拉姆达矩阵

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

λ-矩阵

一、λ矩阵的不变因子及初等因子

定义1 设多项式矩阵()A λ的秩1r ≥,而1k r ≤≤. ()A λ中所有k 阶子式的首相系数为1的最大公因子()k D λ,称为()A λ的k 阶行列式因子. 当k r >时,由秩的定义可知()0k D λ=. 另外,为了讨论方便,规定0()1D λ=.

定理1 初等变换不改变矩阵的各阶行列式因子. 因而等价的矩阵有相同的各阶行列式因子.

定义2 1()

()()

i i i D d D λλλ−=(1,2,,i r =⋯),称为()A λ的不变因子. 规定:

()0i d λ=()n i r ≥>. 暗含了1()()i i d d λλ+的结论.

定义3 下面的矩阵称为λ-矩阵()A λ的Smith 标准形

12()()()()00r d d J d λλλλ

=

⋱⋱.

定理2 λ-矩阵()A λ的Smith 标准形是唯一的.

推论1 λ-矩阵()A λ与()B λ等价⇔()A λ与()B λ有相同的行列式因子或有相同的不变因子.

定义4 设λ-矩阵()A λ的不变因子为12(),(),,()r d d d λλλ⋯. 将()i d λ分解为C 上的一次因式之积:

111122212212

11221212()()()()()()()()()()()()s s

rs r r k k k s k k k

s k k k r

s d d d λλλλλλλλλλλλλλλλλλλλλ =−−− =−−−

=−−− ⋯⋯⋯⋯⋯()∗ 其中12,,,s λλλ⋯互不相同,0ij k ≥,1,1.i r j s ≤≤≤≤ 因1()()i i d d λλ+,所以1,,11,1.ij i j k k i r j s +≤≤≤−≤≤ 在()∗中所有指数大于零的因子

(),11,1,0ij k

j ij i r j s k λλ−≤≤−≤≤>

称为()A λ的初等因子.

由初等因子求不变因子:由初等因子的定义可知,如果给定()A λ的不变因子,则其初等因子就唯一确定. 反之,如果给定了()A λ的所有初等因子及()A λ的秩,则其不变因子也唯一确定. 不妨设()A λ的秩为r . 把()A λ的所有初等因子按不同的一次因子分类,并按各因子的幂从大到小排成一个有r 列的表(若某一行或若干行的初等因子不足r 个,则在后面补1,直到够r 个为止):

1,11111,22121,1111222(),(),,()(),(),,()(),(),,()r r r r r s rs s k k k k k k k k k s s s

λλλλλλλλλλλλλλλλλλ−−− −−− −−−

−−− ⋯⋯⋯⋯⋯

其中1,10,1.rj r j j k k k j s −≥≥≥≥≤≤⋯ 因而

1212()()()(),1.i i i k k k i s d i r λλλλλλλ=−−−≤≤⋯

至此可知,当已知一个λ-矩阵()A λ的秩r 后,求不变因子或行列式因子的问题

等价于求初等因子的问题.

定理3 设λ-矩阵()A λ为分块对角阵

12()()()()s B B A B λλλλ

=

⋱ 则各子块(),1,2,,i B i s λ=⋯的初等因子的全体构成()A λ的全部初等因子. 次定理给出一个求λ-矩阵()A λ的Smith 标准形的方法: (1) 先将()A λ通过初等变换化为准对角阵的形式:

12()()((),(),,())s A B diag B B B λλλλλ→=⋯

使得每块()i B λ的初等因子(或不变因子)可以相对来说容易求出来;

(2) 求出每块()i B λ的初等因子;

(3) 把()i B λ的所有初等因子放在一起,即得到()A λ的初等因子,进而求 出()A λ的不变因子及Smith 标准形.

注意:这个方法不是求Smith 标准形的唯一方法,可以用定义求. 先求各阶行列式因子,再求不变因子,然后写出Smith 标准形即可. 二、Jordan 标准形 定义5 形如

111i i

i i i i i m m J λλλλ×

=

⋱ 的方阵称为i m 阶的Jordan 块,i C λ∈,通常记为()i m i J λ.

定义6 由若干个Jordan 块组成的准对角阵

12s J J J J

=

⋱ 称为Jordan 标准形.

定义7 设n n A C ×∈,E A λ−称为数字矩阵A 的特征矩阵.

定理4 复数域C 上两个n 阶矩阵A 与B 相似⇔E A λ−与E B λ−等价.

推论2复数域C 上两个n 阶矩阵A 与B 相似⇔A 与B 的特征矩阵E A λ−与E B λ−有相同的不变因子或有相同的初等因子.

定理5(Jordan 标准形定理) 每个n 阶复矩阵A 都与一个Jordan 标准形相似. 这个Jordan 标准形除了其中Jordan 块的排列顺序外被A 唯一决定. 我们称其为A 的Jordan 标准形,并记为.A J

推论3 复矩阵A 与对角阵相似⇔E A λ−的初等因子都是一次的.

我们简称λ-矩阵E A λ−的行列式因子、不变因子和初等因子为矩阵A 的行列式因子、不变因子和初等因子.

设A n n C ×∈的所有互不相等的特征值为12,,,s λλλ⋯,并设它们的重数分别为12,,,s k k k ⋯,则1s

i i k n ==∑. 设i λ对应的初等因子为

12(),(),,()is i i i k

k k i i i λλλλλλ−−−⋯.

其中1

11

,,0,1,2,,,1,2,,.i i

s s s ij i ij ij i j i j k k k n k j s i s =====>==∑∑∑⋯ 每个初等因子对应一个

Jordan 块(),1,2,,,1,2,,.ij k i i J j s i s λ==⋯⋯ 则A 的Jordan 标准形为

()

11121211

2

,,,,,,,,,s s s ss s

A k k k k k k J diag J J J J J J =⋯⋯⋯⋯

其中Jordan 块的顺序可以换. 可见,A J 的Jordan 块由A 的初等因子唯一决定.

若记1(,,)i is i

i k k J diag J J =⋯,即i J 为与特征值i λ相关联的Jordan 块生成的准

对角矩阵,则

12(,,,).A s J diag J J J =⋯

Jordan 标准形的变换矩阵的求法:

幂零矩阵的定义:设n n A C ×∈ 且0A ≠,若m N +∃∈使10,0m m A A −=≠,则称

方阵A 为幂零矩阵. 其中m 称为A 的幂零指数.

引理1 A 为幂零矩阵⇔A 的特征值全是零.

定理6 设n n A C ×∈ 且0A ≠,A 是幂零指数为m 的幂零矩阵. 设A J 有s 个Jordan 块,第i 个Jordan 块的阶数为i n . 则

(1){}12max ,,,s m n n n =⋯;

(2)A 的零度(线性方程组0AX =解空间的维数)等于A J 的块数s ; (3)记A J 中k 阶Jordan 块的个数为k l ,k A 的零度为k η,1k n ≤≤. 则

112222,l s ηηη=−=− 112,2.k k k k l k m ηηη−+=−−≤≤

注:由于0A ≠,A J 与A 相似,则0A J ≠,故2m n ≤≤. 当,k m =m n =时

1.n n η+=

设A 为如上定义的幂零矩阵,则存在可逆矩阵P 使1A P AP J −=. 可推出

.A AP PJ =

相关文档
最新文档