=BH ,设AH x =,则DH BH 4x ==-,在Rt ΔADH 中,222AH AD DH =+,即()222x 34x =+-,得25x 8=, ∴25AH 8=. ∴点H 的坐标为253,8⎛⎫ ⎪⎝⎭. (Ⅲ)如图,过F 作FO ⊥AB ,当0<α≤180°时,∵点B 与点F 是对应点,A 为旋转中心,∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4,∵FA=FB ,FO ⊥AB ,∴OA=12AB=2, ∴cos ∠BAF=OA AF =12, ∴∠BAF=60°,即α=60°,当180°<α<360°时, 同理解得:∠BAF′=60°,∴旋转角α=360°-60°=300°.综上所述:α60=︒或300︒.【点睛】本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.9.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .(1)求证:△PAC ∽△PDF ;(2)若AB =5,¼¼AP BP=,求PD 的长.【答案】(1)证明见解析;(2310 【解析】【分析】 (1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶ADAC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;(2)连接OP ,由¶¶APBP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC ,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED=,然后根据勾股定理即可得到结果.【详解】(1)证明:连接AD,∵AB⊥CD,AB是⊙O的直径,∴¶¶AD AC=,∴∠ACD=∠B=∠ADC,∵∠FPC=∠B,∴∠ACD=∠FPC,∴∠APC=∠ACF,∵∠FAC=∠CAF,∴△PAC∽△CAF;(2)连接OP,则OA=OB=OP=15 22 AB=,∵¶¶AP BP=,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,∴tan∠CAB=tan∠DCB=BCAC,∴12 CE BEAE CE==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴OG OP GE ED=,∴2.52 OE GE OPGE CE-==,∴GE=23,OG=56,∴PG5 6 =,GD23 =,∴PD=PG+GD【点睛】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG ∽△EDG 是解题的关键.10.阅读下面材料:观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图),则sin B =AD c ,sin C =AD b ,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即sin sin b c B C = .同理有:sin sin c a C A =,sin sin a b A B=,所以sin sin sin a b c A B C ==. 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC 中,∠B =75°,∠C =45°,BC =60,则AB = ;(2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A 的距离AB .(3)在(2)的条件下,试求75°的正弦值.(结果保留根号)【答案】(1)6;(2)6海里;(36+2 【解析】【分析】(1)根据材料:在一个三角形中,各边和它所对角的正弦的比相等,写出比例关系,代入数值即可求得AB的值.(2)此题可先由速度和时间求出BC的距离,再由各方向角得出∠A的角度,过B作BM⊥AC于M,求出∠MBC=30°,求出MC,由勾股定理求出BM,求出AM、BM的长,由勾股定理求出AB即可;(3)在三角形ABC中,∠A=45,∠ABC=75,∠ACB=60,过点C作AC的垂线BD,构造直角三角形ABD,BCD,在直角三角形ABD中可求出AD的长,进而可求出sin75°的值.【详解】解:(1)在△ABC中,∠B=75°,∠C=45°,BC=60,则∠A=60°,∵ABsinC =sinBCA,∴45ABsin o=60sin60o,即2 =3,解得:AB=206.(2)如图,依题意:BC=60×0.5=30(海里)∵CD∥BE,∴∠DCB+∠CBE=180°∵∠DCB=30°,∴∠CBE=150°∵∠ABE=75°.∴∠ABC=75°,∴∠A=45°,在△ABC中,sin AB ACB∠=BCsin A∠即60?ABsin=3045?sin,解之得:AB=156.答:货轮距灯塔的距离AB=156海里.(3)过点B作AC的垂线BM,垂足为M.在直角三角形ABM中,∠A=45°,6,所以3BDC中,∠BCM=60°,BC=30°,可求得CM=15,所以3,15315+156sin75°6+2.【点睛】本题考查方向角的含义,三角形的内角和定理,含30度角的直角三角形,等腰三角形的性质和判定等知识点,解题关键是熟练掌握解直角三角形方法.11.如图,A(0,2),B(6,2),C(0,c)(c>0),以A为圆心AB长为半径的¶BD 交y轴正半轴于点D,¶BD与BC有交点时,交点为E,P为¶BD上一点.(1)若c=3,①BC=,¶DE的长为;②当CP=2时,判断CP与⊙A的位置关系,井加以证明;(2)若c=10,求点P与BC距离的最大值;(3)分别直接写出当c=1,c=6,c=9,c=11时,点P与BC的最大距离(结果无需化简)【答案】(1)①12,π;②详见解析;(2)①65;②65(3)答案见详解 【解析】【分析】 (1)①先求出AB ,AC ,进而求出BC 和∠ABC ,最后用弧长公式即可得出结论;②判断出△APC 是直角三角形,即可得出结论;(2)分两种情况,利用三角形的面积或锐角三角函数即可得出结论;(3)画图图形,同(2)的方法即可得出结论.【详解】 (1)①如图1,∵c =3+2,∴OC =3,∴AC =3﹣2=3∵AB =6,在Rt △BAC 中,根据勾股定理得,BC =12,tan ∠ABC =AC AB3 ∴∠ABC =60°,∵AE =AB ,∴△ABE 是等边三角形,∴∠BAE =60°,∴∠DAE =30°, ∴»DE的长为306180π⨯=π, 故答案为12,π;②CP 与⊙A 相切.证明:∵AP =AB =6,AC =OC ﹣OA =63, ∴AP 2+CP 2=108,又AC 2=(63)2=108,∴AP 2+PC 2=AC 2.∴∠APC =90°,即:CP ⊥AP .而AP 是半径,∴CP 与⊙A 相切.(2)若c =10,即AC =10﹣2=8,则BC =10.①若点P 在»BE上,AP ⊥BE 时,点P 与BC 的距离最大,设垂足为F , 则PF 的长就是最大距离,如图2,S △ABC =12AB ×AC =12BC ×AF , ∴AF =AB AC BC ⋅=245, ∴PF =AP ﹣AF =65; ②如图3,若点P 在»DE 上,作PG ⊥BC 于点G ,当点P 与点D 重合时,PG 最大.此时,sin ∠ACB =PG AB CP BC =, 即PG =AB CP BC ⋅=65∴若c =10,点P 与BC 距离的最大值是65; (3)当c =1时,如图4,过点P 作PM ⊥BC ,sin ∠BCP =AB PMBC CD= ∴PM =67423737AB CD BC ⋅⨯===423737; 当c =6时,如图5,同c =10的①情况,PF =6﹣1213=1213613-,当c =9时,如图6,同c =10的①情况,PF =4285685-,当c =11时,如图7,点P 和点D 重合时,点P 到BC 的距离最大,同c =10时②情况,DG 18117. 【点睛】此题是圆的综合题,主要考查了弧长公式,勾股定理和逆定理,三角形的面积公式,锐角三角函数,熟练掌握锐角三角函数是解本题的关键.12.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O e 的切线. ②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】 【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】解:(1)AB 是O e 的直径,且D 为O e 上一点,90ADB ∴∠=︒, CE DB ⊥Q , 90DEC ∴∠=︒, //CF AD ∴,180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC . OA OC =Q ,12∴∠=∠. 312∠=∠+∠Q , 321∴∠=∠.42BDC Q ∠=∠,1BDC ∠=∠, 421∴∠=∠, 43∴∠=∠,//OC DB ∴. CE DB ⊥Q , OC CF ∴⊥.又OC Q 为O e 的半径, CF ∴为O e 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =Q483AD BD ∴==, 226810AB ∴=+=,5OB OC ==. OC CF Q ⊥, 90OCF ∴∠=︒,3tan 4OC F CF ∴==,解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.13.如图,在平面直角坐标系xOy 中,抛物线y =﹣14x 2+bx +c 与直线y =12x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .(1)求该抛物线的表达式及点D 的坐标; (2)求∠DCB 的正切值;(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.【答案】(1)21y 234x x =-+-,D (4,1);(2)13;(3)点F 坐标为(0,1)或(0,﹣18). 【解析】 【分析】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣14x 2+bx+c ,即可求解; (2)求出则点E (3,0),EH =EB•sin ∠OBC =5,CE =32,则CH =5,即可求解;(3)分点F 在y 轴负半轴和在y 轴正半轴两种情况,分别求解即可. 【详解】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3, 则点B 、C 的坐标分别为(6,0)、(0,﹣3),则c =﹣3, 将点B 坐标代入抛物线y =﹣14x 2+bx ﹣3得:0=﹣14×36+6b ﹣3,解得:b =2, 故抛物线的表达式为:y =﹣14x 2+2x ﹣3,令y =0,则x =6或2, 即点A (2,0),则点D (4,1); (2)过点E 作EH ⊥BC 交于点H ,C 、D 的坐标分别为:(0,﹣3)、(4,1), 直线CD 的表达式为:y =x ﹣3,则点E (3,0), tan ∠OBC =3162OC OB ==,则sin ∠OBC 5,则EH=EB•sin∠OBC=5,CE=32,则CH=5,则tan∠DCB=13 EHCH=;(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),则BC=35,∵OE=OC,∴∠AEC=45°,tan∠DBE=164-=12,故:∠DBE=∠OBC,则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,过点F作FG⊥BG交BC的延长线与点G,则∠GFC=∠OBC=α,设:GF=2m,则CG=GFtanα=m,∵∠CBF=45°,∴BG=GF,即:5=2m,解得:m=5CF22GF CG+5=15,故点F(0,﹣18);②当点F在y轴正半轴时,同理可得:点F(0,1);故:点F坐标为(0,1)或(0,﹣18).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC =∠DBA+∠DCB =∠AEC =45°,是本题的突破口.14.如图,在ABC △中,10AC BC ==,3cos5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P e 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P e 与边BC 相切时,求P e 的半径;()2联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围;()3在()2的条件下,当以PE 长为直径的Q e 与P e 相交于AC 边上的点G 时,求相交所得的公共弦的长.【答案】(1)409;(2))25880010x x x y x -+=<<;(3)105- 【解析】 【分析】(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=45,sinC=HP CP =R 10R -=45,即可求解; (2)PD ∥BE ,则EB PD =BFPF,即:2248805x x x y xy--+=,即可求解;(3)证明四边形PDBE 为平行四边形,则AG=GP=BD ,即:5求解. 【详解】(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=35, sinC=HP CP =R 10R -=45,解得:R=409; (2)在△ABC 中,AC=BC=10,cosC=35, 设AP=PD=x ,∠A=∠ABC=β,过点B 作BH ⊥AC ,则BH=ACsinC=8, 同理可得:CH=6,HA=4,AB=45,则:tan ∠CAB=2BP=()2284x +-=2880x x -+, DA=25x ,则BD=45-25x ,如下图所示,PA=PD ,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=5,sinβ=5,EB=BDcosβ=(45-25x)×5=4-25x,∴PD∥BE,∴EBPD=BFPF,即:2248805x x x yx y--+-=,整理得:y=()25x x8x800x10-+<<;(3)以EP为直径作圆Q如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴5设圆的半径为r,在△ADG中,55AG=2r,5551+,则:55相交所得的公共弦的长为5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.15.已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K . (1)如图1,求证:KE =GE ; (2)如图2,连接CABG ,若∠FGB =12∠ACH ,求证:CA ∥FE ; (3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sin E =35,AK =10,求CN 的长.【答案】(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(3201013【解析】 试题分析:(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=12∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=35AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=43CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=3AHHK=,10a ,结合10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP=,可设PN=12b ,AP=9b ,由tan ∠ACG=PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:(1)如图1,连接OG .∵EF 切⊙O 于G , ∴OG ⊥EF ,∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG , ∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α,∵∠FGB=12∠ACH , ∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=35AH AC =,设AH=3a ,AC=5a , 则224AC CH a -=,tan ∠CAH=43CH AH =, ∵CA ∥FE ,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH=AHHK =3,AK=2210AH HK a+=,∵AK=10,∴1010a=,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=43PNAP=,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN=PNCP=3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=513,∴CN=22PN CP+=410b⋅=2010 13.。

相似三角形与三角函数综合应用

相似三角形与三角函数综合应用

教 学 内 容智康笔记【知识框架】【精选例题】(一)相似三角形的判定与性质的应用【例1】设点E 是平行四边形ABCD 的边AB 的中点,F 是BC 边上一点,线段DE和AF 相交于点P ,点Q 在线段DE 上,且AQ ∥PC ① 证明:PC =2AQ② 当点F 为BC 的中点时,试比较△PFC 和梯形APCQ 面积的大小关系,并对你的结论加以证明。

PQ FEDCBA相似三角形与三角函数综合应用相似三角形判定和性质的应用相似三角形与函数结合相似三角形与圆等图形结合相似三角形与动点结合相似三角形的应用【例2】图① 图②(1)已知:如图①,Rt △ABC 中,∠ACB=90°,AC=BC ,点D 、E 在斜边AB 上,且∠DCE=45°. 求证:线段DE 、AD 、EB 总能构成一个直角三角形; (2)已知:如图②,等边三角形ABC 中,点D 、E 在边AB 上,且∠DCE=30°,请你找出一个条件,使线段DE 、AD 、EB 能构成一个等腰三角形,并求出此时等腰三角形顶角的度数;(3)在(1)的条件下,如果AB=10,求BD ·AE 的值.【例3】如图,AB ∥CD 、AD ∥CE ,F 、G 分别是AC 和FD 的中点,过G 的直线依次交AB 、AD 、CD 、CE 于点M 、N 、P 、Q ,求证:MN +PQ =2PN .BACM N P EFQDG图(二)相似与函数结合:求点的坐标、线段的长度【例4】已知:反比例函数x y 2=和xy 8= 在平面直角坐标系xOy 第一象限中的图象如图所示,点A 在x y 8=的图象上,AB ∥y 轴,与xy 2=的图象交于点B , AC 、BD 与x 轴平行,分别与x y 2=、x y 8=的图象交于点C 、D.(1)若点A 的横坐标为2,求梯形ACBD 的对角线的交点F 的坐标; (2)若点A 的横坐标为m ,比较△OBC 与△ABC 的面积的大小,并说明理由; (3)若△ABC 与以A 、B 、D 为顶点的三角形相似,请直接写出点A 的坐标.【例5】如图,已知抛物线y =43x2+bx +c 与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0),过点C 的直线y =t43x -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1. (1)填空:点C 的坐标是 ,b = ,c = ; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ相似?若存在,求出所有t 的值;若不存在,说明理由.A B xyOQH PC【例6】如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D的坐标.(三)相似与动点结合:要注意分类讨论【例7】(2009年中山)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM =x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.【例8】(2009年山西省)如图,已知直线3832:1+=x y l 与直线162:2+-=x y l 相交于点C,21,l l 分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G与点B重合.(1)求△ABC 的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为t (0≤t ≤12)秒,矩形DEFG 与△ABC 重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.【例9】如图,ABCD 在平面直角坐标系中,6AD =,若OA 、OB 的长是关于x 的一元二次方程27120x x -+=的两个根,且OA OB >.(1)求sin ABC ∠的值.(2)若E 为x 轴上的点,且163AOE S =△,求经过D 、E 两点的直线的解析式,并判断AOE △与DAO △是否相似?(3)若点M 在平面直角坐标系内,则在直线AB 上是否存在点F ,使以A 、C 、F 、M 为顶点的四边形为菱形?若存在,请直接写出F 点的坐标;若不存在,请说明理由.x y ADB O CA DB EOC F xy1l y2l(G )【课堂练习】1. (2009年义乌)如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原。

相似三角形及锐角三角函数

相似三角形及锐角三角函数

九年级数学科辅导讲义(第讲)学生姓名:授课教师:授课时间:一、相关概念:1. 相似图形:形状相同的图形。

2. 相似多边形的性质:对应角相等,对应边成比例。

3. 相似比:相似多边形对应边的比。

二、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等三、相似三角形的判定✓通过定义(三边对应成比例,三角相等)✓平行于三角形一边的直线✓三边对应成比例(SSS)✓两边对应成比例且夹角相等(SAS)✓两角对应相等(AA)✓两直角三角形的斜边和一条直角边对应成比例(HL)四、相似三角形的性质✓对应角相等。

✓对应边成比例。

✓对应高的比等于相似比。

✓对应中线的比等于相似比。

✓对应角平分线的比等于相似比。

✓周长比等于相似比。

✓面积比等于相似比的平方。

五、位似:✓位似图形的概念:如果两个图形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形, 这个点叫做位似中心, 这时的相似比又称为位似比.✓在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.考点一一、选择题(每小题3分,共24分)1.下列命题:①所有的等腰三角形都相似,②所有的等边三角形都相似,③所有的等腰直角三角形都相似,④所有的直角三角形都相似.其中,正确的是 ( )A.②③B.②③④C.③④D.②④2.有两个顶角相等的等腰三角形框架,其中一个三角形框架的腰长为6,底边长为4,另一个三角形框架的底边长为2,则这个三角形框架的腰长为 ( ) A.6 B.4 C.3 D.23.如图,点P 是△ABC 的边AB 上的一点,过点P 作直线(不与直线AB 重合)截△ABC ,使截得的三角形与原三角形相似.满足这样条件的直线最多有 ( ) A.2条 B.3条 C.4条 D.5条4.如图,E 是□ABCD 的边BC 延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形 ( )A.1对B.2对C.3对D.4对5.两个相似菱形边长的比是1:4,那么它们的面积比是 ( ) A .1:2 B .1:4 C .1:8 D .1:166.下列条件中,不能判定以A /、B /、C /为顶点的三角形与△ABC 相似的是( ) A.∠C=∠C /=90°,∠B=∠A /=50° B.AB=AC ,A /B /=A /C /,∠B=∠B /C.∠B=∠B /,////C B BC B A AB =D. ∠A=∠A /,////C B BC B A AB =7.△ABC 的周长等于16,D 是AC 的中点,DE ∥AB ,交BC 于点E ,则△DEC 的周长等于( ) A.2 B.4 C.6 D.88.在□ABCD 中,E 是BC 的中点,F 是BE 的中点,AE 与DF 相交于H ,则△EFH 的面积与△ADH 的面积的比值为 ( ) A .21 B . 81 C .161 D .41二、填空题(每小题3分,共18分)9.有一张比例尺为1∶4000的地图上,一块多边形地区的周长是60cm ,则这个地区的实际周长________。

第二十八章“锐角三角函数”简介 (1)

第二十八章“锐角三角函数”简介 (1)

本章“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。

从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。

在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。

在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。

无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。

本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。

锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。

研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章重点是锐角三角函数的概念和直角三角形的解法。

锐角三角函数的概念既是本章的难点,也是学习本章的关键。

难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。

至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

本章内容与已学“相似三角形”“勾股定理”等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

本章教学时间约需12课时,具体分配如下(仅供参考):28.1 锐角三角函数约6课时28.2 解直角三角形约4课时数学活动小结约2课时一、教科书内容与课程学习目标(一)本章知识结构框图本章知识的展开顺序(二)教科书内容本章内容分为两节,第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容。

九年级下册数学知识点汇总(人教版)

九年级下册数学知识点汇总(人教版)

九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。

锐角三角函数和相似三角形

锐角三角函数和相似三角形

锐角三角函数1、锐角三角函数定义:2、锐角三角函数性质:①=+A A 22cos sin②cos sin =A s i n c o s =A, ③若∠A >∠B ,则A sin B sin ,A cos Bc o s , A tan B t a n3、坡度(坡比)=i =4、如右图,∠ACB =∠ADC =90°,则相似三角形1、 相似三角形的判定:平行相似(A 型或X 型)、SSS 相似、SAS 相似、AA 相似、HL 相似2、 相似三角形的性质:对应角相等;对应边的比、对应高的比、对应角平分线的比、对应中线的比、周长的比都等于相似比,面积的比等于相似比的平方。

3、 位似的性质:①具有相似的所有性质②对应点连线相交于一点,这点是位似中心③对应线段平行4、常考图形锐角三角函数1、锐角三角函数定义:2、锐角三角函数性质:①=+A A 22cos sin②cos sin =A s i n c o s =A, ③若∠A >∠B ,则A sin Bs i n ,A cos B c o s , A tan B t a n3、坡度(坡比)=i=4、如右图,∠ACB =∠ADC =90°,则相似三角形4、 相似三角形的判定:平行相似(A 型或X 型)、SSS 相似、SAS 相似、AA 相似、HL 相似5、 相似三角形的性质:对应角相等;对应边的比、对应高的比、对应角平分线的比、对应中线的比、周长的比都等于相似比,面积的比等于相似比的平方。

6、 位似的性质:①具有相似的所有性质②对应点连线相交于一点,这点是位似中心③对应线段平行4、常考图形1 2 A B C D=A sin =A cos =A tan cos sin sin =====A ====tan tan A sincos cos =====A AB C 1 D E AB 1C DE A B C D 1 1 2 A B C D=A sin =A cos =A tan cos sin sin =====A ====tan tan A sincos cos =====A AB C 1 D E AB 1C DE A B C D 1。

相似三角形、三角函数、反比例函数知识点总结(导学案)

相似三角形、三角函数、反比例函数知识点总结(导学案)

相似三角形知识点总结 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c da b c d a d b c a c ==()a 、d 叫 ,b 、c 叫 ,如果b=c ,那么b 叫做a 、d 的 。

把线段AB 分成两条线段AC 和BC ,使 ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

黄金比(黄金数)是 .例:线段AB=10m,点P是线段AB 的黄金分割点,则AP= .2. 比例性质:(1)基本性质 (2)合比性质 (3)等比性质3、相似比:相似多边形对应边长度的比叫做相似比(比例系数).4、 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。

则,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===5、平行线分线段成比例定理推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

BC DE AC AE AB AD ==( A 字型 ) (X 字型)6、 相似三角形的判定:① 对应相等,两个三角形相似 ② 对应成比例且 相等,两三角形相似 ③ 对应成比例,两三角形相似④如果一个直角三角形的 和 与另一个直角三角形的和 对应成比例,那么这两个直角形相似。

⑤ 三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似。

【注:三角形相似是证明乘积式、比例式的有效工具,同时也是三角形中求线段长的重要手段】7、相似三角形的性质:①相似三角形的 相等 ②相似三角形的 成比例③相似三角形 的比、 的比和 的比都等于相似比E B D (3)B CA E④相似三角形比等于相似比,比等于相似比的平方8、位似:如果两个图形不仅是图形,而且每组都交于一点,那么这样的两个图形叫做位似图形.【注:位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点,位似图形是相似图形,但相似图形是位似图形. 位似图形的对应边互相平行或共线位似图形上任意一对对应点到的距离之比等于相似比.】9、画位似图形的一般步骤:(1)确定位似中心(位似中心可以是平面中任意一点)(2)分别连接原图形中的关键点和位似中心,并延长(或截取).(3)根据已知的位似比,确定所画位似图形中关键点的位置.(4)顺次连结上述得到的关键点,即可得到一个放大或缩小的图形.10、在平面直角坐标系中,如果位似变换是以原点O为位似中心,相似比为k(k>0),原图形上点的坐标为(x,y),那么对应点的坐标为(,) 【同向位似图形】或 (,) 【反向位似图形】,锐角三角函数1、锐角∠A的三角函数(按右图Rt△ABC填空)∠A的正弦:sin A = ,∠A的余弦:cos A = ,∠A的正切:tan A = ,∠A的余切:cot A =2、锐角三角函数值,都是实数(正、负或者0);3、正弦、余弦值的大小范围:<sin A<;<cos A<4、tan A•cot A = ; tan B•cot B = ;5、sin A =cos(90°- );cos A = sin( -)6、填表7、在Rt △ABC 中,∠C =90゜,AB =c ,BC =a ,AC =b ,1)、三边关系(勾股定理):2)、锐角间的关系:∠ +∠ = 90°3)、边角间的关系:sin A = ; sin B = ;cos A = ; cos B = ; tan A = ; tan B = ;4)、倒数关系: ;5)、商的关系: ;6)、平方和的关系: ;8、图中角 可以看作是点A 的 角也可看作是点B 的 角; 9、(1)坡度(或坡比)是坡面的 高度(h )和 长度(l )的比。

