矩阵的初等变换及应用的总结(新)

合集下载

矩阵的初等变换及其应用

矩阵的初等变换及其应用
(3)传递性 即对任何矩阵 , 与 ,若 与 等价, 与 等价,则 与 等价;
3.矩阵的初等变换的应用
3.1求矩阵的秩
求矩阵秩的方法很多,一般有定义法、初等变换法、相关公式法、综合法、但当矩阵的具体元素为已知时,一般采用初等变换法即求非零行(列)的个数。
定义3.1.1 矩阵 中非零子式的最高阶数 称为矩阵 的秩.亦即, 中存在不为0的 阶子式,而所有 阶子式(若有的话)均为0,这时矩阵 的秩记作 (或 或秩 )
定义3.5.1 设 是一个 阶方阵,如果存在一个数 及一个 维非零列向量 ,使得

成立,则称数 为方阵 的一个特征值,非零列向量 称为方阵 的对应于(或属于)特征值 的特征向量.
定义3.5.2 行列式 (或 )称为矩阵 的特征多项式(注:特征多项式是 的 次多项式.) 是矩阵 的特征方程,具体形式为:
总之,矩阵初等变换是线性代数中一种重要的计算手段,我们可以利用矩阵初等变换求矩阵的秩,求逆矩阵,求矩阵方程等各种计算实例。随着科学技术的不断发展,矩阵的应用已经深入到了自然,社会,工程,经济等各个领域,而且人工智能、手机通讯和一般的算法设计和阐发等,矩阵在其应用中是通讯优化。我们不能局限于书本的学习,要理论联系实际,更好的运用理论知识解决实际遇到的问题。
时,子块 就化为 ,使得 。此时,若令 ,则 化为标准形
例8 化二次型 为标准形。
解:二次型矩阵为
实施初等变换
这样,经坐标变换 ,其中
二次型化为标准形
注:二次型可以用多种方法化标准形,其标准形不唯一。
总 结
在解决代数方面的一些题目时,运用矩阵的初等变换可以使问题简单化,比如在化二次型为标准型时,除了可以用初等变换法,还可以用正交变换法和配方法来计算,相比较初等变换更为简单,易于计算,好理解。矩阵的初等变换在解决线性代数的计算问题中有很多应用,这些计算格式有不少类似之处,一旦掌握了矩阵的运算,我们分析和解决方程组的能力将会大大增强。

矩阵的初等变换及其应用

矩阵的初等变换及其应用

在数学中矩阵最早来源于方程组的系数及常数所构成的方阵,现在矩阵是线性代数最基本也是最重要的概念之一。

在线性代数及其许多的问题中都能看到矩阵的身影,它能把抽象的问题用矩阵表示出来,通过对矩阵进行计算得出结果。

作为矩阵的基础及核心,矩阵的初等变换及应用是非常重要的,它能够把各种复杂的矩阵转化成我们需要的矩阵形式,从而使计算变得更加的简便。

本文总结了线性变换在线性代数、初等数论、通信、经济、生物遗传等方面的应用。

关键词:矩阵;初等变换;标准型;逆矩阵;标准型;秩;方程组ABSTRACTMatrix derived from the first phalanx of the coefficients and constants of the equations in mathematics, now matrix is the most fundamental and important concepts of linear algebra, in linear algebra and many other questions can be seen the figure of the matrix, It can abstract the matrix representation, then matrix calculated results. As the foundation and core of the matrix, the elementary transformation matrix and its application is very important, it can conversion a variety of complex matrix into a matrix form we need, then the calculation becomes more simple.This paper summarizes the application of linear algebra, elementary number theory, communications, and economic, biological heredity.Key words:Matrix; Elementary transformation; standard; inverse matrix; standard; rank; equations;1矩阵及其初等变换的概念 (1)2矩阵初等变换的应用 (1)2.1在线性代数中的应用 (2)2.1.1 将矩阵化简为阶梯型和等价标准型 (2)2.1.2矩阵的分块和分块矩阵的初等变换 (3)2.1.3求伴随矩阵和逆矩阵 (4)2.1.4求矩阵的秩,向量组的秩 (5)2.1.5求矩阵的特征值和特征向量 (6)2.1.6 解线性方程组 (7)2.1.7求解矩阵方程 (8)2.1.8化二次型为标准型 (9)2.1.9判断向量组的线性相关性,求其极大线性无关组 (11)2.2在数论中的应用 (11)2.3在通信中的应用 (13)2.4在经济方面的应用 (14)2.5在生物遗传方面的应用 (15)总结 (18)致谢 (19)参考文献 (20)矩阵的初等变换及其应用在线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为对这些矩阵的转化过程,除方程组之外,还有很多方面的问题也都涉及矩阵的概念及其应用,这些问题的研究常常转化为对矩阵的研究,甚至于有些性质完全不同的、表面上完全没有联系的问题,归结成矩阵问题以后却是相同的。

矩阵的广义初等变换及应用

矩阵的广义初等变换及应用

设 A, B, C , D ∈ M n ( F ) ,证明
A B C D B A D C C D A B D C B A
M =
=
1 8 2 0 −2 14 2 − 2 11 = 1 ⋅ 14 − 20 11 8 − ⋅ [0 − 20 2 2] −2 = 14 −5 = 118 − 24

1 B, 2
A 0
0 A B → B 0 B

A 0
A + B B
万方数据
芜湖职业技术学院学报 2005 年第 7 卷第 2 期
57
A 0 A A + B ∴ r ≥ r(A+B) 0 B =r 0 B
对此分块矩阵

A B C D
实施一次广义初等变换后得到的矩阵称为广义初等 矩阵 广义初等矩阵有下面三种形式 1
0 E n Em 0
B A 广义初等变换 → −1 0 D − CA B
由行列式的性质知在此变换过程中矩阵 M 作成的行 列式的值不变,即

−E E
− ( A − B) ( A − B) 1 1 [( A + B ) −1 − ( A − B ) −1 ] [( A + B ) −1 + ( A − B ) −1 ] 2 2
−1 −1
r(A)+r(B) ≤ n 证明 构造分块矩阵
E B E 0 E → → → B E A − AB 0 0 0 0 0
B −1 = 1 B B = 1 A − B −1 4 B − B 4

矩阵的初等变换及应用的总结

矩阵的初等变换及应用的总结

矩阵的初等变换及应用的总结矩阵的初等变换是线性代数中非常重要的一个概念,它可以通过对矩阵的行或列进行一系列的操作,得到新的矩阵。

初等变换主要包括三种:行交换、行倍乘和行倍加。

在实际应用中,初等变换可以用来求解线性方程组、计算矩阵的逆和秩等。

一、行交换:行交换是将矩阵中的两行进行调换。

具体操作是互换两行的顺序,即将矩阵的第i行与第j行进行互换。

这个操作可以用一个初等矩阵来表示,即单位矩阵中将第i行和第j行进行交换。

应用:在线性方程组的求解中,我们可以通过行交换将系数矩阵的行变换成一个上三角矩阵,从而方便进行后续的计算。

二、行倍乘:行倍乘是将矩阵中的其中一行的所有元素同时乘以一个非零常数k。

具体操作是将矩阵的第i行的每个元素都乘以k。

这个操作可以用一个初等矩阵来表示,即在单位矩阵的第i行的对角线位置上放置k。

应用:行倍乘在求解线性方程组时,可以用来将一些方程的系数标准化,使得系数矩阵变为一个拥有单位元的对角矩阵,从而简化方程组的求解。

三、行倍加:行倍加是将矩阵中的其中一行的每个元素都乘以一个非零常数k,并加到另一行的对应元素上。

具体操作是将矩阵的第i行的每个元素都乘以k,然后加到矩阵的第j行的对应元素上。

这个操作可以用一个初等矩阵来表示,即在单位矩阵的第j行的第i列上放置k。

应用:行倍加在线性方程组的求解中,可以用来将一些方程的k倍加到另一个方程上,从而使一些方程的一些变量消失,达到消元的目的。

综上所述,矩阵的初等变换是通过对矩阵的行或列进行一系列的操作,得到新的矩阵。

初等变换主要包括行交换、行倍乘和行倍加。

在实际应用中,初等变换可以用来求解线性方程组、计算矩阵的逆和秩等。

在线性方程组的求解中,通过矩阵的初等变换可以将系数矩阵变为一个上三角矩阵,从而方便后续的计算。

同时,可以通过初等变换将方程组化为最简形式,从而得到方程组的解。

在计算矩阵的逆时,可以通过初等变换将原矩阵左边加上单位矩阵,并经过一系列的操作将原矩阵化为单位矩阵,从而得到矩阵的逆。

矩阵的初等变换及应用的总结

矩阵的初等变换及应用的总结

矩阵的初等变换及应用内容摘要:矩阵是线性代数的重要研究对象。

矩阵初等变换是线性代数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。

一矩阵的概念定义:由于m×n个数aij(i=1,2,….,m;j=1,2,….,n)排成的m行n列的数表,称为m行n列,简称m×n矩阵二矩阵初等变换的概念定义:矩阵的初等行变换与初等列变换,统称为初等变换1.初等行变换矩阵的下列三种变换称为矩阵的初等行变换:(1) 交换矩阵的两行(交换两行,记作);(2) 以一个非零的数乘矩阵的某一行(第行乘数,记作);(3) 把矩阵的某一行的倍加到另一行(第行乘加到行,记为).1.初等列变换把上述中“行”变为“列”即得矩阵的初等列变换3 ,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B矩阵之间的等价关系具有下列基本性质:(1) 反身性;(2) 对称性若,则;(3) 传递性若,,则.三矩阵初等变换的应用1.利用初等变换化矩阵为标准形定理:任意一个m×n矩阵A,总可以经过初等变换把它化为标准形2.利用初等变换求逆矩阵求n阶方阵的逆矩阵:即对n×2n矩阵(A¦E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A^(-1)即(A|E)经过初等变换得到(E|A^(-1))这种计算格式也可以用来判断A是否可逆,当我们将A化为行阶梯形矩阵时,若其中的非零行的个数等于n时,则A可逆,否则A不可逆。

