单片机测量心率电路原理

合集下载

基于51单片机脉搏测量仪答辩课件

基于51单片机脉搏测量仪答辩课件

基于51单片机脉搏测量仪答辩课件一、引言随着现代生活节奏的加快,人们的身体健康问题日益凸显,特别是心血管疾病的发病率逐年上升。

因此,快速、准确地测量脉搏成为保持健康的重要手段。

本课题基于51单片机设计了一款脉搏测量仪,使脉搏的测量变得更加简便、快捷。

本次答辩主要介绍脉搏测量仪的设计原理、硬件实现、软件设计以及实验验证等内容。

二、设计原理脉搏测量仪主要通过红外线反射原理来测量脉搏。

当心脏跳动时,人体的血液流动会导致手指末梢的颜色发生变化。

脉搏测量仪通过红外线发射二极管和接收二极管实现红外光的发射和接收。

当手指按压在传感器上时,发射二极管的红外光被皮肤吸收,通过接收二极管接收到的红外光信号变化来测量脉搏。

三、硬件实现本设计的硬件主要包括传感器模块、信号处理模块和显示模块。

传感器模块包括红外线发射二极管、接收二极管和运算放大器。

红外线发射二极管和接收二极管通过导线连接到51单片机的I/O口。

信号处理模块包括运算放大器以及带通滤波器,用来放大和滤波信号。

显示模块通过数码管显示测量得到的脉搏数值。

四、软件设计本设计的软件主要由嵌入式C程序编写。

通过定时中断采集传感器模块输出的模拟信号,再经过A/D转换得到数字信号。

通过带通滤波器对数字信号进行滤波处理,消除噪声干扰。

然后利用数字信号的变化来计算心率,并通过串口通信将数据传输到上位机进行显示和存储。

五、实验验证在实验室环境下,通过将脉搏测量仪与医用脉搏测量设备进行对比实验,验证了脉搏测量仪的准确性和实用性。

实验结果表明,基于51单片机的脉搏测量仪能够准确测量人体脉搏,并且与医用设备测量结果具有较高的一致性。

六、创新点及应用前景与传统的脉搏测量仪相比,基于51单片机脉搏测量仪具有体积小、使用方便等优点。

它可以广泛应用于医院、家庭等场景,为人们提供及时、准确的脉搏测量服务。

同时,该设计提供了一个切实可行的思路,可以借鉴和推广到其他医疗设备的设计中。

七、总结本次课题基于51单片机设计了一款脉搏测量仪,通过红外线反射原理实现了脉搏的快速、准确测量。

基于51单片机的心率计设计

基于51单片机的心率计设计

基于51单片机的心率计设计一、引言心率是人体健康状况的一个重要指标,测量心率对于预防心血管疾病和监控身体健康非常重要。

本文将介绍基于51单片机的心率计的设计。

二、硬件设计1. 传感器心率计的核心是心率传感器,用于检测心脏的跳动并转化为电信号。

常见的心率传感器有光电传感器和压电传感器。

本设计选用光电传感器,通过红外光发射二极管和光敏二极管组成,以非侵入性的方式测量心率。

2. 信号放大与滤波电路由于心率信号较小,需要经过放大与滤波电路进行信号处理。

设计中使用运放对信号进行放大,并通过带通滤波器滤除杂散信号。

3. 数模转换放大滤波后的心率信号是模拟信号,需要通过模数转换器(ADC)将其转换为数字信号,以便后续处理和显示。

4. 显示屏心率计的设计中需要一个合适的显示屏来显示测量出的心率数值。

常见的显示屏有LCD液晶屏和LED数码管。

5. 51单片机本设计使用51单片机作为控制核心,负责对信号的采集、处理和显示。

51单片机具有成熟的开发环境和丰富的外设资源,非常适合嵌入式系统的设计。

三、软件设计1. 信号采集通过51单片机的IO口连接传感器,定时采集传感器输出的心率信号,并将其转换为数字信号。

2. 信号处理通过软件算法对采集到的心率信号进行滤波和处理,去除噪声和干扰,提取出准确的心率数值。

3. 心率计算根据心率信号的特征,设计一个合适的算法对心率进行计算。

常用的算法有峰值检测法和自相关法等。

4. 数据显示将计算得到的心率数值通过LCD屏或数码管显示出来,以便用户直观地了解自己的心率状况。

四、实验结果与讨论经过实验验证,基于51单片机的心率计设计能够准确地测量心率,并将心率数值显示在屏幕上。

通过与商用心率计的比对,结果显示该设计具有较高的准确性和稳定性。

五、应用前景基于51单片机的心率计设计可以应用于医疗领域、体育训练和健康监控等方面。

例如,可以将心率计嵌入健康手环中,实时监测用户的心率状况,并提醒用户进行适当的运动。

单片机实验报告

单片机实验报告
unsigned int second;
unsigned int count;
void display(unsigned int d);
void delay(unsigned int n);
main()
{
second=0;
count=0;
TMOD=0x61; //T0定时器方式1 T1计数器方式2
TH1=255; TL1=255; //T2计数初值计一次即中断
}
else
{TR1=0;TR0=0;TH0=(65536-50000)/256;TL0=(65536-50000)%256;} //满一分钟停止TR1
}
void time1(void)interrupt 3 using 2
{
second++;
}
void int_1() interrupt 0 using 3 //0号中断(外中断0),使用3号寄存器组
{
display(second);
}
}
void time0(void) interrupt 1 using 1
{
count++; //中断一次计一次数
if(count<1200)
{
TH0=(65536-50000)/256; //T1计数初值(65535-50000)/fosc/12 50ms
TL0=(65536-50000)%256;
outdata[2]=10; //不显示
outdata[3]=d/10000; //取最高位
outdata[4]=d/1000%10; //取次高位
outdata[5]=d/100%10; //取次次高位
outdata[6]=ቤተ መጻሕፍቲ ባይዱ/10%10; //取次低位

