七年级有理数练习题集及答案(10套)

合集下载

七年级数学《有理数》测试题及答案

七年级数学《有理数》测试题及答案

七年级数学《有理数》测试题及答案一、选择题(本大题10小题,每小题3分,共30分)1.在1,0,2,﹣3这四个数中,最大的数是( )A .1B .0C .2D .﹣32.2的相反数是( )A .B .C .﹣2D .23.﹣5的绝对值是( )A .5B .﹣5C .D .﹣4.﹣2的倒数是( )A .2B .﹣2C .D .﹣5.下列说法正确的是( )A .带正号的数是正数,带负号的数是负数B .一个数的相反数,不是正数,就是负数C .倒数等于本身的数有2个D .零除以任何数等于零6.在有理数中,绝对值等于它本身的数有( )A .1个B .2个C .3个D .无穷多个7.比﹣2大3的数是( )A .1B .﹣1C .﹣5D .﹣68.下列算式正确的是( )A .3﹣(﹣3)=6B .﹣(﹣3)=﹣|﹣3|C .(﹣3)2=﹣6D .﹣32=99.据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A .0.136×1012元B .1.36×1012元C .1.36×1011元D .13.6×1011元10.近似数2.7×103是精确到( )A .十分位B .个位C .百位D .千位二、填空题(本大题6小题,每小题4分,共24分)11.如果温度上升3℃记作+3℃,那么下降3℃记作.12.已知|a|=4,那么a= .13.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.14.比较大小:3223.15.若(a﹣1)2+|b+2|=0,那么a+b= .16.观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.18.﹣8﹣6+22﹣919.计算:﹣8÷(﹣2)+4×(﹣5).四、解答题(二)(本大题3小题,每小题7分,共21分)20.小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?21.计算:(﹣ +﹣)×(﹣12).22.计算:﹣22+3×(﹣1)4﹣(﹣4)×2.五、解答题(三)(本大题3小题,每小题9分,共27分)23.若|a|=5,|b|=3,求a+b的值.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.25.一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.2的相反数是()A.B.C.﹣2 D.2【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.﹣5的绝对值是()A.5 B.﹣5 C.D.﹣【考点】绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.﹣2的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.5.下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零【考点】有理数.【分析】利用有理数的定义判断即可得到结果.【解答】解:A、带正号的数不一定为正数,例如+(﹣2);带负号的数不一定为负数,例如﹣(﹣2),故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和﹣1,正确;D、零除以任何数(0除外)等于零,故错误;故选:C.【点评】此题考查了有理数,熟练掌握有理数的定义是解本题的关键.6.在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个【考点】绝对值.【分析】根据绝对值的意义求解.【解答】解:在有理数中,绝对值等于它本身的数有0和所有正数.故选D.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.7.比﹣2大3的数是()A.1 B.﹣1 C.﹣5 D.﹣6【考点】有理数的加法.【分析】先根据题意列出算式,然后利用加法法则计算即可.【解答】解:﹣2+3=1.故选:A.【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.8.下列算式正确的是()A.3﹣(﹣3)=6 B.﹣(﹣3)=﹣|﹣3| C.(﹣3)2=﹣6 D.﹣32=9【考点】有理数的乘方;相反数;有理数的减法.【分析】根据有理数的减法和有理数的乘方,即可解答.【解答】解:A、3﹣(﹣3)=6,正确;B、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;C、(﹣3)2=9,故本选项错误;D、﹣32=﹣9,故本选项错误;故选:A.【点评】本题考查了有理数的减法和有理数的乘方,解决本题的关键是熟记有理数的乘方和有理数的减法.9.据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】解:1.36万亿元,用科学记数法表示为1.36×1012元,故选:B.【点评】本题考查了科学记数法,科学记数法中确定n的值是解题关键,指数n是整数数位减1.10.近似数2.7×103是精确到()A.十分位B.个位 C.百位 D.千位【考点】近似数和有效数字.【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.二、填空题(本大题6小题,每小题4分,共24分)11.如果温度上升3℃记作+3℃,那么下降3℃记作﹣3℃.【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升3℃记作+3℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.已知|a|=4,那么a= ±4 .【考点】绝对值.【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.【解答】解:∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1 .【考点】数轴.【专题】探究型.【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,则距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,则距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5或﹣1.【点评】本题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.14.比较大小:32>23.【考点】有理数的乘方;有理数大小比较.【专题】计算题.【分析】分别计算32和23,再比较大小即可.【解答】解:∵32=9,23=8,∴9>8,即32>23.故答案为:>.【点评】本题考查了有理数的乘方以及有理数的大小比较,是基础知识要熟练掌握.15.若(a﹣1)2+|b+2|=0,那么a+b= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b,然后相加即可得解.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20 .【考点】规律型:数字的变化类.【分析】观察不难发现,这列数的绝对值是从2开始的连续偶数,并且第偶数个数是正数,第奇数个数是负数,然后写出第10个数即可.【解答】解:∵﹣2,4,﹣6,8,﹣10…,∴第10个数是正数数,且绝对值为2×10=20,∴第10个数是20,故答案为:20.【点评】本题是对数字变化规律的考查,比较简单,难点在于从绝对值和符号两个部分考虑求解.三、解答题(一)(本大题3小题,每小题6分,共18分)17.把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:4>2.5>﹣1>﹣1.5>﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.18.﹣8﹣6+22﹣9【考点】有理数的加减混合运算.【分析】直接进行有理数的加减运算.【解答】解:原式=﹣23+22=﹣1.【点评】本题考查有理数的运算,属于基础题,注意运算的顺序是关键.19.计算:﹣8÷(﹣2)+4×(﹣5).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=4﹣20=﹣16,故答案为:﹣16【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题(二)(本大题3小题,每小题7分,共21分)20.小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?【考点】规律型:数字的变化类.【分析】分析几个数可知要使抽取的数最大,需同时抽两个最大正数或两个最小的负数,即可使乘积最大.【解答】解:抽取﹣3和﹣8.最大乘积为(﹣3)×(﹣8)=24.【点评】两个负数的乘积为正数,且这两个负数越小,其乘积越大.21.计算:(﹣ +﹣)×(﹣12).【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:(﹣ +﹣)×(﹣12)=(﹣)×(﹣12)+×(﹣12)﹣×(﹣12)=2﹣9+5=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法运算定律的应用.22.计算:﹣22+3×(﹣1)4﹣(﹣4)×2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3+8=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.若|a|=5,|b|=3,求a+b的值.【考点】有理数的加法;绝对值.【分析】|a|=5,则a=±5,同理b=±3,则求a+b的值就应分几种情况讨论.【解答】解:∵|a|=5,∴a=±5,同理b=±3.当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.【点评】正确地进行讨论是本题解决的关键.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.【考点】正数和负数.【分析】(1)根据正负数的意义解答即可;(2)求出所有记录的和的平均数,再加上基准分即可.【解答】解:(1)最高分为:80+12=92分,最低分为:80﹣10=70分;(2)8﹣3+12﹣7﹣10﹣3﹣8+1+0+10=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8=31﹣31=0,所以,10名同学的平均成绩80+0=80分.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?【考点】正数和负数.【专题】应用题.【分析】(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.【解答】解:(1)18﹣9+7﹣14﹣6+12﹣6+8=45﹣35=10,所以,B地在A地北方10千米;(2)18+9+7+14+6+12+6+8=80千米80×0.35=28升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.。

