中考数学 二次函数综合试题含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、二次函数真题与模拟题分类汇编(难题易错题)

1.(6分)(2015•牡丹江)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:

(1)求抛物线的解析式;

(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.

注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.

【答案】(1)y=-2x-3;(2).

【解析】

试题分析:(1)把A,B两点坐标代入,求待定系数b,c,进而确定抛物线的解析式;(2)连接BE,点F是AE中点,H是AB中点,则FH为三角形ABE的中位线,求出BE的长,FH就知道了,先由抛物线解析式求出点E坐标,根据勾股定理可求BE,再根据三角形中位线定理求线段HF的长.

试题解析:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0),∴把A,B两点坐标

代入得:,解得:,∴抛物线的解析式是:y=-2x-3;(2)∵点E(2,m)在抛物线上,∴把E点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E(2,﹣3),∴BE==.∵点F是AE中点,点H是抛物线的对称轴与

x轴交点,即H为AB的中点,∴FH是三角形ABE的中位线,∴FH=BE=×=.∴

线段FH的长.

考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理.

2.如图,抛物线y=1

2

x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,

0).

(1)求抛物线的解析式及顶点D 的坐标;

(2)判断△ABC 的形状,证明你的结论;

(3)点M 是抛物线对称轴上的一个动点,当MC +MA 的值最小时,求点M 的坐标.

【答案】(1)抛物线的解析式为y =213x -22x ﹣2,顶点D 的坐标为 (32,﹣258

);(2)△ABC 是直角三角形,证明见解析;(3)点M 的坐标为(

32,﹣54). 【解析】

【分析】

(1)因为点A 在抛物线上,所以将点A 代入函数解析式即可求得答案;

(2)由函数解析式可以求得其与x 轴、y 轴的交点坐标,即可求得AB 、BC 、AC 的长,由勾股定理的逆定理可得三角形的形状;

(3)根据抛物线的性质可得点A 与点B 关于对称轴x 32

=对称,求出点B ,C 的坐标,根据轴对称性,可得MA =MB ,两点之间线段最短可知,MC +MB 的值最小.则BC 与直线x 32

=

交点即为M 点,利用得到系数法求出直线BC 的解析式,即可得到点M 的坐标. 【详解】 (1)∵点A (﹣1,0)在抛物线y 212x =

+bx ﹣2上,∴2112⨯-+()b ×(﹣1)﹣2=0,解得:b 32=-

,∴抛物线的解析式为y 21322x =-x ﹣2. y 21322x =-x ﹣212=(x 2﹣3x ﹣4 )21325228

x =--(),∴顶点D 的坐标为 (3

2528,

-). (2)当x =0时y =﹣2,∴C (0,﹣2),OC =2.

当y =0时,

21322

x -x ﹣2=0,∴x 1=﹣1,x 2=4,∴B (4,0),∴OA =1,OB =4,AB =5.

∵AB 2=25,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20,∴AC 2+BC 2=AB 2.∴△ABC 是直角三角形. (3)∵顶点D 的坐标为 (3

2528,-),∴抛物线的对称轴为x 32

=.

∵抛物线y

1

2

=x2+bx﹣2与x轴交于

A,B两点,∴点A与点B关于对称轴x

3

2

=对称.∵A(﹣1,0),∴点B的坐标为(4,0),当x=0时,y2

13

22

x

=-x﹣2=﹣2,则点C 的坐标为(0,﹣2),则BC与直线x

3

2

=交点即为M点,如图,根据轴对称性,可得:MA=MB,两点之间线段最短可知,MC+MB的值最小.

设直线BC的解析式为y=kx+b,把C(0,﹣2),B(4,0)代入,可得:

2

40

b

k b

=-

+=

,解得:

1

2

2

k

b

=

⎪=-

,∴y

1

2

=x﹣2.

当x

3

2

=时,y

135

2

224

=⨯-=-,∴点M的坐标为(

35

24

-,).

【点睛】

本题考查了待定系数法求二次函数解析式、一次函数的解析式、直角三角形的性质及判定、轴对称性质,解决本题的关键是利用待定系数法求函数的解析式.

3.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.

(1)求出抛物线C1的解析式,并写出点G的坐标;

(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:

(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分

相关文档
最新文档