基于51单片机心率测量电路设计

基于51单片机心率测量电路设计

基于51单片机心率测量电路设计作者:蒋铁生来源:《科学导报·学术》2019年第10期1.1选题背景心率是人的重要的可被测量的生理指标。

在现代社会,随着人类社会生活水平的提高,人们的生活方式和饮食结构的改变,高血压,冠心病等心脏方面的疾病渐渐成为人们的常见病。

由有关数据显示,中国城市人口每五个成年人中就有一个人患有不同程度的心血管方面的疾病。

由于心脏不健康而导致的心肌梗塞,猝死等事件时有发生,并且心脏疾病方面发病率逐年提升,发病年龄也是下降趋势。

要减小心血管疾病给人们带来的健康危害,早期有效的测量設备与判断方法是十分重要的。

心率是人体十分重要有效的信息,是可以被检测的生物信号,它是反映心脏是否正常工作的一个重要参数,可以根据心率值判断一个人是否患有心率过速,早搏等几种常见的心脏病。

因此,设计一种简单,能显示心率的仪器十分有必要。

1.2 主要内容本心率测量电路设计是一个硬软件相结合的设计类题目。

要求设计一个基于51单片机的心率的检测电路。

可以实现与心率检测功能,整个系统电路的设计功能包括:1、使用MAX30102心率传感器模块进行心率采集;2、使用STC89C52芯片为控制核心;3、使用OLED液晶进行显示。

2 总体方案设计2.1整体设计思路本设计采用的是STC89C52芯片,通过STC89C52最小系统,心率模块、液晶屏,实现心率的测量与现实。

实时的心率显示在OLED液晶上。

由于STC89C52有较多的引脚数,能实现OLED液晶驱动以及实时心率测量等这些功能。

电源部分是通过USB线来外接可移动电源或电池供电。

2.2心率测量模块光电式传感器。

光电式传感器测量方法灵活多样,可测量参数较多,具有非接触,高精度,高分辨率,高可靠性,反映快等特点。

适合用来测量心率。

测量原理:随着心脏的跳动,人体组织半透明随之改变,当血液到达人体组织时,组织班透明度减小,当血液回流心脏时,组织的半透明度加大。

这种现象在人体组织较薄的地方比较明显,例如手指尖,耳垂部位。

基于单片机的心率测试仪设计

基于单片机的心率测试仪设计

基于单片机的心率测试仪设计心率测试仪是一种用来测量人体心率的设备,它使用单片机技术来实现数据处理和显示功能。

本文将介绍基于单片机的心率测试仪的设计原理、硬件组成以及软件实现。

一、设计原理心率测试仪的设计原理是通过测量人体的心电信号来计算心率。

心电信号是由心脏产生的微弱电流,可以通过电极贴在人体皮肤上进行测量。

传感器将心电信号转换为模拟电压信号,然后经过滤波处理和放大处理后,再经过A/D转换,转换为数字信号供单片机处理。

单片机通过计算心电信号的周期来得到心率值,并将结果显示在液晶屏上。

二、硬件组成1.单片机:选择一款适用的单片机,如STM32系列的单片机,具有高性能和丰富的外设接口,以满足心率测试仪的需求。

2.心电信号传感器:选择一款专门用于心电信号测量的传感器,如AD8232芯片,可以提供可靠的心电信号采集。

3.滤波器:使用滤波器对心电信号进行滤波处理,去除杂散信号,只保留心电信号的频率分量。

4.放大器:为了增强心电信号的幅度,需要使用放大器来对滤波后的信号进行放大处理,方便后续的A/D转换。

5.A/D转换器:将放大后的模拟信号转换为数字信号,供单片机进一步处理。

三、软件实现1.心电信号采集与处理:通过传感器采集心电信号,并经过滤波和放大处理,得到滤波后的模拟信号。

2.A/D转换:将模拟信号通过A/D转换器转换为数字信号,供单片机处理。

3.心率计算:单片机通过计算心电信号的周期来得到心率值,可以使用峰值检测算法或阈值判定算法来实现。

4.数据显示:将计算得到的心率值通过串口或并口发送到液晶屏上进行显示,可以设计显示界面,包括心率值、时间等信息。

总结:基于单片机的心率测试仪设计主要包括硬件组成和软件实现两个部分。

硬件组成包括单片机、心电信号传感器、滤波器、放大器、A/D 转换器和液晶屏等。

软件实现包括心电信号采集与处理、A/D转换、心率计算和数据显示等。

通过合理的设计和编程,可以实现一个功能完善的心率测试仪。

基于单片机红外线心率计装调实训单片机部分PPT课件

基于单片机红外线心率计装调实训单片机部分PPT课件

光电传感器的红外发射管的电流在2~10mA之间时
发光强度与电流的线性最佳;红外发射的正向导通压降U
正=1.0V左右
正常使用时接收管的最大电流不超过250μA。
光电转换电路
传感器检测
挡 红黑
发射管 接收管
200kΩ
或2MΩ挡 红黑
发射管正负极判别 俯视图接收管eC、E极判别
若表头显示为0.9~1.1V, 红笔接的是正极,
③ 放大滤波后的信号为模拟信号,而单片机处理的 信号为数字信号,因此还需模数转换电路。
放大电路
电路设计
来自光电转换电路的信号很微弱(幅度为2mV左右,频
率为0.7Hz~3Hz),而计数器处理的信号为5V左右,因此
需放大3000倍左右,通常采用运放进行放大,常用于前置
放大器的的:μA741、LF347(低精度)、OP-27(中精
黑笔接的是负极+。
若表头显示为 “1” 红笔接的是负极
若表头有几十k或几百k 的阻值显示,红表捧接
c 的为C极,黑表捧接的为
E极。
光电转换电路
安装调试
① 在实验板上完成元器件及短路线的安装; 链接 ② 根据电路图检查电路是否安装正确; ③ 如正确,加入5V电压,用示波器测量光电传感器
接收管c极的波形,应为幅度为5V左右的一条直线。用手
指触摸传感器,这条直线会明显向下移动。用数字万用表
测量A点电压为1V左右。把测量结果填入教材250页表B8中
+5V
R2
R3
TCRT5000
A
1V
+
cB +
e
4.5—5V 4—4.5V
C1
☜ 放大整形 电路
光电转换电路

心率电路图 焊接资料

心率电路图 焊接资料

一、电路原理图部分
1.1心电采集部分
如图1-1所示,为心电采集电路原理图,其中,图中A1、A2、A3、A4为普通运放LM324内部的4个运算放大器,其余电阻电容值图中均有显示;U1、U2、U3为输入端,其中U1、U2分别接到左右手或者胳膊,U3与U1或者U2相近位置即可,输出端ADN、ADP接KL25最小系统板的E20、E21引脚即可。