设矩阵可逆,则求解矩阵方程等价于求矩阵,为此,可采用类似初等行变换求矩阵的逆的方法,构造矩阵,对其施以初等行变换将矩阵化为单位矩阵,则上述初等行变换同时也将其中的单位矩阵化为,即.这样就给出了用初等行变换求解矩阵方程的方法.同理, 求解矩阵方程等价于计算矩阵亦可利用初等列变换求矩阵. 即.3.利用矩阵初等变换求矩阵的秩矩阵的秩的概念是讨论向量组的线性相关性、深入研究线性方程组等问题的重要工具. 从上节已看到,矩阵可经初等行变换化为行阶梯形矩阵,且行阶梯形矩阵所含非零行的行数是唯一确定的, 这个数实质上就是矩阵的“秩”,鉴于这个数的唯一性尚未证明,在本节中,我们首先利用行列式来定义矩阵的秩,然后给出利用初等变换求矩阵的秩的方法.定理:矩阵的初等变换不改变矩阵的秩,即若A~B则R(A)=R(B)为求矩阵的秩,只要把矩阵用初等行变换变成阶梯矩阵解体矩阵中非零行的行数即是该矩阵的秩利用矩阵值得概念,能够讨论线性方程组有解的条件,然后通过研究向量组的线性相关性,向量组的秩等重要概念,讨论线性方程组的结构。

线性代数-矩阵的初等变换

线性代数-矩阵的初等变换

求解未知量
根据行最简形式的矩阵,直接求解出未知量 的值。
案例分析:具体求解过程展示
案例一
01
简单线性方程组求解过程展示,包括构造增广矩阵、进行初等
变换和求解未知量等步骤。
案例二
02
复杂线性方程组求解过程展示,涉及更多未知量和更复杂的增
广矩阵,展示如何利用初等变换求解该类问题。
案例三
03
含参数线性方程组求解过程展示,通过引入参数,展示如何对
含参数的线性方程组进行求解和分析。
04 初等变换在矩阵秩计算中 应用
矩阵秩定义及性质
矩阵秩定义:矩阵A中不等 于0的子式的最大阶数称为
矩阵A的秩,记作r(A)。
矩阵秩的性质
矩阵的秩是非负的,且等于 其行秩或列秩。
若矩阵A可逆,则r(A)=n, 其中n为A的阶数。
若矩阵A为0矩阵,则 r(A)=0。
初等变换与矩阵的等价关系
通过初等变换,我们可以得到与原矩阵等价的矩阵。这种等价关系在线性代数中具有重要意义,它揭示了矩 阵之间的一种本质联系。
初等变换在求解线性方程组中的应用
通过对方程组的增广矩阵进行初等变换,我们可以将方程组化为简化阶梯形式,从而方便地求出方程组的解。
对未来研究方向和趋势展望
深入研究初等变换的 性质和应用
条件
01
非零行的首非零元为1;
02
首非零元所在列的其他元素全 为零。
03
性质
最简形矩阵是唯一的;
对于任意行阶梯形矩阵,总可
04
05
以通过初等行变换化为最简形
矩阵。
06
行阶梯形与最简形矩阵,二者都可以通过初等行变换得到。
区别
行阶梯形矩阵只要求非零行的首非零元所在列的上三角元素全为零,而最简形矩阵还要求非零行的首非零元为1, 且所在列的其他元素全为零。因此,最简形矩阵比行阶梯形矩阵具有更简洁的形式。

矩阵的初等变换及其应用

矩阵的初等变换及其应用

㊀㊀㊀㊀㊀㊀矩阵的初等变换及其应用矩阵的初等变换及其应用Һ顾江永㊀(宿迁学院文理学院,江苏㊀宿迁㊀223800)㊀㊀ʌ摘要ɔ矩阵的初等变换在代数学中具有重要的地位,本文给出了运用初等变换求解方程组的基础解系㊁特征值㊁多项式的最大公因式和Jordan标准形相似变换矩阵等方法,这些方法具有直观㊁简捷㊁有效等特点.ʌ关键词ɔ初等变换;基础解系;最大公因式;相似变换矩阵ʌ基金项目ɔ2019江苏省高校教学研究一般项目(2019SJA1997)一㊁引㊀言矩阵的初等变换包括矩阵的初等行变换和矩阵的初等列变换,矩阵的初等行(列)变换有三种形式[1]:(1)交换两行(列);(2)任一行(列)的k倍(kʂ0);(3)任一行(列)的k倍加到另一行(列).在代数学中,矩阵的初等变换有着非常重要且广泛的应用,它常被应用于行列式的计算㊁方程组以及矩阵方程的求解㊁向量线性关系的判定㊁求矩阵的秩以及逆㊁λ-矩阵的不变因子和矩阵的Jordan标准形等.张家宝给出了初等变换求逆的几种方法[2];石擎天等研究了初等变换求解方程组的特殊方法[3];于莉琦等介绍了初等变换在行列式㊁矩阵和方程组中的应用[4].本文给出了矩阵的初等变换求解方程组的基础解系㊁最大公因式和Jordan标准形的相似变换矩阵等方法及应用.二㊁预备知识引理1[5]㊀设矩阵Amˑn的秩为r,且Amˑn=PEr000æèçöø÷Q,其中Pmˑm,Qnˑn为可逆矩阵,则有P-100Enæèçöø÷AEnæèçöø÷Q-1=Er000Q-1æèççöø÷÷.证明㊀因为Amˑn=PEr000æèçöø÷Q,所以Er000æèçöø÷=P-1AmˑnQ-1,故P-100Enæèçöø÷AEnæèçöø÷Q-1=P-1AEnæèçöø÷Q-1=P-1AQ-1Q-1æèçöø÷=Er000Q-1æèççöø÷÷,注:引理1给出了化一个矩阵为标准形的求Q-1的方法.引理2㊀设矩阵Amˑn的秩为r,则矩阵AEnæèçöø÷仅经初等列变换可以化为β1,β2, ,βr,0, ,0Q-1æèçöø÷,其中β1,β2, ,βr线性无关,且AQ=β1,β2, ,βr,0, ,0().证明㊀因为Amˑn的秩为r,所以Amˑn的列秩等于r,即矩阵Amˑn列向量组的最大线性无关组由r个向量构成,不妨设为β1,β2, ,βr,故由初等变换的性质可得AEnæèçöø÷仅经初等列变换可以化为β1,β2, ,βr,0, ,0Q-1æèçöø÷.引理3[6]㊀设A是数域P上的n阶方阵,将矩阵λE-A经初等变换化为上三角形矩阵f1(λ)0 0∗f2(λ)0︙︙⋱︙∗∗fn(λ)æèççççöø÷÷÷÷,则fi(λ)=0(i=1,2, ,n)在数域P上的根即为矩阵A的全部特征根.证明㊀根据初等变换的性质可知,初等变换不改变λE-A=0的根,故f1(λ)0 0∗f2(λ) 0︙︙⋱︙∗∗fn(λ)=f1(λ)f2(λ) fn(λ)=0的根即为矩阵A的全部特征根.引理4㊀设f1(x),f2(x), ,fs(x)是数域P上的多项式,且f1(x),f2(x), ,fs(x)()T经初等行变换化为d(x),0, ,0()T,则d(x)即为f1(x),f2(x), ,fs(x)的最大公因式.证明㊀由辗转相除法原理直接可得[1].三㊁主要结论定理1㊀设齐次线性方程组Amˑnx=0,其系数矩阵Amˑn的秩为r,且Amˑn=PEr000æèçöø÷Q,又设Q-1=(η1, ,ηr,ηr+1, ,ηn),则ηr+1,ηr+2, ,ηn是线性方程组Amˑnx=0的基础解系.证明㊀设Qx=y1︙yr︙ynæèçççççöø÷÷÷÷÷=YrYn-ræèçöø÷,由Amˑnx=PEr000æèçöø÷Qx=PEr000æèçöø÷YrYn-ræèçöø÷=0,可得Yr=y1︙yræèççöø÷÷=0,所以x=Q-1YrYn-ræèçöø÷=Q-10︙0yr+1︙ynæèççççççöø÷÷÷÷÷÷.㊀㊀㊀㊀㊀令Q-1=(η1, ,ηr,ηr+1, ,ηn),则x=yr+1ηr+1+yr+2ηr+2+ +ynηn.因为Q是可逆矩阵,则ηr+1,ηr+2, ,ηn线性无关,所以ηr+1,ηr+2, ,ηn为方程组的一个基础解系.定理2[7]㊀设A是数域P上的n阶方阵,矩阵λEn-AEnæèçöø÷经初等变换化为φ1(λ)0⋱0φn(λ)Q(λ)æèççççöø÷÷÷÷(其中初等行变换只能在前n行进行).设Q(λ)的第j列为qj(λ),若λ-λ0()k为φj(λ)的初等因子,则Aqj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!æèçöø÷=qj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!æèçöø÷λ0100λ00︙︙⋱100λ0æèççççöø÷÷÷÷.证明㊀由题设知,存在可逆矩阵P(λ),Q(λ),使得P(λ)λEn-A()Q(λ)=φ1(λ)0⋱0φn(λ)æèççöø÷÷.因为qj(λ)是Q(λ)的第j列,所以P(λ)λEn-A()qj(λ)=(0, ,0,φj(λ),0, ,0)T.又设qj(λ)的幂级数展开式为qj(λ)=qj(λ0)+qᶄj(λ0)1!λ-λ0()+qᵡj(λ0)2!λ-λ0()2+ ,代入P(λ)λEn-A()qj(λ)=(0, ,0,φj(λ),0, ,0)T,得λ0En-A()qj(λ0)=0,λ0En-A()qᶄj(λ0)+qj(λ)=0,λ0En-A()q(k-1)j(λ0)(k-1)!+qk-2()j(λ0)k-2()!=0.上面等式两边相加㊁移项并提取矩阵A可得A(qj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!)=(qj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!)λ0100λ0 0︙︙⋱100λ0æèççççöø÷÷÷÷.四㊁应用举例例1㊀求多项式f1(x),f2(x),f3(x)的最大公因式,其中f1(x)=x4+2x3+4x2+3x+2,f2(x)=x4+x3+3x2+x+2,f3(x)=x3+2x2+3x+2.解㊀因为f1(x)f2(x)f3(x)æèççöø÷÷=f1(x)-f2(x)f2(x)-xf3(x)f3(x)æèççöø÷÷=x3+x2+2x-x3-x+2x3+2x2+3x+2æèççöø÷÷=x3+x2+2xx2+x+2x2+x+2æèççöø÷÷=x3+x2+2xx2+x+20æèççöø÷÷=x2+x+200æèççöø÷÷,所以由引理4知,f1(x),f2(x),f3(x)的最大公因式为d(x)=x2+x+2.例2㊀求齐次线性方程组x1+x2+x3+x4+x5=0,3x1+2x2+x3+x4-3x5=0,5x1+4x2+3x3+3x4-x5=0{的基础解系.解㊀对系数矩阵A施行初等行变换如下A=111113211-35433-1æèççöø÷÷ r2-3r1r3-5r1111110-1-2-2-60-1-2-2-6æèççöø÷÷ r1+r2r2ˑ(-1)r3-r210-1-1-50122600000æèççöø÷÷.又10-1-1-5012261000001000001000001000001æèçççççççöø÷÷÷÷÷÷÷ c3+c1c4+c1c5+5c110000012261011501000001000001000001æèçççççççöø÷÷÷÷÷÷÷ c3-2c2c4-2c2c5-6c210000010001011501-2-2-6001000001000001æèçççççççöø÷÷÷÷÷÷÷则由引理2知,方程组的基础解系为η1=(1,-2,1,0,0)T,η2=(1,-2,0,1,0)T,η3=(5,-6,0,0,1)T.ʌ参考文献ɔ[1]王萼芳,石生明.高等代数(第五版)[M].北京:高等教育出版社,2019:5.[2]张家宝.浅谈求逆矩阵的几种方法[J].数学学习与研究,2020(10):4-5.[3]石擎天,黄坤阳.线性方程组求解及应用[J].教育教学论坛,2020(12):325-327.[4]于莉琦,高恒嵩.初等变换概述[J].数学学习与研究,2019(06):116.[5]徐仲,陆全,等.高等代数考研教案(第2版)[M].西安:西北工业大学出版社,2009.[6]卢博,田双亮,等.高等代数思想方法及应用[M].北京:科学出版社,2017.[7]朱广化.关于‘相似变换矩阵的简单求法“的改进[J].数学通报,1994(11):44-46.。