相似三角形与三角函数

相似三角形与三角函数

初三数学---相似三角形和解直角三角形一、相似三角形1.相似三角形判定定理:(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. (2)判定定理1如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.即“两角对应相等,两三角形相似”.(3)判定定理2如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.即“两边对应成比例且夹角相等,两三角形相似”.(4)判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.即“三边对应成比例,两三角形相似”.(5)若△1∽△2、△2∽△3、则△1∽△3.对于直角三角形相似,还有如下判定定理:(6)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(7)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.2.相似三角形的性质(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比;(4)相似三角形周长比等于相似比;(5)相似三角形面积的比等于相似比的平方.二、锐角三角函数1.掌握锐角三角函数的定义,准确地进行计算.2.互余角的三角函数间的关系(1)sin(90°-)=cos;(2)cos(90°-)=sin;(3).3.同角三角函数间的关系(1);(2).三、解直角三角形1.如图,在Rt△ABC中,∠C=90°,(1)三边之间的关系:a2+b2=c2;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:,,.2.如图,若直角三角形ABC中,CD⊥AB于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a2=pc;由△CAD∽△BAC,得b2=qc;由△ACD∽△CBD,得h2=pq;由△ACD∽△ABC或由△ABC的面积,得ab=ch.从三角函数的角度考虑,有由,得a2=pc;同理,得b2=qc;由,得h2=pq;由,得ab=ch.在有关直角三角形的相似问题中,可以尝试运用三角函数的知识来解题,即“三角法”.3.如图1,若CD是直角三角形ABC中斜边上的中线,则(1)CD=AD=BD=;(2)点D是Rt△ABC的外心,外接圆半径.4.如图2,若r是直角三角形ABC的内切圆半径,则.图1 图2 图3 5.直角三角形的面积:(1)如图2,S△ABC.(2)如图3,S△ABC.6B=90°-A,,,由求角A,B=90°-A,由求角A,B=90°-A例题分析例1.如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为下底BC上一点(不与B,C重合),连接AP,过P点作PE交DC于E,使得∠APE=∠B.(1)你认为图中哪两个三角形相似,为什么?(2)当点P在底边BC上自点B向C移动的过程中,是否存在一点P,使得DE∶EC=5∶3?如果存在,求BP的长;如果不存在,请说明理由.例2.如图,正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)求证:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN,并求x的值.例3.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sin B·sin C的值.例4.如图,D是AB上一点,且CD⊥AC于C,S△ACD∶S△CDB=2∶3,,AC+CD=18,求tan A的值和AB的长.5.如图,△OAB是边长为2的等边三角形,过点A的直线y=与x轴交于点E.求点E的坐标.6.已知:如图(a),梯形ABCD中,AB∥CD,∠C=90°,AB=BC=4,CD=6.(1)E为BC边上一点,EF∥AD,交CD边于点F,FG∥EA,交AD边于点G,若四边形AEFG为矩形,求BE的长;(2)如图(b),将(1)中的∠AEF绕E点逆时针旋转为∠A′EF′,EF′交CD边于F′点,且F′点与D点不重合,射线EA′交AB边于点M,作F′N∥EA′交AD边于点N,设BM为x,△NF′D中,F′D边上的高为y,求y关于x的函数解析式及自变量x的取值范围.图(a)图(b)答案例1、解:(1)△ABP∽△PCE.其理由是除∠B=∠C外,由于∠APE=∠B=60°,∠APC=∠B+∠BAP=∠APE+∠CPE,∴∠BAP=∠CPE.由“两角对应相等,两三角形相似”可得△ABP∽△PCE.说明:此图形结构可以称为“一线三等角问题”.(2)作DF⊥BC于F,由已知可得CF=,腰长AB=CD=2CF=4,这样原问题转化为在底边BC上是否存在一点P,使得CE=1.5.假设存在P点,使CE=1.5,由△ABP∽△PCE,得,可得BP·PC=AB·CE=6.设BP=x,∵BC=BP+PC=7,∴PC=7-x.∴x(7-x)=6,即x2-7x+6=0.解得x1=1,x2=6.答:当BP=1或BP=6时,使得DE∶EC=5∶3.例2、解:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°.∵AM⊥MN,∴∠AMN=90°.∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠MAB=∠CMN.∴Rt△ABM∽Rt△MCN.(2)∵Rt△ABM∽Rt△MCN,,即...当x=2时,y取最大值,最大值为10.(3)∵∠B=∠AMN=90°,∴要使△ABM ∽△AMN,只需.由(1)知.∴BM=MC.∴当点M运动到BC的中点时,△ABM∽△AMN,此时x=2.例3、分析:为求sin B,sin C,需将∠B,∠C分别置于直角三角形之中,另外已知∠A的邻补角是60°,若要使其充分发挥作用,也需要将其置于直角三角形中,所以应分别过点B,C,向CA,BA的延长线作垂线段,即可顺利求解.解:过点B作BD⊥CA的延长线于点D,过点C作CE⊥BA的延长线于点E.∵∠BAC=120°,∴∠BAD=60°.;.又∵CD=CA+AD=10,,.同理,可求得..说明:由于锐角的三角函数是在直角三角形中定义的,因此若要求某个角的三角函数值,一般可以通过作垂线段等方法将其置于直角三角形中.例4、解:作DE∥AC交CB于E,则∠EDC=∠ACD=90°.∵,设CD=4k(k>0),则CE=5k,由勾股定理得DE=3k.∵△ACD和△CDB在AB边上的高相同,∴AD∶DB=S△ACD∶S△CDB=2∶3..即..∵AC+CD=18,∴5k+4k=18.解得k=2...说明:本章解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程.在解直角三角形时,常用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等.例5、解:作AF⊥x轴于F.∴OF=OA·cos60°=1,AF=OF·.∴点A坐标为(1,).代入直线解析式,得...当y=0即时,x=4.∴点E坐标为(4,0).例6、解:(1)作AH⊥CD于点H(如图(c))可得∠1=∠2=∠D.由AB=BC=CH=4可得HD=CD-CH=2...∴BE=2,即E为BC的中点.(2)图(d),作NP⊥CD于点P,则PN=y.可得∠4=∠5=∠6,它们的正切值相等.,即.,.,,∵CD=CF′+PF′+PD,,即.整理,得.若点F′与点D重合(见图(e)),则∠BEM=∠EDC,...∴x的取值范围为。

最新人教版初中数学九年级数学下册第三单元《锐角三角函数》测试卷(包含答案解析)(2)

最新人教版初中数学九年级数学下册第三单元《锐角三角函数》测试卷(包含答案解析)(2)

一、选择题1.如图,在正方形方格纸中,每个小方格边长为1,A ,B ,C ,D 都在格点处,AB 与CD 相交于点O ,则sin ∠BOD 的值等于( )A .1010B .31010C .2105D .1052.下表是小红填写的实践活动报告的部分内容,设铁塔顶端到地面的高度FE 为xm ,根据以上条件,可以列出的方程为 ( )题目 测量铁塔顶端到地面的高度测量目标示意图 相关数据 10,45,50CD m αβ==︒=︒A .()10tan50x x =-︒B .()10cos50x x =-︒C .10tan50x x -=︒D .()10sin50x x =+︒ 3.如图,△ABC 的三个顶点均在格点上,则cos A 的值为( )A .12B 5C .2D 25 4.下列计算中错误的是( )A .sin60sin30sin30︒-︒=︒B .22sin 45 cos 451︒+︒=C .sin 60tan 60sin 30︒︒=︒D .cos30tan 60cos60︒︒=︒5.如图,在A 处测得点P 在北偏东60︒方向上,在B 处测得点P 在北偏东30︒方向上,若2AB =米,则点P 到直线AB 距离PC 为( ).A .3米B .3米C .2米D .1米6.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2sin cos θθ-=( )A .15B .5C .355D .957.如图,在△ABC 中,sinB=13, tanC=2,AB=3,则AC 的长为( )A 2B 5C 5D .28.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°()()2323232323AC CD -====++-tan22.5°的值为( )A .21+B .2﹣1C .2D .129.西南大学附中初2020级小李同学想利用学过的知识测量棵树的高度,假设树是竖直生长的,用图中线段AB 表示,小李站在C 点测得∠BCA =45°,小李从C 点走4米到达了斜坡DE 的底端D 点,并测得∠CDE =150°,从D 点上斜坡走了8米到达E 点,测得∠AED =60°,B ,C ,D 在同一水平线上,A 、B 、C 、D 、E 在同一平面内,则大树AB 的高度约为( )米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73)A .24.3B .24.4C .20.3D .20.410.如图,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形的三边为直径向外半圆,面积分别为4S 、5S 、6S .其中116S =,245S =,511S =,614S =,则34S S +=( )A .86B .64C .54D .4811.如图所示,矩形ABCD 的边长AB =2,BC =3△ADE 为正三角形.若半径为R 的圆能够覆盖五边形ABCDE (即五边形ABCDE 的每个顶点都在圆内或圆上),则R 的最小值是( )A .23B .4C .2.8D .2.512.在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sin A 的值为( )A .513B .1213C .512D .125二、填空题13.已知ABC 与ABD △不全等,且3AC AD ==,30ABD ABC ∠=∠=︒,60ACB ∠=︒,则CD =________.14.计算:22303060sin cos tan ︒︒︒+-=__________.15.如图,在矩形ABCD 中,6BC =,4cos 5CAB ∠=, P 为对角线AC 上一动点,过线段BP 上的点M 作EF BP ⊥,交AB 边于点E ,交BC 边于点 F ,点N 为线段EF 的中点,若四边形BEPF 的面积为18,则线段BN 的最大值为 ________ .16.如果在某建筑物的A 处测得目标B 的俯角为37°,那么从目标B 可以测得这个建筑物的A 处的仰角为_____.17.如图, 圆O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为__________.18.如图,在2×2的网格中,以顶点O 为圆心,以2个单位长度为半径作圆弧,交图中格线于点A ,则tan ∠ABO 的值为_____.19.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,F 为DA 上一点,连接BF ,E 为BF 中点,CD=6,sin ∠ADB=1010,若△AEF 的周长为18,则S △BOE =_____.20.乐乐同学的身高为166cm ,测得他站立在阳光下的影长为83cm ,紧接着他把手臂竖直举起,测得影长为103cm ,那么乐乐竖直举起的手臂超出头顶的长度约为___________cm .三、解答题21.计算:()2tan 451tan 602cos30︒--︒+︒ .22.(1)计算:102272cos30(5)π-︒+-++;(2)解方程:3x 2﹣5x +2=0.23.如图,一次函数y =kx+b (k ,b 为常数,k≠0)的图象与反比例函数15y x=-的图象交于A 、B 两点,且与x 轴交于点C ,与y 轴交于点D ,A 点的横坐标与B 点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB 的面积;(3)求sin ∠OAB 的值.24.sin 30tan 452cos 45sin 60tan 60︒⋅︒︒+︒⋅︒25.如图,O 为ABC 的外接圆,AB 为O 的直径,点D 为BC 的中点.(1)连接OD .求证://OD AC .(2)设OD 交BC 于E ,若43BC =,2DE =.求阴影部分面积. 26.先化简,再求值:2311422a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中10cos302tan 45a ︒=+︒.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行线的性质和锐角三角函数定义以及勾股定理,通过转化的数学思想可以求得sin ∠BOD 的值,本题得以解决.【详解】解:连接AE 、EF ,如图所示,则AE ∥CD , ∴∠FAE=∠BOD ,∵每个小正方形的边长为1, 则222222112,2425,3332,AE AF EF =+==+==+=∴△FAE 是直角三角形,∠FEA=90°,∴32310sin 1025EF FAE AF ∠=== ∴310sin 10BOD ∠=故选:B.【点睛】本题考查了解直角三角形、锐角三角函数定义、勾股定理和勾股定理的逆定理等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.2.A解析:A【分析】过D作DH⊥EF于H,则四边形DCEH是矩形,根据矩形的性质得到HE=CD=10,CE=DH,求得FH=x−10,得到CE=x−10,根据三角函数的定义列方程即可得到结论.【详解】过D作DH⊥EF于H,则四边形DCEH是矩形,∴HE=CD=10,CE=DH,∴FH=x−10,∵∠FDH=α=45°,∴DH=FH=x−10,∴CE=x−10,∵tanβ=tan50°=EFCE =-10xx,∴x=(x−10)tan 50°,故选:A.【点睛】本题考查了解直角三角形的应用,由实际问题抽象出边角关系的等式,正确的识别图形是解题的关键.3.D解析:D【分析】过B点作BD⊥AC,得AB的长,AD的长,利用锐角三角函数得结果.【详解】解:过B点作BD⊥AC,如图,由勾股定理得,221310+=222222+=cosA=AD AB == 故选D .【点睛】 本题考查了锐角三角函数和勾股定理,作出适当的辅助线构建直角三角形是解答此题的关键.4.A解析:A【分析】根据特殊角的三角函数值、二次根式的运算即可得.【详解】A、11sin 60sin 303022︒-︒==︒=,此项错误; B、222211sin 45 cos 4512222⎛⎫⎛︒+︒=+=+= ⎪ ⎪ ⎝⎭⎝⎭,此项正确; C、sin 602tan 601sin 302︒︒===︒sin 60tan 60sin 30︒︒=︒,此项正确; D、cos302tan 601cos 602︒︒===︒cos30tan 60cos60︒︒=︒,此项正确; 故选:A .【点睛】本题考查了特殊角的三角函数值、二次根式的运算,熟记特殊角的三角函数值是解题关键.5.B解析:B【分析】设点P 到直线AB 距离PC 为x 米,根据正切的定义用x 表示出AC 、BC ,根据题意列出方程,解方程即可.【详解】解:设点P 到直线AB 距离PC 为x 米,在Rt APC △中,tan PC AC PAC ==∠, 在Rt BPC △中,tan PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:B .【点睛】 本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.6.A解析:A【分析】根据正方形的面积公式可得大正方形的边长为55,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【详解】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为55,小正方形的边长为5,∴55cos 55sin 5θθ-=,∴5cos sin θθ-=, ∴()21sin cos 5θθ-=. 故选A .【点睛】 本题考查了解直角三角形、勾股定理的证明和正方形的面积,难度适中,解题的关键是正确得出5cos sin 5θθ-=. 7.B解析:B【分析】过A 点作AH ⊥BC 于H 点,先由sin ∠B 及AB=3算出AH 的长,再由tan ∠C 算出CH 的长,最后在Rt △ACH 中由勾股定理即可算出AC 的长.【详解】解:过A 点作AH ⊥BC 于H 点,如下图所示:由1sin =3∠=AH B AB ,且=3AB 可知,=1AH , 由tan =2∠=AH C CH ,且=1AH 可知,12CH =, ∴在Rt ACH ∆中,由勾股定理有:2222151()22=+=+=AC AH CH . 故选:B .【点睛】本题考查了解直角三角形及勾股定理等知识,如果图形中无直角三角形时,可以通过作垂线构造直角三角形进而求解.8.B解析:B【分析】作Rt △ABC ,使∠C =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,根据构造的直角三角形,设AC =x ,再用x 表示出CD ,即可求出tan22.5°的值.【详解】解:作Rt △ABC ,使∠C =90°,∠ABC =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,设AC =x ,则:BC =x ,AB =2x ,CD =()1+2x , ()22.5==211+2AC C tan ta D x n D =∠=-︒故选:B.【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.9.B解析:B【分析】过E 作EG ⊥AB 于G ,EF ⊥BD 于F ,则BG=EF ,EG=BF ,求得∠EDF=30°,根据直角三角形的性质得到EF=12DE=4,33即可得到结论.【详解】过E 作EG ⊥AB 于G ,EF ⊥BD 于F ,则BG =EF ,EG =BF ,∵∠CDE =150°,∴∠EDF =30°,∵DE =8,∴EF =12DE =4,DF =43, ∴CF =CD +DF =4+43,∵∠ABC =90°,∠ACB =45°,∴AB =BC ,∴GE =BF =AB +4+43,AG =AB ﹣4,∵∠AED =60°,∠GED =∠EDF =30°,∴∠AEG =30°,∴tan30°=3443AG GE AB ==++ , 解得:AB =14+63≈24.4,故选:B .【点睛】此题考查解直角三角形的应用-坡度坡角问题,根据题意作出辅助线是解题的关键. 10.C解析:C【分析】分别用AC ,AB 和BC 表示出123,,S S S ,然后根据222BC AB AC =-即可得出123,,S S S 的关系.同理,得出456,,S S S 的关系,从而可得答案.【详解】解:如图,1S 对应ACD ∆的面积,过D 作DH AC ⊥于H ,ACD ∆为等边三角形,160,,,2DAC AH CH AC AD AC ∴∠=︒=== sin 60,DH AD ∴︒=33,22DH AD AC ∴== 2113,24S AC DH AC ∴=•=同理:222333,,44S BC S AB == ∵222BC AB AC =-, ∴213,S S S -=如图2,同理可得:456S S S =+,∴3421564516111454.S S S S S S +=-++=-++=故选:C . 【点睛】本题考查了勾股定理、等边三角形的性质.锐角三角函数等知识点,其中勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .11.C解析:C【分析】连接AC 、BE 、CE ,取BC 的中点F ,连接EF ,根据勾股定理可得AC ,根据直角三角形的边角关系可得∠ACB =30°,∠CAD =30°,再根据正三角形的性质可得:∠EAD =∠EDA =60°,AE =AD =DE =3△EAC 是直角三角形,由勾股定理可得EC 的长.判断△EAB ≌△EDC ,根据全等三角形的性质可得EB =EC ,继而根据题意可判断能够覆盖五边形ABCDE 的最小圆的圆心在线段EF 上,且此圆只要覆盖住△EBC 必能覆盖五边形ABCDE ,从而此圆的圆心到△BCE 的三个顶点距离相等.根据等腰三角形的判定和性质可得F 是BC 中点,BF =CF 3EF ⊥BC ,由勾股定理可得EF 的长,继而列出关于R 的一元二次方程,解方程即可解答.【详解】如图所示,连接AC 、BE 、CE ,取BC 的中点F ,连接EF ,∵四边形ABCD 是矩形,∴∠ABC =∠DAB =∠BCD =∠ADC =90°,AD ∥BC ,AD =BC =AB =CD =2∵BC =AB =2由勾股定理可得:AC 4∴sin ∠ACB =24AB AC ==12,sin ∠CAD =24CD AC ==12∴∠ACB =30°,∠CAD =30°∵△ADE 是正三角形 ∴∠EAD=∠EDA =60°,AE =AD =DE =∴∠EAC =∠EAD +∠CAD =90°,∴△EAC 是直角三角形,由勾股定理可得:EC∵∠EAB =∠EAD +∠BAD =150°∠EDC =∠EDA +∠ADC =150°∴∠EAB =∠EDC∵EA =ED ,AB =DC∴△EAB ≌△EDC∴EB =EC =即△EBC 是等腰三角形∵五边形ABCDE 是轴对称图形,其对称轴是直线EF ,∴能够覆盖五边形ABCDE 的最小圆的圆心在线段EF 上,且此圆只要覆盖住△EBC 必能覆盖五边形ABCDE .从而此圆的圆心到△BCE 的三个顶点距离相等.设此圆圆心为O ,则OE =OB =OC =R ,∵F 是BC 中点∴BF =CF EF ⊥BC在Rt △BEF 中,由勾股定理可得:EF 5 ∴OF =EF -OE =5-R在Rt △OBF 中,222BF OF OB即()()22235R R +-= 解得:R =2.8∴能够覆盖五边形ABCDE 的最小圆的半径为2.8.故选C .【点睛】本题考查勾股定理的应用、全等三角形的判定及其性质、等腰三角形的判定及其性质、直角三角形的边角关系.解题的关键是理解圆内接五边形的特点,并且灵活运用所学知识. 12.B解析:B【分析】先根据勾股定理求出BC=12,再利用余弦函数的定义即可求解. 【详解】解:在Rt △ABC 中,由勾股定理得,BC 22AB AC -12,∴sin A =1213BC AB =, 故选:B .【点睛】 此题考查勾股定理以及锐角三角函数的定义,解题关键在于计算出BC 的长度.二、填空题13.或3【分析】如图△ABC ≌△ABP 当D′是PB 中点或点D″是BC 的中点时满足条件分别求解即可【详解】解:如图△ABC ≌△ABP ∴∴CAP 共线∴△BPC 是等边三角形当D′是PB 中点时AD′=BP=AC33【分析】如图,△ABC ≌△ABP ,当D′是PB 中点或点D″是BC 的中点时,满足条件,分别求解即可.【详解】解:如图,△ABC ≌△ABP ,3AC AP ==,30ABP ABC ∠=∠=︒,60ACB ∠=︒,∴60APB ∠=︒,90CAB PAB ∠=∠=︒,∴C ,A ,P 共线,BC BP AC AP ===,∴△BPC 是等边三角形, 当D′是PB 中点时,AD′=123ABC 与D'AB 满足条件, ∴D'90C P ∠=︒,∴CD′= PD′tan 60︒3PD′=3,当点D″是BC 的中点时,此时ABC 与D AB "也满足条件,∴3,∴满足条件的CD 的长为33故答案为:33【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是画出符合题意的图形,用分类讨论的思想思考问题. 14.【分析】先根据特殊角的三角函数值化简然后再计算即可【详解】解:===故答案为【点睛】本题考查了特殊角的三角函数值和实数的运算牢记特殊角的三角函数值是解答本题的关键解析:13【分析】先根据特殊角的三角函数值化简,然后再计算即可.【详解】 解:22303060sin cos tan ︒︒︒+-=221332⎛⎫+- ⎪⎝⎭⎝⎭=13344+-=13故答案为1【点睛】本题考查了特殊角的三角函数值和实数的运算,牢记特殊角的三角函数值是解答本题的关键.15.【分析】在△ABC 中求出AC 与AB 的长点P 在AC 上则6≤BP≤8由点N 为线段EF 的中点∠ABC=90º则EF=2BN 根据四边形BEPF 的面积为18利用对角线乘积的一半求面积得BN 与PB 成反比例PB 最 解析:154【分析】在△ABC 中,6BC =,4cos 5CAB ∠=求出AC 与AB 的长,点P 在AC 上 则6≤BP≤8,由点N 为线段EF 的中点,∠ABC=90º,则EF=2BN ,根据四边形BEPF 的面积为18,EF BP ⊥利用对角线乘积的一半求面积得,PB BN=18,BN 与PB 成反比例, PB 最小时,BN 最大,当PB ⊥AC 时,PB 最小,求出最小值即可.【详解】在△ABC 中,6BC =,4cos 5CAB ∠=, ∵22sin cos 1CAB CAB ∠+∠=,∴3sin 5CAB ∠=, 由正弦函数定义BC sin =ACCAB ∠, ∴AC=BC 6==103sin 5CAB ∠,由勾股定理得8==,点P 在AC 上 则6≤BP≤8,∵点N 为线段EF 的中点,由∠ABC=90º,∴EF=2BN ,∵四边形BEPF 的面积为18,EF BP ⊥,∴S 四边形EBFP =11PB EF=PB 2BN=PB BN=1822⨯, ∴PB BN=18, ∴18BN=PB, 当PB 最小时,BN 最大,当PB⊥AC时,PB最小,即S△ABC=11AB BC=AC BP 22BP最小=AB BC8624== AC105BN最大=1815= 2445故答案为:154.【点睛】本题考查锐角三角函数解直角三角形与点到直线距离最短问题,掌握锐角三角函数及其之间的关系,会用锐角三角函数解直角三角形,掌握垂线段最短,会利用面积或勾股定理求BP的最小值,解题时要理解BP最小,BN最大是解题关键.16.37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°【详解】如图∵某建筑物的A处测得目标B的俯角为37°∴目标B可以测得这个建筑物的A处的仰角为37°故解析:37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°.【详解】如图,∵某建筑物的A处测得目标B的俯角为37°,∴目标B可以测得这个建筑物的A处的仰角为37°,故答案为:37°.【点睛】考查了解直角三角形,解题关键是理解向下看,视线与水平线的夹角叫俯角;向上看,视线与水平线的夹角叫仰角.17.【分析】根据圆周角定理得由于的直径垂直于弦根据垂径定理得且可判断为等腰直角三角形所以然后利用进行计算【详解】解:∵∴∵的直径垂直于弦∴∴为等腰直角三角形∴∴故答案是:【点睛】本题考查了垂径定理:垂直解析:【分析】根据圆周角定理得245BOC A ∠=∠=︒,由于O 的直径AB 垂直于弦CD ,根据垂径定理得CE DE =,且可判断OCE △为等腰直角三角形,所以2CE ==后利用2CD CE =进行计算.【详解】解:∵22.5A ∠=︒∴245BOC A ∠=∠=︒∵O 的直径AB 垂直于弦CD∴CE DE =∴OCE △为等腰直角三角形∴2CE ==∴2CD CE ==.故答案是:【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.18.2+【分析】连接OA 过点A 作AC ⊥OB 于点C 由题意知AC=1OA=OB=2从而得出OC==BC=OB ﹣OC=2﹣在Rt △ABC 中根据tan ∠ABO=可得答案【详解】如图连接OA 过点A 作AC ⊥OB 于点解析:.【分析】连接OA ,过点A 作AC ⊥OB 于点C ,由题意知AC=1、OA=OB=2,从而得出、BC=OB ﹣OC=2Rt △ABC 中,根据tan ∠ABO=AC BC 可得答案.【详解】如图,连接OA ,过点A 作AC ⊥OB 于点C ,则AC=1,OA=OB=2,∵在Rt △AOC 中,222221OA AC -=-3∴BC=OB ﹣OC=23∴在Rt △ABC 中,tan ∠ABO=23AC BC =-3 故答案是:3【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO 为内角的直角三角形是解题的关键. 19.【分析】根据题意求出AD=18设AF=则BF=在Rt △ABF 中利用勾股定理可求得求出DF=10可求出S △BDF 由三角形中位线定理可求出答案【详解】∵四边形ABCD 是矩形∴AB=CD=6∠BAD=90 解析:152【分析】根据题意求出AD=18,设AF=a ,则BF=18a -,在Rt △ABF 中,利用勾股定理可求得8a =,求出DF=10,可求出S △BDF ,由三角形中位线定理可求出答案.【详解】∵四边形ABCD 是矩形,∴AB=CD=6,∠BAD=90°,OB=OD ,∵sin ∠ADB=1010, ∴610AB BD BD ==, ∴BD 10= ∴()2222610618DA BD AB =-=-=,∵E 为BF 中点,∴AE=BE=EF ,∵△AEF 的周长为18,∴AE+EF+AF=BE+EF+AF=BF+AF=18,设AF=a ,则BF=18a -,在Rt △ABF 中,AB 2+AF 2=BF 2,∴62+a 2=(18a -)2,解得:8a =,∴DF=18-8=10.∵E 为BF 中点,O 为BD 的中点,∴OE ∥DF ,OE=12DF , ∴△BOE∽△BDF , ∴BOEBDF 14SS =, ∵BDF 12S =DF•AB=12×6×10=30, ∴S △BOE =BDF 111530442S =⨯=. 故答案为:152. 【点睛】 本题考查了矩形的性质,勾股定理,锐角三角函数,相似三角形的判定与性质,中位线定理,三角形的面积等知识,熟练掌握几何基本图形的性质是解题的关键.20.40【分析】如下图利用∠BCA=∠E 可得对应的正切值相等转化为线段比可得BD 长【详解】如下图AB 为乐乐身高BD 是乐乐手臂超出头顶部分AC 是乐乐站立在阳光下的影长AE 是乐乐举起手臂后的影长根据题意AC解析:40【分析】如下图,利用∠BCA=∠E ,可得对应的正切值相等,转化为线段比可得BD 长.【详解】如下图,AB 为乐乐身高,BD 是乐乐手臂超出头顶部分,AC 是乐乐站立在阳光下的影长,AE 是乐乐举起手臂后的影长根据题意,AC=83cm ,AB=166cm ,AE=103cm∵是阳光照射的影长,∴CB ∥ED∴∠BCA=∠E∴tan ∠BCA=tan ∠E ,即:166********BD += 解得:BD=40故答案为:40【点睛】 本题考查三角函数的运用,解题关键是将题干抽象成数学模型,然后再利用三角函数的特点求解.三、解答题21.2.【分析】由特殊角的三角函数值,二次根式的性质,二次根式的加减乘除混合运算进行化简,即可得到答案.【详解】解:tan 452cos30︒︒=11)22-+⨯=11+=2.【点睛】本题考查了特殊角的三角函数值,二次根式的性质,二次根式的加减乘除混合运算,解题的关键是掌握运算法则进行化简.22.(1)32;(2)12213x x ==,. 【分析】(1)先计算负整数指数幂、化简二次根式,代入三角函数值、计算零指数幂,最后计算加减可得答案;(2)利用因式分解法求解即可.【详解】(1)1022cos30)π-︒++1212=+ 112=+ 22=+ (2)∵23520x x -+=,∴()()1320x x --=,则10x -=或320x -=, 解得12213x x ==,. 【点睛】 本题主要考查了实数的混合运算,特殊角的三角函数值,解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.(1)2y x =--;(2)8;(3. 【分析】解:(1)先根据A 、B 两点在反比例函数15y x =-的图象上,求出两点坐标,然后将A ,B 点代入y =kx+b ,即可求出解析式;(2)先求出C 点坐标,然后即可求出面积;(3)先求出D 点坐标,过点O 作OE ⊥AB 于点E ,根据 C (﹣2,0),D (0,﹣2),得出△OCD 是等腰直角三角形,求出OE ,再求出OA ,然后即可求出答案.【详解】解:(1)∵A 、B 两点在反比例函数15y x =-的图象上, ∴153x=-, 解得:x =﹣5,1553y =-=-, 故B (﹣5,3),A (3,﹣5),把A ,B 点代入y =kx+b 得:5335k b k b -+=⎧⎨+=-⎩, 解得:12k b =-⎧⎨=-⎩, 故直线解析式为:y =﹣x ﹣2;(2)y =﹣x ﹣2,当y =0时,x =﹣2,故C 点坐标为:(﹣2,0),则△AOB 的面积为:12×2×3+12×2×5=8; (3)当x =0时,y =﹣2∴D 点坐标为(0,﹣2)过点O 作OE ⊥AB 于点E ,∵ C (﹣2,0),D (0,﹣2),∴△OCD 是等腰直角三角形∴OE=OD·sin45°2,又∵223534OA +=,∴sin ∠OAB=2171734OE OA ==. 【点睛】本题考查了反比例函数和一次函数综合,等腰三角形的定义,勾股定理,锐角三角函数,掌握这些知识点灵活运用是解题关键.24.3【分析】将特殊角的三角函数值代入求解【详解】 解:sin 30tan 452cos 45sin 60tan 60︒⋅︒︒+︒⋅︒ =1231+2+3222⨯ =13+1+22=3【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值. 25.(1)证明见解析;(2)16433π- 【分析】(1)先根据圆周角定理可得90ACB ∠=︒,再根据垂径定理的推论可得OD 垂直平分BC ,然后根据平行线的判定即可得证;(2)设O 的半径为r ,从而可得,2OB r OE r ==-,再根据垂径定理的推论可得1232BE BC ==Rt OBE 中,利用勾股定理可得r 的值,从而可得OBC ∠的度数,最后利用扇形和三角形的面积公式即可得.【详解】(1)AB 为O 的直径,90ACB ∴∠=︒,即AC BC ⊥, 点D 为BC 的中点,OD ∴垂直平分BC ,//OD AC ∴;(2)设O 的半径为r ,则OB OD OC r ===,2DE =,2OE OD DE r ∴=-=-,由(1)已证:OD 垂直平分BC ,1122BE BC ∴==⨯=在Rt OBE 中,222OE BE OB +=,即222(2)r r -+=,解得4r =,4,2OB OE ∴==,在Rt OBE 中,1sin 2OE OBC OB ∠==, 30OBC ∴∠=︒,又OB OC =,30OCB OBC ,180120BOC OCB OBC ∴∠=︒-∠-∠=︒,则阴影部分面积为21204116236023OBC OBC S Sππ⨯-=-⨯=-扇形 【点睛】本题考查了圆周角定理、垂径定理的推论、扇形的面积公式、正弦三角函数等知识点,熟练掌握并灵活运用各定理和公式是解题关键.26.52a --,3-. 【分析】 先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【详解】10cos302tan 45102122a =+=⨯⨯=︒+︒, ()()()()()()23113132522422222222a a a a a a a a a a a a a a a ⎡⎤-----⎛⎫-÷=-⋅+=⋅+=-⎢⎥ ⎪--++--+--⎝⎭⎢⎥⎣⎦当2a =时,原式== 【点睛】 考查分式的化简求值,关键是化简,掌握运算顺序是化简的关键.。