图1-2为LM324引脚图。

图1-1 心电采集部分原理图
图1-2 LM324引脚图
1.2 蓝牙部分
如图1-3所示为蓝牙模块焊接示意图,其中,TXD 引脚连接单片机的UART0模块的RXD 引脚(最小系统板的A15引脚),RXD 连接单片机UART0模块的TXD 引脚(最小系统板的A14引脚)。

图1-3 蓝牙部分焊接图
1.3 电源部分
如图1-4(1)为电源部分原理图,1-4(2)为电源管理芯片LM1117-3.3V 的实物引脚图。

图1-4(a) 电源部分原理图 图1-4(b) LM1117-3.3V 引脚图
图1-4 电源部分原理图。

STM32单片机生理监控心率脉搏设计

STM32单片机生理监控心率脉搏设计

STM32单片机生理监控心率脉搏设计随着现代生活节奏的加快和生活方式的改变,人们对自身的生理健康开始日益关注。

心率和脉搏是人体生理健康状况的重要指标之一,因此设计一种可实时监测心率和脉搏的生理监控系统对人们的健康来说具有重要意义。

为了实现这一目标,可以使用STM32单片机作为系统的核心部件。

STM32单片机是一种高性能、低功耗、容易编程的微控制器,能够满足心率脉搏监测系统的要求。

首先,需要选择合适的传感器来获取心率和脉搏信号。

常见的心率和脉搏传感器通常使用光电传感技术,通过发射红外光并测量反射光的强度来检测心率和脉搏。

传感器可以将检测到的信号转换为电信号,供STM32单片机进行处理。

接下来,需要设计合适的信号处理算法来提取心率和脉搏。

这个算法通常包括滤波、峰值检测和计算心率的步骤。

滤波可以去除噪音,并保留心搏信号的主要成分。

峰值检测可以找到心搏信号的峰值,用于计算心率。

利用STM32单片机的功耗低、运算速度快的特点,可以实现实时的信号处理。

在信号处理过程中,可以将数据显示在液晶显示屏上,以便用户实时查看心率和脉搏的数值。

液晶显示屏可以使用STM32单片机的GPIO口进行控制,通过驱动液晶屏来显示数据。

此外,可以通过串口或蓝牙无线通信模块,将心率和脉搏数据传输给手机等外部设备进行进一步处理和存储。

通过与手机应用程序配合使用,可以实现更加便捷的数据管理和分析。

为了提高用户的使用体验,还可以加入一些附加功能。

例如,可以设置阈值,当心率和脉搏超过或低于设定阈值时,系统会发出声音或震动警告用户。

此外,还可以增加一个记步功能,实时统计用户的运动步数和消耗的卡路里。

综上所述,STM32单片机生理监控心率脉搏设计包括传感器选型、信号处理算法开发、液晶显示屏控制、数据传输和附加功能等方面。

通过合理设计和实现,可以实现一个实时监测心率和脉搏的生理监控系统,为人们的健康提供有效的检测和监护。

心率计设计

心率计设计

心率计设计 一、检测的基本原理:随着心脏的搏动,人体手腕的脉搏及颈部的搏动较为明显,我们采用压电传感器放在上述位置,把压电传感器测到的信号转换成脉冲并进行整形、计数和显示,就能实现实时检测脉搏次数的目的。

二、心率监测仪系统总体设计心率监测仪的总体设计电路框图如图1-1所示,主要包括单片机AT89S52、复位电路、时钟电路、传感器与信号处理电路、显示电路和报警电路。

先用红外光电传感器采集与心跳同频率的信息,当人体组织半透明度的数值较大时,红外光电二极管Dl 发射出的透过人体组织的光强度很弱,光敏三极管无法导通,所以输出端为高电平;当人体组织半透明度的数值较小时,红外光电二极管Dl 发射出的透过人体组织的光强度较强,光敏三极管导通,输出端为低电平,这样就形成了频率与脉搏次数成正比的低频信号,它近似于正弦波形.脉搏为50次,分时,频率是0.78Hz ,199次,分时是3.33Hz ,从传感器过来的是低频信号.该低频信号首先经RC 振荡器滤波以消除高频干扰,经无极性隔直流电容C6、C7加到线性放大器的输入端,经运放IC1A 将信号放大10倍,C1直流耦合滤波,运放IC1B 将信号放大0~50倍,IC1C 与R9、R10、C2、C3组成截止频率为10Hz 左右的二阶低通滤波器以进一步滤除残留的干扰,然后IC1D 将信号放大10倍输出,形成尖脉冲信号,最后555施密特触发器电路将尖脉冲信号转化为同频率的长脉冲信号,该脉冲信号通过555输出端送到单片机后,软件对信号进行处理,最后在数码管上显示数值。

传感器与信号处理电路三、光电式脉搏波传感器本次设计选用透射型光电式脉搏波传感器,其电路如图下图1-2-1所示传感器与信号处理电路AT89S52 单片机 显 示 电 路 复 位 电 路时 钟 电 路 报 警 电 路图1-2-1透射型光电式脉搏波传感器电路图因为传感器输出信号的频率很低,如当脉搏为50次/分钟时,只有0.78Hz,200次/分钟时也只有3.33Hz,因此信号首先经R14、C8组成的低通滤波器滤除高频干扰,当传感器与手指断开或检测到较强的干扰光线时,输出端的直流电压会出现很大变化,用C6、C7背靠背串联组成的双极性耦合电容把它隔断,滤除直流成分。

基于51单片机便携式心率测试仪的研究与设计

基于51单片机便携式心率测试仪的研究与设计

基于单片机的便携式心率测试仪的设计系部名称:电气与信息工程学院专业班级:测控技术与仪器082班学生姓名:李强国指导教师:胡文静职称:教授哈尔滨理工大学二○一三年七月摘要心率测量仪在我们的日常生活中已经得到了非常广泛的应用。

为了提高心率测量仪的简便性和精确度,本设计计了一种基于51单片机的心率测量仪。

系统以AT89S51单片机为核心,以红外发光二极管和光敏三极管为传感器,并利用单片机系统内部定时器来计算时间,由光敏三极管感应产生脉冲,单片机通过对脉冲累加得到脉搏跳动次数,时间由定时器定时而得。