七年级数学有理数试卷【含答案】

七年级数学有理数试卷【含答案】

七年级数学有理数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. -3/4C. πD. √52. 两个有理数相乘,结果仍为有理数的是:A. 2/3 4/5B. 2/3 √2C. -3/4 πD. √5 √53. 下列哪个数是整数?A. -3/4B. 2.5C. 3D. √94. 两个负数相乘的结果是:A. 正数B. 负数C. 零D. 无法确定5. 下列哪个数是正有理数?A. -3/4B. 2.5C. -3D. √9二、判断题(每题1分,共5分)1. 所有的整数都是有理数。

()2. 两个有理数相加,结果仍为有理数。

()3. 0是有理数。

()4. 两个正数相乘的结果是负数。

()5. 所有的分数都是有理数。

()三、填空题(每题1分,共5分)1. 3/4 + 1/4 = ______2. -2/3 3/2 = ______3. 4/5 1/5 = ______4. | -3/4 | = ______5. -3/4的倒数是______四、简答题(每题2分,共10分)1. 请简述有理数的定义。

2. 请解释有理数的分类。

3. 请简述有理数的乘法法则。

4. 请解释有理数的加法法则。

5. 请简述有理数的除法法则。

五、应用题(每题2分,共10分)1. 计算下列各式的值:a. 3/4 + 1/4b. -2/3 3/2c. 4/5 1/5d. | -3/4 |e. -3/4的倒数2. 判断下列各数是否为有理数,并解释原因:a. √2b. -3/4c. πd. √5e. 2.53. 计算下列各式的值:a. 2/3 + 1/6b. -3/4 2/3c. 5/8 3/8d. | -5/6 |e. -5/6的倒数4. 判断下列各数是否为整数,并解释原因:a. -3/4b. 2.5c. 3d. √9e. -2/35. 计算下列各式的值:a. 3/5 + 2/5b. -4/5 5/4c. 7/10 3/10d. | -7/8 |e. -7/8的倒数六、分析题(每题5分,共10分)1. 分析有理数的乘法法则,并举例说明。

初一有理数试题及答案

初一有理数试题及答案

初一有理数试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -5答案:C2. 计算下列哪个选项的结果是负数?A. 3 + 2B. -3 - 2C. 4 × 2D. -4 ÷ 2答案:B3. 绝对值是5的数是?A. 5B. -5C. 5和-5D. 以上都不是答案:C4. 有理数-2,-1,0,1,2中,最大的数是?A. -2B. -1C. 0D. 2答案:D5. 下列哪个选项表示的是相反数?A. 5和-5B. 3和-3C. 0和-0D. 以上都是答案:D6. 计算下列哪个选项的结果是0?A. 3 - 3B. 4 + (-4)C. 2 × 0D. -2 - (-2)答案:C7. 计算下列哪个选项的结果是正数?A. -3 + 2B. -3 - 2C. -3 × 2D. -3 ÷ 2答案:A8. 计算下列哪个选项的结果是负数?A. -3 × 2B. -3 ÷ 2C. -3 + 2D. -3 - 2答案:D9. 有理数-3,-2,-1,0,1,2,3中,最小的数是?A. -3B. -2C. -1D. 0答案:A10. 下列哪个选项表示的是倒数?A. 5和1/5B. 3和3C. 0和0D. -2和-1/2答案:A二、填空题(每题3分,共30分)1. 有理数-4的相反数是______。

答案:42. 绝对值等于3的数是______。

答案:±33. 计算-2 + 3 = ______。

答案:14. 计算-5 - 3 = ______。

答案:-85. 计算-6 × 2 = ______。

答案:-126. 计算-4 ÷ 2 = ______。

答案:-27. 计算-3 + (-2) = ______。

答案:-58. 计算0 - 5 = ______。

答案:-59. 计算-2 × (-3) = ______。

初一有理数试题及答案大全

初一有理数试题及答案大全

初一有理数试题及答案大全一、选择题(每题3分,共30分)1. 下列各数中,是正数的是()。

A. -2B. 0C. 3D. -3答案:C2. 绝对值等于它本身的数是()。

A. 0B. -2C. 2D. 任何数答案:A3. 下列各数中,是负数的是()。

A. 0B. 5C. -5D. 2答案:C4. 下列各数中,是整数的是()。

A. 3.5B. 0.5C. 3D. -2.3答案:C5. 下列各数中,是分数的是()。

B. 0.5C. 2D. -1答案:B6. 下列各数中,是无理数的是()。

A. √2B. 0.5C. 3D. 0答案:A7. 下列各数中,是正有理数的是()。

A. 0B. -2D. -3答案:C8. 下列各数中,是负有理数的是()。

A. 0B. 5C. -5D. 2答案:C9. 下列各数中,是正整数的是()。

A. 0B. 3.5C. 3D. -2.3答案:C10. 下列各数中,是负整数的是()。

A. 0B. 5C. -5D. 2答案:C二、填空题(每题3分,共30分)11. 一个数的相反数是-3,这个数是______。

答案:312. 一个数的绝对值是5,这个数可以是______或______。

答案:5,-513. 一个数的倒数是1/2,这个数是______。

答案:214. 一个数的平方是9,这个数可以是______或______。

答案:3,-315. 一个数的立方是-8,这个数是______。

答案:-216. 一个数的绝对值是它本身,这个数是______或______。

答案:正数,017. 一个数的相反数是它本身,这个数是______。

答案:018. 一个数的倒数是它本身,这个数是______或______。

答案:1,-119. 一个数的平方根是它本身,这个数是______或______。

答案:0,120. 一个数的立方根是它本身,这个数是______或______或______。

答案:0,1,-1三、计算题(每题10分,共40分)21. 计算:(-3) + 5 - (-2)。

【绝对经典】初一数学有理数30题含详细答案

【绝对经典】初一数学有理数30题含详细答案
(3)当代数式|x+1|+|x﹣2|+|x﹣3|取最小值时,x的值为_____.
30.a、b、c三个数在数轴上位置如图所示,且|a|=|b|
(1)求出a、b、c各数的绝对值;
(2)比较a,﹣a、﹣c的大小;
(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.
参考答案
1.D
【解析】
【分析】
负数小于0,可将各项化简,然后再进行判断.
3.C
【解析】
【分析】
(25±0.2)的字样表明质量最大为25.2,最小为24.8,二者之差为0.4.
【详解】
解:根据题意得:标有质量为(25±0.2)的字样,
(3)如果点A、C表示的数互为相反数,求点B表示的数.
29.数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为|2﹣3|=1,2与﹣3的距离可表示为|2﹣(﹣3)|=5
(1)数轴上表示3和8的两点之间的距离是_____;数轴上表示﹣3和﹣9的两点之间的距离是_____;
(2)数轴上表示x和﹣2的两点A和B之间的距离是_____;如果|AB|=4,则x为_____;
2.B
【解析】
【分析】
根据有理数的分类逐一作出判断即可.
【详解】
解:A.0既不是正数也不是负数,故A错误;B.整数和分数统称为有理数;故B正确;C.若|a|=|b|,则a=b或a与b互为相反数.故C错误;D.整数包括正整数、0和负整数,故D错误.
【点睛】
本题考查了有理数的分类,掌握有理数的分类是解题的关键.
A.0.2 kgB.0.3 kgC.0.4 kgD.50.4 kg
4.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A、B两点之间的距离为10(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数是()

