六年级分数裂项作业(供参考)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数裂项

校区 班级 姓名

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

一、“裂差”型运算

将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即

1a b

⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:

1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)

n n n n ⨯+⨯+⨯+形式的,我们有: 裂差型裂项的三大关键特征:

(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”

(3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:

知识点拨

学习目标

常见的裂和型运算主要有以下两种形式:

(1)11a b a b a b a b a b b a

+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:

裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

【例 1】 111111223344556

++++=⨯⨯⨯⨯⨯ 。 【巩固】 计算:1111251335572325⎛⎫⨯++++= ⎪⨯⨯⨯⨯⎝⎭

【巩固】 计算:3245671255771111161622222929

++++++=⨯⨯⨯⨯⨯⨯ 【巩固】 计算:1111111112612203042567290

--------= 【巩固】 11111104088154238

++++= 。 【例 2】 计算:1111135357579200120032005

++++⨯⨯⨯⨯⨯⨯⨯⨯ 【例 3】 计算:11111123420261220420

+++++ 【巩固】 计算:11111200820092010201120121854108180270

++++= 。 【巩固】 计算:1122426153577++++= ____。 【巩固】 计算:1111111315356399143195

++++++ 【巩固】 计算:1111135246357202224

++++⨯⨯⨯⨯⨯⨯⨯⨯ 【例 4】 22222211111131517191111131

+++++=------ . 【巩固】 计算:222222223571512233478++++⨯⨯⨯⨯ 【巩固】 计算:57911131517191612203042567290-+-+-+-+ 习题练习

相关文档
最新文档