系统运行中能显示脉搏次数和时间,系统停止运行时,能够显示总的脉搏次数和时间,在脉搏数超过设定上下限时蜂鸣器报警。

经测试,系统工作正常,达到设计要求。

关键词:心率测量仪;AT89S51单片机;红外发光二极管;光敏三极管;蜂鸣器。

ABSTRACTHeart rate measuring instrument in our daily lives has been widely used. In order to improve the pulse measuring instrument is simple and accurate, the design method based on 51 single chip Heart rate measuring instrument. System based on the AT89S51 single-chip microcomputer as the core, with the infrared emitting diode and a photosensitive triode sensor three, and the use of MCU internal timer to calculate time, a photosensitive triode induction pulse three, single chip microcomputer based on pulse accumulation by pulse number, and time by the timer timer. System can display the pulse frequency and duration, the system stops running, can display the total pulse frequency and duration, the pulse number exceeds the set upper and lower limit alarm buzzer. After testing, the system is working properly, achieves the design requirements.Key words:Heart rate measuring instrument;AT89S51 single chip microcomputer;Infrared emitting diode;A three transistor;Buzzer.目录摘要 (I)ABSTRACT (II)第1章引言 (3)概述 (3)基于单片机的心率测试仪的发展与应用 (4)设计说明书内容 (5)第2章整体方案分析 (6)任务 (6)要求 (6)设计时要考虑的问题 (6)2.3.1环境光对脉搏传感器测量的影响 (6)2.3.2电磁干扰对脉搏传感器的影响 (7)2.3.3测量过程中运动噪声的影响 (7)系统基本方案 (7)2.4.1脉搏传感器部分 (7)2.4.3显示部分 (9)整体方案 (9)第3章硬件电路设计分析 (11)控制器 (11)3.1.3A T89C51的结构 (12)脉搏信号采集 (15)3.2.1光电传感器的结构及原理 (15)图透射式光电传感器图 (15)3.2.2 信号采集电路 (15)信号放大 (16)波形整形电路 (17)单片机处理电路 (18)显示电路 (19)3.6.1 LED 的综述 (20)3.6.2LED 的结构 (20)3.6.3LED数码管的显示方法 (20)本章总结 (21)第四章软件系统 (22)主程序流程: (22)定时器中断程序流程: (22)INT中断程序流程: (23)显示程序流程: (23)软件说明 (24)结束语 (25)参考文献 (26)致谢 (28)附录 (29)附录A STATEFLOW原理图 (29)附录B SIMULINK原理图 (30)附录C BOILER P LANT MODEL SIMULINK图 (31)附录D STATEFLOW子状态仿真图 (32)附录E STATEFLOW的模型查看器 (34)附录F STATEFLOW 的仿真结果及生成的源代码 (35)附录G英文文献翻译 (42)第1章引言概述心脑血管疾病是当今全球死亡率最高的疾病,是21世纪人类健康的头号杀手。

心率计-心跳监控系统-c语言--毕业设计

心率计-心跳监控系统-c语言--毕业设计

摘要随着社会的飞速发展,人们的生活方式和膳食结构发生了巨大的变化,与此同时,人类因各类突发性疾病的死亡率逐年提高,心血管疾病已成为威胁人类健康的多发病,而且发病率逐年提高,发病年龄也出现下降趋势。

心脏病是人们难以预防的突发性疾病,所以自身的健康也被越来越多的人所重视。

本设计要解决的就是可以测量心率,预防心脏病等心血管方面的疾病的心跳监控系统。

本设计采用以AT89S52单片机为核心控制器件的低成本、高精度、体积小的数字显示的心率计。

心率监控系统的工作原理是利用SC0073型压电传感器接收到人体信号,通过电路中的放大电路将信号放大、整形处理,最后再传给单片机AT89S52处理,处理完成后由三位数码管显示出来。

整个监控系统采用模块化设计,由主程序、预置子程序、信号采集子程序、信号放大处理子程序、显示子程序等模块组成。

传感器探头采集的信号经单片机分析处理,实现心率测量的功能。

在此基础上设计了心跳监控系统的总体方案,通过硬件和软件来实现各个功能模块。

该心跳监控系统可以便捷的测量出人体的心跳,基本实现预定的目标,大大降低测量心跳的时间,且方便携带。

关键词:AT89S52;SC0073;心率;监控系统AbstractWith the rapid social development, people's lifestyle and dietary structure has changed a great deal, at the same time, because of the sudden illness of human mortality is also more and more high, cardiovascular disease has gradually become the frequently-occurring disease threatens human health, and incidence increased year by year, the age also drop. People are hard to prevent heart disease of sudden disease, so their health is also more and more people pay attention to. This design to solve is can measure heart rate, prevent heart disease and other cardiovascular diseases of the heart monitor system.This design uses the AT89S52 SCM as the core to control device of low cost, high precision, small volume of digital display of heart rate plan. Heart rate monitor system uses SC0073 piezoelectric sensors to receive the human body signals, through the circuit of the amplifier circuit will amplification, plastic processing, and finally to to monolithic integrated circuit AT89S52 treatment, after the completion of the three digital pipe by the display. The whole monitoring system uses modular design, the main program, preset subroutines, signal acquisition procedure, amplification processing procedure, display subroutines etc module. Sensor probe acquisition of the signal analysis and processing of SCM, realize the function of the heart rate measurement. Based on this design heart beat the overall scheme of the monitoring system, through the hardware and software to achieve each functional modules.The heart rate monitor system can be convenient measure the human heartbeat, basic for achieving the goal, and greatly reduce measuring the heartbeat of time, and easy to carry.Key Words:AT89S52;SC0073;heart rate;monitor system目录1 引言 (1)2 总体设计 (3)2.1 心跳监控系统原理 (3)2.2 总体电路框图设计 (3)3元器件的选择及其功能介绍 (5)3.1 单片机AT89S52 (5)3.2 低功率运算放大器LM324N (8)3.3 SC0073 微型动态脉搏微压传感器 (9)3.4 数码管 (10)4 系统硬件设计 (12)4.1 单片机最小系统 (12)4.1.1 复位电路 (12)4.1.2 振荡电路 (13)4.2 心跳信号采集电路 (13)4.3 滤波电路 (14)4.4 信号比较电路 (15)4.5 报警电路 (16)4.6 显示电路 (17)4.7 系统总体设计原理图 (18)5 软件设计 (19)5.1 主函数 (19)5.3显示模块 (22)5.4 计数模块 (24)6 系统仿真 (25)6.1 单片机部分仿真 (25)6.2 信号采集部分调试 (25)参考文献 (27)附录1 系统原理图 (28)附录2 总程序 (29)附录3 毕业设计作品说明书 (32)1 引言随着社会的飞速发展,人们的生活方式和膳食结构发生了巨大的变化,与此同时,人类因各类突发性疾病的死亡率逐年提高,心血管疾病已成为威胁人类健康的多发病,而且发病率逐年提高,发病年龄也出现下降趋势。