洋葱数学概念课导航(九下)

洋葱数学概念课导航(九下)

洋葱数学概念课导航(九下)
26反比例函数
26.1反比例函数
26.1.1 反比例函数①反比例函数的概念②求反比例函数的解析式
26.1.2 反比例的图象和性质①反比例函数的图象②参数k与图象③参数k的几何意义④图象的增减性⑤图象的对称性
26.2实际问题与反比例函数
26.2.1实际问题与反比例函数
本章节7个视频
27相似
27.1图形的相似
27.1.1图形的相似①相似图形②比例线段③平行线分线段成比例④平行相似27.2相似三角形
27.2.1相似三角形的判定①AA相似②SAS相似③SSS与HL相似④如何找相似三角形
27.2.2相似三角形的性质①相似三角形的性质
27.2.3相似三角形应用举例①实际问题中的相似②射影定理③圆中的相似④角平分线定理⑤黄金分割⑥一线三等角
27.3位似
27.3.1位似①位似②画位似图形
本章节17个视频
28锐角三角函数
28.1锐角三角函数
28.1.1 锐角三角函数①正弦②余弦、正切、余切③锐角三角函数的性质④锐角三角函数间的关系
28.2解直角三角形及其运用
28.2.1 解直角三角形①解直角三角形
28.2.2 应用举例
本章节5个视频
29投影与视图
29.1 投影
29.1.1投影①中心投影②平行投影③正投影
29.2三视图
29.2.1三视图①画三视图
本章节4个视频
九年级下册,共计33个概念课视频。

保定市第一中学九年级数学下册第二十八章《锐角三角函数》综合经典测试题(培优)

保定市第一中学九年级数学下册第二十八章《锐角三角函数》综合经典测试题(培优)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知,一个小球由桌面沿着斜坡向上前进了10cm ,此时小球距离桌面的高度为5cm ,则这个斜坡的坡度i 为( )A .2B .1:2C .1:2D .1:3 2.如图,在O 中,E 是直径AB 延长线上一点,CE 切O 于点E ,若2CE BE =,则E ∠的余弦值为( )A .35B .45C .34D .433.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a +米B .11cos a -米C .11sin a -米D .11cos a +米 4.如图,已知第一象限内的点A 在反比例函数2y x =的图象上,第二象限的点B 在反比例函数k y x=的图象上,且OA ⊥OB ,tanA=2,则k 的值为( )A.4 B.8 C.-4 D.-85.一段公路路面的坡度为i=1:2.4.如果某人沿着这段公路向上行走了260m,那么此人升高了()A.50m B.100m C.150m D.200m6.如图,在4×5的正方形网格中,每个小正方形的边长都是1,ΔABC的顶点都在这些小正方形的顶点上,那么cos∠ACB值为()A.355B.175C.35D.457.如图,四边形 ABCD中,BD是对角线,AB=BC,∠ABC=60°,CD=4,∠ADC=60°,则△BCD的面积为()A.43B.8 C.23+4 D.368.如图,在A处测得点P在北偏东60︒方向上,在B处测得点P在北偏东30︒方向上,若2AB=米,则点P到直线AB距离PC为().A.3米B3米C.2米D.1米9.如图,在矩形ABCD中,AB=6,BC=2,点E是边BC上一动点,B关于AE的对称点为B′,过B′作B′F⊥DC于F,连接DB′,若△DB′F为等腰直角三角形,则BE的长是( )A .6B .3C .32D .62﹣6 10.如图,在Rt ABC ∆中,90ACB ∠=︒,22AC BC ==,CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E ,作PF BC ⊥于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .11.西南大学附中初2020级小李同学想利用学过的知识测量棵树的高度,假设树是竖直生长的,用图中线段AB 表示,小李站在C 点测得∠BCA =45°,小李从C 点走4米到达了斜坡DE 的底端D 点,并测得∠CDE =150°,从D 点上斜坡走了8米到达E 点,测得∠AED =60°,B ,C ,D 在同一水平线上,A 、B 、C 、D 、E 在同一平面内,则大树AB 的高度约为( )米.(结果精确到0.12≈1.413≈1.73)A.24.3 B.24.4 C.20.3 D.20.412.如图,Rt△ABC中,AB=4,BC=2,正方形ADEF的边长为2,F、A、B在同一直线上,正方形ADEF向右平移到点F与B重合,点F的平移距离为x,平移过程中两图重叠部分的面积为y,则y与x的关系的函数图象表示正确的是()A.B.C.D.13.点E在射线OA上,点F在射线OB 上,AO⊥BO,EM平分∠AEF,FM平分∠BFE,则tan∠EMF的值为( )A.12B.33C.1 D.314.如图,△ABC中,∠C=90°,BC=2AC,则cos A=()A.12B5C25D5二、填空题15.如图是一个地铁站入口的双翼闸机.它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为________cm.16.已知AD 是△ABC 的高,CD =1,AD =BD =3,则∠BAC =_______.17.某人沿坡度是1:2的斜坡走了100米,则他上升的高度是_____米.18.如图,正方形ABCD 绕点B 逆时针旋转30°后得到正方形BEFG ,EF 与AD 相交于点H ,延长DA 交GF 于点K .若正方形ABCD 边长为3,则AH=__.19.如图,“人字梯”放在水平的地面上,AB AC =,当梯子的一边与地面所夹的锐角α为60︒时,两梯角之间的距离BC 的长为2m .周日亮亮帮助妈妈整理换季衣服,先使α为60︒,后又调整α为45︒,则梯子顶端A 离地面的高度下降了___________m .20.如图,梯形ABCD 是拦水坝的横断面图,(图中1:3i =是指坡面的铅直高度DE 与水平宽度CE 的比),60B ∠=,6AB =,4=AD ,拦水坝的横断面ABCD 的面积是________(结果保留三位有效数字,参考数据:3 1.732=,2 1.414=)21.在直角三角形ABC 中,∠ACB=90°,D 、E 是边AB 上两点,且CE 所在直线垂直平分线段AD ,CD 平分∠BCE ,3AB=_____.22.如图,正方形ABCD的边长为22,过点A作AE⊥AC,AE=1,连接BE,则tanE= .23.在矩形纸片ABCD中,AB=6,BC=8.将矩形纸片折叠,使点C与点A重合,则折痕的长是______.24.如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=4,OC=10,∠A=60°,线段EF垂直平分OD,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E'关于x轴对称,连接BP、E'M,则BP+PM+ME'的长度的最小值为______.25.如图,∠EFG=90°,EF=10,OG=17,cos∠FGO=0.6,则点F的坐标是_______.26.如图,在ABC ∆中,90A ∠=︒,10BC =,3sin 5B ∠=,D 是BC 边上的一个动点(异于B 、C 两点),过点D 分别作AB 、AC 边的垂线,垂足分别为E 、F ,则EF 的最小值是________.三、解答题27.如图,AB 是圆O 的一条弦,OD ⊥AB ,垂足为C ,交圆O 于点D ,点E 在圆O 上. (1)若∠AOD =50°,求∠DEB 的度数;(2)若OC =3,∠A =30°,求AB 的长.28.为进一步加强疫情防控工作,避免在测温过程中出现人员聚集现象,某学校决定安装红外线体温监测仪,该设备通过探测人体红外辐射能量对进入测温区域的人员进行快速测温,无需人员停留和接触,安装说明书的部分内容如表.名称 红外线体温检测仪安装示意图技术参数探测最大角:∠OBC=73.14°探测最小角:∠OAC=30.97°安装要求本设备需安装在垂直于水平地面AC的支架CP上根据以上内容,解决问题:学校要求测温区域的宽度AB为4m,请你帮助学校确定该设备的安装高度OC.(结果精确到0.1m,参考数据:sin73.14°≈0.957,cos73.14°≈0.290,tan73.14°≈3.300,sin30.97°≈0.515,cos30.97°≈0.857,tan30.97°≈0.600)29.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=25DE,求tan∠ABD的值.参考答案30.第十一届全国少数民族传统体育运动会于2019年9月8日至16日在郑州举行,据了解,该赛事每四年举办一届,是我国规格最高、规模最大的综合性民族体育盛会,其中,花炮、押加、民族式摔跤三个项目的比赛在郑州大学主校区进行.如图,钟楼是郑州大学主校区标志性建筑物之一,是郑大的“第一高度”,寓意来自五湖四海的郑大人的团结和凝聚.小刚站在钟楼前C处测得钟楼顶A的仰角为53°,小强站在对面的教学楼三楼上的D 处测得钟楼顶A的仰角为45°,此时,两人的水平距离EC为4m,已知教学楼三楼所在的高度为10m,根据测得的数据,计算钟楼AB的高度.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【参考答案】一、选择题1.D2.B3.C4.D5.B6.C7.A8.B9.D10.A11.B12.B13.C14.D二、填空题15.64【分析】连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F求出CEEFDF即可解決问题;【详解】解:如图连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F∵AB//EFAE//BF∴16.75°或15°【分析】分两种情形求高的位置然后再根据三角函数的定义求出∠BAD∠CAD 的度数最后再相加或相减即可求出∠BAC的度数【详解】解:如图所示:①tan∠BAD==1∴∠BAD=45°tan17.【分析】先画出图形再根据坡度的可得然后设米从而可得米最后利用勾股定理求出x 的值由此即可得出答案【详解】如图由题意得:米设米则米由勾股定理得:即解得(米)则米即他上升的高度是米故答案为:【点睛】本题考18.1【分析】连接BH证明Rt△ABH≌△Rt△EBH(HL)得出∠ABH=30°在Rt△ABH中解直角三角形即可【详解】解:连接BH如图所示:∵四边形ABCD和四边形BEFG是正方形∴∠BAH=∠AB19.m【分析】根据有一个角是的等腰三角形是等边三角形判断出是等边三角形根据等边三角形的三边相等得出BC=AB=AC=2米在Rt中根据正弦函数的定义及特殊锐角三角函数值由AD=即可求出AD的长同理算出进而20.520【分析】过点A作于点F利用特殊角的锐角三角函数值和坡度求出AFBFCE的长把整个梯形分成两个三角形和一个矩形去计算面积【详解】解:如图过点A作于点F∵∴∵∴故答案是:520【点睛】本题考查锐角21.4【解析】分析:由CE所在直线垂直平分线段AD可得出CE平分∠ACD进而可得出∠ACE=∠DCE由CD平分∠BCE利用角平分线的性质可得出∠DCE=∠DCB结合∠ACB=90°可求出∠ACE∠A的度22.【详解】如图延长CA使AF=AE连接BF过B点作BG⊥AC垂足为G∵四边形ABCD是正方形∴∠CAB=45°∴∠BAF=135°∵AE⊥AC∴∠BAE=135°∴∠BAF=∠BAE∵在△BAF和△B23.【分析】先利用勾股定理得出AC根据翻折变换的性质可得AC⊥EFOC=AC然后利用∠ACB的正切列式求出OF再求出△AOE和△COF全等根据全等三角形对应边相等可得OE=OF从而求出折痕的长【详解】解24.【分析】连接OP先确定OD的长和B点坐标然后证明四边形OPME是平行四边形可得OP=EM因为PM是定值推出PB+ME=OP+PB的值最小时即当OPB共线时BP+PM+ME的长度最小最后根据两点间的距25.【分析】先过点F作直线交轴于点过点作于点证明根据cos∠FGO=06以及勾股定理即可得到答案【详解】过点F作直线交轴于点过点作于点如图:∴(两直线平行内错角相等)又∵∠EFG=90°∴∠AFE+∠H26.【分析】先利用求得AC的长再证明四边形AEDF是矩形推出EF=AD根据垂线段最短即可解决问题;【详解】解:如图连接AD在△ABC中∵∠BAC=90°∴∴AC=6∴AB==10∵DF⊥ACDE⊥BC∴三、解答题27.28.29.30.【参考解析】一、选择题1.D解析:D【分析】过B作BC⊥桌面于C,由题意得AB=10cm,BC=5cm,再由勾股定理得AC=然后由坡度的定义即可得出答案.【详解】解:如图,过B 作BC ⊥桌面于C ,由题意得:AB =10cm ,BC =5cm ,∴AC=222210553AB BC -=-=,∴这个斜坡的坡度i =BC AC =553=1:3 ,故选:D .【点睛】本题考查了解直角三角形的应用-坡度坡角问题以及勾股定理;熟练掌握坡度的定义和勾股定理是解题的关键.2.B解析:B【分析】连接OC ,则∠OCE=90°,设OC=OB=x ,22CE BE k ==,根据勾股定理即可列出方程222(2)()x k x k +=+,解得32x k =,再根据余弦的定义即可求得答案. 【详解】解:如图,连接OC ,∵CE 切O 于点E ,∴∠OCE=90°,设OC=OB=x ,22CE BE k ==,∵在Rt OCE △中,222OC CE OE +=,∴222(2)()x k x k +=+,解得32x k =, ∴52OE OB BE k =+=, ∴24cos 552CE k E OE k ===,故选:B .【点睛】本题考查了切线的性质、勾股定理以及锐角三角函数,熟练掌握切线的性质以及勾股定理是解决本题的关键.3.C解析:C【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sin αPC PB =',列出方程即可解决问题. 【详解】解:设PA=PB=PB′=x ,在RT △PCB′中,sin αPC PB ='∴1sin αx x-=∴x 1xsin α-=, ∴(1-sin α)x=1,∴x=11sin α-. 故选C .【点睛】 本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.4.D解析:D【分析】过点A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,垂足分别为点C 、D ,如图,易证△AOC ∽△OBD ,则根据相似三角形的性质可得214AOC BOD S OA S OB ⎛⎫== ⎪⎝⎭△△,再根据反比例函数系数k 的几何意义即可求出k 的值.【详解】解:过点A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,垂足分别为点C 、D ,如图,则∠ACO=∠BDO=90°,∠OAC+∠AOC=90°,∵OA⊥OB,tan∠BAO=2,∴∠AOC+∠BOD=90°,OA:OB=1:2,∴∠OAC=∠BOD,∴△AOC∽△OBD,∴221124 AOCBODS OAS OB⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭△△,∵1212AOCS⨯==,12BODS k=△,∴11142k=,∴8k=,∵k<0,∴k=﹣8.故选:D.【点睛】本题考查了反比例函数系数k的几何意义、相似三角形的判定和性质以及三角函数的定义等知识,熟练掌握所学知识、明确解答的方法是解题的关键.5.B解析:B【分析】已知了坡面长为260米,可根据坡度比设出两条直角边的长度,根据勾股定理可列方程求出坡面的铅直高度,即此人上升的最大高度.【详解】解:如图,Rt△ABC中,tan A=12.4,AB=260米.设BC=x,则AC=2.4x,根据勾股定理,得:x2+(2.4x)2=2602,解得x=100(负值舍去).故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及勾股定理、三角函数的运用能力,难度不大,注意掌握坡度的定义及数形结合思想的应用.6.C解析:C【分析】如图,过点A 作AH BC ⊥于H .利用勾股定理求出AC 即可解决问题.【详解】解:如图,过点A 作AH BC ⊥于H .在Rt ACH ∆中,4AH =,3CH =, 2222435AC AH CH ∴=+=+=,3cos 5CH ACH AC ∴∠==, 故选:C .【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 7.A解析:A【分析】先证明△ABC 是等边三角形,以C 为圆心,CD 为半径作圆,交AD 边与点M ,可得△CDM是等边三角形,进而得到∆BCM ≅∆ACD ,可得到60BMC ∠=︒,得到BM ∥CD ,过点M 作MH CD ⊥,根据△BCD 的面积等于△CDM 的面积求解即可;【详解】∵BD 是对角线,AB=BC ,∠ABC=60°,∴△ABC 是等边三角形,以C 为圆心,CD 为半径作圆,交AD 边与点M ,延长BC ,交C 于点N ,如图所示,∵∠ADC=60°,CM=CD ,∴△CDM 是等边三角形,∴60MCD ∠=︒,∴∠ACB+∠ACM=∠MCD+∠ACM ,即:∠BCM=∠ACD ,∴∆BCM ≅∆ACD ,∴∠BMC=∠ADC=60°,∴∠BMC=∠MCD ,∴BM ∥CD ,根据平行线间的距离相等得到△BCD 的面积等于△CDM 的面积,过点M 作MH CD ⊥,∵CD=4,∴2==CH HD , ∴tan 602MH MH DH ︒==, ∴MH =,∴△△142BDC CDM S S ==⨯⨯= 故答案选A .【点睛】本题主要考查了四边形综合,结合等边三角形性质,构造等边△CDM 是解题的关键. 8.B解析:B【分析】设点P 到直线AB 距离PC 为x 米,根据正切的定义用x 表示出AC 、BC ,根据题意列出方程,解方程即可.【详解】解:设点P 到直线AB 距离PC 为x 米,在Rt APC △中,tan PC AC PAC ==∠,在Rt BPC △中,tan PC BC x PBC ==∠,2x -=,解得,x =),故选:B .【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 9.D解析:D【分析】根据 B 关于 AE 的对称点为 B′,可得22AB AD '=,1AB D ∴等腰直角三角形,可得D B E '、、三点共线,可求出BE 的长.【详解】解:26,62,2AB AB AB AD AD ==='∴=', 又△DB′F 为等腰直角三角形,045FDB ∴∠=,又在矩形 ABCD ,090ADF ∠=,045ADB ∴='∠,又22AB AD '=, AB D ∴'等腰直角三角形, 090AB D ∴='∠,090AB E ∠=',D BE ∴'、、三点共线,在等腰直角△RCE ,CE=CD=6,∴BE=BC-CE=626-,故选D..【点睛】本题考查三角形的性质及解直角三角形,找出D B E '、、三点共线是解题关键. 10.A解析:A【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【详解】解:∵90ACB ∠=︒,22AC BC ==,∴45A ∠=︒,4AB =,又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒,∵PE AC ⊥,PF BC ⊥,∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴2sin 2AE PE AP A x ===, ∴2222CE x =-, ∴四边形CEPF 的面积为2221222222y x x x x ⎛⎫=-=-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥,∴sin CE PE CP ECP ==⨯∠,∴())24sin 454CE PE x x ==-︒=-, ∴四边形CEPF 的面积为()222144822x x x y ⎤-=-+⎥⎣⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A .【点睛】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键.11.B解析:B【分析】过E 作EG ⊥AB 于G ,EF ⊥BD 于F ,则BG=EF ,EG=BF ,求得∠EDF=30°,根据直角三角形的性质得到EF=12DE=4,33即可得到结论.【详解】过E 作EG ⊥AB 于G ,EF ⊥BD 于F ,则BG =EF ,EG =BF ,∵∠CDE =150°,∴∠EDF =30°,∵DE =8,∴EF =12DE =4,DF =43, ∴CF =CD +DF =4+43,∵∠ABC =90°,∠ACB =45°,∴AB =BC ,∴GE =BF =AB +4+43,AG =AB ﹣4,∵∠AED =60°,∠GED =∠EDF =30°,∴∠AEG =30°,∴tan30°=433443AG AB GE AB -==++ , 解得:AB =14+63≈24.4,故选:B .【点睛】此题考查解直角三角形的应用-坡度坡角问题,根据题意作出辅助线是解题的关键. 12.B解析:B【分析】分三种情况分析:当0<x≤2时,平移过程中两图重叠部分为Rt △AA'M ;当2<x≤4时,平移过程中两图重叠部分为梯形F'A'MN ;当4<x≤6时,平移过程中两图重叠部分为梯形F'BCN .分别写出每一部分的函数解析式,结合排除法,问题可解.【详解】设AD 交AC 于N ,A D ''交AC 于M ,当0<x ≤2时,平移过程中两图重叠部分为Rt △AA 'M ,∵Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2,AA x '=,∴tan ∠CAB =A M BC AA AB ='', ∴A 'M =12x ,其面积y=12AA A M ''=12x •12x =14x 2, 故此时y 为x 的二次函数,排除选项D ; 当2<x ≤4时,平移过程中两图重叠部分为梯形F 'A 'MN ,AA x '=,2AF x '=-,同理:A 'M =12x ,()122F M x ='-, 其面积y=12AA A M ''-12AF F M ''=12x •12x ﹣12(x ﹣2)•12(x ﹣2)=x ﹣1, 故此时y 为x 的一次函数,故排除选项C .当4<x ≤6时,平移过程中两图重叠部分为梯形F 'BCN ,AF '=x ﹣2,F 'N =12(x ﹣2),F 'B =4﹣(x ﹣2)=6﹣x ,BC =2, 其面积y =12 [12(x ﹣2)+2]×(6﹣x )=﹣14x 2+x +3, 故此时y 为x 的二次函数,其开口方向向下,故排除A ;综上,只有B 符合题意.故选:B .【点睛】本题考查了动点问题的函数图象以及三角函数的知识,数形结合并运用排除法,是解答本题的关键.13.C解析:C【分析】根据三角形外角的性质求得∠AEF+∠BFE=270°,由角平分线定义可求得∠MEF+∠MFE=135°,根据三角形内角和定理可求出∠EMF=45°,从而可得出结论.【详解】如图,∵AO ⊥BO∴∠AOB=90°∴∠OEF+∠OFE=90°∵∠AEF 和∠BFE 是△EOF 的外角∴∠AEF=90°+∠OFE ,∠BFE=90°+∠OEF∴∠AEF+∠BFE=90°+90°+∠OFE+∠OEF=270°∵EM 平分∠AEF ,FM 平分∠BFE ,∴∠MEF+∠MFE=12(∠AEF+∠BFE) =135°, ∵∠MEF+∠MFE+∠M=180° ∴∠M=180°-(∠MEF+∠MFE)=180°-135°=45°∴tan ∠EMF=tan45°=1故选:C .【点睛】此题主要考查了三角形内角和定理、三角形外角的性质及三角函数,求出∠MEF+∠MFE=135°是解答此题的关键.14.D解析:D【分析】此题根据已知可设AC =x ,则BC =2x ,根据三角函数的定义即可得到结论.【详解】解:∵BC =2AC ,∴设AC =a ,则BC =2a ,∵∠C =90°,∴AB 225AC BC a +=, ∴cosA =55AC AB a== 故选:D .【点睛】此题考查的知识点是锐角三角函数的定义,勾股定理,关键是熟练掌握锐角三角函数的定义.二、填空题15.64【分析】连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F求出CEEFDF即可解決问题;【详解】解:如图连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F∵AB//EFAE//BF∴解析:64【分析】连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F,求出 CE , EF , DF 即可解決问题;【详解】解:如图,连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F.∵AB//EF,AE//BF,∴四边形ABFE是平行四边形,∵∠AEF=90°,∴四边形AEFB是矩形,∴EF=AB=10(cm),∵AE//PC,∴∠PCA=∠CAE=30°,∴CE=AC•sin30°=27(cm),同法可得DF=27(cm),∴CD=CE+EF+DF=27+10+27=64(cm),故答案为64.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.16.75°或15°【分析】分两种情形求高的位置然后再根据三角函数的定义求出∠BAD∠CAD的度数最后再相加或相减即可求出∠BAC的度数【详解】解:如图所示:①tan∠BAD==1∴∠BAD=45°tan解析:75°或15°【分析】分两种情形求高的位置,然后再根据三角函数的定义求出∠BAD、∠CAD的度数,最后再相加或相减即可求出∠BAC的度数.【详解】解:如图所示:①tan ∠BAD =BD AD =1, ∴∠BAD =45°, tan ∠CAD =CD AD =33, ∴∠BAD =30°,∴∠BAC =45°+30°=75°; ②tan ∠BAD =BD AD=1, ∴∠BAD =45°, tan ∠CAD =CD AD =33, ∴∠BAD =30°,∴∠BAC =45°﹣30°=15°.故∠BAC =75°或15°.【点睛】本题考查了三角函数的应用,灵活应用三角函数求角和分类讨论思想是解答本题的关键. 17.【分析】先画出图形再根据坡度的可得然后设米从而可得米最后利用勾股定理求出x 的值由此即可得出答案【详解】如图由题意得:米设米则米由勾股定理得:即解得(米)则米即他上升的高度是米故答案为:【点睛】本题考 解析:5【分析】先画出图形,再根据坡度的可得12AC BC =,然后设AC x =米,从而可得2BC x =米,最后利用勾股定理求出x 的值,由此即可得出答案.【详解】 如图,由题意得:90C ∠=︒,100AB =米,1tan 2AC B BC ==, 设AC x =米,则2BC x =米,由勾股定理得:22AB AC BC =+()222100x x +=, 解得205x =(米),AC=米,则205即他上升的高度是205米,故答案为:205.【点睛】本题考查了勾股定理、解直角三角形的应用:坡度问题,掌握理解坡度的概念是解题关键.18.1【分析】连接BH证明Rt△ABH≌△Rt△EBH(HL)得出∠ABH=30°在Rt△ABH中解直角三角形即可【详解】解:连接BH如图所示:∵四边形ABCD 和四边形BEFG是正方形∴∠BAH=∠AB解析:1【分析】连接BH,证明Rt△ABH≌△Rt△EBH(HL),得出∠ABH =30°,在Rt△ABH中解直角三角形即可.【详解】解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,∵BH=BH,AB=EB,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=1∠ABE=30°,2∴AH=AB•tan∠33,故答案为:1.【点睛】本题考查了旋转的性质、正方形的性质、全等三角形的判定与性质、解直角三角形.能正确作出辅助线得出Rt △ABH ≌△Rt △EBH ,从而求得∠ABH =30°是解题关键.19.m 【分析】根据有一个角是的等腰三角形是等边三角形判断出是等边三角形根据等边三角形的三边相等得出BC=AB=AC=2米在Rt 中根据正弦函数的定义及特殊锐角三角函数值由AD=即可求出AD 的长同理算出进而 解析:()32-m . 【分析】根据有一个角是60︒的等腰三角形是等边三角形判断出ABC 是等边三角形,根据等边三角形的三边相等得出BC=AB=AC=2米,在Rt ABD 中根据正弦函数的定义及特殊锐角三角函数值,由AD=AB?sin60︒即可求出AD 的长,同理算出11A D ,进而根据AD-11A D 即可得出答案.【详解】解:如图1,由题意可得:∵∠B=∠C=60︒,AB=AC∴ABC 是等边三角形BC=AB=AC=2米 在Rt ABD 中:23AD 2sin603=︒== 如图2,由题意可得:∵∠B 1=∠C 1=45︒,A 1B 1=A 1C 1=2m在111Rt A B D 中:11222sin4522A D =︒== ∴(1132AD A D -=m . 故答案为:(32m . 【点睛】此题主要考查锐角三角函数定义、等腰三角形的性质、等边三角形的判定和性质、特殊角的三角函数值,正确理解锐角三角函数定义是解题关键. 20.520【分析】过点A 作于点F 利用特殊角的锐角三角函数值和坡度求出AFBFCE 的长把整个梯形分成两个三角形和一个矩形去计算面积【详解】解:如图过点A 作于点F ∵∴∵∴故答案是:520【点睛】本题考查锐角解析:52.0【分析】过点A 作AF BC ⊥于点F ,利用特殊角的锐角三角函数值和坡度求出AF 、BF 、CE 的长,把整个梯形分成两个三角形和一个矩形去计算面积.【详解】解:如图,过点A 作AF BC ⊥于点F , 3sin 606332AF AB =⋅︒=⨯=, 1cos60632BF AB =⋅︒=⨯=, 33DE AF ==,∵13DE EC =, ∴9EC =, ∵1193333222ABF S AF BF =⋅=⨯⨯=, 11273933222CDE S CE DE =⋅=⨯⨯=, 433123ADEF S AD AF =⋅=⨯=,∴9327312330352.022ABCD S =++=≈. 故答案是:52.0.【点睛】本题考查锐角三角函数的实际应用,解题的关键是掌握利用特殊角的锐角三角函数值解直角三角形的方法.21.4【解析】分析:由CE 所在直线垂直平分线段AD 可得出CE 平分∠ACD 进而可得出∠ACE=∠DCE 由CD 平分∠BCE 利用角平分线的性质可得出∠DCE=∠DCB 结合∠ACB=90°可求出∠ACE ∠A 的度解析:4【解析】分析:由CE 所在直线垂直平分线段AD 可得出CE 平分∠ACD ,进而可得出∠ACE=∠DCE ,由CD 平分∠BCE 利用角平分线的性质可得出∠DCE=∠DCB ,结合∠ACB=90°可求出∠ACE 、∠A 的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB 的长度. 详解:∵CE 所在直线垂直平分线段AD ,∴CE 平分∠ACD ,∴∠ACE=∠DCE.∵CD平分∠BCE,∴∠DCE=∠DCB.∵∠ACB=90°,∴∠ACE=13∠ACB=30°,∴∠A=60°,∴AB=236032BCsin=︒=4.故答案为4.点睛:本题考查了线段垂直平分线的性质、角平分线的性质以及特殊角的三角函数值,通过角的计算找出∠A=60°是解题的关键.22.【详解】如图延长CA使AF=AE连接BF过B点作BG⊥AC垂足为G∵四边形ABCD是正方形∴∠CAB=45°∴∠BAF=135°∵AE⊥AC∴∠BAE=135°∴∠BAF=∠BAE∵在△BAF和△B解析:2 3【详解】如图,延长CA使AF=AE,连接BF,过B点作BG⊥AC,垂足为G,∵四边形ABCD是正方形,∴∠CAB=45°.∴∠BAF=135°.∵AE⊥AC,∴∠BAE=135°.∴∠BAF=∠BAE.∵在△BAF和△BAE中,BA BA{BAF BAEAE AF∠∠===,∴△BAF≌△BAE(SAS).∴∠E=∠F.∵四边形ABCD是正方形,BG⊥AC,∴G是AC的中点.∴BG=AG=2.在Rt△BGF中,BG2tanFFG3==,即tanE=23.考点:正方形的性质,全等三角形的判定和性质,锐角三角函数的定义,23.【分析】先利用勾股定理得出AC根据翻折变换的性质可得AC⊥EFOC=AC 然后利用∠ACB的正切列式求出OF再求出△AOE和△COF全等根据全等三角形对应边相等可得OE=OF从而求出折痕的长【详解】解解析:15 2【分析】先利用勾股定理得出AC,根据翻折变换的性质可得AC⊥EF,OC=12AC,然后利用∠ACB的正切列式求出OF,再求出△AOE和△COF全等,根据全等三角形对应边相等可得OE=OF,从而求出折痕的长.【详解】解:如图∵AB=6,BC=8,∴AC==10,∵折叠后点C与点A重合,∴AC⊥EF,OC=12AC=12×10=5,∵tan∠ACB=OFCO =ABCB,∴OF5=68,解得OF=154,∵矩形对边AD∥BC,∴∠OAE=∠OCF,在△AOE 和△COF 中OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ),∴OE=OF=154, ∴EF=152故答案为152【点睛】本题考查了翻折变换的性质,矩形的性质,勾股定理,锐角三角函数的定义,全等三角形的判定与性质,熟练掌握相关知识是解题的关键.24.【分析】连接OP 先确定OD 的长和B 点坐标然后证明四边形OPME 是平行四边形可得OP=EM 因为PM 是定值推出PB+ME=OP+PB 的值最小时即当OPB 共线时BP+PM+ME 的长度最小最后根据两点间的距解析:22123+【分析】连接OP ,先确定OD 的长和B 点坐标,然后证明四边形OPME'是平行四边形,可得OP=EM ,因为PM 是定值,推出PB+ME'=OP+PB 的值最小时,即当O 、P 、B 共线时BP+PM+M E 的长度最小,最后根据两点间的距离公式和线段的和差解答即可.【详解】解:如图:连接OP在Rt △ADO 中,∠A=60°,AD=4,∴OD=4tan60°3∴A (-4,3∵四边形ABCD 是平行四边形,∴AB=OC=10,∴DB=10-4=6 ∴B (6,43)∵线段EF 垂直平分OD∴OE=12OD=23,∠PEO=∠EOM=∠PM0=90°, ∴四边形OMPE 是矩形,∴PM=OE=23,∵OE=0E'∴PM=OE',PM//OE',∴四边形OPME'是平行四边形,∴0P=EM ,∵PM=23是定值,∴PB+ME'=OP+PB 的值最小时,BP+PM+ME 的长度最小,∴当0、P 、B 共线时,BP+PM+ME 的长度最小∴BP+PM+ME 的最小值为OB+PM=()226432322123++=+.故答案为22123+.【点睛】本题属于四边形综合题,主要考查了平行四边形的判定和性质、垂直平分线的性质、最短路径问题、锐角三角函数等知识,掌握并灵活应用两点之间线段最短是解答本题的关键. 25.【分析】先过点F 作直线交轴于点过点作于点证明根据cos ∠FGO=06以及勾股定理即可得到答案【详解】过点F 作直线交轴于点过点作于点如图:∴(两直线平行内错角相等)又∵∠EFG=90°∴∠AFE+∠H解析:(8,12)【分析】先过点F 作直线//FA OG 交y 轴于点A ,过点G 作GH FA ⊥于点H ,证明FGO ∠HFG FEA =∠=∠,根据cos ∠FGO =0.6以及勾股定理即可得到答案.【详解】过点F 作直线//FA OG 交y 轴于点A ,过点G 作GH FA ⊥于点H ,如图:∴FGO HFG ∠=∠(两直线平行,内错角相等),又∵∠EFG =90°,∴∠AFE+∠HEG =90°,又∵∠AFE+∠FEA =90°,∴HFG FEA ∠=∠,∴FGO HFG FEA ∠=∠=∠,在Rt AEF ∆中,10EF =,则10cos 100.66AE FEA =⋅∠=⨯= ∴221068AF =-=(勾股定理),∴1789FH =-=,在Rt FGH ∆中,90.615FG =÷=,∴2215912HG =-=(勾股定理), ∴(8,12)F ,故答案为:(8,12).【点睛】本题主要考查了平行的性质(两直线平行,内错角相等)、勾股定理的应用以及三角函数,熟练掌握各知识点并灵活运用是解题的关键.26.【分析】先利用求得AC 的长再证明四边形AEDF 是矩形推出EF =AD 根据垂线段最短即可解决问题;【详解】解:如图连接AD 在△ABC 中∵∠BAC =90°∴∴AC =6∴AB ==10∵DF ⊥ACDE ⊥BC ∴解析:245【分析】先利用10BC =,3sin 5B ∠=求得AC 的长,再证明四边形AEDF 是矩形,推出EF =AD ,根据垂线段最短即可解决问题;【详解】解:如图,连接AD .在△ABC 中,∵∠BAC =90°,10BC =,3sin 5B ∠=, ∴3105AC =, ∴AC =6, ∴AB 2268+=10,∵DF ⊥AC ,DE ⊥BC ,∴∠DFA =∠DEA =∠BAC =90°,∴四边形AEDF 是矩形,∴EF =AD ,∴当AD ⊥BC 时,AD 的值最小,此时EF 最小值=AD =245AC AB BC =, 故答案为:245. 【点睛】本题考查矩形的判定和性质、垂线段最短、勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.三、解答题27.(1)25°;(2)【分析】(1)由垂径定理可证AD =BD ,再利用圆周角与圆心角的关系求解.(2)由垂径定理可证AC=BC ,△AOC 为直角三角形,由30°的角可求得直角边AC 的长度,从而求得AB 的长度.【详解】(1)∵OD ⊥AB ,∴AD =BD ,∵∠AOD =50°, ∴∠DEB=12∠AOD =25°; (2)∵OD ⊥AB , ∴AC=BC ,△AOC 为直角三角形,∵OC=3,∠A=30°,∴tan 30OC AC ︒=,即OC AC = ∴AC=,∴AB=2AC=【点睛】本题考查了圆周角定理,垂径定理,锐角三角函数.注意:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.28.该设备的安装高度OC 约为2.9m .【分析】根据题意可得OC ⊥AC ,∠OBC=73.14°,∠OAC=30.97°,AB=4m ,所以得AC=AB+BC=4+BC ,。