初一数学有理数试题答案及解析

初一数学有理数试题答案及解析

初一数学有理数试题答案及解析1.下面每组中的两个数互为相反数的是()A.-和5B.-2.5和2C.8和-(-8)D.和0.333【答案】B【解析】只有符号不同的两个数是互为相反数,B项中B项正确.2.有理数在数轴上表示的点如图所示,则的大小关系是()A.B.C.D.【答案】D【解析】由数轴可知,所以其在数轴上的对应点如图所示,则,选D.3.如果数轴上的点A对应的数为,那么与A点相距3个单位长度的点所对应的有理数为_________________.【答案】或2.【解析】如果数轴上的点A对应的数为,那么与A点相距3个单位长度的点所对应的有理数为:或.【考点】实数与数轴.4.下列式子一定成立的是()A.x4+x4=2x8B.x4·x4 =x8C.(x4)4=x8D.x4÷x4=0【答案】B【解析】A.错误:x4+x4=2x4;C.错误:(x4)4=x16 D.错误:x4÷x4=1,选B正确。

【考点】整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握。

要求学生牢固掌握整式运算中同底数幂相乘,与幂的乘方等。

5.数轴上A、B两点所对应的数分别是4和-6,则A、B两点间的距离为A. -2B. 2C. -10D. 10【答案】D【解析】根据数轴上两点间的距离公式求解即可.由题意得A、B两点间的距离为10,故选D.【考点】数轴上两点间的距离点评:本题属于基础应用题,只需学生熟练掌握数轴上两点间的距离公式,即可完成.6.有理数、在数轴上的对应点的位置如图所示,下列各式正确的是()A.<0B.C.D.<【答案】D【解析】由数轴可得,且,再依次分析各选项即可作出判断.由数轴可得,且,则故选D.【考点】数轴的知识点评:本题属于基础应用题,只需学生熟练掌握数轴的知识,即可完成.7.数轴上,到表示数3的点距离5个单位长度的点所表示的数是()A.8B.2C.-2D.8或-2【答案】D【解析】根据数轴上两点间的距离公式求解即可,注意本题有两种情况.到表示数3的点距离5个单位长度的点所表示的数是或,故选D.【考点】数轴上两点间的距离点评:本题属于基础应用题,只需学生熟练掌握数轴上两点间的距离公式,即可完成.8. -2的相反数是A.2B.C.D.-2【答案】A【解析】相反数的定义:只有符号不同的两个数互为相反数,负数的相反数的正数.-2的相反数是2,故选A.【考点】相反数点评:本题属于基础应用题,只需学生熟练掌握相反数的定义,即可完成.9.表示两数的点在数轴上位置如下图所示,则下列判断错误的是A.B.C.D.【答案】C【解析】由数轴可得,且,再根据有理数的混合运算法则依次分析即可. 由数轴可得,且则,,,故选C.【考点】数轴的知识,有理数的混合运算点评:本题属于基础应用题,只需学生熟练掌握有理数的混合运算法则,即可完成. 10.将有理数,0,20,,1,,放入恰当的集合中.【答案】如图所示:【解析】根据负数、整数的定义即可作出分类.【考点】有理数的分类点评:本题属于基础应用题,只需学生熟练掌握负数、整数的定义,即可完成.11.小明和小林玩一种计算游戏,游戏的规则是:按 =ad-bc计算数值,谁得的值大谁就是赢家,小明计算的值,小林计算的值,则___________是赢家.【答案】小林【解析】先根据所给的游戏规则分别计算出各自的值,再比较即可.由题意得,则小林是赢家.【考点】有理数的混合运算的应用点评:解题的关键是读懂题中所给的游戏规则,正确计算出各自的结果,再比较.12.有理数数、在数轴上的位置如图所示,则化简的结果为()A.B.C.D.【答案】D【解析】由数轴可得,且,即可判断,再根据绝对值的规律化简即可.由数轴可得,且,则所以故选D.【考点】数轴的应用,绝对值点评:解题的关键是熟记绝对值的规律:正数和0的绝对值等于它本身,负数的绝对值等于它的相反数.13.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数,下列属于三角数的是………………………()A.55B.60C.65D.75【答案】A【解析】仔细分析图中数据可得1=1,3=1+2,6=1+2+3,10=1+2+3+4,…,根据从1开始的连续整数的和1+2+3+4+…+n=依次分析各项即可.当时,解得或(舍去),当,,时,解得的n均不是整数,故选A.【考点】本题考查的是找规律-数字的变化点评:解答本题的关键是熟练掌握从1开始的连续整数的和1+2+3+4+…+n=14.绝对值小于3的负整数是。

初一数学有理数试题答案及解析

初一数学有理数试题答案及解析

初一数学有理数试题答案及解析1.实数在数轴上的位置如图所示,下列各式正确的是()A.B.C.D.【答案】D.【解析】依据对数轴的认识,原点左边的数值小于0,原点右边的数值大于0;原点右边的数距离原点越远,数值越大,原点左边的数距离原点越远,数值越小.A、由在原点的左边,则,故选项错误;B、由距离原点比较远,且,位于原点右边,,则,故选项错误;C、由,则,故选项错误;D、由,则,故选项正确.故选D.【考点】数轴.2.化简【答案】.【解析】含有绝对值的实数混合运算,先去绝对值,在合并同类二次根式,求出结果.取绝对值前要分析绝对值里面式子的符号.试题解析:因为,原式==.【考点】1绝对值;2二次根式的合并;3去括号法则.3.化简:【答案】.【解析】注意去绝对值符号..【考点】绝对值.4.﹣7的绝对值是.【答案】7.【解析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.∵﹣7<0,∴|﹣7|=7.【考点】绝对值.5.计算:(1);(2)【答案】(1)-12;(2)【解析】(1)先算有理数的乘方及小括号里的,再把除化为乘,最后根据有理数的乘法法则计算即可;(2)先根据算术平方根、立方根的性质化简,再算加减即可.解:(1)(2)【考点】实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.6.如图,边长分别为1,2,3,4,……,2007,2008的正方形叠放在一起,请计算图中阴影部分的面积.【答案】2017036【解析】第一个阴影部分的面积等于第二个图形的面积减去第一个图形的面积,第二个阴影部分的面积等于第四个图形的面积减去第三个图形的面积,由此类推,最后一个阴影部分的面积等于最后一个图形的面积减去倒数第二个图形的面积.由图可得图中阴影部分的面积为:(22-1)+(42-32)+…+(20082-20072)=(2+1)(2-1)+(4+3)(4-3)+…+(2008+2007)(2008-2007)=1+2+3+4+…+2007+2008==2017036.【考点】找规律-图形的变化点评:本题规律为:每一个阴影部分的面积等于两个正方形面积的差,这样可以将阴影部分的面积看做边长为偶数的正方形的面积减去边长为奇数的正方形的面积.7.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2。