线性代数:矩阵的初等变换和初等矩阵

线性代数:矩阵的初等变换和初等矩阵

a12 3a22
a13 3a23
a11 a21
a12 a22
a13 a23
2 0 0
0 1 0
0 0 1
2a11 2a12
a12 a22
a13 a23
10
a11 a21
a12 a22
a13 a23
c1 2
2a11 2a12
a13 a23
a12 a22
3、以数k 0乘某行(列)加到另一行(列)上去
矩阵的初等变换和 初等矩阵
1
一、矩阵的初等变换初等矩阵
定义 下面三种变换称为矩阵的初等行变换:
1 对调两行(对调i, j两行,记作ri rj); 2 以数 k 0 乘以某一行的所有元素;
(第 i 行乘 k,记作 ri k)
3 把某一行所有元素的k 倍加到另一行
对应的元素上去(第 j 行的 k 倍加到第 i 行上
相当于对矩阵 A 施行第一种初等列变换: 把 A 的第 i 列与第 j 列对调(ci c j ).
7
2、以数 k 0 乘某行或某列
以数k 0乘单位矩阵的第i行(ri k),得初等 矩阵E (i (k )).
1
1
E(i(k))
k

i

1
1
8
以 Em (i(k)) 左乘矩阵A,
25
三、初等变换法求逆矩阵
当A可逆时,由推论4,A P1P2 Pl,有 Pl1Pl11P11 A E, 及 Pl1Pl11P11E A1,
Pl1Pl11P11 A E
Pl1Pl11P11 A Pl1Pl11P11E E A1
即对 n 2n 矩阵 ( A E) 施行初等行变换, 当把 A 变成 E 时,原来的 E 就变成 A1.