【初三数学】天津市九年级数学上期中考试测试卷(含答案解析)

【初三数学】天津市九年级数学上期中考试测试卷(含答案解析)

新九年级(上)数学期中考试题(答案)一、选择题(每小题4分,共30分)1.下列二次根式中,最简二次根式为()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.解:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数中不含能开得尽方的因数或因式,故B正确;C、被开方数中含能开得尽方的因数或因式,故C错误;D、被开方数中含能开得尽方的因数或因式,故D错误;故选:B.【点评】本题考查了最简二次根式,规律总结:满足下列两个条件的二次根式,叫做最简二次根式.被开方数不含分母;被开方数中不含能开得尽方的因数或因式.2.已知2x=3y(y≠0),则下面结论成立的是()A.=B.=C.=D.=【分析】根据等式的性质,可得答案.解:A、两边都除以2y,得=,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得=,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选:A.【点评】本题考查了等式的性质,利用等式的性质是解题关键.3.下列事件中,是必然事件的是()A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.掷一枚质地均匀的硬币,一定正面向上【分析】根据事件发生的可能性大小判断相应事件的类型即可.解:A、将油滴入水中,油会浮在水面上是必然事件,故A符合题意;B、车辆随机到达一个路口,遇到红灯是随机事件,故B不符合题意;C、如果a2=b2,那么a=b是随机事件,D、掷一枚质地均匀的硬币,一定正面向上是随机事件,故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.【分析】根据勾股定理求出△ABC的三边,并求出三边之比,然后根据网格结构利用勾股定理求出三角形的三边之比,再根据三边对应成比例,两三角形相似选择答案.解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故D选项错误.故选:B.【点评】本题主要考查了相似三角形的判定与网格结构的知识,根据网格结构分别求出各三角形的三条边的长,并求出三边之比是解题的关键.5.一元二次方程x2﹣4x+5=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【分析】首先求出一元二次方程x2﹣4x+5=0根的判别式,然后结合选项进行判断即可.解:∵一元二次方程x2﹣4x+5=0,∴△=(﹣4)2﹣4×5=16﹣20=﹣4<0,即△<0,∴一元二次方程x2﹣4x+5=0无实数根,故选:A.【点评】本题主要考查了根的判别式的知识,解答本题要掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,此题难度不大.6.用配方法解方程x2﹣2x﹣8=0,下列配方结果正确的是()A.(x+1)2=9B.(x+1)2=7C.(x﹣1)2=9D.(x﹣1)2=7【分析】先把常数项移到方程右侧,再把方程两边加上1,然后把方程左边写成完全平方的形式即可.解:x2﹣2x=8,x2﹣2x+1=9,(x﹣1)2=9.故选:C.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.如果代数式+有意义,那么直角坐标系中点A(a,b)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,可知a、b的取值范围,再根据直角坐标系内各象限点的特征确定所在象限.解:∵代数式+有意义,∴a≥0且ab>0,解得a>0且b>0.∴直角坐标系中点A(a,b)的位置在第一象限.故选:A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.同时考查了直角坐标系内各象限点的特征.8.如图,在△ABC中,AB=12,AC=13,sin B=,则边BC的长为()A.7B.8C.12D.17【分析】过点A作AD⊥BC,垂足为D.在Rt△ABD中,利用锐角三角函数求出AD的长,利用勾股定理再分别求出BD和CD的长即得结果.解:过点A作AD⊥BC,垂足为D.∵sin B=,即=,∴AD=12.在Rt△ABD中,BD==12.在Rt△ACD中,CD===5.∴BC=BD+CD=12+5=17.故选:D.【点评】本题考查了解直角三角形,题目难度不大.构造直角三角形,充分利用∠B的正弦、AB、AC的长是解决本题的关键.9.如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是()A.四边形ABCD与四边形AEFG是相似图形B.AD与AE的比是2:3C.四边形ABCD与四边形AEFG的周长比是2:3D.四边形ABCD与四边形AEFG的面积比是4:9【分析】本题主要考查了位似变换的定义及作图,位似变换就是特殊的相似,且位似图形上任意一对对应点到位似中心的距离之比等于相似比,因而周长的比等于相似比,面积的比等于相似比的平方.解:∵四边形ABCD与四边形AEFG是位似图形;A、四边形ABCD与四边形AEFG一定是相似图形,故正确;B、AD与AG是对应边,故AD:AE=2:3;故错误;C、四边形ABCD与四边形AEFG的相似比是2:3,故正确;D、则周长的比是2:3,面积的比是4:9,故正确.故选:B.【点评】本题主要考查了位似的定义及性质:周长的比等于相似比,面积的比等于相似比的平方.10.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cos A=,则k的值为()A .﹣3B .﹣4C .﹣D .﹣2【分析】过A 作AE ⊥x 轴,过B 作BF ⊥x 轴,由OA 与OB 垂直,再利用邻补角定义得到一对角互余,再由直角三角形BOF 中的两锐角互余,利用同角的余角相等得到一对角相等,又一对直角相等,利用两对对应角相等的三角形相似得到三角形BOF 与三角形OEA 相似,在直角三角形AOB 中,由锐角三角函数定义,根据cos ∠BAO 的值,设出AB 与OA ,利用勾股定理表示出OB ,求出OB 与OA 的比值,即为相似比,根据面积之比等于相似比的平方,求出两三角形面积之比,由A 在反比例函数y =上,利用反比例函数比例系数的几何意义求出三角形AOE 的面积,进而确定出BOF 的面积,再利用k 的集合意义即可求出k 的值.解:过A 作AE ⊥x 轴,过B 作BF ⊥x 轴,∵OA ⊥OB ,∴∠AOB =90°,∴∠BOF +∠EOA =90°,∵∠BOF +∠FBO =90°,∴∠EOA =∠FBO ,∵∠BFO =∠OEA =90°,∴△BFO ∽△OEA ,在Rt △AOB 中,cos ∠BAO ==, 设AB =,则OA =1,根据勾股定理得:BO =, ∴OB :OA =:1, ∴S △BFO :S △OEA =2:1,∵A 在反比例函数y =上,∴S △OEA =1,∴S △BFO =2,则k =﹣4.故选:B .【点评】此题属于反比例函数综合题,涉及的知识有:相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及反比例函数k的几何意义,熟练掌握相似三角形的判定与性质是解本题的关键.二、填空题(每题4分,共24分)11.在Rt△ABC中,sin A=,则∠A等于30°.【分析】根据sin30°=解答.解:在Rt△ABC中,sin A=,∴∠A=30°,故答案为:30.【点评】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.12.某服装原价为100元,连续两次涨价a%,售价为121元,则a的值为10.【分析】根据该服装的原价及经两次涨价后的价格,即可得出关于a的一元二次方程,解之取其正值即可得出结论.解:根据题意得:100(1+a%)2=121,解得:a1=10,a2=﹣210(舍去).故答案为:10.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是红球.【分析】根据已知条件即可得到结论.解:∵这三种颜色的球被抽到的概率都是,∴这三种颜色的球的个数相等,∴添加的球是红球,故答案为:红球.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.14.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则OD:OB=1:2.【分析】依据BD,CE分别是边AC,AB上的中线,可得DE是△ABC的中位线,即可得到DE∥BC,DE=BC,再根据△DOE∽△BOC,即可得到OD:OB的值.解:∵BD,CE分别是边AC,AB上的中线,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△DOE∽△BOC,∴==,故答案为:1:2.【点评】本题主要考查了三角形的重心,三角形中位线定理以及相似三角形的性质的运用,解题时注意:相似三角形的对应边成比例.15.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是0.【分析】由于方程的一个根是0,把x=0代入方程,求出k的值.因为方程是关于x的二次方程,所以未知数的二次项系数不能是0.解:由于关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,把x=0代入方程,得k2﹣k=0,解得,k1=1,k2=0当k=1时,由于二次项系数k﹣1=0,方程(k﹣1)x2+6x+k2﹣k=0不是关于x的二次方程,故k≠1.所以k的值是0.故答案为:0【点评】本题考查了一元二次方程的解法、一元二次方程的定义.解决本题的关键是解一元二次方程确定k的值,过程中容易忽略一元二次方程的二次项系数不等于0这个条件.16.如图,点B、C是线段AD上的点,△ABE、△BCF、△CDG都是等边三角形,且AB=4,BC=6,已知△ABE与△CDG的相似比为2:5.则①CD=10;②图中阴影部分面积为.【分析】①利用相似三角形对应边成比例列式计算即可得解;②设AG与CF、BF分别相交于点M、N,根据等边对等角求出∠CAG=∠CGA,再利用三角形的一个外角等于与它不相邻的两个内角的和求出∠CGA=30°,然后求出AG⊥GD,再根据相似三角形对应边成比例求出CM,从而得到MF,然后求出MN,再利用三角形的面积公式列式计算即可得解.①解:∵△ABE、△CDG都是等边三角形,∴△ABE∽△CDG,∴=,即=,解得CD=10;②解:如图,设AG与CF、BF分别相交于点M、N,∵AC=AB+BC=4+6=10,∴AC=CG,∴∠CAG=∠CGA,又∵∠CAG+∠CGA=∠DCG=60°,∴∠CGA=30°,∴∠AGD=∠CGA+∠CGD=30°+60°=90°,∴AG⊥GD,∵∠BCF=∠D=60°,∴CF∥DG,∴△ACM∽△ADG,∴MN⊥CF,=,即=,解得CM=5,所以,MF=CF﹣CM=6﹣5=1,∵∠F=60°,∴MN=MF=,=MF•MN=×1×=,∴S△MNF即阴影部分面积为.故答案为:10;.【点评】本题考查了相似三角线的判定与性质等边三角形的性质,主要利用了相似三角形对应边成比例的性质,难点在于②判断出直角三角形.三、解答题(共86分)17.(8分)计算:÷+×﹣tan60°【分析】先利用二次根式的乘除法则和特殊角的三角函数值进行计算,然后合并即可.解:原式=+﹣×=4+﹣=4.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)(1)(x﹣3)2﹣49=0(2)5x2+2x﹣1=0【分析】(1)先变形为(x﹣3)2=49,然后利用直接开平方法解方程;(2)利用求根公式法解方程.解:(1)(x﹣3)2=49,x﹣3=±7,所以x1=10,x2=﹣4;(2)△=22﹣5×5×(﹣1)=29,x=所以x1=,x2=.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.也考查了直接开平方法解一元二次方程.19.(8分)如图,在6×8的网格图中,每个小正方形边长均为1,原点O和△ABC的顶点均为格点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′与△ABC位似,且位似比为1:2;(保留作图痕迹,不要求写作法和证明)(2)若点C坐标为(2,4),则点A'的坐标为(﹣1,0),点C′的坐标为(1,2),周长比C△A′B′C′:C△ABC=1:2.【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形得出对应点坐标.解:(1)如图所示:△A′B′C′即为所求;(2)若点C坐标为(2,4),则点A'的坐标为(﹣1,0),点C′的坐标为(1,2),周长比C△A′B′C′:C△ABC=1:2.故答案为:(﹣1,0),(1,2),1:2.【点评】此题主要考查了位似变换,正确得出对应点位置是解题关键.20.(8分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.解:(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.(9分)如图,小王在长江边某瞭望台D处测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为多少米?(结果精确到0.1,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i=,可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP=,结合AB=AP﹣BQ﹣PQ 可得答案.解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2(米),CQ=PE,∵i=,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8(米),BQ=6(米),∴DP=DE+PE=11(米),在Rt△ADP中,∵AP=≈13.1(米),∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1(米).【点评】此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.22.(10分)已知:如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S=5,BC=10,求DE的长.△FCD【分析】(1)利用D是BC边上的中点,DE⊥BC可以得到∠EBC=∠ECB,而由AD=AC可以得到∠ADC=∠ACD,再利用相似三角形的判定,就可以证明题目结论;(2)利用相似三角形的性质就可以求出三角形ABC的面积,然后利用面积公式就求出了DE的长.(1)证明:∵AD=AC,∴∠ADC=∠ACD.∵D是BC边上的中点,DE⊥BC,∴EB=EC,∴∠EBC=∠ECB.∴△ABC∽△FCD;(2)解:过A作AM⊥CD,垂足为M.∵△ABC∽△FCD,BC=2CD,∴=.=5,∵S△FCD∴S=20.△ABC又∵S=×BC×AM,BC=10,△ABC∴AM=4.又DM=CM=CD,DE∥AM,∴DE:AM=BD:BM=,∴DE=.【点评】此题主要考查了相似三角形的性质与判定,也利用了三角形的面积公式求线段的长.23.(9分)已知在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,关于x的方程a(1﹣x2)+2bx+c(1+x2)=0有两个相等实根,且3c=a+3b(1)试判断△ABC的形状;(2)求sin A+sin B的值.【分析】(1)先把方程整理为一般式,再根据判别式的意义得到△=4b2﹣4(c﹣a)(a+c)=0,则a2+b2=c2,然后根据勾股定理的逆定理判断三角形形状;(2)由于a2+b2=c2,3c=a+3b,消去a得(3c﹣3b)2+b2=c2,变形为(4c﹣5b)(c﹣b)=0,则b=c,a=c,根据正弦的定义得sin A=,sin B=,所以sin A+sin B=,然后把b=c,a=c代入计算即可.解:(1)方程整理为(c﹣a)x2+2bx+a+c=0,根据题意得△=4b2﹣4(c﹣a)(a+c)=0,∴a2+b2=c2,∴△ABC为直角三角形;(2)∵a2+b2=c2,3c=a+3b∴(3c﹣3b)2+b2=c2,∴(4c﹣5b)(c﹣b)=0,∴4c=5b,即b=c,∴a=3c﹣3b=c∵sin A=,sin B=,∴sin A+sin B===.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了勾股定理的逆定理和锐角三角函数的定义.24.(12分)综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC,同学们通过构造直角三角形的办法求出三角形三边的长,则AB=;(2)如图2,已知直角三角形纸片△DEF,∠DEF=90°,EF=2DE,求出DF的长;(3)在(2)的条件下,若橫格纸上过点E的横线与DF相交于点G,直接写出EG的长.【分析】(1)根据全等三角形的判定和性质得出AD=CE=3,BE=DC=2,进而利用勾股定理解答即可;(2)过点E作横线的垂线,交l1,l2于点M,N,根据相似三角形的判定和性质解答即可;(3)利用梯形的面积公式解答即可.解:(1)如图1,∵∠DAC+∠ACD=90°,∠ACD+∠ECB=90°,∴∠DAC=∠ECB,在△ADC与△BCE中,,∴△ADC≌△BCE,∴AD=CE=3,BE=DC=2,∴,∴AB==;故答案为:(2)过点E作横线的垂线,交l1,l2于点M,N,∴∠DME=∠EDF=90°,∵∠DEF=90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME∽△ENF,∴,∵EF=2DE,∴,∵ME=2,EN=3,∴NF=4,DM=1.5,根据勾股定理得DE=2.5,EF=5,,(3)根据(2)可得:,即,解得:EG=2.5.【点评】此题考查三角形综合题,关键是根据全等三角形的判定和性质、相似三角形的判定和性质进行解答.25.(14分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB 为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.先推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,∠DCE=∠EDC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①先表示出DN,BM,再判断出△BMD∽△DNE,即可得出结论;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:∵OA=2,OC=2,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DCE=∠EDC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①如图1,过点D作MN⊥AB交AB于M,交OC于N,∵A(0,2)和C(2,0),∴直线AC的解析式为y=﹣x+2,设D(a,﹣a+2),∴DN=﹣a+2,BM=2﹣a∵∠BDE=90°,∴∠BDM+∠NDE=90°,∠BDM+∠DBM=90°,∴∠DBM=∠EDN,∵∠BMD=∠DNE=90°,∴△BMD∽△DNE,∴==.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y=[]2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.【点评】本题考查相似形综合题、四点共圆、锐角三角函数、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,学会构建二次函数解决问题,属于中考压轴题.新九年级(上)数学期中考试题(答案)一、选择题(每小题4分,共30分)1.下列二次根式中,最简二次根式为()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.解:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数中不含能开得尽方的因数或因式,故B正确;C、被开方数中含能开得尽方的因数或因式,故C错误;D、被开方数中含能开得尽方的因数或因式,故D错误;故选:B.【点评】本题考查了最简二次根式,规律总结:满足下列两个条件的二次根式,叫做最简二次根式.被开方数不含分母;被开方数中不含能开得尽方的因数或因式.2.已知2x=3y(y≠0),则下面结论成立的是()A.=B.=C.=D.=【分析】根据等式的性质,可得答案.解:A、两边都除以2y,得=,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得=,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选:A.【点评】本题考查了等式的性质,利用等式的性质是解题关键.3.下列事件中,是必然事件的是()A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.掷一枚质地均匀的硬币,一定正面向上【分析】根据事件发生的可能性大小判断相应事件的类型即可.解:A、将油滴入水中,油会浮在水面上是必然事件,故A符合题意;B、车辆随机到达一个路口,遇到红灯是随机事件,故B不符合题意;C、如果a2=b2,那么a=b是随机事件,D、掷一枚质地均匀的硬币,一定正面向上是随机事件,故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.【分析】根据勾股定理求出△ABC的三边,并求出三边之比,然后根据网格结构利用勾股定理求出三角形的三边之比,再根据三边对应成比例,两三角形相似选择答案.解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故D选项错误.故选:B.【点评】本题主要考查了相似三角形的判定与网格结构的知识,根据网格结构分别求出各三角形的三条边的长,并求出三边之比是解题的关键.5.一元二次方程x2﹣4x+5=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【分析】首先求出一元二次方程x2﹣4x+5=0根的判别式,然后结合选项进行判断即可.解:∵一元二次方程x2﹣4x+5=0,∴△=(﹣4)2﹣4×5=16﹣20=﹣4<0,即△<0,∴一元二次方程x2﹣4x+5=0无实数根,故选:A.【点评】本题主要考查了根的判别式的知识,解答本题要掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,此题难度不大.6.用配方法解方程x2﹣2x﹣8=0,下列配方结果正确的是()A.(x+1)2=9B.(x+1)2=7C.(x﹣1)2=9D.(x﹣1)2=7【分析】先把常数项移到方程右侧,再把方程两边加上1,然后把方程左边写成完全平方的形式即可.解:x2﹣2x=8,x2﹣2x+1=9,(x﹣1)2=9.故选:C.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.如果代数式+有意义,那么直角坐标系中点A(a,b)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,可知a、b的取值范围,再根据直角坐标系内各象限点的特征确定所在象限.解:∵代数式+有意义,∴a≥0且ab>0,解得a>0且b>0.∴直角坐标系中点A(a,b)的位置在第一象限.故选:A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.同时考查了直角坐标系内各象限点的特征.8.如图,在△ABC中,AB=12,AC=13,sin B=,则边BC的长为()A.7B.8C.12D.17【分析】过点A作AD⊥BC,垂足为D.在Rt△ABD中,利用锐角三角函数求出AD的长,利用勾股定理再分别求出BD和CD的长即得结果.解:过点A作AD⊥BC,垂足为D.∵sin B=,即=,∴AD=12.在Rt△ABD中,BD==12.在Rt△ACD中,CD===5.∴BC=BD+CD=12+5=17.故选:D.【点评】本题考查了解直角三角形,题目难度不大.构造直角三角形,充分利用∠B的正弦、AB、AC的长是解决本题的关键.9.如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是()A.四边形ABCD与四边形AEFG是相似图形B.AD与AE的比是2:3C.四边形ABCD与四边形AEFG的周长比是2:3D.四边形ABCD与四边形AEFG的面积比是4:9【分析】本题主要考查了位似变换的定义及作图,位似变换就是特殊的相似,且位似图形上任意一对对应点到位似中心的距离之比等于相似比,因而周长的比等于相似比,面积的比等于相似比的平方.解:∵四边形ABCD与四边形AEFG是位似图形;A、四边形ABCD与四边形AEFG一定是相似图形,故正确;B、AD与AG是对应边,故AD:AE=2:3;故错误;C、四边形ABCD与四边形AEFG的相似比是2:3,故正确;D、则周长的比是2:3,面积的比是4:9,故正确.故选:B.【点评】本题主要考查了位似的定义及性质:周长的比等于相似比,面积的比等于相似比的平方.10.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cos A=,则k的值为()A.﹣3B.﹣4C.﹣D.﹣2【分析】过A作AE⊥x轴,过B作BF⊥x轴,由OA与OB垂直,再利用邻补角定义得到一对角互余,再由直角三角形BOF中的两锐角互余,利用同角的余角相等得到一对角相等,又一对直角相等,利用两对对应角相等的三角形相似得到三角形BOF与三角形OEA相似,在直角三角形AOB中,由锐角三角函数定义,根据cos∠BAO的值,设出AB与OA,利用勾股定理表示出OB,求出OB与OA的比值,即为相似比,根据面积之比等于相似比的平方,求出两三角形面积之比,由A在反比例函数y=上,利用反比例函数比例系数的几何意义求出三角形AOE的面积,进而确定出BOF的面积,再利用k的集合意义即可求出k的值.解:过A作AE⊥x轴,过B作BF⊥x轴,∵OA⊥OB,。