完整版)初一数学有理数专项练习题

完整版)初一数学有理数专项练习题

完整版)初一数学有理数专项练习题1.选择题(本题满分30分,每题2分)1.下列说法中,正确的个数是()选项:A.1个B.2个C.3个D.4个正确答案:C.3个解析:①一个有理数不是整数就是分数,错误;②一个有理数不是正的,就是负的,错误;③一个整数不是正的,就是负的,正确;④一个分数不是正的,就是负的,错误。

2.在有理数中,绝对值等于它本身的数有()选项:A.1个B.2个C.3个D.无穷多个正确答案:A.1个解析:只有0的绝对值等于它本身。

3.下列说法中正确的是()选项:A.π的相反数是314.B.符号不同的两个数一定是互为相反数C.若x和y互为相反数,则x yD.一个数的相反数一定是负数正确答案:C.若x和y互为相反数,则x+y=0解析:A错误,π的相反数是-π;B错误,符号相反的两个数互为相反数;C正确;D错误,0的相反数是0.4.下列正确的式子是()选项:A.-|﹣|>0 B.-(-4)=-|﹣4| C.-3>-π D.-3.14>-π正确答案:B.-(-4)=-|﹣4|解析:A错误,-|﹣|=-1;B正确;C错误,-3<0<-π;D 错误,-3.14<0<-π。

5.若a+b<0,ab>0,则()选项:A.a>0,b>0 B.a,b两数一正一负,且正数的绝对值大于负数的绝对值C.a,b两数一正一负,且负数的绝对值大于正数的绝对值 D.a<0,b<0正确答案:B.a,b两数一正一负,且正数的绝对值大于负数的绝对值解析:由ab>0可知,a和b符号相同,由a+b<0可知,a和b一正一负,又因为正数的绝对值大于负数的绝对值,故选B。

6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()选项:A.0.8kg B.0.6kg C.0.5kg D.0.4kg正确答案:B.0.6kg解析:两袋面粉的质量相差的最大值为0.2+0.3=0.5kg,故选B。