单片机测量心率电路原理

单片机测量心率电路原理
IC2、X1、R10、C5等组成单片机电路。单片机对由P3.2输入的脉冲信号进行计算处理后,送到数码管显示。发光二极管VD3作脉搏测量状态显示,脉搏每跳动一次,VD3点亮一次。
三只数码管VT1~VT3、R12-R21等组成数码显示电路。本机采用动态扫描显示方式,使用共阳数码管,P3.3~P3.5口作三只数码管的动态扫描位驱动码输出,通过三极管VT1-VT3驱动数码管。P1.0-P1.6口作数码管段码输出。
定时器TO的中断时间为5ms,每中断一次计时变量n加1,因此计时的基本单位为5ms,例如一个脉搏脉冲周期对应的n值为240,则对应的时间为1.2s,由此可得每分钟脉搏数为50。如果n的值达到2000,即10秒钟仍没有发生外部中断,则表示没有脉搏脉冲信号输入,于是n被清零,测量结果显示也为0。
读数采用三位数码显示。定时器TO每中断一次显示一个位,因此3次中断就可以刷新一次数据,即15ms刷新一次数据。
从P3.2口输入的与脉搏相对应的脉冲信号作为外部中断0的请求中断信号,外部中断采用边沿触发的方式。由于脉冲信号的频率很低,所以不适宜用计数的方法进行测量,故而采用测脉冲周期的方法进行测量,即用脉冲来控制计时信号,通过计时数计算出脉冲周期,再由脉冲周期计算出频率,从P3.2口每输入一次脉冲信号就能显示一次脉搏数。
二、软件设计
程序用C语言编写,由主程序、外部中断服务程序、定时器TO中断服务程序、延时子程序等模块组成。主程序主要完成程序的初始化。外部中断0服务程序由测量、计算、读数等部分组成。定时中断服务程序由计时、动态扫描显示、无测试信号判断等部分组成。程序中用变量n对时间计数,用变量m对脉搏脉冲信号个数计数。
传感器由红外线发射二极管和接收二极管组成,测量原理如下:将手指放在红外线发射二极管和接收二极管之间,血管中血液的流量随着心脏的跳动变化,由于手指放在光的传递路径中,血管中血液饱和度的变化将引起光的传递强度变化,此变化和心跳的节拍相对应,因此红外接收二极管的电流也跟着心跳的节拍改变,使得红外接收二极管输出与心跳节拍相对应的脉冲信号。该脉冲信号经F1~F3、R3~R5。C1、C2等组成的低通放大器放大,F4、R6、R7、C3组成的放大器进一步放大后,送给由F5、F6、RP1、R8等组成的施密特触发器整形后输出,作为单片机的外部中断信号。电路中的可变电阻RP1用来调整施密特触发器的阈值电梗吹髡缏返牧槊舳取?/DIV>

基于51单片机的脉搏心率测量仪-参考论文

基于51单片机的脉搏心率测量仪-参考论文

基于51单片机的脉搏测量仪摘要:脉搏心率测量仪在我们的日常生活中已经得到了非常广泛的应用。

为了提高脉搏心率测量仪的简便性和精确度,本课题设计了一种基于51单片机的脉搏心率测量仪。

系统以STC89C51单片机为核心,以红外反射式传感器ST188为检测原件,并利用单片机系统内部定时器来计算时间,由红外反射式传感器ST188感应产生脉冲,单片机通过对脉冲累加得到脉搏心率跳动次数,时间由定时器定时而得。

系统运行中能显示脉搏心率次数和时间,系统停止运行时,能够显示总的脉搏心率次数和时间。

经测试,系统工作正常,达到设计要求。

关键词:脉搏心率测量仪;STC89C51单片机;红外反射式传感器一脉搏心率测量仪系统结构脉搏心率测量仪的设计,必须是通过采集人体脉搏心率变化引起的一些生物信号,然后把生物信号转化为物理信号,使得这些变化的物理信号能够表达人体的脉搏心率变化,最后要得出每分钟的脉搏心率次数,就需要通过相应的硬件电路及芯片来处理物理变化并存储脉搏心率次数。

在硬件设计中一般的物理信号就是电压变化。

1.1 光电脉搏心率测量仪的结构光电脉搏心率测量仪是利用光电传感器作为变换原件,把采集到的用于检测脉搏心率跳动的红外光转换成电信号,用电子仪表进行测量和显示的装置。

本系统的组成包括光电传感器、信号处理、单片机电路、数码管显示电路、电源等部分。

1.光电传感器即将非电量(红外光)转换成电量的转换元件,它由红外发射二极管和红外接收三极管组成,它可以将接收到的红外光按一定的函数关系(通常是线性关系)转换成便于测量的物理量(如电压、电流或频率等)输出。

2.信号处理即处理光电传感器采集到的低频信号的模拟电路(包括放大、滤波、整形等)。

3. 单片机电路即利用单片机自身的定时中断计数功能对输入的脉冲电平进行运算得出心率(包括STC89C51、外部晶振、外部中断等)。

4.数码管显示电路即把单片机计算得出的结果用四位一体数码管显示出来。

5. 电源即向光电传感器、信号处理、单片机提供的电源,采用直流5V 电源供电。

基于51单片机的心率体温检测系统设计

基于51单片机的心率体温检测系统设计

目录摘要 (I)Abstract (II)引言 (1)1 控制系统设计 (2)1.1 主控系统方案设计 (2)1.2 脉搏传感器方案设计 (3)1.3 系统工作原理 (5)2 硬件设计 (6)2.1 主电路 (6)2.1.1 单片机的选择 (6)2.1.2 STC89C51的主要功能及性能参数 (6)2.1.3 STC89C51单片机引脚说明 (6)2.2 驱动电路 (8)2.2.1 比较器的介绍 (8)2.3放大电路 (8)2.4最小系统 (11)3 软件设计 (13)3.1编程语言的选择 (13)3.2 Keil程序开发环境 (13)3.3 STC-ISP程序烧录软件介绍 (14)3.4 CH340串口程序烧写模块介绍 (14)4 系统调试 (16)4.1 系统硬件调试 (16)4.2 系统软件调试 (16)结论 (17)参考文献 (18)附录1 总体原理图设计 (20)附录2 源程序清单 (21)致谢 (25)摘要随着日新月异科技发展,在心率体温测量方面,我们取得了迅速的发展,就近日而言,脉搏测量仪已经在多个领域大展身手,除了在医学领域有所建树,在人们的日常生活方面的应用也不断拓展,如检疫中心的额温枪都用到了技术先进的脉搏测量仪。