精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数综合测评试题(含详细解析)

精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数综合测评试题(含详细解析)

人教版九年级数学下册第二十八章-锐角三角函数综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在Rt△ABC中,∠C=90°,AC=4,BC=3,则下列选项正确的是()A.sin A=34B.cos A=45C.cos B=34D.tan B=352、在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cos B的值等于()A.34B.43C.45D.353、如图,用一块直径为4的圆桌布平铺在对角线长为4的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为()A1B.2C.1D14、在科学小实验中,一个边长为30cm正方体小木块沿着一个斜面下滑,其轴截面如图所示.初始状态,正方形的一个顶点与斜坡上的点P重合,点P的高度PF=40cm,离斜坡底端的水平距离EF=80cm.正方形下滑后,点B的对应点B'与初始状态的顶点A的高度相同,则正方形下滑的距离(即AA'的长度)是()cmA .40B .60C .305D .4055、如图①,5AB =,射线AM BN ∥,点C 在射线BN 上,将△ABC 沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上,点P ,Q 分别在射线AM 、BN 上,PQ AB ∥.设AP x =,QD y =.若y 关于x 的函数图象(如图②)经过点()9,2E ,则cos B 的值等于( )A .25B .12C .35D .7106、将矩形纸片ABCD 按如图所示的方式折起,使顶点C 落在C ′处,若AB = 4,DE = 8,则sin∠C ′ED 为( )A .2B .12C D7、如图,为测量一幢大楼的高度,在地面上与楼底点O 相距30米的点A 处,测得楼顶B 点的仰角65OAB ︒∠=,则这幢大楼的高度为( )A .30sin 65︒⋅米B .30cos 65︒米 C .30tan 65︒⋅米 D .30tan 65︒米 8、如图,在ABC 中,135ABC ∠=︒,点P 为AC 上一点,且90PBA ∠=︒,12CP PA =,则tan APB ∠的值为( )A .3B .2C .13D 9、在Rt △ABC 中,∠C =90°,AC =5,BC =3,则sin A 的值是( )A B .35C .34D10、如图,过点O 、A (1,0)、B (0作⊙M ,D 为⊙M 上不同于点O 、A 的点,则∠ODA 的度数为( )A .60°B .60°或120°C .30°D .30°或150°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则tan EFC ∠的值为_____.2、助推轮椅可以轻松解决起身困难问题.如图1是简易结构图,该轮椅前⊙O 1和后轮⊙O 2的半径分别为0.6dm 和3dm ,竖直连接处CO 1=1dm ,水平连接处BD 与拉伸装置DE 共线,BD =2dm ,座面GF 平行于地面且GF =DE =4.8dm ,HF 是轮椅靠背,∠ADE 始终保持角度不变.初始状态时,拉伸杆AD 的端点A 在点B 正上方且距地面2.2dm ,则tan∠ADB 的值为 _____.如图2,踩压拉伸杆AD ,装置随之运动,当AD 踩至与BD 重合时,点E ,F ,H 分别运动到点E ',F ',H ',此时座面GF '和靠背F 'H '连成一直线,点H 运动到最高点H ',且H ',F ,O 2三点正好共线,则H 'O 2的长为 _____dm .3、如图所示,草坪边上有互相垂直的小路m,n,垂足为E,草坪内有一个圆形花坛,花坛边缘有A,B,C三棵小树.在不踩踏草坪的前提下测圆形花坛的半径,某同学设计如下方案:若在小路上P,Q,K三点观测,发现均有两树与观测点在同一直线上,从E点沿着小路n往右走,测得∠1=∠2=∠3,EQ=16米,QK=24米;从E点沿着小路m往上走,测得EP=15米,BP⊥m,则该圆的半径长为_______米.4、如图,正六边形ABCDEF的边长为2,以A为圆心,AC的长为半径画弧,得EC,连接AC,AE,则图中阴影部分的面积为________.5、如图所示,河堤的横断面是四边形ABCD,AD∥BC,2AD m,点A到BC的距离为4m,斜坡AB的坡度为1:3,斜坡CD的坡角为45°,则四边形ABCD的面积为__________.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在x轴的负半轴上,点C在y轴的正半轴上,直线BC的解析式为y=kx+12(k≠0),AC⊥BC,线段OA的长是方程x2﹣15x﹣16=0的根.请解答下列问题:(1)求点A、点B的坐标.(2)若直线l经过点A与线段BC交于点D,且tan∠CAD=14,双曲线y=mx(m≠0)的一个分支经过点D,求m的值.(3)在第一象限内,直线CB下方是否存在点P,使以C、A、P为顶点的三角形与△ABC相似.若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.2、如图,四边形ABCD内接于⊙O,AB为直径,连结AC,BD交于点E,弦CF⊥BD于点G,连结AG,且满足∠1=∠2.(1)求证:四边形AGCD为平行四边形.(2)设tan F=x,tan∠3=y,①求y关于x的函数表达式.②已知⊙O的直径为y=34,点H是边CF上一动点,若AF恰好与△DHE的某一边平行时,求CH的长.③连结OG,若OG平分∠DGF,则x的值为.3、如图,建筑物BC上有一高为8m的旗杆AB,从D处观测旗杆顶部A的仰角为53︒,观测旗杆底部B 的仰角为45︒,则建筑物BC的高约为多少米?(结果保留小数点后一位).(参考数据sin530.80︒≈,︒≈)cos530.60︒≈,tan53 1.334、如图,O的弦AB与直径CD交于点G,点C是优弧ACB的中点.(1)AG BG=(2)当AB也为O直径时,连接BC,点K是O内AB上方一点,过点K作KR BC⊥于点R,交OC于点M,连接KA,KC,2∠=∠求证:AKC KAB ABC∠-∠=∠KCB KAB(3)在(2)的条件下,过点B作BN AK∥交KR于点N,连接BK并延长交O于点E,2EK=,BR KN=,求O的半径.:10:135、如图,抛物线()()41y a x x =+-的图像与x 轴的交分别为点A 、点B ,与y 轴交于点C ,且tan 2CBA ∠=.(1)求抛物线解析式(2)点D 是对称轴左侧抛物线上一点,过点D 作DE AO ⊥于点E ,交AC 于点P ,32DP =,求点D 的坐标.(3)在(2)的条件下,连接AD 并延长交y 轴于点F ,点G 在AC 的延长线上,点C 关于x 轴的对称点为点H ,连接AH ,GF 、GH ,点K 在AH 上,GH AK AH =+,12KCH CAO ∠=∠,:3:4GF GH =,过点C 作CR GH ⊥,垂足为点R ,延长RC 交抛物线于点Q ,求点Q 坐标.---------参考答案----------- 一、单选题 1、B【分析】根据勾股定理求出AB,再根据锐角三角函数的定义求出sin A,cos A,cos B和tan B即可.【详解】解:由勾股定理得:5AB,所以3sin5BCAAB==,4cos5ACAAB==,cos35BCBAB==,4tan3ACBBC==,即只有选项B正确,选项A、选项C、选项D都错误.故选:B.【点睛】本题主要是考查了锐角三角函数的定义以及勾股定理,熟练掌握每个锐角三角函数的定义,是求解该类问题的关键.2、D【分析】根据题意画出图形,求出AB的值,进而利用锐角三角函数关系求出即可.【详解】解:如图,∵在Rt△ABC中,∠C=90°,BC=3,AC=4,∴AB,∴cos B=BCAB=35.故选:D.【点睛】本题考查了三角函数的定义,熟知余弦函数的定义是解题关键.3、B【分析】作出图象,把实际问题转化成数学问题,求出弦心距,再用半径减弦心距即可.【详解】如图,正方形ABCD是圆内接正方形,4BD=,点O是圆心,也是正方形的对角线的交点,作OF BC⊥,垂足为F,∵直径4BD=,∴2OB=,又∵BOC是等腰直角三角形,由垂径定理知点F是BC的中点,∴BOF是等腰直角三角形,∴sin45OF OB=°∴2x EF OE OF==-=故选:B.【点睛】此题考查了垂径定理的应用,等腰直角三角形的判定和性质,正方形的性质,特殊角的三角函数值,解题的关键是根据题意作出图像,把实际问题转化成数学问题.4、B【分析】根据题意可得:A 与B '高度相同,连接AB ',可得AB EF '∥,利用平行线的性质可得:B AA PEF ''∠=∠,根据正切函数的性质计算即可得.【详解】解:根据题意可得:A 与B '高度相同,如图所示,连接AB ',∴AB EF '∥,∴B AA PEF ''∠=∠, ∴1tan tan 2PF B AA PEF EF ''∠=∠==, ∴301tan 2A B B AA AA AA ''''∠==='', ∴60AA '=,故选:B .【点睛】题目主要考查平行线的性质及锐角三角函数解三角形,熟练掌握锐角三角函数的性质是解题关键.5、D【分析】由题意可得四边形ABQP是平行四边形,可得AP=BQ=x,由图象②可得当x=9时,y=2,此时点Q在点D下方,且BQ=x=9时,y=2,如图①所示,可求BD=7,由折叠的性质可求BC的长,由锐角三角函数可求解.【详解】解:∵AM∥BN,PQ∥AB,∴四边形ABQP是平行四边形,∴AP=BQ=x,由图②可得当x=9时,y=2,此时点Q在点D下方,且BQ=x=9时,QD=y=2,如图①所示,∴BD=BQ﹣QD=x﹣y=7,∵将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,∴AC⊥BN,∴BC=CD=12BD=72,∴cos B=BCAB=725=710,故选:D.【点睛】本题考查了平行四边形的判定与性质,折叠的性质,锐角三角函数等知识.理解函数图象上的点的具体含义是解题的关键.6、B【分析】由折叠可知,C′D=CD=4,再根据正弦的定义即可得出答案.【详解】解:∵纸片ABCD是矩形,∴CD=AB,∠C=90°,由翻折变换的性质得,C′D=CD=4,∠C′=∠C=90°,∴41 sin82C DC EDED''∠===.故选:B.【点睛】本题可以考查锐角三角函数的运用:在直角三角形中,锐角的正弦为对边比斜边.7、C【分析】利用在Rt△ABO中,tan∠BAO=OBAO即可解决.【详解】:解:如图,在Rt△ABO中,∵∠AOB =90°,∠A =65°,AO =30m ,∴tan 65°=OB AO, ∴BO =30•tan 65°米.故选:C .【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边.8、A【分析】过点P 作PD∥AB 交BC 于点D ,因为135ABC ∠=︒,且90PBA ∠=︒,则tan∠PBD =tan45°=1,得出PB =PD ,再有12CP PA =,进而得出tan∠APB 的值. 【详解】 解:如图,过点P 作PD AB ∥交BC 于点D ,∴CPD CAB △∽△, ∴AC AB PC PD=,∵135ABC ∠=︒,且90PBA ∠=︒,∴∠PBD =45°,∴tan tan 451PBD ∠=︒=,∴PB PD =,又∵12CP PA =, ∴3AC PC=, ∴tan 3AB AB AC APB PB PD PC∠====. 故选A .【点睛】 本题主要考查了相似三角形的性质与判定,解直角三角形,解题的关键在于能够正确作出辅助线进行求解.9、A【分析】先根据银河股定理求出AB ,根据正弦函数是对边比斜边,可得答案.【详解】解:如图,∵∠C =90°,AC =5,BC =3,∴AB ==∴sinBC A AB == 故选:A .【点睛】本题考查了锐角三角函数,利用正弦函数是对边比斜边是解题关键.10、D【分析】连接AB ,先利用正切三角函数可得30OBA ∠=︒,再分点D 在x 轴上方的圆弧上和点D 在x 轴下方的圆弧上两种情况,分别利用圆周角定理、圆内接四边形的性质求解即可得.【详解】解:如图,连接AB ,(1,0),A B ,1,OA OB ∴==90AOB ∠=︒,∴在Rt AOB 中,tanOA OBA OB ∠== 30OBA ∴∠=︒,由题意,分以下两种情况:(1)如图,当点D 在x 轴上方的圆弧上时,由圆周角定理得:30OBAODA∠∠==︒;(2)如图,当点D在x轴下方的圆弧上时,由圆内接四边形的性质得:180150OD BAA O∠=︒-∠=︒;综上,ODA∠的度数为30或150︒,故选:D.【点睛】本题考查了正切、圆周角定理、圆内接四边形的性质等知识点,正确分两种情况讨论是解题关键.二、填空题1、34.【解析】【分析】根据折叠的性质和锐角三角函数的概念来解答即可.【详解】解:根据题意可得:在Rt ABF ∆中,有8AB =,10AF AD ==则在ABF ∆中,6BF =,90AFE D ∠=∠=︒,BAF EFC ∴∠=∠,B C ∠=∠,∴Rt ABF Rt EFC ,EFC BAF ∴∠=∠, 故63tan tan 84EFC BAF ∠=∠==. 故答案是:34.【点睛】本题考查了翻折变换,矩形的性质,锐角三角函数等知识,灵活运用这些性质解决问题是本题的关键.2、 310; 7; 【解析】【分析】根据题意求得A 到BD 的距离h ,进而根据正切的定义可得tan h h ADB BD AD∠==;如图2,过点H '作H K GF '⊥交GF 的延长线于点K ,解直角三角形GKH '即可解决问题 【详解】解:拉伸杆AD 的端点A 在点B 正上方且距地面2.2dm ,BD =2dm ,⊙O 1半径分别为0.6dm ,竖直连接处CO 1=1dm ,设A 到BD 的距离为h ,则()2.20.610.6h =-+=dmtan h h ADB BD AD ∠==0.63210== 如图1,连接2O F ,过点2O 作2O M GF ⊥,24.8,3FG O F ==1 2.42FM FG ∴==2Rt MFO 中2 1.8O M == 2 1.83tan 2.44MFO ∴∠== ∠ADE 始终保持角度不变. ∴ADB E DE '∠=∠GF =DE ,//GF DE∴四边形GFED 是平行四边形 装置运动后,//GF DE ''E DEF GE ''∴∠=∠如图2,过点H '作H K GF '⊥交GF 的延长线于点K ,则23tan tan 4H FK MFO '∠=∠= 设3H K x '=,则4FK x =,5FH x '=, 3tan tan tan 10H GK E DE ADB ''∴∠=∠=∠= 334 4.810x x =+ 解得0.8x =3 2.4,4 3.2KH x FK x '∴==== 54FH x '∴==2347O H OF FH ''∴=+=+= 故答案为:310,7【点睛】本题考查了垂径定理,解直角三角形的应用,两图中有一个角是相等的,找到这个角的并求得它的正切值为310是解题的关键. 3、253##183【解析】【分析】设圆心为O ,过点C 作CF n ⊥,连接OC 交AB 于点D ,//,//BE QA PA n ,根据题意可证明四边形PEFD 是矩形,进而求得PB ,证明ABC QKC ∽,根据tan 2tan 1tan PBE ∠=∠=∠求得DC ,设O 的半径为r ,在Rt OAD 中,222OD DA AO +=,勾股定理即可求解【详解】如图,设圆心为O ,过点C 作CF n ⊥,连接OC 交AB 于点D ,根据题意,m n PB M ⊥⊥//PB n ∴在小路上P ,Q ,K 三点观测,发现均有两树与观测点在同一直线上,且∠1=∠2,//,//BE QA PA n ∴16AB EQ ∴==∠2=∠3,//BA QKA CBA ∴∠=∠CB CA ∴=OC AB ∴⊥182BD AD AB ∴=== ,,O C F ∴三点共线∴四边形PEFD 是矩形2=3,CF QK ∠∠⊥1122QF QK ∴== 161228EF EQ QF ∴=+=+=28820PB PD BD EF BD ∴=-=-=-=//AB QKABC QKC ∴∽AB DC QK CF ∴=162243== 23CF DC ∴= //PB n1=PBE ∴∠∠153tan 2tan 1tan 204PBE ∴∠=∠=∠== 3tan 24CF QF ∴∠== 12QF =9CF ∴=2963DC ∴=⨯= 设O 的半径为r ,在Rt OAD 中,222OD DA AO +=则()22268r r -+= 解得253r =故答案为:253【点睛】本题考查了两点确定一条直线,三角函数,垂径定理,勾股定理,相似三角形的性质与判定,矩形的性质,等边对等角,理清各线段长,并添加辅助线是解题的关键.4、2π【解析】【分析】由正六边形ABCDEF 的边长为2,可得AB =BC =2,∠ABC =∠BAF =120°,进而求出∠BAC =30°,∠CAE =60°,过B 作BH ⊥AC 于H ,由等腰三角形的性质和含30°直角三角形的性质得到AH =CH ,BH =1,在Rt △ABH 中,由勾股定理求得AH AC 的面积【详解】解:∵正六边形ABCDEF 的边长为2,()6218021206AB BC ABC BAF -⨯︒∴==∠=∠==︒, =120°,∵∠ABC +∠BAC +∠BCA =180°,∴∠BAC =12(180°-∠ABC )=12×(180°-120°)=30°,过B 作BH ⊥AC 于H ,∴AH =CH ,BH =12AB=12×2=1,在Rt △ABH 中,AH =∴AC ,同理可证,∠EAF =30°,∴∠CAE =∠BAF -∠BAC -∠EAF =120°-30°-30°=60°,∴(260?2360CAE S ππ==扇形∴图中阴影部分的面积为2π,故答案为:2π.【点睛】本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.5、40 m 2【解析】【分析】过A 作AE ⊥BC 于E ,DF ⊥BC 与F ,先证四边形AEFD 为矩形,得出AE =DF =4m ,AD =EF =2m ,根据斜坡AB的坡度为1:3,求出BE =3AE =3×4=12m,根据斜坡CD 的坡角为45°,求出CF =DF =4m ,再求BC =BE +EF +FC =18m ,然后利用梯形面积公式计算即可.【详解】解:过A 作AE ⊥BC 于E ,DF ⊥BC 与F ,∴∠AEF =∠DFE =90°,∵AD ∥BC ,∴∠ADF +∠DFE =180°,∴∠ADF =180°-∠DFE =180°-90°=90°,∴∠AEF =∠DFE =∠ADF =90°,∴四边形AEFD 为矩形,∴AE =DF =4m ,AD =EF =2m ,∵斜坡AB 的坡度为1:3,∴tan∠ABE =13AEBE , ∴BE =3AE =3×4=12m,∵斜坡CD 的坡角为45°,∴tan∠C =1DF CF=, ∴CF =DF =4m ,∴BC =BE +EF +FC =12+2+4=18m ,∴四边形ABCD 的面积为()()211421840m 22AE AD BC +=⨯⨯+=. 故答案为40 m 2.【点睛】本题考查解直角三角形的应用,坡度,坡角,斜坡,锐角正切函数,矩形判定与性质,梯形面积公式,掌握解直角三角形的应用,坡度,坡角,斜坡,锐角正切函数,矩形判定与性质,梯形面积公式,关键是利用辅助线把梯形问题转化为直角三角形和矩形来解.