初一数学有理数试题与答案

初一数学有理数试题与答案

初一数学有理数试题与答案题目一:将一个有理数4/5化成分子为1的有理数。

解析:要将一个有理数化成分子为1的有理数,可以利用等式性质进行变形。

有理数4/5可以写成等式4/5=(4/5)/1。

答案:将有理数4/5化成分子为1的有理数的等式为4/5=(4/5)/1。

题目二:将一个有理数5/3化成分母为1的有理数。

解析:要将一个有理数化成分母为1的有理数,可以利用等式性质进行变形。

有理数5/3可以写成等式5/3=5/(3/1)。

答案:将有理数5/3化成分母为1的有理数的等式为5/3=5/(3/1)。

题目三:计算有理数2/3和5/6的和。

解析:计算有理数的和可以直接将两个有理数的分子相加,再将分母保持不变即可。

有理数2/3和5/6的和为(2+5)/3=7/3。

答案:有理数2/3和5/6的和为7/3。

题目四:计算有理数3/4和1/2的差。

解析:计算有理数的差可以直接将两个有理数的分子相减,再将分母保持不变即可。

有理数3/4和1/2的差为(3-2)/4=1/4。

答案:有理数3/4和1/2的差为1/4。

题目五:计算有理数1/2和2/3的积。

解析:计算有理数的积可以直接将两个有理数的分子相乘,再将分母相乘即可。

有理数1/2和2/3的积为(12)/(23)=2/6。

答案:有理数1/2和2/3的积为2/6。

题目六:计算有理数3/5和2/7的商。

解析:计算有理数的商可以直接将两个有理数的分子相除,再将分母相除即可。

有理数3/5和2/7的商为(3/5)/(2/7)=(37)/(52)=21/10。

答案:有理数3/5和2/7的商为21/10。

题目七:将一个有理数5/9化成小数形式。

解析:将有理数化成小数形式,可以进行除法运算。

有理数5/9可以进行除法运算得到小数形式为0.5555,即0.5。

答案:将有理数5/9化成小数形式为0.5555。

题目八:将一个小数0.375化成有理数。

解析:将小数化成有理数可以利用分数的形式表示。

七年级(初一)有理数综合计算题100道-含答案

七年级(初一)有理数综合计算题100道-含答案

(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(1)(2)(3)(1)(2)1.2.能简算就简算。

3.计算:4.计算题:5.根据所学知识,回答下列问题.;;.6.计算:7.计算8.已知,,且,求的值.(−3)××65(−)×59(−)4112÷[(−43)×5]5189×0.7+11×70%÷[+9854(1+)]815.23+1.92+5.77−0.92−3.8−2.44.8−3.4−(−4.5)−32−81(−)+31(−)83+21(−)−32(−)+54(−)2125.7+(−7.3)+(−13.7)+7.3(−−43+95)×36+127∣−24∣−1−2[2−(1+×0.5)]÷[3−312(−2)]2(−43−61)×83(−24)−2+2[12−(−3)×2]÷(−3)(−)÷65∣−1∣+32(−2)×3(−1.5)5+(−)−413−(+)434×−5−()16÷−8−()−10()−1−20161−÷(81)−3+−2[2()2]∣a ∣=3∣b ∣=5a <b a −b(1)(2)(3)(4)(5)(6)(1)(2)(3)(4)(5)(6)(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(4)9.计算.10.计算.11.计算:12.计算:13.计算:−(−3)+7−∣−8∣5.7+(−0.9)+4.3+(−8.1)−10−8÷(−2)×(−)214×(−12)+(−5)×(−2)+316−24×(−+21−43)31−1−(1−0.4)÷×[(−2)−3126]13+7−(−20)−(−40)−60.5+(−)−41 2.75+(−)21(−12)−5+(−14)−(−39)−52∣−1∣−21(+2)−41(−2.75)(−4)−32(0.5−3)210.47−4−65(−1.53)−161−7+(−3)−(−14)−18÷(2)×41439×1615(−16)−1−2(1−)×21(−3)÷2(−)41(−8)−(+4)+(−6)−(−1)(−)×(−)÷0.254357(−213+−65)÷−127(361)−4+21÷∣−65∣−311(−1)2017(+)+631(−)35(−10.5)+(−1.3)(−)+31(−)+25(−)+32(+)21(+0.56)+(−0.9)+(+0.44)+(−8.1)(1)(2)(3)(4)(1)(2)(1)(2)(1)(2)(1)(2)(1)(2)14.计算:15.计算下列各题:;;.16.计算:解⽅程:17.阅读材料:对于任何数,我们规定符号的意义是:.例如:.按照这个规定,请你计算的值;按照这个规定,当时,求的值.18.计算:;19.计算:.20.计算:21.计算:(−20)+(+3)−(−5)−(+7)−0.25÷(−)÷(−221381)×21(−1)100(−3)−3×43[(−)−3222]−3(−)213(−2)×(−)+724(−8)×−7245×(−)+724724(−65+73−31)÷149(−)421(−)÷(−61221)÷∣−3126∣×(−)2212(x +5115)=−21(x −317)∣∣∣∣a c b d ∣∣∣∣=∣∣∣∣a c b d ∣∣∣∣ad −bc =∣∣∣∣1324∣∣∣∣1×4−2×3=−2∣∣∣∣52−6−4∣∣∣∣=∣∣∣∣2x −1x +2−221∣∣∣∣5x +(−14.5)−16.3−(−4.5)−(+37)(−31+43)×125(−12)−2÷2(−4)−3×(−1)−2(−4)(−+−)×(−36)946543−5+22×(−3)+2(−6)+(−)221(−5.3)+(−3.2)−(−2.5)−(+4.8)−1−4×[2−61(−3)]2(3)(4)(1)(2)(3)(4)(5)(6)(1)(2)22.已知、互为相反数,、互为倒数(、都不等于),的绝对值为,求的值.23.计算:.24.25.计算:.26.试试你的基本功:若,求的值.27.计算:.28.化简求值:,其中满⾜.29.30.计算:(−−43+92)÷125361−2−4(4−6)−212×(−2)2a b m n m n ±1x 2−2mn +−m −n a +bx 2−∣−5∣×(−1)−24÷(−)212(−3)+75(+15.5)+(−6)+72(−5)21(−3)+(−4)−(+11)−(−19)−10−8÷(−2)×(−)21(−32)×30÷(−)2151(−+21−32)×∣−4112∣18×+3213×−324×32(−36)÷9119(−1)−3×41[2−(−3)]2∣a +2∣+(b −3)=20a +b 3×(a −b )−÷(32)(−4)×(−6)(−3x −24y +22x )−(2x −25y )+2(5x −28)+6x x ,y ∣y −5∣+(x +4)=20−(−)+21∣−∣21−1−100(−)×3×(5−3121328×0.125)33(1)(2)(1)(2)(3)(4)(5)(6)(1)(2)(3)(1)(2)(3)(4)(1)(2)31.计算下列各题:;32.计算:33.若,、互为倒数,,化简.34.计算:35.计算:.36.计算:37.38.计算:;;12−(−18)+(−7)−15−2+23÷(−1)−2007∣−4∣×5(−)+83(0.75)+(+)+43+811a +b +c =0a b c >0ac +∣∣a −∣∣b −∣∣ab ∣∣(−8)−47+18−(−27)0.47−4−65(−1.53)−161−0.6−0.08+−52−11270.92+2+115(−12.5)×(−)×76(−4)(−24)×(−127+651)[−51+21(−)]×1256016÷(−2)−3(−)×81(−4)−4−(−−43+92)÷125361−1−4[2−(−3)]÷2(−)213∣−3∣+(−1)×(π−20133)−0(−)21−3a ⋅a +33(2a )+32(−a )232014−22013×2015(x +2y +3z )(x +2y −3z )(−3)−2(−1)×−213926÷∣−∣32−20+(−14)−(−18)−1310+(−2)×(−5)2(3)(4)(5)(6)(1)(2)(1)(2)(1)(2)(1)(2)(1)(2)(1);;;.39.已知,.当时,求的值;若与互为相反数,求的值.40.计算:;.41.泰兴出租⻋司机⼩李某天下午的营运全是在东西⾛向的国庆路上进⾏的,若规定向东为正,向西为负,这天下午的⾏⻋⾥程如下(单位:千⽶):,,,,,,,.将最后⼀名乘客送到⽬的地后,⼩李距下午出发地点的距离是多少千⽶?若出租⻋每⾏驶耗油,这天下午这辆出租⻋共消耗多少升汽油?42.计算:43.计算:.44.已知化简:;已知、满⾜,求的值.45.计算:.46.计算:(−−43+95)÷127361−1−4(1−0.5)××[2−31(−3)]2(x −211)−2(0.5x +15)8a +a −2(2a −2124a −6)A=−x +2x +1B =2x −2x x =−2A +2B 2A B x (−13)+(−18)20+(−14)+10−3+4+2−8+5−2−11km 0.8L (−5)+(−13)8+(−10)−1+3∣−3∣−(−1)−2015×(−2)212A =3b −22a +25ab ,B =4ab −2b −2a 23A −4B a b (a −1)+2∣b +1∣=03A −4B −4−(+7)−(−15)÷(−2)−5252(−)×(−)+2184372(2)(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(1)(2)47.化简求值:,其中,满⾜.48.计算:(直接写出结果)49.计算:.50.计算:51.52..53.计算54.规定⼀种运算:,求的值.1+[−(−)]×(−2)÷(−1+1214323310.5)(−3x −210y +22x )−2(2x −25y )+23(−2x −28)+6x x y ∣y −5.3∣+(x +2)=20(−6)+(−14)=−8−(−8)=12+(−15)=+(+16)−(+4)=0−(−7)=−4×(−5)=0×(−15)=−15÷(−)=75(−3)=3−5=2(−12)+(+3)−2+3−4×(21)+31150%(+12)+(−4)(−1.1)+(−3.9)(−35)×127(−24)−1+4(1−0.5)××31[2−(−3)]2a ∗b =a +b ab2∗(−3)∗(−2)(1)(2)(1)(2)(1)(2)(1)55..56.⼀出租⻋司机从客运站出发,在⼀条东西向的⼤街上拉乘客.规定客运站向东为正,向西为负,第⼀位乘客从客运站上⻋后,这天下午⾏⻋⾥程如下,(单位:千⽶)当最后⼀名乘客初送到⽬的地时,此出租⻋在客运站的什么⽅向,距客运站多少千⽶.若每千⽶的营运额为元,则这天下午司机的营业额为多少元?57.58.59.计算:60.计算:.61..62.计算63..64..65.计算下列各题:(−2.125)+181−5+8−10−4+6+11−12+15+6−15−63−16+(−29)(−15)+(−12)(−+94−65)×(−36)43−5+22×(−3)+2(−6)+(−)2122−12×−(3161)(−15)+(−6)(−6)+(−13)−+(54)43(+15)+(+6)(+15)+(−6)(−7)+5+(−3)+4(2)(3)(4)(1)(2)(3)(4)(5)(6)(1)(2)(1)(2);;.66.计算下列各题......67.计算:.68.计算题69.已知,求的值.70.先化简,再求值:,其中.71.计算:;.72.化简后求值:,其中、满⾜.73.(−)×32(−1)×51(−1)×215(−94+125)×61(−36)×511(−31)×21÷116540−−21(−)+41(−)−6532(−6)×2×(−)21(−+21−61)×127(−24)−69×8716×43(1−1)×21(−)94(−)×65(−)−1033×(−)×212(3−4)÷−234(−2)2+872−413+211−1−20162−−1÷[()2016]−×(52)25x −y −6+∣∣xy +=(211)20x +2y 22(a −2b )+3a −22a +b (221)(a +m −1)+22b +m +2=∣∣04×(−3)−213+(−)−21∣−4∣3−9÷3+(−21)×12+32323(x y +2xy )−23(x y −21)−4xy −23x y ∣x −2∣+(y +)=21208+(−21)(1)(2)(1)(2)(3)(4)(5)(1)(2)(1)(2)(3)(4)74.化简求值已知,化简求值.75.计算:.76.计算:.77.形如的式⼦叫做⼆阶⾏列式,它的运算法则⽤公式表⽰为,依此法则计算:.78.计算:79.计算;;;;.80.计算;.81.计算题..∣x +2∣=−(y −3)43x y −2[2xy −22(xy −x y )+232xy ]2−1+4(1−2)÷2(−)×414−÷601(+31−41)51∣∣∣∣a b c d ∣∣∣∣∣∣∣∣a b c d ∣∣∣∣=a ×d −b ×c ∣∣∣∣−23−1−5∣∣∣∣12−(−18)+(−7)−15(+611−310.75)×(−24)−20−(+14)+(−18)−(−13)−7×+45(−5)×(−)−4552(−65∣∣+21∣+∣)×31∣−6∣−36×(−41−91)1218×(−)−52(−4)×(−)+92(−8)×53−0.5−(−3)+41 2.75−(+7)21(+125−32)×43(−12)−3−2+(−4)−(−1)(−3)×6÷(−2)×21−+−×(316583)(−24)−3+2(−12)×−−∣∣21∣∣6÷(−1)(1)(2)(3)(1)(2)(3)(1)(2)(3)(4)(1)(2)(1)(2)82.若“三⻆”表⽰运算:,若“⽅框”,表⽰运算:,求的值,列出算式并计算结果.83.计算:84.计算:.已知,求的值.85.计算:.86.计算:;;;.87.计算:88.计算:a −b +c x −y +z +w 15−(−30)(+83−31)÷(−)21241−1+4(−2)÷4×[5−3(−3)]20.125×10×48×104(−x −1)(x −1)+[(x −2)−24]⋅x −−1(−x y )÷23(x y )43a +2b +22a −4b +5=0(a −b )−3(−12)×−+(413223)45−92+5−8(−61+143)×32(−42)2×(−5)+2−23÷21−2+4∣6−10∣−3×(−1)2014−12×−+(413261)1−1−0.5××[(31)]2−(−3)[2](−7)+(+15)−(−25)−2−4×[5−21(−3)]2(1)(2)(3)(4)(1)(2)(1)(2)(3)(1)(2)(1)(2)90.计算:.91.计算:92.计算.93.计算;;.94.计算:;95.按要求完成下列各⼩题:计算:;计算:.96.97.已知,,且,求的值.(+45)−91+5+(−9)(−)×1÷(−1)433121(−)÷−4787×(−6)32[1−241(+83−61)×24]÷543−12−(−9)−(+7)+∣−10∣16÷(−2)−3(−)×81(−1)2015−3−235+(−7)+18×(−)312(−1)×102+(−2)÷34(−12)+37103+3715(−4.25)−(+)−375(−15)−21(+)49−3−2(−8)×(−1)÷(−1)54[2−21(−97+1211)×36]÷56123+(−72)+(−22)+57+(−16)−3−(−2−5)−∣−∣+41(−2)(−)×21(−1)÷31(−)1215×(−1)−2017(−3)+2(−2)4−+×(216131)(−24)∣a ∣=5∣b ∣=2ab <03a −b(1)(2)(3)(4)(1)(2)(3)(1)(2)(1)(2)(3)(4);;.99.计算:100.计算:.101.计算:;;.102.计算:.103.计算:.104.已知,满⾜等式.求,的值;已知线段,在直线上取⼀点,恰好使,点为的中点,求线段的⻓.105.计算:106.计算:;;;.(−3)×÷(−)×3;3131(−36)×(−+94−65)127−27×(−5)+16÷(−8)−∣−4×5∣−16+16−(−1)×(−31)÷−216145(−2)×(−65)41(1+31−81 2.75)×(−24)+(−1)−2003∣−2∣3−3+4−53×(−2)+(−14)÷∣+7∣16÷(−2)−3(−)×(−4)81−2+26×−−(32)(−3)÷2−(23)(−3)−2(1−)÷52(−)×43[4−(−4)]2m n (m −8)+22∣n −m +5∣=0m n AB =m AB P AP =nP BQ P B AQ 4×−3−(76)3×−3−(76)6×3764+(−7)(−2.5)−−21(−3)×53(−21)÷3445(−)×23[(−)−3222]+(−2)÷33(1)(2)(1)(2)(3)(4)(1)(2)(3)(1)(2)(3)(4)107.计算:..108.计算:;.;.109.在数轴上表⽰下列各数,,,,,,,并按从⼩到⼤的顺序⽤""把这些数连接起来.110.结合数轴与绝对值的知识回答下列问题:数轴上表⽰和的两点之间的距离为;表⽰和两点之间的距离为;⼀般地,数轴上表⽰数和数的两点之间的距离等于,如果表⽰数和的两点之间的距离是,那么.若数轴上表⽰数的点位于与之间,求的值;当时,的值最⼩,最⼩值为.111.计算:.112.计算()+62−93−8−+∣∣23∣∣+3272(−31)9−(−11)+(−21)(−121−245)×2461−1+(−2)+3∣−3∣÷31−×23[−3×(−)−23222]3.5−3.502−21.6−310.5<41∣4−1∣=5−2∣5−(−2)∣=∣5+2∣=m n ∣m −n ∣a −23a =a −42∣a +4∣+∣a −2∣a =∣a +5∣+∣a −1∣+∣a −4∣(−3)×2−+−−[(32)(95)]6÷(−2)×−(31)1+(−2)+2−55×2+(−8)÷(−2)−2÷(−8)−4110∣−∣÷97(−32)−51×31(−4)2(1)(2)(3)(4)(1)(2)(3)(4)1.答案:解析:2.能简算就简算。