在今年的疫情爆发的同时,我们可以积极应对,利用所学的知识,方便高效地检测出人体有无异常体温,在上学签到时,我们可以利用此来检测温度,预防集体性感染事件。

为了在心率测量仪的精准性和便携性方面做出重大改变,我计划设计一种以51单片机为核心的心率体温测量仪。

我们的心率体温检测系统以STC89C51单片机为核心,借用单片机系统的内部计时器计算时间。

其大致的步骤为通过ST188光电传感器感应生成脉冲,心跳次数由单片机累计所得,其对应的时间根据定时器获取。

本设计使用的时候可以展现脉搏心率次数以及时间长短,当其终止使用的时候可以展示总的脉搏心率次数以及时间长短。

经过我的个人测试,系统成功运行,符合设计要求。

基于51单片机的心率体温检测程序 (2)

基于51单片机的心率体温检测程序 (2)

基于51单片机的心率体温检测程序引言心率体温检测在医疗行业中具有重要的意义。

传统的心率体温检测设备通常较为复杂且体积较大,而近年来,随着51单片机技术的不断进步,通过单片机来实现心率体温检测变得更加简便和便携。

本文将介绍一种基于51单片机的心率体温检测程序。

心率检测原理心率检测的原理是通过测量心脏搏动的频率来推测心率。

常用的方法是将一个光传感器放置在皮肤上,通过光的反射来检测血液的流动情况。

当血液流动时,反射的光强度会发生变化。

通过测量光传感器的输出电压变化,可以计算出心率。

体温检测原理体温检测的原理是通过测量人体的温度来推测体温。

常见的方法是使用温度传感器,将其放置在人体的腋下或口腔内。

传感器会感应到人体的温度变化,并将温度转化为电信号。

通过测量传感器的输出电压或电流,可以获得人体的体温。

设备列表•51单片机开发板•光传感器•温度传感器•LCD显示屏•连接线硬件连接1.将光传感器连接到51单片机的模拟输入引脚。

2.将温度传感器连接到51单片机的模拟输入引脚。

3.将LCD显示屏连接到51单片机的数字输出引脚。

软件实现1.配置51单片机的模拟输入引脚和数字输出引脚。

2.在主程序中循环执行以下动作:–读取光传感器的输出电压,并计算出心率。

–读取温度传感器的输出电压或电流,并计算出体温。

–将心率和体温值显示在LCD屏幕上。

以下是伪代码示例:#include <reg51.h>sbit LightSensor = P1^0;sbit TempSensor = P1^1;sbit LCD_RS = P2^0;sbit LCD_RW = P2^1;sbit LCD_EN = P2^2;void ReadLightSensor(){// 读取光传感器的输出电压}void ReadTempSensor(){// 读取温度传感器的输出电压或电流}void DisplayData(){// 在LCD屏幕上显示心率和体温值}void main(){while(1){ReadLightSensor();ReadTempSensor();DisplayData();}}总结基于51单片机的心率体温检测程序是一种简便和便携的心率体温检测解决方案。

单片机监测电路原理及应用

单片机监测电路原理及应用

单片机监测电路原理及应用单片机监测电路是指使用单片机来对某些电路参数进行实时监测和检测,往往用于工业自动化领域或其他需要实时监测电路参数的场合。

本文将介绍单片机监测电路的原理和应用。

一、单片机监测电路原理单片机监测电路的核心是单片机,它用于采集、处理和输出电路的相关参数,包括电压、电流、温度等等。

单片机监测电路的实现方式很多,其中常见的有两种:基于模拟电路和数字电路。

基于模拟电路的单片机监测电路,一般使用模拟电路将要监测的电路参数转换成模拟信号,然后再使用单片机进行采集和处理。

比如,在电机电压监测电路中,单片机需要采集电机的电压信号,一般选择使用电阻分压或变压器将电机的高电压转换成单片机可以接受的低电平信号,然后通过单片机的模拟输入接口采集这个信号并进行处理。