三、解答题1、(1)A(16,0),B(-9,0);(2)-24;(3)存在,(16,12)或(25,12)或(32,643)或(288384,2525)【解析】【分析】(1)解一元二次方程x2﹣15x﹣16=0,对称点A(16,0),根据直线BC的解析式为y=kx+12,求出与y轴交点C为(0,12),利用三角函数求出tan∠BCO= tan∠OAC=3=4OBOC,求出OB=3312944OC=⨯=即可;(2)过点D作DE⊥y轴于E,DF⊥x轴于F,利用勾股定理求出AC20 =,BC=,根据三角函数求出tan∠CAD=1204CD CDAC==,求出12054CD=⨯=,利用三角函数求出DE= CD sin∠BCO=3535⨯=,再利用勾股定理求出点D(-3,8)即可;(3)过点A作AP1与过点C与x轴平行的直线交于P1,先证四边形COAP1为矩形,求出点P1(16,12),再证△P1CA∽△CAB,作P2A⊥AC交CP1延长线于P2,可得∠CAP2=∠BCA=90°,∠P2CA=∠CAB,可证△CAP2∽△ACB,先求三角函数值cos∠CAO=164205COAC==,再利用三角函数值cos∠P2CA= cos∠CAO= 222045ACCP CP==,求出225CP=,得出点P2(25,12)作∠P3CA=∠OCA,在射线CP3截取CP3=CO=12,连结AP3,先证△CP3A≌△COA(SAS)再证△P3CA∽△CAB,设P3(x,y)利用勾股定理列方程()()22222216161212x y y x ⎧-+=⎪⎨-+=⎪⎩,解方程得出点P 3(2883842525,),延长CP 3与延长线交P 4,过P 4作PH ⊥x 轴于H ,先证△CAP 4∽△ACB ,再证△P 4P 3A ≌△P 4HA (ASA ),利用cos∠P 3CA =34123205PC CACA CP ===,求得4510033CA CP ==即可.【详解】解:(1)x 2﹣15x ﹣16=0,因式分解得()()1610x x -+=, 解得12161x x ==-,,点A 在x 轴的正半轴上,OA =16,∴点A (16,0),∵直线BC 的解析式为y =kx +12,与y 轴交点C 为(0,12),∴tan∠OAC =123=164,∠OCA +∠OAC =90°, ∵AC ⊥BC ,∴∠BCO +∠OCA =90°,∴∠BCO =∠OAC ,∴tan∠BCO = tan∠OAC =3=4OB OC , ∴OB =3312944OC =⨯=,∴点B (-9,0);(2)过点D 作DE ⊥y 轴于E ,DF ⊥x 轴于F ,在Rt △AOC 中,AC20==,在Rt △BOC 中,∵tan∠CAD =1204CD CD AC ==, ∴12054CD =⨯=,∵sin∠BCO =93155OB BC ==, ∴DE = CD sin∠BCO =3535⨯=,∴CE 4=,OE =OC -EC =12-4=8, ∴点D (-3,8),∵双曲线y =m x(m ≠0)的一个分支经过点D , ∴3824m xy ==-⨯=-;(3)过点A 作AP 1与过点C 与x 轴平行的直线交于P 1, 则∠CP 1A =∠P 1CO =∠COA =90°,∴四边形COAP 1为矩形,∴点P 1(16,12),当点P 1(16,12)时,CP 1∥OA,∠P 1CA =∠CAB ,∠ACB =∠CP 1A ,∴△P 1CA ∽△CAB ,作P 2A ⊥AC 交CP 1延长线于P 2,∵∠CAP 2=∠BCA =90°,∠P 2CA=∠CAB, ∴△CAP 2∽△ACB ,∴cos∠CAO =164205CO AC ==, ∴cos∠P 2CA = cos∠CAO =222045AC CP CP ==,∴225CP =,∴点P 2的横坐标绝对值=225CP =,纵坐标的绝对值=OC=12, ∴点P 2(25,12),作∠P 3CA =∠OCA ,在射线CP 3截取CP 3=CO =12,连结AP 3, 在△CP 3A 和△COA 中,33CP CO PCA OCA CA CA =⎧⎪∠=∠⎨⎪=⎩, ∴△CP 3A ≌△COA (SAS ),∴AP 3=OA =16, ∴33124164,155205CP P A CB CA ====, ∴3334,905CP P A CP A BCA CB CA ==∠=∠=︒ ∴△P 3CA ∽△CAB ,设P 3(x ,y )()()22222216161212x y y x ⎧-+=⎪⎨-+=⎪⎩, 整理得22223224x y x y x y⎧+=⎨+=⎩, 解得:2882538425x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴点P 3(2883842525,), 延长CP 3与延长线交P 4,过P 4作PH ⊥x 轴于H , ∵∠P 4CA =∠CAB ,∠P 4AC =∠BAC =90°, ∴△CAP 4∽△ACB , ∵∠BAC +∠HAP4=∠CAP 3+∠P 3AP 4=90°,∠CAP 3=∠BAC , ∴∠HAP4=∠P 3AP 4, ∠P 4P 3A =180°-∠CP 3A =180°-90°=90°=∠P 4HA , 在△P 4P 3A 和△P 4HA 中, 34444434P AP HAP AP AP P P A P HA ∠=∠⎧⎪=⎨⎪∠=∠⎩, △P 4P 3A ≌△P 4HA (ASA ), ∴AP 3=AH =16,P 3P 4=P 4H ,∵cos∠P 3CA =34123205PC CACA CP ===, ∴4510033CA CP ==,∴43443100641233P H P P CP CP ==-=-=,OH =OA +AH =OA +AP 3=16+16=32, ∴点464323P ⎛⎫ ⎪⎝⎭,, 综合直线CB 下方,使以C 、A 、P 为顶点的三角形与△ABC 相似.点P 的坐标(16,12)或(25,12)或64323⎛⎫ ⎪⎝⎭,或(2883842525,).【点睛】本题考查一元二次方程的解法,直线与y 轴的交点,反比例函数解析式,锐角三角形函数,勾股定理,三角形全等判定与性质,矩形判定与性质,三角形相似,图形与坐标,解方程组,本题难度大,综合性强,涉及知识多,利用动点作出准确图形是解题关键.2、(1)见解析;(2)①y =1x 2.②245或185.③1或2 【解析】【分析】(1)由直径所对的圆周角是直角,得∠ADB =∠DGC =90°,证明AD∥CG ;根据∠1=∠2=∠ACD ,证明AG∥CD ;根据平行四边形的定义判定即可;(2)①如图1,过点A 作AP ⊥CF 于点P ,根据AD ∥CF ,得AF =DC ,四边形APGD 是矩形,△APF≌△DGC,从而得到CG=GP=PF=AD,设CG=GP=PF=AD=a,DE=EG=b,则GF=2a,GD=2b,BG=CG GF GD=2a b ,在Rt△BGC中,tan∠3=y=CGGB,在Rt△APF中,tan F=x=APPF,消去a,b即可;②运用勾股定理,确定a,b的值,显然DE与AF是不平行的,故分DH∥AF和EH∥AF两种情形计算即可.③过点O作OM⊥CF于点M,过点O作ON⊥BD于点N,根据OG平分∠DGF,OM=ON,于是BD=CF,从而确定a,b之间的数量关系,代入计算即可.【详解】(1)∵AB是⊙O的直径,弦CF⊥BD于点G,∴∠ADB=∠DGC=90°,∴AD∥CG;∵∠1=∠2=∠ACD,∴AG∥CD;∴四边形AGCD为平行四边形;(2)①如图1,过点A作AP⊥CF于点P,则四边形ADGP是矩形∵四边形AGCD为平行四边形∴AD∥CF,AD=CG,DE=EG,∠DAC=∠ACF∴AF=DC,AP=DG,∴△APF≌△DGC,∴CG=GP=PF=AD,设CG=GP=PF=AD=a,DE=EG=b,则GF=2a,CF=3a,GD=2b,∵BG GD CG GF⋅=⋅,∴BG=CG GFGD=2ab,在Rt△BGC中,tan∠3=y=CGGB=2baa⨯=ba,在Rt△APF中,tan F=x=APPF=2ba,消去a,b即可;∴x=2y,∴y关于x的函数表达式为y=1x2;②∵tan∠3=y=CGGB=2baa⨯=ba,y=34,∴ba=34,∴b=34 a,∴GD=2b=32 a,∴BG=2ab=43a,∴BD =DG +BG =43a +32a =176a ,∵AB 222AD BD AB +=,∴22217()6a a +=, 解得a =125; 显然DE 与AF 是不平行的,如图2,当DH ∥AF 时,∵AD ∥FH ,∴四边形ADHF 是平行四边形,∴AD =FH =a ,∴CH =2a =245;如图3,当EH ∥AF 时,∵四边形AGCD是平行四边形,∴AE=EC,∴H是CF的中点,∵CF=3a=365,∴CH=185;故CH的长为245或185;③如图4,过点O作OM⊥CF于点M,过点O作ON⊥BD于点N,∵OG平分∠DGF,∴OM=ON,∴BD=CF,∴3a=2b+2ab,整理,得2232a ab b-+=0,解得a=b或a=2b,∵tan F=x=APPF=2ba,当a=b时,x=2ba=2,当a=2b时,x=2ba=1,故答案为:1或2.【点睛】本题考查了圆的基本性质,圆心角,弦,弦心距之间的关系,圆周角的性质,勾股定理,平行四边形的判定和性质,三角形函数,因式分解,熟练掌握圆的基本性质,灵活掌握三角函数的计算,分类思想是解题的关键.3、建筑物BC的高约为24.2米【解析】【分析】先根据等腰直角三角形的判定与性质可得BC CD =,设m BC CD x ==,从而可得(8)m AC x =+,再在Rt ACD △中,利用正切三角函数解直角三角形即可得.【详解】解:由题意得:AC CD ⊥,8m AB =,53ADC ∠=︒,45BDC ∠=︒,Rt BCD ∴是等腰直角三角形,BC CD ∴=,设m BC CD x ==,则(8)m AC x =+,在Rt ACD △中,tan AC ADC CD∠=,即8tan 53 1.33x x +=︒≈, 解得24.2(m)x ≈,经检验,24.2(m)x ≈是所列分式方程的解,且符合题意,∴建筑物BC 的高约为24.2米,答:建筑物BC 的高约为24.2米.【点睛】本题考查了等腰直角三角形的判定与性质、解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键.4、(1)见详解;(2)见详解;(3)OA =【解析】【分析】(1)连结OA 、OB ,根据点C 是优弧ACB 的中点.得出AC BC =,得出圆心角相等,得出∠AOD =180°-∠AOC =180°-∠BOC =∠BOD ,根据等腰三角形性质即可得出AG =BG ;(2)作∠KCB 的平分线交AB 于H ,连结AC ,CK 与AB 交于L ,根据AB ,CH 为直径,AB ⊥CD ,可得AC BC =,∠ACB =90°,得出∠ABC =∠BAC =45°,根据CH 平分∠KCB ,得出∠KCH =∠HCB =11222KCB KAB KAB ∠=⨯∠=∠,可得∠AKL =180°-∠KAL -∠KLA =180°-∠ACH -∠HLC =∠LHC ,利用∠LHC为△HCB 的外角得∠LHC =∠ABC +∠HCB =∠KAB +∠BAC =∠AKC 即可;(3)连结AE ,RK 与AB 交于P ,延长BN 交AC 与Q ,根据CH 平分∠KCB ,得出∠KCS =∠BCS =∠KAB ,根据BN∥AK ,可得∠EKA =∠EBN ,∠KAB =∠ABN ,可证∠BKR =∠SCB ,再证∠KBA =∠NBC ,求出∠EKA =45°,根据等腰三角形性质与勾股定理AE =KE =2,AK=,再证四边形AQNK为平行四边形,可得AK =QN =AQ =KN ,设BR =10m ,KN =13m ,BN =x ,先证△PNB ∽△BNK ,PN BN BN KN =,即213BN BN x PN KN m⋅==,再根据勾股定理Rt △BNR 中,根据勾股定理222+BN NR BR =,求出x =,然后证明△AQB ∽△BNK ,AQ BQ BN KN =即BQ BN AQ KN ⋅=⋅,解得m =△BNR ∽△BQC ,可得1026m BR BQ BC BN ⋅==即可. 【详解】(1)证明:连结OA ,OB∵点C 是优弧ACB 的中点.∴AC BC =,∴∠AOC =∠BOC ,∴∠AOD =180°-∠AOC =180°-∠BOC =∠BOD ,∵OA=OB,∴OG 平分AB ,∴AG =BG ;(2)作∠KCB的平分线交AB于H,连结AC,CK与AB交于L,∵AB,CH为直径,AB⊥CD,∵AC BC=,∠ACB=90°,∴∠ABC=∠BAC=45°,∵CH平分∠KCB,∴∠KCH=∠HCB,∵2KCB KAB∠=∠∴∠KCH=∠HCB=11222KCB KAB KAB∠=⨯∠=∠,∵∠KLA=∠HLC,∴∠AKL=180°-∠KAL-∠KLA=180°-∠ACH-∠HLC=∠LHC,∵∠LHC为△HCB的外角,∴∠LHC=∠ABC+∠HCB=∠KAB+∠BAC=∠AKC,∴∠AKC-∠KAB=∠BAC即AKC KAB ABC∠-∠=∠(3)连结AE,RK与AB交于P,延长BN交AC与Q,∵CH平分∠KCB,∴∠KCS=∠BCS=∠KAB,∵BN∥AK,∴∠EKA=∠EBN,∠KAB=∠ABN,∵∠AKL=∠LHC=∠HBC+∠HCB=∠KAB+∠BAC=∠KAC,∴AC=KC=BC,∵CH平分∠KCB,∴CS⊥BK,BS=KS,∴∠SCB+∠SBC=90°,∵KR⊥BC,∴∠RKB+∠RBK=90°,∵∠CBS=∠KBR,∵AC=BC,∠ACB=90°,∴∠ABC=∠BAC=45°,∴∠BPR=45°=∠RKB+∠ABP=∠ABN+∠NBC,∵∠RKB=∠ABN,∴∠KBA=∠NBC,∴∠EBN=45°,∴∠EKA=45°,∵∠AEK=90°,∴∠EAK=90°-∠EKA=45°∴AE=KE=2,AK=∵KR⊥BC,∠ACB=90°,∴AC∥KR,AK∥BQ,∴四边形AQNK为平行四边形,∴AK=QN=AQ=KN,设BR=10m,KN=13m,BN=x,∴AQ=KN=13m,∵∠PBN=∠BKN,∠PNB=∠BNK,∴△PNB∽△BNK,∴PN BNBN KN=,即213BN BN xPNKN m⋅==,∵PR⊥BC,∠PBR=45°∴NR =PR -PN =10m-213x m, 在Rt △BNR 中,根据勾股定理222+BN NR BR = 即()2222101013x x m m m ⎛⎫=-+ ⎪⎝⎭ ∴2422222010010013169x x x m m m =-++ 整理得4224429338000x m x m -+=,解得22325x m =舍去,22104x m =∴x =∵PN∥AQ,∴∠BNP =∠BQA ,∠BPN =∠BAQ ,∴△PNB ∽△AQB ,∴△AQB ∽△BNK ,AQ BQ BN KN=即BQ BN AQ KN ⋅=⋅∴(2169x x m +=∴22169x m += ∴2x = ∴222104m =解得m =∴NR∥QC ,∴∠BNR =∠BQC ,∠BRN =∠BCQ ,∴△BNR ∽△BQC ,∴BN BR BQ BC =即1026m BR BQ BC BN ⋅===, ∴AB =BC=,∴OA =1122AB =⨯=【点睛】本题考查等腰三角形性质,角平分线定义,三角形外角性质,等腰直角三角形判定与性质,三角形相似判定与性质,直径所对圆周角性质,勾股定理,一元高次方程,锐角三角函数,本题难度大,综合性强,图形复杂,利用辅助线构造准确图形,是中考压轴题,掌握多方面知识是解题关键.5、(1)213222y x x =--+;(2)(3,2)D -;(3)325(,)28Q -【解析】【分析】(1)根据tan 2CBA ∠=求出点C 的坐标,把点C 的坐标代入()()41y a x x =+-即可求出a ,即可得出抛物线解析式;(2)先求直线AC 解析式,设23,2)12(2D m m m -+-,则可表示点P 坐标,y 值相减即可得出答案; (3)作CAO ∠的角平分线为AM ,作MN AC ⊥交于点N ,过点K 作KT y ⊥轴交于点T ,由(2)得点D 坐标,求出直线AD 解析式,令0x =,求出F 点坐标,由对称得出点H 坐标,求出直线AH 的解析式,求出AK 、AH 的值,可得GF 、FG ,FH 满足勾股定理,即FG HG ⊥,求出点G 坐标,得出直线FG 解析式,即可得出直线CR 解析式,与抛物线解析式联立,即可求出点Q 的坐标.【详解】(1)由题得:(4,0)A -,(1,0)B ,∴1OB =,∵tan 2CBA ∠=, ∴2OC OB=,即2OC =, ∴(0,2)C ,把(0,2)C 代入()()41y a x x =+-得:12a =-, ∴抛物线解析式为:()()2141213222y x x x x =--=-++-; (2)设直线AC 的解析式为y kx b =+,把(4,0)A -,(0,2)C 代入得:402k b b -+=⎧⎨=⎩, 解得:122k b ⎧=⎪⎨⎪=⎩,∴直线AC 的解析式为122y x =+, 设23,2)12(2D m m m -+-,则1(,2)2P m m +, ∴2213113(2)(2)222222m m m m m --+-+=--=, 解得:3m =-或1m =-, ∵213222y x x =--+的对称轴为直线332122()2x -=-=-⨯-,点D 是对称轴左侧抛物线上一点, ∴3m =-, ∴2132222m m --+=, ∴(3,2)D -;(3)如图,作CAO ∠的角平分线为AM ,作MN AC ⊥交于点N ,过点K 作KT y ⊥轴交于点T ,由(4,0)A -,(3,2)D -得直线AD 解析式为28y x =+,∴AC =()0,8F ,∵H 是点C 的对称点,∴(0,2)H -,由(4,0)A -,(0,2)H -得直线AH 解析式为122y x =--,∴AH AC ==设(0,)M t ,1(,2)2T n n --,则OM MN t ==,2CM t =-,4CN AC AN AC OA =-=-=,2224)(2)t t +=-,解得:8t =, ∵12KCH CAO ∠=∠,∴KCT MAO ∠=∠,∵90CTK AOM ∠=∠=︒,∴CTK AOM ,CT KT AO MO =,即12(2)24n ++=解得:n =,122n --=K , 由题知:HTK HOA ,∴HK KT HA AO =54=,解得:8HK =,∴8)8AK ==-∴88GH AK AH =+=-=,∵:3:4GF GH =,∴6GF =,∵8210FH =+=,∴FGH 是直角三角形, 设1(,2)2G x x +,11681022FGH S x =⨯⨯=⨯, 解得:245x =, 122225x +=, ∴2422(,)55G , 由()0,8F ,2422(,)55G 得直线FG 的解析式为384y x =-+, ∵CR GH ⊥,∴CR FG ∥,∴直线CR 解析式为34y x c =-+,把(0,2)C 代入得:324y x =-+,232413222y x y x x ⎧=-+⎪⎪⎨⎪=--+⎪⎩, 解得:02x y =⎧⎨=⎩或32258x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴325(,)28Q -. 【点睛】本题考查二次函数综合问题,还涉及了解直角三角形以及相似三角形的判定与性质,属于中考压轴题,掌握用待定系数法求解析式是解题的关键.。

九年级人教版数学第二学期第28章锐角三角函数整章知识详解

九年级人教版数学第二学期第28章锐角三角函数整章知识详解

九年级数学第28章锐角三角函数
【例】求下列各式的值.
(1) cos260°+sin260°
(2) csoins4455

-tan45

【解析】(1)cos²60°+sin²60°
cos²60°表示 (cos60°)², 即cos60°的平方.
=( 12)²+(
3 2
)²
=1;
(2)cos 45 tan 45
九年级数学第28章锐角三角函数
2.(黄冈中考)在△ABC中,∠C=90°,sinA=
则tanB=( B )
A. 4
B. 3
C. 3
D. 4
3
4
5
5
3.(丹东中考)如图,小颖利用有一
个锐角是30°的三角板测量一棵树的高度, 30 已知她与树之间的水平距离BE为5m,AB为 °A
B 1.5m(即小颖的眼睛距地面的距离),那
九年级数学第28章锐角三角函数
【例】如图,在Rt△ABC中,∠C=90°,BC=6,sinA= 3 ,
求cosA,tanB的值.
5
B
【解析】 sinA BC ,
AB
6
AB BC 6 5 10,
sinA 3
又 AC AB2 BC2 102 62 8,
A
C
cosA AC 4 , tanB AC 4 .
100
D.不能确定
3.如图 A
B
1
3
,则 sinA=___2___ .
30°
C
7
九年级数学第28章锐角三角函数
1.(温州中考)如图,在△ABC中,∠C=90°, AB=13,