线性代数中初等变换在矩阵理论中的应用

线性代数中初等变换在矩阵理论中的应用

㊀㊀㊀㊀㊀㊀线性代数中初等变换在矩阵理论中的应用线性代数中初等变换在矩阵理论中的应用Һ庞㊀峰㊀(山西警察学院,山西㊀太原㊀030401)㊀㊀ʌ摘要ɔ矩阵是整个线性代数课程的基础,线性代数的很多概念和应用都离不开矩阵,而初等变换是矩阵运算中的最主要㊁最常见的一种运算,也是解决矩阵问题的一个基本方法,它几乎贯串线性代数的始终.鉴于矩阵初等变换的重要性,本文将对矩阵的初等变换应用于不同方面做一个归纳与总结,便于理清各知识点之间的内在联系,对掌握矩阵理论十分有帮助,同时,希望本论文的研究也会给相关的学者一些建议和思考.ʌ关键词ɔ矩阵理论的应用;线性代数;初等变换ʌ基金项目ɔ课题名称: 金课 标准下的‘线性代数“线上㊁线下混合式教学研究,课题编号:YJ202012,课题来源:2020山西警察学院院级教学改革创新项目重点课题随着时代的发展,矩阵由最初的一种工具逐渐演变为一门数学分支 矩阵论,而矩阵论又可分为矩阵方程论㊁矩阵分解论及广义逆矩阵论等矩阵的现代理论,已经被广泛地应用在了现代科技的各个领域之中.矩阵就是一个整齐排列的实数或复数的数块或者说集合,它本身没有任何运算的功能.正是初等变换赋予了矩阵变化的 魔力 ,才把矩阵理论中的绝大部分内容有机地联系起来.由此可见,矩阵的初等变换在矩阵理论中起着举足轻重的作用,是其核心和精髓.通过初等变换将矩阵A转化为更为简单的矩阵B,然后利用矩阵B来对矩阵A进行研究,这已被公认为是一种方便㊁有效的途径.我们通常所说的矩阵的位置变换就是将矩阵中的两行(或列)的位置进行对换,记作:Ri↔Rj或Ci↔Cj;其次是数乘变换:就是将矩阵的某一行(或列)乘一个不等于零的数k,记作:kRi或kCi;最后是消去变换:就是将矩阵中的某一行(或列)的适当倍数加到另外的一行(列)上,记作:Ri+kRj或Ci+kCj.以上三种变换统称为矩阵的初等变换.关于初等变换的重要结论:任何一个矩阵,通过有限可数次的初等变换都可以化成阶梯形,再进一步化为行最简形矩阵.这一结论保证了初等变换的可行性,同时也指明了变换的最终方向.矩阵的初等变换有很多优点,如,它只涉及加减乘除四则基本运算,计算简单;化简过程有规律,算法很容易实现;初等变换表面上是一种等价变化,实质上却是矩阵乘法的可逆恒等运算,从而通过形式的转化实现恒等运算的本质;初等变换的化简过程灵活多样,因人而异,但结果却唯一,且保持矩阵的本质属性即矩阵的秩不变.总之,矩阵初等变换的实质是将问题化繁为简㊁化多为少㊁化大为小,并且保持事物的本质属性不变.我们要善于运用矩阵的初等变换这一有力工具来帮助我们达到解决矩阵问题的目的,并掌握矩阵初等变换的广泛应用.一㊁求逆矩阵逆矩阵的求解是矩阵理论中的一个十分重要的内容.对于一个方阵A,我们可以采用初等变换的方法来判断这个矩阵是否可逆,而且在可逆的情况下还可以求出其逆矩阵A-1.也就是先将原矩阵与同阶单位矩阵采用拼接的方式得到一个新矩阵,再对这个矩阵进行转化,遵循AB=BA=E(其中A为可逆矩阵,E为单位矩阵)的规则,以此来确定它的逆矩阵.如果在变换过程中,与A等价的矩阵无法变成E时,则A不可逆.具体形式如下:(A|E)ң ң{初等行变换(E|A-1)或AE()ң ң{初等列变换EA-1æèçöø÷求逆矩阵还可以采用伴随矩阵的方法进行求解.对于一个n阶方阵A,用伴随矩阵计算逆矩阵A-1,需要计算n2+1个行列式,计算量相当大,而且这n2+1个行列式要计算出值也非易事.相比之下,利用初等变换来计算逆矩阵就显得较为简便㊁实用㊁快捷.二㊁解矩阵方程对于矩阵方程,比矩阵的乘法运算更简单㊁实用,而且计算方便的方法即是初等变换的方法.(1)形如AX=B的矩阵方程,由于A-1(A,B)=(E,A-1B),因此采用初等行变换很容易得出它的解X=A-1B.具体过程为:AB()ң ң{初等行变换EA-1B().(2)形如XA=B的矩阵方程,同理可得ABæèçöø÷A-1=EBA-1æèçöø÷,可以采用矩阵的初等列变换进行求解,得出X=BA-1,具体过程为:AE()ң ң{初等列变换EBA-1æèçöø÷.(3)形如AXB=C的矩阵方程,可以参照(1)(2)两种基本形式,得出其解为X=A-1CB-1,具体过程为:(A|C)ң ң{初等行变换(E|A-1C),BA-1Cæèçöø÷ң ң{初等列变换EA-1CB-1æèçöø÷.另外,对于其他变异形式的矩阵方程,可以先通过恒等变形转化为上述(1)或(2)的基本形式,再解之.三㊁计算矩阵的秩矩阵的秩是矩阵的一种固有本质属性,是讨论矩阵问题㊁线性方程组的解的问题㊁向量组相关性㊁线性空间基等的重要依据,也是透过现象看本质的重要载体.一般矩阵用定义求其秩,需要从最高阶式子起一阶一阶地试验结果是否非零,显然偶然性很大,而且计算也比较烦琐.矩阵的秩有如下三个重要结论:(1)行阶梯形矩阵的秩就是非零行的行数;(2)矩阵的秩不随矩阵的初等变换而发生变化;(3)任何一个矩阵的行秩等于列秩.据此,我们把矩阵进行初等变换,化成阶梯形矩阵后,非零行数目就是它的秩.这一方法大大方便了计算矩阵的秩,算法更为快捷和适用.四㊁高斯消元法的应用线性方程组作为数学方程组的一种,一般由未知数(一㊀㊀㊀㊀㊀次)㊁系数㊁常数等组成.方程组同解变换的求解过程,实质上只是对未知量系数和常数项进行相应变化的过程.所以,透过现象看本质,求解实际上就是由方程组的未知量系数和常数项构成的增广矩阵进行初等变换的过程.它不仅能判断方程组解的各种具体情况,还可以有效地求出线性方程组的解.如果方程组存在解,那么可将其转化为行最简形矩阵,求出方程组Ax=b的解,这就是线性代数中的高斯消元法.具体过程如下:增广矩阵B=(Ab)初等行变换ң阶梯形}结合秩,判断解的情况初等行变换ң最简形}求出解这一方法求解过程的关键正是矩阵的初等变换.值得强调的是,使用高斯消元的过程,只能使用初等行变换,而不能使用初等列变换,否则,就不是方程组的同解变换了.高斯消元法是解线性方程组最普适的一种方法,不管方程组中未知量的个数和方程个数是多少,也不管方程组解的情况怎样,对各种线性方程组都适用.而且,从计算量上说,该方法也要比Carmer法则优越得多,大大降低了线性方程组解的判定与求解难度.例如,a,b取何值时,非齐次线性方程组x1+x2+x3+x4=1,x2-x3+2x4=1,2x1+3x2+(a+2)x3+4x4=b+3,3x1+5x2+x3+(a+8)x4=5,ìîíïïïï(1)有唯一解?(2)无解?(3)有无穷多个解?有解时求出全部解.解:用初等行变换将增广矩阵化为行阶梯形矩阵,B=(A,b)=1111101-12123a+24b+3351a+85æèçççöø÷÷÷R3-2R1R4-3R11111101-12101a2b+102-2a+52æèçççöø÷÷÷ R3-R2R4-2R21111101-12100a+10b000a+10æèçççöø÷÷÷由此可知:(1)当aʂ-1时,R(A)=R(B)=未知量个数4,方程组有唯一解:x1=-2ba+1,x2=a+b+1a+1,x3=ba+1,x4=0;(2)当a=-1,bʂ0时,R(A)=2ʂR(B)=3,方程组无解;(3)当a=-1,b=0时,R(A)=R(B)=2<4,方程组有无穷多个解.B 1111101-1210000000000æèçççöø÷÷÷ R1-R2102-1001-1210000000000æèçççöø÷÷÷令x3=c1,x4=c2,则方程组的通解为:x1=-2c1+c2,x2=1+c1-2c2,x3=c1,x4=c2ìîíïïïï或x1x2x3x4æèççççöø÷÷÷÷=0100æèçççöø÷÷÷+c1-2110æèçççöø÷÷÷+c21-201æèçççöø÷÷÷(c1,c2为任意常数).五㊁求方阵的特征值与特征向量工程技术中的一些问题如振动问题㊁稳定性问题,常常可归结为求一个方阵的特征值和特征向量的问题.矩阵A的特征值λ0是它的特征方程的根,对应λ0的全部特征向量p是齐次线性方程组的非零解,而对齐次线性方程组的非零解的讨论其实就是使用初等变换进行高斯消元的过程.六㊁对称矩阵的对角化对称矩阵是指元素以主对角线为对称轴对应相等的矩阵,由于其转置矩阵和自身相等而被称为对称矩阵.对称矩阵可以用一般的由特征向量组成的非奇异阵作对角化,只不过它有特殊的性质(对称),因此我们就可以考虑特殊的对角化,即正交相似对角化.我们需要利用正交矩阵将对称矩阵化为对角矩阵,比较简单且易理解,其具体的步骤是:(1)求A的特征值λ1,λ2,λ3, ,λn;(2)(A-λiE)X=0,求出A的特征向量;(3)将特征向量正交化;(4)将特征向量单位化得p1,p2, ,pn;(5)写出正交矩阵P=(p1,p2, ,pn).我们只有合理选择方法,才能提高研究效率.七㊁广义初等变换的使用为了简便,我们需对大规模矩阵进行分块,使大矩阵的运算化分成几个小矩阵的运算.同样,对于分块矩阵,也可以把矩阵的每一个子块作为矩阵的一个基本元素,像普通矩阵一样进行位置变换㊁数乘变换和消去变换这三种基本变换,这被称为分块矩阵的广义初等变换.由于广义初等变换本身具有较好的性质,也是矩阵运算中极为重要的方法,可以有效地将疑难问题简单化,因此其成为广大学者日益关注的热点话题之一.结束语:矩阵是连接方程组理论与几何理论的纽带,因此矩阵是解决线性代数中线性方程组㊁向量空间㊁线性变换等问题最常用的方法.而初等变换作为矩阵理论的一条主线,不仅能够简化矩阵为阶梯形或最简形,而且作为矩阵理论中极其重要的一种运算,它是上述几类问题的基础与核心.因此,初等变换在线性代数中的应用十分广泛,只有真正掌握了这种方法,才能巧妙地运用其解决线性代数中相对复杂的问题,以达到事半功倍的效果.ʌ参考文献ɔ[1]李慧.矩阵的初等变换在线性代数中的简单应用[J].课程教育研究,2019(09):142-143.[2]缪应铁.矩阵的初等变换在线性代数中的一些应用[J].数学学习与研究,2018(17):24.[3]张忠.矩阵的初等变换在线性代数中的应用[J].纳税,2017(25):188,190.[4]吴英柱.矩阵的初等变换在线性代数中的若干应用与探讨[J].广东石油化工学院学报,2017(01):71-75,94.。

矩阵初等变换的性质及其应用

矩阵初等变换的性质及其应用

摘要本文探讨矩阵初等变换的性质及其在代数中的若干应用,主要从矩阵的逆、矩阵的秩、求解线性方程组及矩阵方程、求一元多项式的最大公因式、求解指派问题等若干方面进行阐述。

关键词:矩阵的初等变换;矩阵的秩;可逆矩阵;线性方程组;最大公因式AbstractThis paper is mainly to discuss the application of the elementary transfor mation of matrix in algebra, using matrix elementary transformation to solve th e matrix inverse, matrix rank, solving linear equations and matrix equations, on e yuan polynomial greatest common divisor, solving assignment problem of the se aspects of the application.Keywords:Elementary transformation of matrix;Matrix rank;Invertible matrix;System of linear equations;Greatest common factor目录1 引言 ............................. 错误!未定义书签。

2 矩阵的初等变换及其性质 (1)2.1 矩阵初等变换的定义.......................... 错误!未定义书签。

2.2 矩阵初等变换相关性质 (2)3 矩阵初等变换的若干应用 (2)3.1 利用矩阵初等变换求矩阵的逆 (1)3.2 利用矩阵的初等变换来求矩阵的秩 (5)3.3 利用矩阵初等变换求解线性方程组及矩阵方程 (7)3.4 利用矩阵的初等变换求一元多项式最大公因式 (11)3.5 利用矩阵初等变换解决指派问题 (13)参考文献 (16)矩阵初等变换的性质及其应用矩阵及其理论在众多领域中都发挥着重要的作用,而矩阵的初等变换是矩阵理论的核心和灵魂。