基于数字电路的单片机监测电路,一般选择使用数字传感器或者数字电路将电路参数转换成数字信号,再通过单片机进行采集和处理。

比如,在温度监测电路中,单片机需要采集环境的温度信号,可以使用数字温度传感器将温度转换成数字信号,再通过单片机的数字输入接口进行采集和处理。

无论使用哪种方式实现单片机监测电路,其核心在于单片机的采集和处理能力。

单片机可以通过自带的模拟输入或数字输入接口对电路参数进行采集,然后通过处理程序将这些数据处理出来,做出相应的响应。

二、单片机监测电路应用单片机监测电路可以应用于很多领域,这里主要介绍以下几个方向。

1. 工业自动化工业自动化中需要监测和控制的参数很多,比如机器人系统的位置、姿态、速度、力等,液压系统的压力、流量等,电动机的电流、电压、功率等等。

这些参数都可以通过单片机监测电路实现实时的监测和反馈,从而实现自动化控制,提高生产效率和质量。

2. 新能源监测新能源的发展得到了越来越多的人关注,包括太阳能、风能等等。

这些能源的使用需要对其发电量进行实时监测,从而确定其实际发电能力和使用效果。

单片机监测电路可以用于监测太阳能和风能的发电量,实现实时监测和反馈,从而提高新能源的利用效率。

基于单片机的心率检测系统设计

基于单片机的心率检测系统设计

基于单片机的心率检测系统设计心率检测系统是一种常见的医疗设备,用于监测人体的心率并提供实时反馈和数据记录。

本文将展示基于单片机的心率检测系统的设计。

1.系统概述本系统的设计目标是使用单片机来实现心率检测,并通过显示屏显示心率数据。

该系统的设计要求包括实时监测和显示心率数据,提供用户界面以便用户与系统进行交互等。

2.硬件设计系统的硬件设计包括以下主要组件:-心率传感器:用于检测用户的心率。

-单片机:作为系统的控制中心,负责数据处理和用户界面。

-显示屏:用于显示心率数据和用户界面。

-电源:为系统提供电力支持。

3.软件设计系统的软件设计包括以下主要模块:-心率检测模块:读取心率传感器的数据并进行处理,得到用户的心率数据。

-数据处理模块:将得到的心率数据进行处理,计算出平均心率和心率变化趋势等。

-用户界面模块:为用户提供交互界面,显示心率数据并接收用户的指令。

-数据存储模块:将心率数据保存在存储器中,用于后续分析和回放。

4.系统工作原理系统的工作原理如下:-用户将心率传感器与身体接触,传感器将用户的心率数据传输到单片机。

-单片机通过心率检测模块读取传感器的数据,并进行处理得到准确的心率数据。

-单片机将心率数据通过显示屏显示给用户,并提供用户界面供用户与系统进行交互。

-单片机将心率数据存储在存储器中,以便后续分析和回放。

5.系统优势和应用-优势:-高精度和可靠性:通过精准的心率传感器和数据处理算法,可以得到准确的心率数据。

-实时监测和反馈:系统可以实时监测并显示用户的心率数据,使用户能够及时了解自己的身体状况。

-数据存储和分析:系统可以将心率数据保存在存储器中,供用户和医生进行后续分析和回放。

-应用:-医疗领域:用于疾病监测和治疗过程中的心率监测。

-运动健康领域:用于跑步、健身等运动过程中的心率监测。

-日常生活:用于日常心率监测,提醒用户及时调整心态和行为。

总结:基于单片机的心率检测系统是一种功能强大且实用的医疗设备。

基于51单片机的心率计设计

基于51单片机的心率计设计

基于51单片机的心率计设计心率计是一种用于测量人体心率的设备,以帮助人们掌握自己的健康状况。

本文将介绍基于51单片机的心率计的设计思路和实现方法。

首先,我们需要了解心率的原理和测量方法。

心率是指心脏在单位时间内跳动的次数,用每分钟跳动次数表示。

常见的心率测量方法包括心电图、脉搏计和光电传感器等。

在本设计中,我们将使用光电传感器来测量心率。

光电传感器是一种通过光电效应测量光强变化的传感器。

在心率测量中,光电传感器可以用于检测人体指尖的血液流动情况,从而间接地测量心脏收缩的频率和心率。

具体实现时,我们可以将光电传感器连接到51单片机的输入引脚上。

同时,我们需要使用一个合适的光源,如红外线发光二极管,以提供光线来照射到指尖。

当心脏收缩时,血液的流动速度会增加,导致光线的吸收量发生变化。

通过检测光电传感器输出的电压信号的变化,我们可以得到心率的测量结果。

在程序设计上,我们可以使用51单片机的定时器来控制心率测量的时间间隔。

通过定时器中断,在固定的时间间隔内取样光电传感器的输出,并计算心率的值。

我们可以根据光电传感器输出的模拟电压信号,使用ADC转换将其转为数字信号,然后通过一系列算法处理得到心率的结果。

此外,为了方便用户查看心率结果,我们可以连接一个LCD显示屏到51单片机的输出引脚上。

通过LCD显示屏,用户可以即时地看到自己的心率数值,并据此对自己的身体状况进行判断和调整。

总结起来,基于51单片机的心率计设计涉及硬件电路的搭建和软件程序的编写。

硬件方面,我们需要使用光电传感器、光源和LCD显示屏等元件,并将它们与51单片机连接起来。

软件方面,我们需要编写定时器中断程序、ADC转换程序和心率计算程序等。

通过这两方面的协作,我们可以实现一个简单而实用的基于51单片机的心率计。

综上所述,本设计通过光电传感器、LCD显示屏和51单片机等元件的结合,实现了一种基于51单片机的心率计。

以此为基础,我们可以进一步完善该设计,加入更多的功能和特性,以满足用户的需要。

心率检测仪的电路设计及基于STM32的嵌入式系统实现

心率检测仪的电路设计及基于STM32的嵌入式系统实现

心率检测仪的电路设计及基于STM32的嵌入式系统实现心率检测仪是一种用于测量人体心率的设备,它可以帮助人们监测心脏健康状况并及时发现异常。

本文将介绍心率检测仪的电路设计以及基于STM32的嵌入式系统实现。

心率检测仪的电路设计是整个系统的核心部分,它包括传感器、信号处理模块和显示模块。

首先,我们需要选择一个合适的心率传感器。

常见的心率传感器有光电传感器、压力传感器和心电图传感器等。

光电传感器是最常用的一种,它通过测量血液中血红蛋白的反射光强度来确定心率。

在电路设计中,我们可以使用光电二极管传感器和光敏二极管来实现。

接下来,我们需要对传感器输出的信号进行处理。

首先,需要对传感器输出的光信号进行放大,以增强信号的强度。

可以使用运放进行放大处理。

其次,需要通过滤波器进行滤波处理,以去除噪声干扰和不必要的频率成分。

可以采用低通滤波器来实现。

在信号处理模块之后,我们需要将处理后的信号进一步转换成数字信号,以供嵌入式系统的处理。