人教版九年级下册数学作业本答案完整版

人教版九年级下册数学作业本答案完整版

参考答案第二十六章 反比例函数26.1反比例函数26.1.1反比例函数的意义1.(1)不是(2)不是(3)是,k=3(4)不是(5)是,k=-22.(1)y=1200x,是反比例函数(2)y=60x,是反比例函数(3)a=60h,是反比例函数3.(1)y=-12x(2)-44.(1)t=100v(2)1.255.(1)y=2x+1(2)-1*6.(1)y=15x(2)方案一:A D=3m,D C=5m 方案二:A D=5m,D C=3m 26.1.2反比例函数的图象和性质(1)1.双曲线2.D3.①③,②④4.略5.(1)正数(2)减小(3)略6.(1)y=18x(x>0)(2)略26.1.2反比例函数的图象和性质(2)1.二㊁四2.D3.D4.(1)在第二㊁四象限.在图象的每一支上,y随x的增大而增大(2)点B在函数的图象上,点C不在函数的图象上5.(1)在第四象限(2)m<2(3)e>f6.(1)(3,-6)(2)2,18(3)2<y<18*7.(1)略(2)对应的x,y的乘积是定值,都是8,矩形O A P B的面积恒等于8(3)(2)的结论仍然成立26.2实际问题与反比例函数(1)1.C2.(1)y=20x(2)103.(1)l=12h(2)2.4m (3)4m4.(1)y=500x(2)1003m5.(1)y=128S(2)80m6.(1)y =400x (2)填表略.设花坛的长为x ,则花坛的宽为y .ȵ 20m<x ɤ40m ʑ 10mɤy <20m .26.2 实际问题与反比例函数(2)1.略 2.(1)y =40000x ,1600名 3.(1)24000个 (2)v =24000t 4.(1)y =360x ,图略 (2)3.6h (3)至少为72k m /h 5.(1)v =48000t (2)6h (3)3000m 36.(1)y =2x (0ɤx ɤ5),50x(x >5)(2)5:25前26.2 实际问题与反比例函数(3)1.B 2.(1)1.98k g /m 3 (2)0<ρ<1.98k g /m 33.(1)y =100x (2)0.5m 4.(1)y =600l .当l 越长时,动力y 越小 (2)2m 5.(1)p =100S (2)200P a 6.(1)p =50S (2)5000P a (3)当压力一定时,接触面积越小,压强越大,故刀刃越锋利,刀具就越好用26.2 实际问题与反比例函数(4)1.反比例,减小 2.D 3.C 4.1210Ω5.(1)36V ,I =36R (2)I ɤ10A 6.(1)p =96V (2)120k P a (3)0.67m 3复习题1.②③④2.答案不唯一,满足k <1即可3.94.y =-6x5.A6.C7.点B 和点C 都在这个函数的图象上.理由:点B 和点C 的坐标都满足函数解析式y =-6x8.(1)y=240x(x>0),图略(2)10个9.(1)I=36R(2)Rȡ3Ω10.(1)y=6x(2)0<xɤ2(3)矩形的周长不可能为6.理由:若矩形的周长为6,则x+y=3.ȵ x y=6, ʑ x+6x=3,整理得x2-3x+6=0.ȵ 此方程无实数解, ʑ 矩形的周长不可能为6第二十七章 相似27.1图形的相似(1)1.C2.①与④相似,②与③相似3.①,④4.①与⑧,②与④,⑤与⑦相似5.略6.略27.1图形的相似(2)1.6002.135ʎ,5c m3.100c m,70c m4.α=60ʎ,E F=7,G H=55.相似的图形有②③,理由略6.(1)A D A B=13,A E A C=13,D E B C=13(2)ȵ D EʊB C, ʑ øA D E=øB,øA E D=øC.又ȵ øA=øA, ʑ әA D E与әA B C相似27.2相似三角形27.2.1相似三角形的判定(1)1.152.43.2ʒ1,34.1.55.10c m6.(1)әA B EʐәA C F,әA C FʐәA D G,әA B EʐәA D G,相似比分别为1ʒ3,1ʒ2,1ʒ6(2)427.2.1相似三角形的判定(2)1.C2.相似.理由略3.(1)相似.理由:三边成比例(2)不相似.理由:三边不成比例(3)相似.理由:两边成比例且夹角相等4.(1)ȵ A C B C=C D A C=23,øB C A=øA C D, ʑ әA C DʐәB C A(2)7.55.(1)相似.理由:ȵ A C=2,A C G C=C F C A=22,øG C A=øA C F, ʑ әA C FʐәG C A(2)由әA C FʐәG C A,得ø1=øC A F.ʑ ø1+ø2=øC A F+ø2=øB C A=45ʎ*6.①把70c m长的钢筋截成两根长分别为49c m和21c m的钢筋.②从70c m长的钢筋中截取两根长分别为15c m和25c m的钢筋.理由略27.2.1相似三角形的判定(3)1.C2.A BʊD E(答案不唯一)3.相似.理由略4.(1)ȵ ø1=ø2, ʑ ø1+øC A D=ø2+øC A D,即øB A C=øD A E.又ȵ øB=øD, ʑ әA B CʐәA D E(2)2545.56.(1)相似.理由:ȵ A DʊB C, ʑ øA D B=øD B C, ʑ R tәA B DʐR tәD C B(2)627.2.2相似三角形的性质1.1ʒ2,1ʒ42.D3.9ʒ44.(1)1ʒ2(2)32c m25.(1)ȵ әA B C是等边三角形, ʑ øB=øC=60ʎ.ʑ øB A D+øA D B=120ʎ.ȵ øA D E=60ʎ, ʑ øA D B+øC D E=120ʎ,ʑ øB A D=øC D E. ʑ әA B DʐәD C E(2)96.(1)4,23x(2)y=-23x2+4x(3)627.2.3相似三角形应用举例(1)1.122.533.8c m4.13.5m5.(1)相似,理由略(2)12c m6.(1)7m (2)70m m27.2.3相似三角形应用举例(2)1.402.60m3.20m4.由әA D EʐәA C B,求得C D=24m5.9m6.7.3m27.2.3相似三角形应用举例(3)1.82.2033.由әD E FʐәD C B,求得B C=4m,A B=B C+1.5=5.5m4.由әB D CʐәA E C,求得B C=4m5.0.375m6.12.3m27.3位似(1)1.D2.473.①②③④都是位似图形,位似中心分别是点D,E,F,G4.略5.如图所示(第5题)6.(1)1ʒ3 (2)8c m ,4c m227.3 位似(2)1.A '(4,6),B '(4,2),C '(12,4)或A '(-4,-6),B '(-4,-2),C '(-12,-4)2.(3,2) 3.A4.(1)A '(4,0),B '(6,4),C '(0,6)或A '(-4,0),B '(-6,-4),C '(0,-6) (2)略5.(1)略 (2)略 (3)相似6.(1)图略.提示:连接A A '和B B '交于点O ,点O 即为位似中心(2)12 (3)略27.3 位似(3)1.D 2.50c m 3.(2,2)4.①旋转或位似变换 ②平移变换 ③轴对称变换 ④位似变换 5.略复习题1.D2.øA =øD 或B C E F=2 3.2 4.1ʒ2 5.103,1ʒ3,1ʒ96.ȵ A B A D =B C D E =A C A E , ʑ әA B C ʐәA D E . ʑ øB A C =øD A E .ʑ øB A C -øD A C =øD A E -øD A C . ʑ øB A D =øC A E 7.12.8m 8.әA C E ʐәA D B ,әA C E ʐәB D E ,әA D B ʐәB D E .证明略9.甲:设正方形的边长为x .由题意得C D ʒC B =D E ʒB A ,则(15-x )ʒ15=x ʒ20,解得x =607.乙:设正方形的边长为y .过点B 作B H ʅA C 于点H ,交D E 于点M ,则B H =12.由题意得B M B H =D E A C,则12-y 12=y 25,解得y =30037.ȵ x >y ,ʑ 甲同学截取的正方形面积较大第二十八章 锐角三角函数28.1 锐角三角函数(1)1.45,35 2.D 3.①③④ 4.(1)1.5c m ,2.5c m ,0.6 (2)0.65.(1)A O =2a ,A B =3a (2)32 6.(1)55 (2)5528.1 锐角三角函数(2)1.35,45 2.13,513 3.D 4.23 5.136.528.1 锐角三角函数(3)1.35,45,34 2.B 3.s i n A =35,c o s A =45,t a n A =344.2 5.(1)A B =10,A C =8 (2)s i n B =45,t a n B =436.(1)øB A C 的余弦值随着øB A C 度数的增大而减小(2)c o s 18ʎ>c o s 34ʎ>c o s 50ʎ>c o s 62ʎ>c o s 88ʎ28.1 锐角三角函数(4)1.2,22,22,1 2.2,3,12,32,33 3.A 4.(1)-12 (2)2 (3)0 (4)-13 5.50m 6.(1)s i n 2A +c o s 2A =a 2c 2+b 2c 2=a 2+b 2c 2=c 2c2=1(2)c o s A =73 (3)t a n A =s i n A c o s A 28.1 锐角三角函数(5)1.60 2.75 3.øA =30ʎ,øB =60ʎ 4.øA =øB =45ʎ 5.326.(1)øA =60ʎ,øB =120ʎ (2)B D =2,A C =2328.1 锐角三角函数(6)1.D 2.37 3.(1)1.86 (2)1.454.(1)26ʎ48'51ᵡ (2)38ʎ12'52ᵡ (3)54ʎ31'55ᵡ 5.38ʎ41'6.a ʈ6.1m ,αʈ35ʎ28.2 解直角三角形及其应用28.2.1 解直角三角形1.(1)35 (2)22.C3.(1)a =23,b =2 (2)33 (3)5 (4)24.øA =60ʎ,øB =30ʎ,A B =235.øA =37ʎ,b ʈ20,c ʈ256.3.8m 28.2.2 应用举例(1)1.43 2.A 3.1033,2033 4.2.2k m 5.40c m 6.5.4m 28.2.2 应用举例(2)1.A 2.15.6 3.53-5 4.105.2m 5.B C =45m ,A C ʈ26m 6.(15+153)m 28.2.2 应用举例(3)1.332.C3.过点A 作A B 与正东方向水平线垂直,垂足为B ,则可求得A B ʈ1158m>1000m ,所以轮船没有触礁的危险4.27.1m5.222c m6.8.2m复习题1.B 2.12 3.B 4.C 5.øB =30ʎ,b =33,c =636.22ʎ2' 7.433-23π 8.(1)22 (2)29.c o søE A G =A E A G =23,øE A G ʈ48ʎ,øB A H ʈ24ʎ,E G =A G 2-A E 2=45(c m )10.(1)ȵ øB A C =øA C B =30ʎ, ʑ B C =A B =10海里(2)过点C 作C D ʅA B 于点D ,则C D =B C ㊃s i n (90ʎ-30ʎ)=53海里<9海里, ʑ 轮船有触礁的危险(3)过点C 作C E ʅB F 于点E ,则C E =B C ㊃s i n (180ʎ-30ʎ-75ʎ)ʈ9.659海里>9海里, ʑ 轮船没有触礁的危险第二十九章 投影与视图29.1投影(1)1.①,②2.A3.③④①②4.(第4题)(2)10m 5.(1)如图所示(第5题)6.如图所示(第6题)29.1投影(2)1.A2.(1)D(2)D3.25πc m24.(1)(2)(第4题)5.(1)8c m (2)43c m6.体积为14πa3,表面积为32πa2 29.2三视图(1)1.A2.B3.D4.(第4题)5.D6.如图所示(第6题)7.(1)主视图:左视图:(2)3429.2三视图(2)1.A2.C3.B4.④,①,②,③5.(1)(2)6.(第5题)(第6题)*7.三视图如图所示,表面积为152(第7题)29.2 三视图(3)1.(1)正方体 (2)圆柱 2.B 3.D 4.圆台,如图所示(第4题) 5.如图所示(第5题)6.(1)n 的最小值为12,最大值为18(2)如图所示 (第6题)29.2 三视图(4)1.6 2.10 3.12 4.π 5.正三棱柱,45c m 2 6.1626.3c m 229.3 课题学习 制作立体模型1.如图所示(第1题) 2.(第2题)3.②,模型略 4.略复习题1.中心2.1.843.D4.A5.B6.这个物体的下部是正方体,上部是一个球,如图所示7.如图所示(第6题) (第7题)8.(360+753)c m 29.最多需要20个小正方体,最少需要6个小正方体,如图①②所示2112211211111111 2000000201000010① ②(第9题)总复习题1.C2.A3.B4.C5.D6.øE A F =øC A B ,øA F E =øB 或øA E F =øC 或A E A F =A C A B (填其中之一即可)7.6 8.y 1<y 3<y 29.1ʒ9 10.略11.证明略,提示:证明әB E F ʐәD C F12.(1)1 (2)12,2 13.(1003-100)m 14.4c m 15.(1)加热时,y =128x +32(0ɤx ɤ6);锻造时,y =4800x (x >6) (2)4m i n16.9.6m 1117.(1)y=1x,1(2)与x轴交于点(-1,0),与y轴没有交点(3)y=-2x+1(答案不唯一)期末综合练习1.C2.D3.C4.B5.C6.D7.A8.A9.D 10.A11.8π12.øA D E=øC(答案不唯一)13.8014.43 15.616.27 17.7218.33c m319.(1)略(2)(-2a,-2b)(3)1020.2.提示:先证明әA E DʐәA D C,再利用相似三角形的性质求得A D=2,可得A B=A D=221.(1)y=2x(2)(-3,0)或(9,0)22.21.8m23.(1)提示:连接B D,先证明әC B D是等边三角形,再证明әB C FɸәB D E,得C F=D E,又ȵ C F+D F=C D, ʑ D E+D F=B C(2)①2 ②B C=2D E+2D F提示:证明әB C FʐәB D E24.(1)①8,4,图略②图象关于直线x=1对称;当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小(答案不唯一)(2)①若k>0,当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小.②若k<0,当x>1时,y随x的增大而减小;当x<1时,y随x的增大而增大(3)-3<k<3212。

北京人大附中九年级数学下册第二十八章《锐角三角函数》综合知识点(含答案解析)