浅谈矩阵的初等行变换在线性代数中的应用

浅谈矩阵的初等行变换在线性代数中的应用

浅谈矩阵的初等行变换在线性代数中的应用张亚龙(北京科技大学天津学院基础部㊀301830)摘㊀要:本文从矩阵的初等行变换出发ꎬ分别提出在矩阵㊁向量组㊁线性方程组㊁矩阵的特征向量㊁二次型中的一些应用ꎬ并呈现对应例题ꎬ加强学生对矩阵的初等行变换的理解与应用.关键词:初等行变换ꎻ矩阵ꎻ向量组ꎻ线性方程组中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2022)21-0029-03收稿日期:2022-04-25作者简介:张亚龙(1992-)ꎬ男ꎬ硕士ꎬ助教ꎬ从事计算数学研究.㊀㊀目前ꎬ«线性代数»这门课程是理工科和经管类必开设的一门课程ꎬ主要内容包括行列式㊁矩阵㊁线性方程组㊁向量组㊁相似矩阵㊁二次型等.矩阵的初等行变换贯穿在整个线性代数的内容中ꎬ为了方便学生学习ꎬ下面归纳总结了关于矩阵初等行变换在线性代数中的应用.1矩阵中的应用1.1求矩阵的逆若矩阵A可逆ꎬ则A-1也可逆ꎬA-1可以表示成若干个初等矩阵的乘积ꎬ因此可由矩阵的初等行变换求A-1ꎬ即(AꎬE)初等行变换ң(EꎬA-1)ꎬ我们将矩阵A和单位矩阵E都做初等行变换ꎬ当矩阵A化为单位矩阵E时ꎬ单位矩阵E就变成了A-1.例1㊀求矩阵A=1-20120221éëêêêùûúúú的逆.解㊀作一个3ˑ6的矩阵(AꎬE)ꎬ并对其做矩阵的初等行变换.(AꎬE)=1-20100120010221001éëêêêùûúúúң10012120010-14140001-12-321éëêêêêêêêùûúúúúúúú=(EꎬA-1).因此ꎬA-1=12120-14140-12-321éëêêêêêêêùûúúúúúúú.1.2求矩阵的秩矩阵秩的定义是非零子式的最高阶数ꎬ我们知道初等变换不改变矩阵的秩ꎬ对矩阵A做初等行变换化为行阶梯形矩阵Bꎬ由行列式的性质可知ꎬ矩阵A和矩阵B的非零子式最高阶数相同ꎬ所以矩阵A与矩阵B的秩相等.例2㊀求矩阵A=1-1210100112-242003001éëêêêêêùûúúúúú的秩.解㊀对矩阵A做初等行变换化为行阶梯形矩阵.92A=1-1210100112-242003001éëêêêêêùûúúúúúң1-121001-2010060-200000éëêêêêêùûúúúúú=B因为矩阵B中有三个非零行ꎬ即R(B)=3ꎬ所以R(A)=3.2在向量组中应用2.1求向量组的秩由于任何矩阵Aꎬ它的行秩=列秩=R(A)ꎬ因此我们只需将向量组中的向量均按列构成一个矩阵Aꎬ向量组的秩就等于矩阵A的秩.例3㊀求向量组α1=(1ꎬ-2ꎬ2)ꎬα2=(1ꎬ-4ꎬ0)ꎬα3=(1ꎬ-2ꎬ2)的秩.解㊀以αT1ꎬαT2ꎬαT3为列向量构成矩阵Aꎬ并对矩阵A进行初等行变换ꎬ把A化为阶梯形矩阵B.A=111-2-4-2202éëêêêùûúúúң1110-200-20éëêêêùûúúúң111010000éëêêêùûúúú=Bꎬ得R(A)=R(B)=2ꎬ又因为向量组α1ꎬα2ꎬα3的秩等于矩阵A的秩ꎬ即向量组α1ꎬα2ꎬα3的秩为2.2.2求向量组的极大无关组由于初等行变换不改变矩阵列向量的线性关系ꎬ因此可由初等行变换求解向量组的极大无关组.例4㊀求向量组α1=(1ꎬ2ꎬ3ꎬ0)ꎬα2=(-1ꎬ-2ꎬ0ꎬ3)ꎬα3=(2ꎬ4ꎬ6ꎬ0)ꎬα4=(1ꎬ-2ꎬ-1ꎬ0)的一个极大线性无关组.解㊀以αT1ꎬαT2ꎬαT3ꎬαT4为列向量构成矩阵Aꎬ并对矩阵A进行初等行变换ꎬ把A化为行最简形矩阵B.㊀A=1-1212-24-2306-10300éëêêêêêùûúúúúúң1020010000010000éëêêêêêùûúúúúú=B非零行首非零元1所在的列作极大线性无关组ꎬ因此向量组α1ꎬα2ꎬα3ꎬα4的一个极大线性无关组为α1ꎬα2ꎬα4.3在线性方程组中的应用通过一系列的初等行变换ꎬ将系数矩阵或增广矩阵化为行最简形矩阵ꎬ判断方程组是否有解ꎬ有解的情况下ꎬ求出通解.3.1解齐次线性方程组例5㊀求解齐次线性方程组2x1+x2-x3+3x4=0x1+2x2+3x3+x4=03x2+7x3-x4=0x1-x2-4x3+2x4=0ìîíïïïïïï解㊀对系数矩阵A进行初等行变换ꎬ化为行最简形矩阵ꎬA=21-131231037-11-1-42éëêêêêêùûúúúúúң12310173-1300000000éëêêêêêêùûúúúúúúң10-53530173-1300000000éëêêêêêêêùûúúúúúúú得同解方程组为x1=53x3-53x4x2=-73x3+13x4ìîíïïïï其中x3ꎬx4为自由未知量ꎬ令自由未知量x3x4æèççöø÷÷依次取10æèçöø÷ꎬ01æèçöø÷ꎬ得基础解系η1=53-7310æèçççççççöø÷÷÷÷÷÷÷ꎬη2=-531301æèçççççççöø÷÷÷÷÷÷÷ꎬ所以齐次线性方程组的通解为c1η1+c2η2ꎬ(c1ꎬc2为任意常数).3.2解非齐次线性方程组例6㊀求非齐次线性方程组x1+x2=52x1+x2+x3+2x4=15x1+3x2+2x3+2x4=3ìîíïïïï的通解.解㊀对增广矩阵B进行初等行变换ꎬ化为行最简形矩阵.03B=110052112153223éëêêêùûúúúң1012-401-1-29000-2-4éëêêêùûúúúң1010-801-101300012éëêêêùûúúú可以得出系数矩阵的秩等于增广矩阵的秩ꎬ并且小于未知量的个数ꎬ因此方程组有无数个解.即它的同解方程组为x1=-x3-8x2=x3+13x4=2ìîíïïïïꎬ其中x3为自由未知量ꎬ令自由未知量x3=0ꎬ得特解α0=-81302æèççççöø÷÷÷÷.导出组的同解方程组为x1=-x3x2=x3x4=0ìîíïïïïꎬ其中x3为自由未知量ꎬ令x3=1ꎬ得对应齐次线性方程组的基础解系η=-1110æèççççöø÷÷÷÷ꎬ所以线性方程组的通解为α0+cη=-81302æèççççöø÷÷÷÷+c-1110æèççççöø÷÷÷÷ꎬ其中c为任意常数.4在矩阵特征向量中的应用上面我们介绍了用初等行变换求解线性方程组ꎬ计算矩阵的特征向量就会涉及到解齐次线性方程组.例7㊀求矩阵A=22-225-4-2-45éëêêêùûúúú的特征向量.解㊀由A-λE=2-λ2-225-λ-4-2-45-λ=-(1-λ)2(λ-10)=0ꎬ得矩阵的特征值λ1=10ꎬλ2=λ3=1.当特征值λ1=10时ꎬ解齐次线性方程组(A-10E)X=0ꎬ即A-10E=-82-22-5-4-2-45éëêêêùûúúúң201011000éëêêêùûúúúң1012011000éëêêêêêùûúúúúú得基础解系η1=-12-11æèççççöø÷÷÷÷ꎬ故A的对应于特征值λ1=10的全部特征向量为c1-12-11æèççççöø÷÷÷÷ꎬ其中c1为任意非零常数.当λ2=λ3=1时ꎬ解齐次线性方程组(A-E)X=0ꎬ即A-E=12-224-4-2-44éëêêêùûúúúң12-2000000éëêêêùûúúúꎬ其基础解系为η2=-210æèçççöø÷÷÷ꎬη3=201æèçççöø÷÷÷ꎬ故A的对应于特征值λ2=λ3=1的全部特征向量为c2-210æèçççöø÷÷÷+c3201æèçççöø÷÷÷ꎬ其中c2ꎬc3是不全为零的任意常数.㊀矩阵的初等行变换贯穿于整个线性代数章节中ꎬ熟练应用初等行变换是学好线性代数的基础ꎬ学生要在平时学习中ꎬ学会归纳总结ꎬ使每个知识点建立联系.参考文献:[1]同济大学数学系.工程数学线性代数[M].北京:高等教育出版社ꎬ2014.[2]郝秀梅ꎬ姜庆华.线性代数[M].北京:经济科学出版社ꎬ2017.[责任编辑:李㊀璟]13。

关于矩阵初等变换的两个定理及应用

关于矩阵初等变换的两个定理及应用

一 2
1 一 3 4
,

十 `

/

1
一 J ó
0 一 6 1
2 0 0 一
ū
0 1 0 M W
了 与

一 `

。 。 1一 钾 、 J /、
5
一 4
/ 一
】初 等 行变换 尸


一 2

,
方程 组有解
2 1
此时

、 G


3 一 抢 6 1
人 八 曰 é
,,
9 5 一 6 1
引 洲 州 川 叫 侧 酬
本 文给 出 其中 一 个 足 理 的 简 明 而 一 般 的证 法
力 而得 到 一 些 声捷 的 解题
,
, 。
矩 阵 的 初 等 变换 中有 两 个 非 常重 要 的 足 理 对 这 两 个 沉 理 的应 用 本 文 作 了较 深 入 的探 讨
方法


引言
:
解 线性方程 组
证 明 向量组 的 线性 相 关竹 ;
零 陵师 专学 报
_
一 一 一 一 有 硅石 呢 》 科劝 砖 吠 奋 用 防 初 当色浦卜捻 第 哭献 广思 理 戈 卿阿 永 大 不 丁 拓 艰 件例 寺 艾 退 皿 用
_
自然 科 学版

f
_

_
_
_
__


_

_
_
_
`
_
_
_
_
_
_
_
_


_
_
_

矩阵的初等变换在线性代数中的应用(四)

矩阵的初等变换在线性代数中的应用(四)