七年级上册数学有理数练习题及答案

七年级上册数学有理数练习题及答案

七年级上册数学有理数练习题及答案导语:数学是一门需要重复练习和不断巩固的学科,特别是对于初中的学生来说,在学习有理数的过程中,练习题是非常重要的。

本文将为你提供一些七年级上册数学有理数的练习题及答案,希望能够帮助你巩固知识点,提高解题能力。

一、填空题1. 将-5.2表示成有理数的形式是 ____________。

2. 一个负数和一个正数相加的结果可能是 _____________。

3. 已知a是负有理数,b是正有理数,那么a乘以b的结果是_____________。

4. 这个数,负有理数,和它的相反数的和是 ___________。

5. -2.5减去6.8,结果是 ____________。

答案:1. -5 2/102. 一个正数3. 负有理数4. 05. -9.3二、选择题1. -7.5的相反数是:A. 7.5B. -7.5C. -6.5D. 6.5答案:B2. 下列哪个是负有理数:A. 0B. 3/4C. -1D. 5/6答案:C3. 两个负有理数相加的结果可能是:A. 正有理数B. 负有理数C. 0D. 无法确定答案:B4. 两个相反数相加的结果是:A. 正有理数B. 负有理数C. 0D. 无法确定答案:C5. -1.5加上0.9的结果是:A. -2.4B. -0.6C. 0.6D. 2.4答案:B三、计算题1. 用分数表示下列数:-2.8,-4.6,3.75。