北京人大附中九年级数学下册第二十八章《锐角三角函数》综合知识点(含答案解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则( )A .圆锥的底面半径为3B .2tan 2α=C .该圆锥的主视图的面积为82D .圆锥的表面积为12π 2.已知如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=23,AB=4,连接AC ,若∠CAD=30°,则CD 为( )A .223+B .27C .1033D .123+3.如图,点A (-1,0),点B (-4,0),平行四边形ABCD 的顶点D 在第二象限,反比例函数y=k x(k<0)图像过点D 和BC 边的中点E ,若∠C=α,则k 的值(用含α的式子表示为)( )A .-4tanαB .-3tanαC .925-tanαD .289-tanα 4.在Rt ABC 中,90,C a b c ∠=︒、、分别是A B C ∠∠∠、、的对边,如果3,4a b ==,那么下列等式中正确的是( )A .4sin 3A =B .4cos 3A =C .4tan 3A =D .4cot 3A = 5.如图,将一副三角尺如图所示叠放在一起,则BE CE的值是( )A .3B .33C .2D .32 6.如图,O 是ABC 的外接圆,60BAC ∠=︒,若O 的半径OC 为1,则弦BC 的长为( )A .12B .32C .1D .37.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于( )A .8(31)+mB .8(31)-mC .16(31)+mD .16(31)-m8.如图,在矩形ABCD 中,AB =3,做BD 的垂直平分线E ,F ,分别与AD 、BC 交于点E 、F ,连接BE ,DF ,若EF =AE +FC ,则边BC 的长为( )A .3B .33C .63D 9329.在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形 10.三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A .34B .43C .35D .4511.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x 12.如图,菱形ABCD 的边长为2,且∠ABC =120°,E 是BC 的中点,P 为BD 上一点,且△PCE 的周长最小,则△PCE 的周长的最小值为( )A .3+1B .7+1C .23+1D .27+1 13.如图,Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2,F 、A 、B 在同一直线上,正方形ADEF 向右平移到点F 与B 重合,点F 的平移距离为x ,平移过程中两图重叠部分的面积为y ,则y 与x 的关系的函数图象表示正确的是( )A .B .C .D .14.如图,正方形ABCD 的边长为1,点A 与原点重合,B 在y 轴正半轴上,D 在x 轴负半轴上,将正方形ABCD 绕着点A 逆时针旋转30至AB C D ''',CD 与B C ''相交于点E ,则E 坐标为( )A .31,3⎛⎫- ⎪ ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭ C .31,2⎛⎫- ⎪ ⎪⎝⎭ D .21,3⎛⎫- ⎪⎝⎭二、填空题15.先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系的原点重合,边AB ,AD 分别落在x 轴、y 轴上(如图1),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图2),若4AB =,3BC =,则图1和图2中点B 点的坐标为_________,点C 的坐标_________.16.如图,一艘船由A 港沿北偏东65°方向航行302km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A ,C 两港之间的距离为______km .17.如果在某建筑物的A 处测得目标B 的俯角为37°,那么从目标B 可以测得这个建筑物的A 处的仰角为_____.18.如图,在ABC ∆中,AB=AC=10,3tan 4B =,点D 为BC 边上的动点(点D 不与点B ,C 重合),以D 为顶点作ADE B ∠=∠,射线DE 交AC 边于点E ,若BD=4,则AE= __________.19.如图,正方形ABCD 绕点B 逆时针旋转30°后得到正方形BEFG ,EF 与AD 相交于点H ,延长DA 交GF 于点K .若正方形ABCD 边长为3,则AH=__.20.如图所示,菱形ABCD 的边长为8,且AE ⊥BC 于E ,AF ⊥CD 于F ,∠B=60°,则菱形的面积为____.21.某人顺着山坡沿一条直线型的坡道滑雪,当他滑过130米长的路程时,他所在位置的竖直高度下降了50米,则该坡道的坡比是_________.22.将一副三角板如图摆放,使得一块三角板的直角边AC 和另一块三角板的斜边ME 重叠,点A 与点M 重合,已知AB=AC=8,则重叠的面积是__________.23.如图所示,AOB ∠是放置在正方形网格中的一个角,则sin AOB ∠的值是________.24.如图,△ABC 是等边三角形,AB =3,点E 在AC 上,AE 23=AC ,D 是BC 延长线上一点,将线段DE 绕点E 逆时针旋转90°得到线段FE ,当AF ∥BD 时,线段AF 的长为____.25.如图,已知直线l :y =33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为_____.26.如图,ABCD 中,∠DAB =30°,AB =8,BC =3,P 为边CD 上的一动点,则PB +12PD 的最小值等于__________.三、解答题27.如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM 的坡比1:3i=,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上.(1)求DM的长.(2)求旗杆AB的高度.(结果保留根号)28.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30,看这栋高楼底部的俯角为60︒,热气球与高楼的水平距离为66m,这栋高楼有多高?(结果精确到0.1m,参考数据:3 1.73≈)29.计算:11126tan60|2433-⎛⎫︒+-⎪⎝⎭.30.平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A,B两点,点A,B的坐标分别为(﹣3,0),(1,0),与y轴交于点C,点D为顶点.(1)求抛物线的解析式和tan∠DAC;(2)点E是直线AC下方的抛物线上一点,且S△ACE=2S△ACD,求点E的坐标;(3)如图2,若点P是线段AC上的一个动点,∠DPQ=∠DAC,DP⊥DQ,则点P在线段AC上运动时,D点不变,Q点随之运动.求当点P从点A运动到点C时,点Q运动的路径长.【参考答案】一、选择题1.C2.B3.D4.D5.B6.D7.A8.B9.A10.D11.A12.B13.B14.A二、填空题15.【分析】根据旋转的性质求解【详解】解:∵AB=4在x轴正半轴上∴图1中B坐标为(40)在图2中过B作BE⊥x轴于点E那么OE=4×cos30°=2BE=2在图2中B点的坐标为(22);易知图1中点C16.【分析】BE⊥AC于点E根据题意计算可得解直角三角形ABE可得BE=AE=30根据平行线性质计算可得解直角三角形CEB可得AE+CE的值即是AC两港之间的距离【详解】解:设过A点正北方向直线为AD过17.37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°【详解】如图∵某建筑物的A处测得目标B的俯角为37°∴目标B可以测得这个建筑物的A处的仰角为37°故18.【分析】先求出CD的长再证明△ABD∽△DCE得代入即可求解【详解】解:如图1作AH⊥BC于H∵∴∴BH=ABcosB=10×=8∵AB=AC∴BC=2BH=16∠B=∠C∴CD=16-4=12∵∠19.1【分析】连接BH证明Rt△ABH≌△Rt△EBH(HL)得出∠ABH=30°在Rt△ABH中解直角三角形即可【详解】解:连接BH如图所示:∵四边形ABCD和四边形BEFG是正方形∴∠BAH=∠AB20.【分析】根据已知条件解直角三角形ABE可求出AE的长再由菱形的面积等于底×高计算即可【详解】∵菱形ABCD的边长为8∴AB=BC=8∵AE⊥BC于E∠B=60°∴sinB=即∴AE∴菱形的面积故答案21.【分析】首先根据勾股定理求得滑行的水平距离然后根据坡比的定义即可求解【详解】解:滑行的水平距离是:=120(米)故坡道的坡比是:50:120=故答案是:【点睛】本题考查了勾股定理以及坡比的定义正确求22.【分析】过Q作QH⊥AC于H在△QHC中由于∠QCH=45°则CH=QH设CH=则QH=x在Rt△QHA中由于∠QAH=60°求得AH=然后利用CH+AH=AC求得的值再根据三角形面积公式计算得到结23.【分析】由题意可知要求出答案首先需要构造出直角三角形连接AB 设小正方形的边长为1可以求出OAOBAB 的长度由勾股定理的逆定理可得是直角三角形再根据三角函数的定义可以求出答案【详解】连接AB 如图所示:24.1【分析】过点E 作EM ⊥AF 于M 交BD 于N 根据30°直角三角形的性质求出AM=1再根据∠60°的三角函数值求出EN 的长再依据△EMF ≌△DNE (AAS )得出MF=EN 据此可得当AF ∥BD 时线段AF 的25.(0256)【分析】利用锐角三角函数分别计算得到的坐标利用规律直接得到答案【详解】解:∵l :y =x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB =∵A1B ⊥l ∴∠ABA1=626.4【分析】过点P 作PE ⊥AD 交AD 的延长线于点E 由锐角三角函数可得EP =即PB+=PB+PE 则当点B 点P 点E 三点共线且BE ⊥AD 时PB+PE 有最小值即最小值为BE 【详解】解:如图过点P 作PE ⊥AD 交三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】根据圆锥的侧面展开图的弧长等于圆锥底面周长,可知2πr =180n l ,求出r 以及圆锥的母线l 和高h 即可解决问题.解:设圆锥的底面半径为r ,高为h .A 选项,由题意:2πr =1206180π⨯⨯,解得r =2,故错误;B 选项,h =226242-=,所以tanα=22442=,故错误; C 选项,圆锥的主视图的面积=12×4×42=82,故正确; D 选项,表面积=4π+2π×6=16π,故错误.故选:C .【点睛】本题考查圆锥的有关知识,记住圆锥的侧面展开图的弧长等于圆锥底面周长,即2πr =180n l π,圆锥的表面积=πr 2+πrl 是解决问题的关键,属于中考常考题型. 2.B解析:B【分析】过C 点作CH ⊥AD 延长线于H 点,由CH=AB=4求出AH 的长,再减去AD 即得到DH 的长,再在Rt △DCH 中使用勾股定理即可求出CD .【详解】解:如图所示,过C 点作CH ⊥AD 延长线于H 点,∵AD ∥BC ,∠B=90°,∴∠BAH=90°,且∠H=90°,∴四边形ABCH 为矩形,∴AB=CH=4,在Rt △ACH 中,3343AHCH AB , ∴DH=AH-AD=23∴在Rt △CDH 中,22121627CDDH CH ,故选:B .【点睛】本题考查了解直角三角形,熟练掌握30°,60°,90°三角形中三边之比为3::是解决本题的关键. 3.D解析:D过点D 作DH ⊥OB 于H ,过点E 作EF ⊥x 轴于F ,根据平行四边形的对边相等可得DA=CB ,然后求出DA=2EB ,再求出HA=2FB ,设FB=a ,表示出点E 、D 的坐标,然后根据EF 、DH 的关系列方程求出a 的值,再求出HA 、DH ,然后利用∠DAH 的正切值列式整理即可得解.【详解】解:如图,过点D 作DH ⊥OB 于H ,过点E 作EF ⊥x 轴于F ,在平行四边形ABCD 中,DA=CB ,∵E 为边BC 的中点,∴DA=CB=2EB ,DH=2EF ,∴AH=2FB ,设FB=a ,∵点C 、D 都在反比例函数上,∴D(−2a−1,k−2a−1),∵B(−4,0),∴点E(−a -4,4k a --), ∴2214k k a a =⨯----,解得a= 23, ∴FB=a=23,EF=3241443k k k a ==-----, ∵∠C=α,∴tan ∠EBF=tan ∠α=EF FB , 即tanα=928k -,k=289-tanα. 故选D .【点睛】本题考查了平行四边形的性质,反比例函数图象上点的坐标特征,锐角三角函数,根据点C 、D 的纵坐标列出方程是解题的关键. 4.D解析:D【分析】分别算出∠A 的各个三角函数值即可得到正确选项.【详解】解:由题意可得:5c ==, ∴3434sin ,cos ,tan ,,5543a b a b A A A cotA c c b a ======== ∴正确答案应该是D ,故选D .【点睛】 本题考查锐角三角函数的定义,正确理解锐角三角函数的定义是解题关键.5.B解析:B【分析】设AC=AB=x,求得tan AC CD D ===,根据相似三角形的性质即可得到结论. 【详解】解:设AC=AB=x ,则tan AC CD D ===, ∵∠BAC=∠ACD=90°,∴∠BAC+∠ACD=180°,∴AB ∥CD ,∴△ABE ∽△DCE ,∴BE AB CE CD === 故选:B .【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.6.D解析:D【分析】先作OD ⊥BC 于D ,由于∠BAC =60°,根据圆周角定理可求∠BOC =120°,又OD ⊥BC ,根据垂径定理可知∠BOD =60°,BD =12BC ,在Rt △BOD 中,利用特殊三角函数值易求BD ,进而可求BC .【详解】解:如右图所示,作OD ⊥BC 于D ,∵∠BAC =60°,∴∠BOC=120°,又∵OD⊥BC,∴∠BOD=60°,BD=12BC,∴BD=sin60°×OB=3,∴BC=2BD=23,故答案是23.【点睛】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.7.A解析:A【解析】设MN=xm,在Rt△BMN中,∵∠MBN=45∘,∴BN=MN=x,在Rt△AMN中,tan∠MAN=MN AN,∴tan30∘=16xx=3√3,解得:3,则建筑物MN的高度等于3 +1)m;故选A.点睛:本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角,哪个角是俯角,知道仰角是向上看的视线与水平线的夹角,俯角是向下看的视线与水平线的夹角,并与三角函数相结合求边的长.8.B解析:B【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF是菱形,所以可求出BE,AE,进而可求出BC的长.【详解】解:∵四边形ABCD是矩形,//,DE BF ∴,,DEO BFO EDO FBO ∴∠=∠∠=∠ EF 垂直平分BD ,OB OD ∴=,BOF DOE ∴∆∆≌,,OE OF ∴=∴ 四边形BEDF 是菱形,∵四边形ABCD 是矩形,四边形BEDF 是菱形,∴∠A=90°,AD=BC ,DE=BF ,OE=OF ,EF ⊥BD ,∠EBO=FBO ,∴AE=FC .又EF=AE+FC ,∴EF=2AE=2CF ,又EF=2OE=2OF ,AE=OE ,∴△ABE ≌OBE , ∴∠ABE=∠OBE ,∴∠ABE=∠EBD=∠DBC=30°,∴BE= cos30BO ︒= ∴BF=BE=∴∴BC=BF+CF=故选B .【点睛】本题考查了矩形的性质、菱形的性质以及在直角三角形中30°角所对的直角边时斜边的一半,解题的关键是求出∠ABE=∠EBD=∠DBC=30°. 9.A解析:A【解析】试题∵cos A =2,tan B , ∴∠A =45°,∠B =60°.∴∠C =180°-45°-60°=75°.∴△ABC 为锐角三角形.故选A .10.D解析:D【分析】根据锐角三角函数的定义得出cosα=BC AB进而求出即可.解:如图所示:∵AC=3,BC=4,∴AB=5,∴cosα=45BC AB =. 故选:D .【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,正确构造直角三角形是解题关键. 11.A解析:A【分析】作CE ⊥y 轴于E .解直角三角形求出OD ,DE 即可解决问题.【详解】作CE ⊥y 轴于E .在Rt △OAD 中,∵∠AOD=90°,AD=BC=b ,∠OAD=x ,∴OD=sin OAD sin AD b x ∠=,∵四边形ABCD 是矩形,∴∠ADC=90°,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD= x , ∴在Rt △CDE 中,∵CD=AB=a ,∠CDE=x , ∴DE= cos CDE cos CD a x ∠=,∴点C 到x 轴的距离=EO=DE+OD=cos sin a x b x ,【点睛】本题考查了解直角三角形的应用,矩形的性质,正确作出辅助线是解题的关键.12.B解析:B【分析】由菱形ABCD中,∠ABC=120°,易得△BCD是等边三角形,继而求得∠ADE的度数;连接AE,交BD于点P;首先由勾股定理求得AE的长,即可得△PCE周长的最小值=AE+EC.【详解】解:∵菱形ABCD中,∠ABC=120°,∴BC=CD=AD=2,∠C=180°﹣∠ABC=60°,∠ADC=∠ABC=120°,∴∠ADB=∠BDC=1∠ADC=60°,2∴△BCD是等边三角形,∵点E是BC的中点,∴∠BDE=1∠BDC=30°,2∴∠ADE=∠ADB+∠BDE=90°,∵四边形ABCD是菱形,∴BD垂直平分AC,∴PA=PC,++,∵△PCE的周长=PC PE CE若△PCE的周长最小,即PC+PE最小,也就是PA+PE最小,即A,P,E三点共线时,∵DE=CD•sin60°=3,CE=1BC=1,2∴在Rt△ADE中,227=+=,AE AD DE∴△PCE周长为:PC+PE+CE=PA+PE+CE=AE+CE=71+,故选:B.【点睛】本题考查了菱形的性质、最短路线问题、等边三角形的性质,熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.13.B解析:B【分析】分三种情况分析:当0<x≤2时,平移过程中两图重叠部分为Rt △AA'M ;当2<x≤4时,平移过程中两图重叠部分为梯形F'A'MN ;当4<x≤6时,平移过程中两图重叠部分为梯形F'BCN .分别写出每一部分的函数解析式,结合排除法,问题可解.【详解】设AD 交AC 于N ,A D ''交AC 于M ,当0<x ≤2时,平移过程中两图重叠部分为Rt △AA 'M ,∵Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2,AA x '=,∴tan ∠CAB =A M BC AA AB ='', ∴A 'M =12x , 其面积y=12AA A M ''=12x •12x =14x 2, 故此时y 为x 的二次函数,排除选项D ; 当2<x ≤4时,平移过程中两图重叠部分为梯形F 'A 'MN ,AA x '=,2AF x '=-,同理:A 'M =12x ,()122F M x ='-, 其面积y=12AA A M ''-12AF F M ''=12x •12x ﹣12(x ﹣2)•12(x ﹣2)=x ﹣1, 故此时y 为x 的一次函数,故排除选项C .当4<x ≤6时,平移过程中两图重叠部分为梯形F 'BCN ,AF '=x ﹣2,F 'N =12(x ﹣2),F 'B =4﹣(x ﹣2)=6﹣x ,BC =2, 其面积y =12 [12(x ﹣2)+2]×(6﹣x )=﹣14x 2+x +3, 故此时y 为x 的二次函数,其开口方向向下,故排除A ;综上,只有B 符合题意.故选:B .【点睛】本题考查了动点问题的函数图象以及三角函数的知识,数形结合并运用排除法,是解答本题的关键.14.A解析:A【分析】连接AE,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADE≌Rt△AB′E得∠DAE=12∠B′AD=30°,由DE=ADtan∠DAE可得答案.【详解】如图:连接AE∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB C D''',∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADE和Rt△A B′E中,∵AD AB AE AE'=⎧⎨=⎩∴Rt△ADE≌Rt△AB′E(HL),∴∠DAE=∠B′AE=12∠B′AD=30°,∴DE=ADtan∠33∴点E的坐标为(-13故选:A【点睛】本题考查了正方形的性质、坐标与图形旋转.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.二、填空题15.【分析】根据旋转的性质求解【详解】解:∵AB=4在x轴正半轴上∴图1中B坐标为(40)在图2中过B作BE⊥x轴于点E那么OE=4×cos30°=2BE=2在图2中B点的坐标为(22);易知图1中点C 解析:()23,2433334,22⎛⎫-+ ⎪⎝⎭ 【分析】根据旋转的性质求解.【详解】解:∵AB=4,在x 轴正半轴上, ∴图1中B 坐标为(4,0),在图2中过B 作BE ⊥x 轴于点E ,那么OE=4×cos30°=23,BE=2,在图2中B 点的坐标为(23,2);易知图1中点C 的坐标为(4,3),在图2中,设CD 与y 轴交于点M ,作CN ⊥y 轴于点N ,那么∠DOM=30°,OD=3, ∴3OM=3÷cos30°3,那么3∠NCM=30°,∴43-,433-, 则334+, ∴图2中C 点的坐标为(4332,3342). 【点睛】此题主要考查了旋转性质的应用,旋转前后对应角的度数不变,对应线段的长度不变,注意构造直角三角形求解.16.【分析】BE ⊥AC 于点E 根据题意计算可得解直角三角形ABE 可得BE=AE=30根据平行线性质计算可得解直角三角形CEB 可得AE+CE 的值即是AC 两港之间的距离【详解】解:设过A 点正北方向直线为AD 过解析:303+【分析】BE ⊥AC 于点E ,根据题意计算可得45EAB ∠=︒,解直角三角形ABE ,可得BE=AE=30,根据平行线性质计算可得60C ∠=°,解直角三角形CEB 可得,103CE =,AE+CE 的值即是AC 两港之间的距离.【详解】解:设过A 点正北方向直线为AD ,过B 点正北方向直线为BG ,过B 作BE ⊥AC 于E ,过C 作CF ∥AD ,如图:∵由题意得:∠CAB =65°﹣20°=45°,∠AEB =∠CEB =90°,AB 2km . ∴在Rt ABE △中,∠ABE =45°,∴△ABE 是等腰直角三角形.∵AB 2km ,∴AE =BE =22AB =30(km ). ∵CF ∥AD ∥BG , ∴∠ACF =∠CAD =20°,∠BCF =∠CBG =40°,∴∠ACB =20°+40°=60°,∵在Rt CBE 中,∠ACB =60°,tan ∠ACB =BE CE, ∴CE =tan 603BE ︒=3km ),∴AC =AE +CE 3km ),∴A 、C 两港之间的距离为(3km .故答案为:(3【点睛】本题考查解直角三角形的应用——方位角问题,添加辅助线构建直角三角形,熟练运用解直角三角形的方法是解题关键.17.37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B 可以测得这个建筑物的A 处的仰角为37°【详解】如图∵某建筑物的A 处测得目标B 的俯角为37°∴目标B 可以测得这个建筑物的A 处的仰角为37°故解析:37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°.【详解】如图,∵某建筑物的A处测得目标B的俯角为37°,∴目标B可以测得这个建筑物的A处的仰角为37°,故答案为:37°.【点睛】考查了解直角三角形,解题关键是理解向下看,视线与水平线的夹角叫俯角;向上看,视线与水平线的夹角叫仰角.18.【分析】先求出CD的长再证明△ABD∽△DCE得代入即可求解【详解】解:如图1作AH⊥BC于H∵∴∴BH=ABcosB=10×=8∵AB=AC∴BC=2BH=16∠B=∠C∴CD=16-4=12∵∠解析:26 5【分析】先求出CD的长,再证明△ABD∽△DCE,得CE CDBD AB=,代入即可求解.【详解】解:如图1,作AH⊥BC于H,∵3tan4B=∴cos45B=∴BH=ABcosB=10×45=8,∵AB=AC,∴BC=2BH=16,∠B=∠C,∴CD=16-4=12,∵∠ADC=∠ADE+∠EDC=∠BAD+∠B ,∵∠ADE=∠B ,∴∠EDC=∠BAD ,∴△ABD ∽△DCE , ∴CE CD BD AB =, ∴12410CE =, ∴245CE =. ∴26105AE CE =-=故答案是:265. 【点睛】 本题考查的是三角形综合题,涉及到三角形相似、解直角三角形,等腰三角形的性质等. 19.1【分析】连接BH 证明Rt △ABH ≌△Rt △EBH (HL )得出∠ABH=30°在Rt △ABH 中解直角三角形即可【详解】解:连接BH 如图所示:∵四边形ABCD 和四边形BEFG 是正方形∴∠BAH=∠AB解析:1【分析】连接BH ,证明Rt △ABH ≌△Rt △EBH (HL ),得出∠ABH =30°,在Rt △ABH 中解直角三角形即可.【详解】解:连接BH ,如图所示:∵四边形ABCD 和四边形BEFG 是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB ,∠CBE=30°,∴∠ABE=60°,在Rt △ABH 和Rt △EBH 中,∵BH=BH ,AB=EB ,∴Rt △ABH ≌△Rt △EBH (HL ),∴∠ABH=∠EBH=12∠ABE=30°,∴AH=AB•tan ∠, 故答案为:1.【点睛】本题考查了旋转的性质、正方形的性质、全等三角形的判定与性质、解直角三角形.能正确作出辅助线得出Rt △ABH ≌△Rt △EBH ,从而求得∠ABH =30°是解题关键.20.【分析】根据已知条件解直角三角形ABE 可求出AE 的长再由菱形的面积等于底×高计算即可【详解】∵菱形ABCD 的边长为8∴AB=BC=8∵AE ⊥BC 于E ∠B=60°∴sinB=即∴AE ∴菱形的面积故答案解析:【分析】根据已知条件解直角三角形ABE 可求出AE 的长,再由菱形的面积等于底×高计算即可.【详解】∵菱形ABCD 的边长为8,∴AB=BC=8,∵AE ⊥BC 于E ,∠B=60°,∴sinB=AE AB ,即28AE =, ∴AE =,∴菱形的面积8=⨯=故答案为:【点睛】本题考查了菱形的性质以及特殊角的三角函数值,菱形面积公式的运用.关键是掌握菱形的性质.21.【分析】首先根据勾股定理求得滑行的水平距离然后根据坡比的定义即可求解【详解】解:滑行的水平距离是:=120(米)故坡道的坡比是:50:120=故答案是:【点睛】本题考查了勾股定理以及坡比的定义正确求 解析:512【分析】首先根据勾股定理求得滑行的水平距离,然后根据坡比的定义即可求解.【详解】(米),故坡道的坡比是:50:120=512.故答案是:512. 【点睛】 本题考查了勾股定理,以及坡比的定义,正确求得滑行的水平距离是关键.22.【分析】过Q 作QH ⊥AC 于H 在△QHC 中由于∠QCH=45°则CH=QH 设CH=则QH=x 在Rt △QHA 中由于∠QAH=60°求得AH=然后利用CH+AH=AC 求得的值再根据三角形面积公式计算得到结解析:48163-【分析】过Q 作QH ⊥AC 于H ,在△QHC 中,由于∠QCH=45°,则CH=QH ,设CH=x ,则QH=x ,在Rt △QHA 中,由于∠QAH=60°,求得AH=33x ,然后利用CH+AH=AC 求得x 的值,再根据三角形面积公式计算得到结果. 【详解】 过Q 作QH ⊥AC 于H ,如图,∠ACB=45°,∠DME=60°,AC=8,在△QHC 中,∠QCH=45°,∴CH=QH ,设CH=x ,则QH=x ,在Rt △QHA 中,∠QAH=60°,∴AH=QH tan 60︒ =33x , ∵CH+AH=AC , ∴38x x +=, 解得:(433x =,∴QAC 12S =QH•AC (14338481632=⨯⨯=- 故答案为:483-【点睛】本题主要考查了解直角三角形,作出辅助线构造直角三角形,利用条件求得AC边上的高是解题的关键.23.【分析】由题意可知要求出答案首先需要构造出直角三角形连接AB设小正方形的边长为1可以求出OAOBAB的长度由勾股定理的逆定理可得是直角三角形再根据三角函数的定义可以求出答案【详解】连接AB如图所示:解析:2 2【分析】由题意可知,要求出答案首先需要构造出直角三角形,连接AB,设小正方形的边长为1,可以求出OA、OB、AB的长度,由勾股定理的逆定理可得ABO是直角三角形,再根据三角函数的定义可以求出答案.【详解】连接AB如图所示:设小正方形的边长为1,∴2OA=23+1=10,22BA=3+1=10,222OB=4+2=20,∴ABO是直角三角形,∴BA102sin AOB=OB20∠=,故答案为:2 2.【点睛】本题主要考查了勾股定理的逆定理和正弦函数的定义,熟练掌握技巧即可得出答案. 24.1【分析】过点E作EM⊥AF于M交BD于N根据30°直角三角形的性质求出AM=1再根据∠60°的三角函数值求出EN的长再依据△EMF≌△DNE(AAS)得出MF=EN据此可得当AF∥BD时线段AF的解析:13 +.【分析】过点E作EM⊥AF于M,交BD于N,根据30°直角三角形的性质求出AM =1,再根据∠60°的三角函数值求出EN的长,再依据△EMF≌△DNE(AAS)得出MF=EN32=,据此可得,当AF∥BD时,线段AF的长为132 +.【详解】如图过点E作EM⊥AF于M,交BD于N.∵△ABC是等边三角形,∴AB=BC=AC=3,∠ACB=60°.∵AE23=AC,∴AE=2,EC=1.∵AF∥BD,∴∠EAM=∠ACB=60°.∵EM⊥AF,∴∠AME=90°,∴∠AEM=30°,∴AM12=AE=1.∵AF∥BD,EM⊥AF,∴EN⊥BC,∴EN=EC•sin60°32=,∵∠EMF=∠END=∠FED=90°,∴∠MEF+∠MFE=90°,∠MEF+∠DEN=90°,∴∠EFM=∠DEN.∵ED=EF,∴△EMF≌△DNE(AAS),∴MF=EN32=,∴AF=AM+MF=13.故答案为:13.【点评】本题主要考查了直角三角形的性质、特殊角的三角函数值和全等三角形的判定的综合运用,解题的关键是作辅助线构造直角三角形和全等三角形,熟记特殊角的三角函数值.25.(0256)【分析】利用锐角三角函数分别计算得到的坐标利用规律直接得到答案【详解】解:∵l :y =x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB =∵A1B ⊥l ∴∠ABA1=6解析:(0,256)【分析】利用锐角三角函数分别计算得到12,A A 的坐标,利用规律直接得到答案.【详解】解:∵l :y =3x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB∵A 1B ⊥l∴∠ABA 1=60°∴AA 1=3∴A 1(0,4)同理可得A 2(0,16)…∴A 4纵坐标为44=256∴A 4(0,256)故答案为:(0,256).【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到123,,A A A …的点的坐标是解决本题的关键.26.4【分析】过点P 作PE ⊥AD 交AD 的延长线于点E 由锐角三角函数可得EP =即PB+=PB+PE 则当点B 点P 点E 三点共线且BE ⊥AD 时PB+PE 有最小值即最小值为BE 【详解】解:如图过点P 作PE ⊥AD 交解析:4【分析】过点P 作PE ⊥AD ,交AD 的延长线于点E ,由锐角三角函数可得EP =12PD ,即PB+12PD =PB+PE ,则当点B,点P ,点E 三点共线且BE ⊥AD 时,PB+PE 有最小值,即最小值为BE .【详解】解:如图,过点P 作PE ⊥AD ,交AD 的延长线于点E ,∵AB ∥CD∴∠EDP =∠DAB =30°,∴sin ∠EDP =12EP DP = ∴EP =12PD ∴PB +12PD =PB +PE ∴当点B ,点P ,点E 三点共线且BE ⊥AD 时,PB +PE 有最小值,即最小值为BE , ∵sin ∠DAB =12BE AB = ∴BE =12AB =4 故答案为:4【点睛】本题考查了平行四边形的性质,垂线段最短,锐角三角函数的性质,作出适当的辅助线是解题的关键.三、解答题27.(1)DM =6m ;(2)AB =3【分析】(1)根据斜坡CM 的坡比i =1:3,CD 为2m ,进而可得DM 的长;(2)过点C 作CE ⊥AB 于点E ,设BM =x ,根据矩形的性质以及锐角三角函数的定义即可求出答案.【详解】解:(1)∵CD =2,tan ∠CMD =CD DM =13, ∴2DM =13, ∴DM =6m ; (2)过点C 作CE ⊥AB 于点E ,设BM =x ,∴BD =x +6,∵∠AMB =60°,∴∠BAM =30°,∴AB =3x , ∵四边形CDBE 是矩形,∴BE =CD =2,CE =BD =x +6,∴AE =AB ﹣BE =3x ﹣2,在Rt ACE 中,∵tan30°=AE CE , ∴13=326x x -+, 解得:x =3+3,∴AB =3x =(33+3)(m ).【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义以及矩形的性质,本题属于中等题型.28.152.2【分析】过点A 作AD BC ⊥于点D ,根据仰角和俯角的定义得到BAD ∠和CAD ∠的度数,利用特殊角的正切值求出BD 和CD 的长,加起来得到BC 的长.【详解】解:如图,过点A 作AD BC ⊥于点D ,根据题意,30BAD ∠=︒,60CAD ∠=︒,66AD m =,3tan 3066223BD AD m =⋅︒==, tan 60663663CD AD m =⋅︒==,223663883152.2BC m =+=≈.【点睛】本题考查解直角三角形的应用,解题的关键是掌握利用特殊角的三角形函数值解直角三角形的方法.29.1【分析】分别进行负整数指数幂运算、二次根式的化简、特殊角的三角函数值、绝对值运算、合并同类项进行计算即可.【详解】解:11126tan60|243 3-⎛⎫︒+-⎪⎝⎭=32363432+=1.【点睛】本题考查实数的混合运算,涉及负整数指数幂、二次根式、特殊角的三角函数值,绝对值、合并同类项等知识,是中考必考计算题,必须熟练掌握.30.(1)y=﹣x2﹣2x+3,AC=32DC2;(2)E(1,0);(32【分析】(1)将点A(﹣3,0),B(1,0)分别代入抛物线y=ax2+bx+3可解的a,b的值,从而得到解析式,tan∠DAC=DCAC,可根据表达式求出C,D的坐标然后计算DC和AC的长度计算;(2)可取一点E,过E作EF平行于x轴,交AC于F此时可表示出S△ACE,根据类方程S△ACE=2S△ACD,求E点坐标即可;(3)根据题能得到Q的运动轨迹为直线,且当P在A处时Q在C处,当P运动到C处时,可以得到△ADC∽PQD,根据形似性质可得到PQ长度即为Q的运动路径长.【详解】解:(1)将A(﹣3,0),B(1,0)分别代入抛物线y=ax2+bx+3可得:093303a b a b =-+⎧⎨=++⎩,解得12a b =-⎧⎨=-⎩;∴抛物线解析式为y =﹣x 2﹣2x +3,∴D (﹣1,4),C (0,3);∴AC =DC ;∴tan ∠DAC =1=3DCAC .(2)如图1所示,过E 作EF //x 轴交AC 于点F ,设点E (m ,﹣m 2﹣2m +3),直线AC 的表达式为y =kx +n ,将A (﹣3,0),C (0,3)分别代入y =kx +n 可得:033k n n =-+⎧⎨=⎩,解得13k n =⎧⎨=⎩,∴直线AC 表达式为y =x +3,∴F (﹣m 2﹣2m ,﹣m 2﹣2m +3),∴EF =m +m 2+2m =m 2+3m ,∴S △ACE =12(x C ﹣x A )EF ,∵S △ACD =12AC •CD =3,∴S △ACE =12(x C ﹣x A )EF =2S △ACD =6, ∴32(m 2+3m )=6,解得m 1=1,m 2=﹣4(舍),∴E (1,0).(3)如图2所示当点P与点A重合时,∵∠ADQ=∠DCA=90°,∴∠DAC+∠ADC=90°=∠ADC+∠QDC,∴∠DAC=∠QDC,又∵∠DCA=∠DCQ=90°,∴△ADC∽△DQC,∴DC CQ=,AC DC∴222CQ==,.332当点P与点C重合时,∴∠Q'DC=∠ACD=90°,∴DQ'∥CQ ,∵∠DAC=∠Q'P'D ,∠Q'DP'=∠ACD=90°,∴△ADC ∽△P'Q'D , ∴DQ DC DC AC'=,∴DQ '=, ∴DQ'=CQ ,∴四边形DQ'QC 是平行四边形,∴.【点睛】本题综合性比较强,主要考查二次函数点相关知识,解题的关键在于找出变换后的图形,根据已知条件,建立方程求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10、如上图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
A 2 B 2.5或3.5 C 3.5或4.5 D 2或3.5或4.5
7、小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B时,要使眼睛O、准星A、目标B在同一条直线上,如图4所示,在射击时,小明有轻微的抖动,致使准星A偏离到A′,若OA=0.2米,OB=40米,AA′=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为()A.3米B.0.3米C.0.03米D.0.2米
17、两个相似三角形一对对应边分别为35cm,14cm,它们的周长相差60cm,
则较大三角形周长为cm
18、如右图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,
AC交BD于点E,CE=4,CD=6,则AE的长为____________________
19、如下图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为____________
(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.
(3)过原点 的另一条直线 交双曲线 于 两点( 点在第一象限),若由点 为顶点组成的四边形面积为 ,求点 的坐标.
(14分)28、如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).
A. B.0C.1D.2
3、如图,在平行四边形ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=( )
A 2:5 B 2:3 C 3:5 D 3:2
4、如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连结BD,若cos∠BDC= ,则BC的长是( )
20、如右上图,已知双曲线 经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=____________
三、解答题(共90分)
(8分)21、网格图中每个方格都是边长为1的正方形.
若A,B,C,D,E,F都是格点,
试说明△ABC∽△DEF.
(10分)22、计算:(1)tan30°sin60°+cos230°-sin245°tan45°
A、4cmB、6cm C、8cmD、10cm
4、在直角三角形中,各边的长度都扩大3倍,则锐角A的三角函数值()
A.也扩大3倍B.缩小为原来的
C.都不变D.有的扩大,有的缩小
6、下列四个点中,有三个点在同一反比例函数 的图象上,则不在这个函数图象上的点是( )
A.(5,1) B.(-1,5) C.( ,3) D.(-3, )
2015-2016学年度启东市滨海实验学校
第一学期第二次质量检测卷
九年级数学学科试卷
考试时间:120分钟 总分:150分
一、选择题(每题3分,共30分)
1、已知点 , , 在反比例函数 的图像上.下列结论中正确的是()
A. B. C. D.
2、在反比例函数 的图象的每一条曲线上, 的增大而增大,则 的值可以是()
二、填空题(每题3分,共30分)
11、若点(4,m)在反比例函数 (x≠0)的图象上,则m的值是.
12、如图,反比例函数 的图象与经过原点的直线 相交于A、B两点,已知A点坐标为 ,那么B点的坐标为.
13、在Rt△ABC中,∠C=90°,a=2,b=3,则cosA=________,sinB=_________,
(1)当t=2时,判断△BPQ的形状,并说明理由;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR//BAபைடு நூலகம்AC于点R,连结PR,当t为何值时,△APR∽△PRQ?
(15分)27、如图12,已知直线 与双曲线 交于 两点,且点 的横坐标为 .
(1)求 的值;
(2)若双曲线 上一点 的纵坐标为8,求 的面积;
tanB=________
14、已知 是反比例函数,则a=____
15、如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是____________
16、函数 的图象如下图所示,则结论:
①两函数图象的交点 的坐标为 ;②当 时, ;
③当 时, ;④当 逐渐增大时, 随着 的增大而增大, 随着 的增大而减小.其中正确结论的序号是.
(2)
(11分)23、如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6 ,AF=4 ,求AE的长.
(8分)24、如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)
8、如图一,在△ABC中,DE∥BC,AD=3,BD=2,则△ADE与四边形DBCE的面积比是()
(A)3︰2;(B)3︰5;(C)9︰16;(D)9︰4.
9、如下图,已知双曲线 经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为( ,4),则△AOC的面积为( )
A.12B.9C.6D.4
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当 时,一次函数的值大于反比例函数的值的 的取值范围.
(12分)26、如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:
(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1
(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.
(12分)25、如图,一次函数 的图象与反比例函数 的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交 轴、 轴于点C、D,且S△PBD=4, .
相关文档
最新文档