矩阵的初等变换在线性代数中的应用(四)李志慧(陕西师范大学数学与信息科学学院 副教授 博士 西安 710062)5、求标准正交基通常的Schmidt 方法,使我们可以从欧氏空间nR 的任意一个基出发,求出一个正交基来,再单位化,求出一个标准正交基.下面给出一种运用矩阵的初等变换,从欧氏空间nR 的任意一个基求标准正交基的方法[3].设),,,(21ni i i i a a a a =是nR 的任意一个基,n i ,,2,1 =.以'i a 为列向量构成矩阵)(ji a A =,则A A '是一个n 阶正定矩阵,必与单位矩阵E 合同,即存在n 阶可逆矩阵Q ,使得E Q A A Q =)'(' 〈5〉即E AQ A Q =))(''( 〈6〉〈5〉式说明,对矩阵A A '施行一系列的初等变换(相应的初等矩阵的乘积Q )及一系列的行初等变换(相应的初等矩阵的乘积为'Q )可变成单位矩阵.〈6〉式表明,AQ 的列向量组是nR 的一个标准正交基.AQ 可以通过对矩阵A 施行与对矩阵A A '所施行的相同系列的列初等变换求出,而不必通过先求Q 再与A 相乘得到.于是,得到求标准正交基的矩阵初等变换法: ][']'[AQ E A A A A A A →施行列初等变换对初等变换列行施行对 AQ 的列向量组即为所求.例7 把)0,0,1,1(1=a ,)0,1,0,1(2=a ,)1,0,0,1(3-=a ,)1,1,1,1(4--=a 变成单位正交的向量组.解:令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=1100101010011111A ,则 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=1111100101010011'A , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=4000021101210112'A A ,→⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-------=110010101212121121212140000232100212300001121211001010100111114000021101210112)'(行除第列除第AA A ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----1110100100211112140000212101221021211)21(132112)21(132112-⨯-⨯--⨯-⨯-行第行第列第行第列第列第列第列第→⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----11001316201316121131612140000340000100001→⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----112300112162011216121112161214000010000100001 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----2112300211216202112161212112161211000010000100001 所以所求单位正交的向量组为)0,0,21,21(1=β,)0,62,61,61(2-=β, )123,121,121,121(3-=β,)21,21,21,21(4-=β,需指出的是,)'(''AQ A Q =的行向量组,正是AQ 的列向量组,所以有求标准正交基的矩阵初等变换法的另一形式)''('')''(A Q E A A A A A A →施行行初等变换对初等变换列行施行对''A Q 的行向量即为所求.如果需要求出Q ,则由EQ Q =可知,对单位短阵E 施行同样的列初等变换得到Q ,即][']'[Q E E A A E A A →施行列初等变换对初等变换列行施行对 由此可以看出,利用矩阵的初等变换求欧氏空间nR 的一组标准正交基,比较简单而且操作方便.四、小结本文介绍了矩阵的初等变换在解决线性代数的有关问题中所具有的特殊作用.特别地我们论述了矩阵的初等变换在求矩阵的秩、向量组的极大线性无关组、解线性方程组以及求标准正交基等问题中的应用,并给出了部分例子.可以看出,利用矩阵初等变换在处理相应问题问题时具有简单、快速、易于操作等特点.值得注意的是,矩阵的初等变换共有六种,当我们处理不同的问题时,可能使用初等变换的种类会不一样.如在本文中我们发现:在求向量组的极大线性无关组时只用了三种类型,而求矩阵的初等变换时却可以用六种初等变换,因此,我们在具体使用时要灵活应用.实质上,利用矩阵的初等变换还可以得到解决求矩阵的逆、特征值与特征向量、二次型的标准型等问题的有效方法.当然,我们在学习中可能还会发现利用矩阵的初等变换来解决有关问题的典型例子,这也是值得我们进一步探讨的一个问题.参考文献1.北京大学数学系几何与代数小组,高等代数,高教出版社,1988年3月. 2.张小红,蔡秉徒,高等代数专题研究选编,陕西科学技术出版社,西安,1992.3.Werner Greub , Linear Algebra, Springer-Verlag New York Heidelberg, Berlin,1982.。

矩阵的初等变换知识点总结

矩阵的初等变换知识点总结

矩阵的初等变换知识点总结矩阵的初等变换是矩阵运算中的一种基本操作,其目的是通过一系列变换使得矩阵达到特定的形式,从而方便后续的运算和求解。

初等变换包括三种类型:行交换、行倍乘以非零常数和某一行加上另一行的若干倍。

下面将对这三种初等变换进行详细介绍。

一、行交换行交换是指将矩阵中两行互相交换顺序。

具体来说,如果有一个 $m \times n$ 的矩阵 $A$,则可以通过以下方式进行行交换:1. 将第 $i$ 行和第 $j$ 行互相交换位置。

$$\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{i1} & a_{i2} & \cdots & a_{in} \\\vdots & \vdots & \ddots & \vdots \\a_{j1} & a_{j2} & \cdots & a_{jn} \\\vdots & \vdots & \ddots& \vdots\\a_{m1} &a_{m2}&\cdots&a_{mn}\end{bmatrix}\rightarrow\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots& \vdots\\a_{j1} &a_{j2}&\cdots&a_{jn}\\\vdots & \vdots & \ddots& \vdots\\a_{i1} &a_{i2}&\cdots&a_{in}\\\vdots&\vdots&\ddots&\vdots\\a_{m1}&a_{m2}&\cdots&a_{mn}\end{bmatrix}$$行交换可以用来将矩阵化为阶梯形或最简形式,方便进行高斯消元法等运算。

矩阵的初等变换及应用(吴礼斌)

矩阵的初等变换及应用(吴礼斌)

对 B 进一步化为行简化矩阵
3. 求逆矩阵
版权所有,安徽财经大学统计与应用数学学院吴礼斌,13955236046
2
线性代数
0 1 1 设矩阵 A = 1 1 2 ,求 A −1 。 2 −1 0
解:A 是 3 阶矩阵,在 A 的右边写上 3 阶单位矩阵,并对其施行初等行变换,得
版权所有,安徽财经大学统计与应用数学学院吴礼斌,13955236046 5
线性代数
其中 c1 , c 2 为任意常数。 (2)求解齐次线性方程组
x1 + x2 + x3 + x4 + x5 = 0, 3x + 2 x + x + x − 3x = 0, 1 2 3 4 5 5 x1 + 4 x2 + 3x3 + 3x4 − x5 = 0, x2 + 2 x3 + 2 x4 + x5 = 0.
再由行简化形矩阵写出原方程组的同解方程组为
x1 − 2 x2 − 2 x4 = −4 +1 x =5 2 4 2 x3
移项得
x1 = −4 + 2 x 2 + 2 x 4 5 −1 x3 = 2 2 x4
令 x2 = c1 , x4 = c2 ,代入上面同解方程组得原方程组的通解(一般表示形式)为
线性代数
矩阵的初等行变换及应用
一、矩阵的初等行变换概念
定义。 初等行 定义。对矩阵进行下列三种变换,称为矩阵的初等 初等行变换。 变换 (1)交换矩阵某两行的位置; (2)用一个非零数乘以矩阵某一行的每一个元; (3)将矩阵某一行的元都乘以数 λ 后对应加到另一行上. 并称(1)为换法行变换,称(2)为倍法行变换,称(3)为倍加行变换. 若把对矩阵施行的三种“行”变换改为对“列”的三种变换,称为矩阵的初等列 变换。矩阵的初等行变换和初等列变换统称为矩阵的初等变换 初等变换。 初等变换。 为了表示的方便,我们引入如下的一组变换运算符号: ri ↔ rk 表示交换矩阵的第 i 行与第 k 行的位置;

3.1 矩阵的初等变换及其应用

3.1 矩阵的初等变换及其应用
3.1 矩阵的初等变换及其应用
在科学技术与经济管理领域,线性方程组是许多问题的数学模型,因此,线性方程组的求解问题十分重要,本章将研究更一般的线性方程组的求解问题。
一、矩阵的初等变换
用消元法求解简单线性方程组时,其消元步骤是对方程组施以下列变换:
(i) 对调某两个方程在方程组中的位置;
(ii) 以数 乘某一方程的两端;
(iii) 把某一方程的两端乘以数 后加到另一方程的两端.
这些变换称为线性方程组的初等变换,由此引出矩阵的初等行变换.
定义6 下面三种变换称为矩阵的初等行变换:
(i) 对调两行(对调 两行,记作 );
(ii) 以数 乘某一行中的所有元素(第 行乘 ,记作 );
(iii) 把某一行所有元素的 倍加到另一行对应的元素上去(第 行的 倍加到第 行上,记作 ).
.

上式中最后一个矩阵为行阶梯矩阵,由此即可看出 .
若D含有矩阵B的第 行元素,同时含有矩阵B的第 行元素,那么由行列式的性质知D与矩阵A中的一个相应 阶子式相等,所以也有D=0.
综上,则得 .
又因为,将B的第 行的乘以 加到第 行得到矩阵A,所以同理可得 .故
由定理3知,求矩阵的秩只需利用初等行变换将矩阵化为行阶梯形矩阵,然后确定矩阵的秩.
例4 求矩阵A的秩,其中
用 阶初等方阵 左乘矩阵 得
其结果相当于对矩阵A施行第一种初等行变换:把A的第 行与第 行对调( );类似地可以验证:以 左乘矩阵A,其结果相当于以数 乘A得第 行( );以 左乘矩阵A,其结果相当于把A的第 行乘 加到第 行上( ).
综上所述,可得下述定理.
定理1设A是一个 矩阵,对A施行一次初等行变换,相当于在A的左边乘以相应的 阶初等方阵;对A施行一次初等列变换,相当于在A的右边乘以相应的 阶初等方阵.