这可以通过模数转换器(ADC)来实现。

ADC将连续的模拟信号转换成离散的数字信号,以便进行数字信号处理。

接下来,我们将介绍基于STM32的嵌入式系统实现。

STM32是一系列32位内核的单片机,具有丰富的外设接口和处理能力,非常适合用于嵌入式系统的设计。

首先,我们需要选取一款适合的STM32芯片,根据需求选择合适的型号。

然后,我们需要编写相应的软件程序,包括初始化设置、数据采集和处理、显示功能等。

在软件程序中,首先需要进行STM32芯片的初始化设置,包括时钟配置、GPIO口设置等。

然后,在主循环中不断读取ADC转换后的数字信号,进行数据处理和心率计算。

可以采用一些算法如峰值检测法或相关性分析法来计算心率。

最后,将心率数据通过显示模块显示出来。

为了降低功耗,可以使用睡眠模式来控制系统的运行状态。

当没有心率检测需求时,可以将系统进入睡眠状态,以达到节能的目的。

此外,为了增加系统的可靠性和稳定性,还可以在嵌入式系统中加入一些保护功能,例如温度保护、电压保护等。

STM32单片机在心率检测仪中的应用研究与设计

STM32单片机在心率检测仪中的应用研究与设计

STM32单片机在心率检测仪中的应用研究与设计心率检测仪是一种用于测量人体心率的设备,它通过检测心脏搏动的频率来获取人体的心率数据。

在现代医疗和健康监测领域,心率检测仪被广泛应用于医院、健身房、家庭等场景。

本文将介绍STM32单片机在心率检测仪中的应用研究和设计。

1. 简介心率检测仪通常由多个部分组成,包括心率传感器、信号调理电路、数据处理模块和显示模块。

其中,数据处理模块是关键部分,负责对从心率传感器获取的模拟信号进行数字化处理,并计算出心率值。

STM32单片机作为一种嵌入式微控制器,具有高性能、低功耗和丰富的外设接口,非常适合用于心率检测仪的数据处理模块。

2. STM32单片机的选择在选择适合的STM32单片机型号时,我们需要考虑以下几个方面:- 处理能力:根据心率检测仪的要求,选择适当的处理器速度和内存容量,以满足实时处理心率数据的需求。

- 电源管理:心率检测仪通常是便携式设备,需要考虑芯片的低功耗特性和电源管理功能,以延长电池寿命。

- 外设接口:选择具备足够的通信接口和IO口,以连接心率传感器、显示屏和其他外部设备。

3. 心率传感器接口设计心率传感器通常采用光电测量原理,通过检测皮肤上的血液流动变化来获得心率数据。

在STM32单片机中,我们可以使用模拟输入通道来接收心率传感器的模拟信号。

该模拟信号由心脏搏动引起的光电信号经过信号调理电路处理后产生。

4. 数据处理算法设计在STM32单片机中,我们可以使用数字信号处理算法来处理从心率传感器获得的模拟信号,并计算出心率值。

常用的方法包括傅里叶变换、滤波和波形识别等。

这些算法可以通过软件实现,也可以借助STM32单片机的硬件加速器和数学运算预处理模块来提高计算效率。

5. 数据显示设计STM32单片机通常配备有液晶显示屏和触摸屏接口,可以用于显示心率数据和用户交互。

在心率检测仪中,我们可以将心率值实时显示在屏幕上,并设计相关界面和功能,如历史数据记录、报警功能等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器由红外线发射二极管和接收二极管组成,测量原理如下:将手指放在红外线发射二极管和接收二极管之间,血管中血液的流量随着心脏的跳动变化,由于手指放在光的传递路径中,血管中血液饱和度的变化将引起光的传递强度变化,此变化和心跳的节拍相对应,因此红外接收二极管的电流也跟着心跳的节拍改变,使得红外接收二极管输出与心跳节拍相对应的脉冲信号。该脉冲信号经F1~F3、R3~R5。C1、C2等组成的低通放大器放大,F4、R6、R7、C3组成的放大器进一步放大后,送给由F5、F6、RP1、R8等组成的施密特触发器整形后输出,作为单片机的外部中断信号。电路中的可变电阻RP1用来调整施密特触发器的阈值电梗吹髡缏返牧槊舳取?/DIV>
IC2、X1、R10、C5等组成单片机电路。单片机对由P3.2输入的脉冲信号进行计算处理后,送到数码管显示。发光二极管VD3作脉搏测量状态显示,脉搏每跳动一次,VD3点亮一次。
三只数码管VT1~VT3、R12-R21等组成数码显示电路。本机采用动态扫描显示方式,使用共阳数码管,P3.3~P3.5口作三只数码管的动态扫描位驱动码输出,通过三极管VT1-VT3驱动数码管。P1.0-P1.6口作数码管段码输出。
定时器TO的中断时间为5ms,每中断一次计时变量n加1,因此计时的基本单位为5ms,例如一个脉搏脉冲周期对应的n值为240,则对应的时间为1.2s,由此可得每分钟脉搏数为50。如果n的值达到2000,即10秒钟仍没有发生外部中断,则表示没有脉搏脉冲信号输入,于是n被清零,测量结果显示也为0。
读数采用三位数码显示。定时器TO每中断一次显示一个位,因此3次中断就可以刷新一次数据,即15ms刷新一次数据。
单片机脉搏测量仪
时间:2010-01-27 12:16:01来源:作者:
单片机脉搏测量仪
本文介绍一种用单片机制作的脉搏测量仪,只要把手指放在传感器内,很快就可以精确测出每分钟脉搏数,测量的结果用三位数字显示出来。
一、电路工作原理
电路原理见附图。电路由传感器电路、信号放大和整形电路、单片机电路、数可将红外线发射二极管和接收二极管分别固定在一个塑料夹子的两侧,用时只需将夹子夹在手指上即可。制作时注意保证红外线接收二极管在使用时不要受到外界光线的干扰。
调试的主要工作是通过对RP1的调节来调整电路的灵敏度,RP1的阻值越小灵敏度越高,反之灵敏度越低。调试时可通过VD3的发光状态进行观察,如果脉搏跳动时VD3不跟随发光,则说明灵敏度偏低,不易检测到脉搏信号;如果在没有脉搏跳动时VD3偶尔也点亮发光,说明灵敏度偏高,容易受到干扰。
从P3.2口输入的与脉搏相对应的脉冲信号作为外部中断0的请求中断信号,外部中断采用边沿触发的方式。由于脉冲信号的频率很低,所以不适宜用计数的方法进行测量,故而采用测脉冲周期的方法进行测量,即用脉冲来控制计时信号,通过计时数计算出脉冲周期,再由脉冲周期计算出频率,从P3.2口每输入一次脉冲信号就能显示一次脉搏数。
二、软件设计
程序用C语言编写,由主程序、外部中断服务程序、定时器TO中断服务程序、延时子程序等模块组成。主程序主要完成程序的初始化。外部中断0服务程序由测量、计算、读数等部分组成。定时中断服务程序由计时、动态扫描显示、无测试信号判断等部分组成。程序中用变量n对时间计数,用变量m对脉搏脉冲信号个数计数。
相关文档
最新文档