答案:-2 4/5,-4 3/5,3 3/42. 计算:-7.3 +3.5 - 1.8。

答案:-5.63. 计算:(-1.5) × (-4.2)。

答案:6.34. 计算:-9.2 ÷ (-0.5)。

答案:18.45. 计算:-3.6 - 7.5 × (1/2)。

答案:-7.35四、应用题1. 有一冰柜的温度为-5.2摄氏度,经过一段时间后,温度下降了3.6摄氏度,求现在冰柜的温度。

答案:-8.8摄氏度2. 小明在学校时,距离家2.5千米,他走了1.8千米后转了个弯,又走了3.6千米才到了学校,求小明走到学校一共走了多远。

初一数学有理数练习题(附答案)

初一数学有理数练习题(附答案)

初一数学有理数练习题(附答案)查字典数学网小编为大家整理了初一数学有理数练习题(附答案),希望能对大家的学习带来帮助!七年级数学有理数练习一、判断1、自然数是整数。

﹝﹞2、有理数包括正数和负数。

﹝﹞3、有理数只有正数和负数。

﹝﹞4、零是自然数。

﹝﹞5、正整数包括零和自然数。

﹝﹞6、正整数是自然数,﹝﹞7、任何分数都是有理数。

﹝﹞8、没有最大的有理数。

﹝﹞9、有最小的有理数。

﹝﹞二、填空1、某日,泰山的气温中午12点为5℃,到晚上8点下降了6℃.那么这天晚上8 点的气温为。

2 、如果零上28度记作280C,那么零下5度记作3、若上升10m记作10m,那么-3m表示4、比海平面低20m的地方,它的高度记作海拔三、选择题5、在-3,-1 ,0,- ,2019各数中,是正数的有( )A、0个B、1个C、2个D、3个6、下列既不是正数又不是负数的是( )A、-1B、+3C、0.12D、07、飞机上升-30米,实际上就是( )A、上升30米B、下降30米C、下降- 30米D、先上升30米,再下降30米。

8、下列说法正确的是( )A、整数就是正整数和负整数B、分数包括正分数、负分数C、正有理数和负有理数组成全体有理数D、一个数不是正数就是负数。

9、下列一定是有理数的是( )A、B、a C、a+2 D、四、把下列各数填在表示集合的相应大括号中:+6,-8,-0.4,25,0,- ,9. 15,1整数集合﹛﹜分数集合﹛﹜非负数集合﹛﹜正数集合﹛﹜负数集合﹛﹜五、解答题1 、博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?2 、周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元日期周二周三周四周五开盘+0.16 +0. 25 +0.78 +2.12收盘-0.23 -1.32 -0.67 -0. 65当日收盘价试在表中填写周二到周五该股票的收盘价.3、春季某河流的河水因春雨先上涨了15cm,随后又下降了15cm.请你用合适的方法来表示这条河流河水的变化情况.六、探究创新1、一种零件的直径尺寸在图纸上是30 (单位:mm ),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过( )A、0.03B、0.02C、30.03D、29.982、甲潜水员在海平面-50米作业,乙潜水员在海平面-28米作业,哪个离海平面比较近?近多少?3、某水泥厂计划每月生产水泥1000t ,一月份实际生产了950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和负数表示每月超额完成计划的吨数各是多少?参考答案:一、1、2、3、4、5、6、7、8、9、二、1、-1℃ 2、- 5度3、下降3m 4、20m三、5、B 6、D 7、B 8、B 9、D四、略五、1、收入4800元记作+4800元要练说,得练听。

2024年七年级数学上册第二章有理数的运算复习题及答案解析章末整合集训

2024年七年级数学上册第二章有理数的运算复习题及答案解析章末整合集训

2. (2024·衡水期末)已知| x |=5,| y |=2,且| x + y |=- x -
y ,则 x - y 的值为(
D
)
A. ±3
B. ±3或±7
C. -3或7
D. -3或-7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
章末整合集训
【解析】因为| x |=5,| y |=2,
所以 x =±5, y =±2.

+…+
×
×
×

= ;








【解析】原式=1- + - + - +…+









=1-



.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
章末整合集训




(3)探究并计算:


+…+
14
15
16
17
章末整合集训
【解析】A. 若 a2= b2,则 a 不一定等于 b ,例如(-3)2=32,-3≠3,
故该选项错误;
B. 若 a =1, b =-1时, a > b ,而 a2= b2,故该选项错误;
C. 该选项正确;
D. 当 a =1, b =-1时,则 a2= b2,故该选项错误.