矩阵的初等变换及其应用(Elementary transformation of matrix and its application)

矩阵的初等变换及其应用(Elementary transformation of matrix and its application)

矩阵的初等变换及其应用(Elementary transformation of matrixand its application)Elementary transformation of matrix and its applicationWang DanElementary transformation of matrix and its applicationAbstractElementary transformation of matrix is an important method of studying matrix, and it is the core of application in linear algebra. This paper introduces some concepts and properties associated with the matrix, on the basis of matrix rank, the basis for judgment matrix is invertible, after inverse matrix equations, eigenvalues and eigenvectors, two types of standard form, and illustrate the application of elementary transformation of matrix in the above is how to play the role of.Keywords: matrix, elementary transformation, applicationThe, elementary, transformation, of, matrix, and, its, applicationsAbstractElementary transformation matrix is an important means of Matrix is the core linear algebra applications. This article briefly describes some of the concepts and propertiesassociated with the matrix as a basis, the rank of a matrix to determine whether a matrix is reversible after inverse matrix, seeking basic solutions line equations find eigenvalues, and eigenvectors, quadratic standard Shape and so on. Illustrate the elementary transformation matrix in the above applications is how to play a role.Keywords:, matrix, elementary, transformation, applicationCatalog1. introduction 62. the related concepts of matrix 72.1 definition of matrix 72.2 transpose of matrix 72.3 elementary transformation of matrix and elementary matrix 73. the application of elementary transformation of matrix 83.1, the rank of the matrix 83.2 the inverse matrix of the matrix 103.3 using elementary transformation to solve matrix equation 113.4 find the solution of linear equations 12The conditions for the existence of nonzero solutions of 3.4.1 homogeneous linear equations are 13Conditions for the existence of solutions of 3.4.2 nonhomogeneous linear equations 143.5 find the eigenvalues and eigenvectors of the matrix 153.6, use elementary transformation, two times as standard type 17Summary 19References 191. introductionIn the course of studying linear algebra, I find that the elementary transformation of matrix is very extensive and runs through the whole chapter. It is the key to solve the problem in linear algebra. Linear equations is the beginning of the elementary transformation matrix, the matrix effect can also be said to be of linear algebra, each knowledge point of linear algebra and linear algebra and matrix are closely related, each in mathematics both can play a role. Biology, economics, physics, cryptography requires knowledge of mathematics, the significance of matrix elementary transformation of matrix, as can be imagined, is the complex matrix into a simple form is easy to calculate and understand.In real life, many aspects involve the knowledge of matrices,In studying the virtual aircraft model, we will find that the operation of the matrix plays a crucial role. The plane surface appears to be smooth, but the geometric structure is perplexing, the flow equation is more difficult, must also consider other external factors, but we use the matrix knowledge to be able to solve the problem very well. There are many other applications, for example, matrix eigenvalues and eigenvectors is the key to solve many problems in physics, mechanics and engineering technology; now the game company and Bank Account confidential security, but also the use of matrix theory invented the matrix card; simulation in equipment monitoring system in engineering, radio and television; large screen display works, TV teaching, command and control center etc. mainly used matrix switcher and so on.2. concepts related to matrices2.1 definition of matrixTable is a rectangular matrix. Similar to the cross and the determinant is called a row, called vertical columns, with a line, the line and the line and the row element matrix for short note.Transpose of the 2.2 matrixLet a matrix be called a matrixFor the transpose of the matrix, rememberElementary transformation and elementary matrix of 2.3 matrices1, the following three transformations called matrices, called the matrix of the primary row (column) transform, collectively referred to as the elementary transformation of the matrix:(1) the two row (column) of the exchange matrix(2) the elements of a row (column) of a matrix are multiplied by a nonzero constant(3) a constant of the elements of a row (column) of a matrix added to the corresponding element of another row (column)Elementary row and column transformations are collectively referred to as elementary transformations2. The matrix obtained by elementary transformation of a unit matrix is called elementary matrix.Three types of elementary matrices:(1) elementary commutative matrices: the second and the second lines of the commutative unit matrix(2) the elementary multiplied matrix: the row (column) of the unit matrix takes the nonzero constant, i.e.(3) elementary doubly matrix: the first row of a unit matrix is added to the first line, or the first row is multiplied to the next columnIf the matrix is transformed into a matrix by a finite elementary transformation, it is said to be equivalent3, matrix equivalence has the following properties:(1) reflexivity, that is, the self equivalence of any matrix;(2) symmetry, that is, the equivalence of any matrix, if and equivalence;(3) transitivity is equivalent to any matrix, and if and equivalence, equivalence, and equivalence;The application of elementary transformation of 3. matrices3.1, the rank of the matrixMany methods for matrix rank, general definition method, elementary transformation method, formula method and comprehensive method, but when the specific element of the matrix is known, using elementary transformation method is for non zero row (column) number.The highest order of a nonzero divisor defined in a 3.1.1 matrix is called the rank of a matrix. That is, there is a rank order of no 0, and all orders of variables (if any) are 0, then the rank of the matrix is (or / or rank)(1)(2) the rank of the zero matrix is 0(3) the rank of a ladder matrix = the number of nonzero rows in a rowTheorem 3.1.1 the elementary transformation of a matrix does not change the rank of a matrixTheorem 3.1.2 row rank of a matrix = row rank of a matrixTheorem 3.1.3, the equivalent matrices have the same rank, but their inverse is not true, that is, the matrices with the same rank may not be equivalent, and the matrices of the same type and the same rank are equivalent to each otherFind the rank of a matrix, and give a brief introduction of the most common method:(1) definition method:If the matrix has a nonzero order, and all the sub orders (if any) are all 0, then.If there is a nonzero order in the matrix, and all of the order variables containing this order are 0.The usage of matrix rank can be calculated with simple formula omit a lot.(2) the number of zero rows in Central Africa is the rank of the matrix.This is because the elementary row transformation does not change the rank of the matrix, in addition, it can be transformed into a column ladder rank by the elementary column transformation, and the elementary transformation can be used as the standard form to obtain the rank.Example 1 find the rank of a matrix.Solution 1: take the 2 order of the upper left of the matrixHowever, there are only 3 lines in the matrix, so it is necessary to find the 3 order of the variables contained in the matrix.Solution 2: to do elementary row transformationDue to non-zero behavior 2.It can be seen that the definition method is only suitable for the calculation of simple matrix, but if it is a higher order matrix, it is very inconvenient to calculate.3.2, the inverse matrix of the matrixThe definition of 3.2.1 is set as a square matrix, if the order matrix existsHere is the rank unit matrix, which is called the invertible matrix, and is called the inverse matrix.Note (1) if it is invertible, its inverse matrix is unique, and the inverse matrix is;(2) the invertible problem of the matrix is the case of the opponent's matrix.Set the invertible matrix of order, and the inverse matrix is as follows:Example 2 is set up as a invertible square matrix, and the resulting matrix is denoted by the following line and column(1) proved to be reversible;(2) seekingProof: (1) since the left multiplication of the elementary matrix corresponds to the two rows of the interchange, so there isBecause, so the matrix is reversible(2)Example 3 uses the elementary transformation of the matrix to find the inverse matrix of the matrixSolution:soIn short, we in the inverse matrix with elementary transformation, we must first selected by elementary row transformation or elementary column transformation, note that if using elementary row transformation must be from first to last by elementary row transformation, using elementary column transformation must be from first to last by elementary column transformation.But in the inverse does not need to check whether the reversible matrix, elementary transformation can be directly obtained, if the simplest form of a square matrix transform unit is not left after the show, the original matrix is irreversible.3.3 using elementary transformation to solve matrix equation(1) if it is reversible, then(2) if it is reversible, then(3) if both are reversible, thenFirst of allAgainThis can be obtainedThe matrix equations of type can only be elementary row transformations (on the left); the pair can only be elementary column transformations (on the right)Example 4 solving matrix equationSolution: let the original equation be...therefore3.4 solving the system of linear equationsSet a system of linear equations with unknown quantitiesIts matrix form is,Among them,,,The coefficient matrix called linear equation is called the augmented matrix.Conditions for nonzero solutions of 3.4.1 homogeneous linear equations(1) the necessary and sufficient condition for the existence of nonzero solutions of homogeneous linear equations is the rank of the coefficient matrix(2) when the number of equations of a homogeneous linear equation group is less than the number of unknown quantities (m<n), there must be nonzero solutions(3) if the order matrix is square, the system of equations has nonzero solution(4) if the order matrix is square, then the system of equations has only zero solutionFirst, the coefficient matrix is transformed into a ladder matrix by using elementary row transformation, and if there is only zero solution, if there is a nonzero solution, it continues to be calculated;The ladder? Matrix to the simplest form, a non zero row non zero element corresponding to the unknown quantity, the unknown amount of free unknown quantity, revenuer, after making one of a free variable is 1, the remaining 0, basic system of solutions can be obtained.The linear combination of the solutions of the parameters is the general solution of the equationExample 5 solving linear equationsSolution: the coefficient matrix is transformed into the simplest form by elementary row transformationsoThat is, there are 2 free unknownsWith the same set of equationsFor the selection of free unknown, and transferred toThe general solution is()Represented as a vector matrixConditions for the existence of solutions of 3.4.2 nonhomogeneous linear equations(1) if the set is a matrix, then the necessary and sufficient condition for the solution of the nonhomogeneous linear equation set is that the rank of the coefficient matrix is equal to the rank of the augmented matrix(2) if the set of nonhomogeneous linear equations is solvable, thenThe solution is unique and the second set of equations has only zero solutions.(3) there are infinitely many solutions to the system of nonhomogeneous linear equations(4) the solution of a system of nonhomogeneous linear equations without elementExample 6 for solving nonhomogeneous linear equationsSolution: an elementary row transformation of the augmented matrixThat wasTherefore, the general solution of the original equation set is any constant3.5 find the eigenvalues and eigenvectors of the matrixThe definition of 3.5.1 is a matrix of order, if there exists a number and a zero dimensional column vector, theThat isSet up is called an eigenvalue of a square matrix, and nonzero column vectors are called eigenvectors of the square corresponding to (or belong to) eigenvaluesThe characteristic polynomial of a 3.5.2 determinant (or) called a matrix (Note: the sub polynomial of a characteristic polynomial is) is a characteristic equation of a matrix:Let the order matrix be the unit matrix of the order, the eigenvalues of the matrix, and the matrixWith the elementary transformation, the upper triangular matrix can be obtained, and the product of the elements on the principal diagonal of the matrix is 0The value is the eigenvalue of the matrix.Example 7 uses the elementary transformation method of matrix to find the eigenvalues and eigenvectors of the matrixSolution:The product of the principal diagonal elements of the order is zero, i.e.EigenvalueThenTherefore, the corresponding eigenvectors areAll the corresponding eigenvectors are.WhenTherefore, the corresponding eigenvectors areThe entire feature vector at this time is.3.6, use the elementary transformation, and the two form is the standard typeTwo order homogeneous polynomials with variablesReferred to as the "yuan two times", referred to as the "twotimes".Order, rememberThen the two type can be expressed asA matrix of symmetric matrices of two order.When a series of elementary column transformations are applied to a matrix, the same elementary row transformation is applied to the block,When the block diagonal matrixWhen the child blocks are reduced, the. At this point, if the order, then into a standard shapeExamples are 8 and two times as standard.Solution: the quadratic matrix is twoImplementing elementary transformationIn this way, by coordinate transformation, of whichThe two form is a standard shapeNote: two types can be standardized in a variety of ways, and their standard shapes are not unique.Sum upTo solve some problems in algebra when using the elementary matrix transform can simplify the problem, such as the two type as the standard type, in addition to using elementary transformation method, also can be calculated using the orthogonal transformation method and collocation method, comparison of elementary transformation is simple, easy to calculate, easy to understand. The elementary transformation matrix has many applications in solving computational problems of linear algebra, the calculation format has many similar places, once mastered the operation of the matrix, we analyze and solve the equations of the ability will be greatly enhanced.In a word, the elementary transformation of matrix is an important method of calculation in linear algebra. We can use matrix elementary transformation to compute the rank of matrix, inverse matrix and matrix equation. With the development of science and technology, matrix has been applied to the natural, social, engineering, economic and other fields, and artificial intelligence, mobile phone communication and algorithm design and general analysis, the matrix in its application is communication optimization. We can not confine ourselves to the study of books. We should integrate theory with practice and make better use of theoretical knowledge to solve practical problems.Reference[1] 、 pre algebra group, Department of geometry and algebra, Department of mathematics, Peking University. Advanced Algebra (Third Edition), higher education press,.2003[2] Ma Juxia, Wu Yuntian. Linear Algebra (Second Edition). National Defense Industry Press.2009.8[3] Chen Zhizhong. Refined refining of linear algebra. Beijing Normal University press,.2006[4], Li Zhihui, Li Yongming. Typical problems and methods in advanced algebra. Science Press,.2008[5], Kang Yonghai, Zhu Baoyan. Application of elementary transformation of matrix in solving problems [J]. Journal of Songliao University (NATURAL SCIENCE EDITION),.1998 (3)[6], Yao Gang. Advanced Algebra (Second Edition) [M]., Fudan University press,.2008[7], Wang Junqing. On the application of elementary transformation in Higher Algebra [J]. Journal of Cangzhou Teachers College,.2002.18 (3)[8], Li Haiyan, Wang Yanfang. The whole course learning guide of Linear Algebra (three edition of the National People's Congress). Dalian University of Technology press,.2008.8Application of [9] Guangyan. Linear algebra lecture. Dalian University of Technology press.2008.7[10] Northwestern Polytechnical University advanced algebra compilation group. Advanced algebra. Science Press,.2008[11] Zhao Lixin, once Wencai. Characteristics of square matrix with elementary transformation of matrix valued.2004 mathematics [J]. University[12] Zhan Hua Lu, Lu established. Some applications of elementary transformation of higher mathematics of.2006.11 [J].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵的初等变换及应用
内容摘要:
矩阵是线性代数的重要研究对象。

矩阵初等变换是线性代数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。

一矩阵的概念
定义:由于m×n个数aij(i=1,2,….,m;j=1,2,….,n)排成的m行n列的数表,称为m行n列,简称m×n矩阵
二矩阵初等变换的概念
定义:矩阵的初等行变换与初等列变换,统称为初等变换
1.初等行变换
矩阵的下列三种变换称为矩阵的初等行变换:
(1) 交换矩阵的两行(交换两行,记作);
(2) 以一个非零的数乘矩阵的某一行(第行乘数,记作
);
(3) 把矩阵的某一行的倍加到另一行(第行乘加到行,记为).
1.初等列变换
把上述中“行”变为“列”即得矩阵的初等列变换
3 ,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B
矩阵之间的等价关系具有下列基本性质:
(1) 反身性;
(2) 对称性若,则;
(3) 传递性若,,则.
三矩阵初等变换的应用
1.利用初等变换化矩阵为标准形
定理:任意一个m×n矩阵A,总可以经过初等变换把它化为标准形
2.利用初等变换求逆矩阵
求n阶方阵的逆矩阵:即对n×2n矩阵(A¦E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A^(-1)
即(A|E)经过初等变换得到(E|A^(-1))
这种计算格式也可以用来判断A是否可逆,当我们将A化为行阶梯形矩阵时,
若其中的非零行的个数等于n时,则A可逆,否则A不可逆。

设矩阵可逆,则求解矩阵方程等价于求矩阵

为此,可采用类似初等行变换求矩阵的逆的方法,构造矩
阵,对其施以初等行变换将矩阵化为单位矩阵,则上述初等行变换同时也将其中的单位矩阵化为,即
.
这样就给出了用初等行变换求解矩阵方程的方法.
同理, 求解矩阵方程等价于计算矩阵亦可利用初等列变换求矩阵. 即
.
3.利用矩阵初等变换求矩阵的秩
矩阵的秩的概念是讨论向量组的线性相关性、深入研究线性方程组等问题的重要工具. 从上节已看到,矩阵可经初等行变换化为行阶梯形矩阵,且行阶梯形矩阵所含非零行的行数是唯一确定的, 这个数实质上就是矩阵的“秩”,鉴于这个数的唯一性尚未证明,在本节中,我们首先利用行列式来定义矩阵的秩,然后给出利用初等变换求矩阵的秩的方法.
定理:矩阵的初等变换不改变矩阵的秩,即若A~B则R(A)=R(B)
为求矩阵的秩,只要把矩阵用初等行变换变成阶梯矩阵解体矩阵中非零行的行数即是该矩阵的秩
利用矩阵值得概念,能够讨论线性方程组有解的条件,然后通过研究向量组的线性相关性,向量组的秩等重要概念,讨论线性方程组的结构。

4.行列式的计算
一般格式:经过将行列式等行变换化为上三角形
5.求线性方程组的解
一般格式:
(1)齐次线性方程组AX=0,A是m×n矩阵
1°对系数矩阵A进行初等行变换,将其化为行阶梯矩阵,求出r(A)。

若r(A)=n,则AX=0,只有零解;若r(A)<n,则AX=0有非零解,转入2°
2°对阶梯阵继续施行初等行变换将其化为行最简形矩阵,写出其对应的
线性方程组,以非零行首个非零元对应的k个未知量为基本未知量,其余的n-k个
未知量为自由未知量,将自由未知量移到等式右端得到一般解,在一般解中分别令
自由未知量中一个为1,其余全为0,求得AX=0的基础解系:X1,X2,…,Xn-k
3°n-k个解向量的线性组合:C1X1+C2X2+…+Cn-kXn-k(C1,C2,…,Cn-k为任意常数)就是AX=0
的通解。

(2)非齐次线性方程组AX=B,A是m×n矩阵
1°对增广矩阵(AB)进行初等行变换,将其化为行阶梯矩阵,求出r(A)与r(AB),若r(A)<r(AB),则AX=B无解;若r(A)=r(AB) 则AX=B有解,转入2°
2°对行阶梯阵继续施行初等行变换,将其化为行最简形矩阵,写出其对应的线性方程组,此时若r(A)=r(AB)=n,则AX=B有唯一解,行最简形矩阵所对应的线性方程组就是这唯一解的表达式;若r(A)=r(AB)=k<n,则AX=B有无穷多解,转入3°
3°以非零行的首个非零元对应的k个未知量为基本未知量,其余n-k个未知元为自由未知量,将自由未知量移到等式右端,得到AX=B的一般解,令所有的自由未知量为0,求得AX=B的一个特解X0
4°在AX=B的一般解中去掉常数项,就得到导出组AX=0的一般解,分别令一个自由未知量为1其余自由未知量都为0,求出导出组AX=0的基础解系,X1,X2,…,Xn-k与通解C1X1+C2X2+…+C n-kXn-k
5°AX=B的一个特解加导出组AX=0的通解C1X1+C2X2+…+Cn-kXn-k+X0(C1,…,Cn-k为任意常数) 就是AX=B 的通解。

6.确定向量组的线性相关性
一般格式:设向量组为α1α2……αm ,以α1α2……αm 为列构成矩阵A ,对A 施行
初等行变换,将它化成行阶梯形矩阵,求出其秩r (A ),若r (A )=m ,
则α1α2……αm 线性无关,若r (A )<m ,则α1α2……αm 线性相关。

7.确定一向量能否由另一向量线性表出
一般格式:以向量组α1α2……αm 与向量β为列构成矩阵A ,然后对A 施行初等行变换,化为行最简形矩阵B
8.求向量组的秩与极大无关组
一般格式:设向量组α1α2……αm ,以它们为列构成矩阵A B 的非零行的首个元素所在的列向量对应的α1α2……αm 中
的向量αi1……αir 构成一个极大无关组,其向量的个数即为向量组α1α2……αm 的秩。

结 论
矩阵初等变换在解决线性代数的计算问题中有很多应用,这些计算格式有不少类似之处。

但是由于这些计算格式有不同的原理,
()B m 行最简形矩阵初等行变换−−−→−=ααα 21A ()B
m 行阶梯形矩阵初等行变换−−−→−=ααα 21A
所以,它们也有一些明显的区别。

➢计算格式1既可以用初等行变换也可以用初等列变换,施行这些变换时要注意使行列式保值。

➢计算格式3既可以用初等行变换也可以用初等列变换,但是我们一般只用初等行变换。

➢其余计算格式只能使用初等行变换。

相关文档
最新文档