七年级数学上册有理数练习题及答案

七年级数学上册有理数练习题及答案

七年级数学上册有理数练习题及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列说法错误的是( ) A .0既不是正数,也不是负数B .零上6摄氏度可以写成+6℃,也可以写成6℃C .向东走一定用正数表示,向西走一定用负数表示D .若盈利1000元记作+1000元,则-200元表示亏损200元2.下列各数:﹣74,0.18,0,﹣π,12其中有理数的个数是( )A .2个B .3个C .4个D .5个 3.全国统一规定的交通事故报警电话是( ) A .122 B .110 C .120 D .1144.有下列说法:℃最小的自然数为1;℃最大的负整数是-1;℃没有最小的负数;℃最小的整数是0;℃最小非负整数为0,其中,正确的说法有( ) A .2个 B .3个 C .4个 D .5个 5.下面的说法中正确的为( ) A .1是绝对值最小的数 B .a -表示负数C .1-不是单项式D .11x x+-不是多项式 6.下列说法错误的是( ) A .负数的绝对值都是正数 B .除以一个数,等于乘这个数的倒数 C .有理数包括整数和分数D .倒数等于它本身的数只有±1.二、填空题7.回顾之前所学内容填空:小学我们学过的数有:自然数、________、 分数、___________.8.等高线指的是地形图上海拔相等的相邻各点所连成的闭合曲线,在等高线上标注的数字为该等高线的海拔.若某地的等高线标注为-20m ,表示此处的高度______海平面20米.(填“高于”或“低于”) 9.下列说法:℃负分数一定是负有理数;℃自然数一定是正数;℃3.2不是整数;℃ 0是整数;℃一个有理数,它不是整数就是分数.其中正确的有__________.(填序号)103π43中有理数有_________个. 11.有理数的分类:________ 和 ________统称为有理数. (1)按符号分类℃正有理数,正有理数分为正整数:如________;正分数:如________ ℃零℃负有理数,负有理数分为负整数:如_______;负分数:如_______ (2)按定义分类℃整数,整数分为 正整数:如______;零;负整数:如______ ℃分数,分数分为正分数:如______;负分数:如______提示:分数除了真分数、假分数、代分数外还包括有限小数、无限循环小数、百分数等.12.下列数字﹣112,1.2,π,0,3.14,37,﹣111113中,有理数有______个.13.137的分数单位是____,去掉____个这样的分数单位后就成了最小的质数.三、解答题14.把下列各数填入到它所属的集合中.+8,+34,-(-0.275),-|-2|,0,-1.04,-227,13,-(-7).正数:{……}整数:{……}负数:{……}15.如图,每个椭圆表示一个数集,请在每个椭圆内填上6个数,其中三个写在重叠部分,﹣23,9,0,+4.3,|﹣0.5|,﹣(+7),18%,(﹣3)4,﹣(﹣2)5,﹣6 2正分数集合:{…};负整数集合:{…};自然数集合:{…}.参考答案:1.C【分析】根据有理数的概念和性质判断即可.【详解】℃0既不是正数,也不是负数,℃A正确,不符合题意;℃零上6摄氏度可以写成+6℃,也可以写成6℃,℃B正确,不符合题意;℃正方向可以自主确定,℃向东走一定用正数表示,向西走一定用负数表示,是错误的,℃C不正确,符合题意;℃盈利1000元记作+1000元,则-200元表示亏损200元,℃D正确,不符合题意;故选:C.【点睛】本题考查了有理数的基本概念,熟练掌握有理数的基本概念是解题的关键.2.C【分析】根据有理数的定义:整数和分数统称为有理数,进行解答即可.【详解】解:﹣74,0.18,为分数,属于有理数,0,12,为整数,属于有理数,℃有理数有4个,故选:C.【点睛】本题考查了有理数的定义,熟练掌握有理数的定义是解本题关键.3.A【分析】本题考查的知识点是防范侵害,保护自己。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数单元检测001有理数及其运算(综合)(测试5) 一、境空题(每空2分,共28分) 1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____. 3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C7、计算:.______)1()1(101100=-+-8、平方得412的数是____;立方得–64的数是____. 9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______. 二、选择题(每小题3分,共24分)11、–5的绝对值是………………………………………………………( ) A 、5 B 、–5 C 、51 D 、51- 12、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………( ) A 、l 个 B 、2个 C 、3个 D 、4个13、下列算式中,积为负数的是………………………………………………( ) A 、)5(0-⨯ B 、)10()5.0(4-⨯⨯ C 、)2()5.1(-⨯ D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是…………………………………………………( ) A 、–1与(–4)+(–3) B 、3-与–(–3)C 、432与169 D 、2)4(-与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二 次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………( ) A 、90分 B 、75分 C 、91分 D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( ) A 、121 B 、321 C 、641 D 、128117、不超过3)23(-的最大整数是………………………………………( )A 、–4B –3C 、3D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28% 三、解答题(共48分) 19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6.20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分? 21、(8分)比较下列各对数的大小. (1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯ 22、(8分)计算.(1)15783--+- (2))6141(21-- (3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷23、(12分)计算.(l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯- (3)[]2)4(231)5.01(-+⨯÷-- (4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是0C ,酒精冻结的温度是–117℃。

现有一杯酒精的温度为12℃,放在一个制冷装置里、每分钟温度可降低1.6℃,要使这杯酒精冻结,需要几分钟?(精确到0.1分钟) 25、(4分)某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,问他九月份的收入为多少元?26、观察数表.根据其中的规律,在数表中的方框填入适当的数. 有理数单元检测002一、填空题(每小题2分,共28分) 1. 在数+8.3、 4-、8.0-、 51-、 0、 90、 334-、|24|--中,________________是正数,____________________________不是整数。

2.+2与2-是一对相反数,请赋予它实际的意义:___________________。

3.35-的倒数的绝对值是___________。

4.用“>”、“<”、“=”号填空:(1)1___02.0-; (2)43___54; (3)][)75.0(___)43(-+---;(4)14.3___722--。

5.绝对值大于1而小于4的整数有____________,其和为_________。

6.用科学记数法表示13 040 000,应记作_____________________。

7.若a 、b 互为相反数,c 、d 互为倒数,则 (a + b)33-(cd)4 =__________。

8.123456-+-+-+…20012002+-的值是__________________。

9.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。

10.数轴上表示数5-和表示14-的两点之间的距离是__________。

11.若0|2|)1(2=++-b a ,则b a +=_________。

12.平方等于它本身的有理数是_____________, 立方等于它本身的有理数是______________。

13.在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。

14.第十四届亚运会体操比赛中,十名裁判为某体操运动员打分如下:10、 9.7、 9.85、 9.93、 9.6、 9.8、 9.9、 9.95、 9.87、 9.6,去掉一个最高分,去掉一个最低分,其余8个分数的平均分记为该运动员的得分,则此运动员的得分是_________。

二、选择题(每小题3分,共21分)15.两个非零有理数的和为零,则它们的商是( ) A .0 B .1- C .+1 D .不能确定16.一个数和它的倒数相等,则这个数是( ) A .1 B .1- C .±1 D .±1和017.如果a a -=||,下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a18.用四舍五入法按要求对0.05019分别取近似值,其中错误的是( ) A .0.1(精确到0.1) B .0.05(精确到百分位)C .0.05(保留两个有效数字)D .0.0502(精确到0.0001) 19.计算1011)2()2(-+-的值是( ) A .2- B .21)2(- C .0 D .102- 20.有理数a 、b 在数轴上的对应的位置如图所示: 则( ) 0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 21.下列各式中正确的是( )A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a = 三、计算(每小题5分,共35分) 26.)1279543(+--÷361; 27.|97|-÷2)4(31)5132(-⨯-- 28.322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--四、解答题(每小题8分,共16分)29.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:+9、 -3、 -5、 +4、 -8、 +6、 -3、-6、 -4、 +10。

(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向? (2)若每千米的价格为2.4元,司机一个下午的营业额是多少?30.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质量为450克,则抽样检测的总质量是多少?五、附加题(每小题5分,共10分) 1.如果规定符号“﹡”的意义是a ﹡b =aba b+,求2﹡(3)-﹡4的值。

2.已知|1|x += 4,2(2)4y +=,求x y +的值。

3. 同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离。

试探索:(1)求|5-(-2)|=______。

(2)找出所有符合条件的整数x ,使得|x+5|+|x-2|=7这样的整数是_____。

(3)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|是否有最小值?如果有写出最小值如果没有说明理由。

(8分)4、若a 、b 、c 均为整数,且∣a -b ∣3+∣c -a ∣2=1, 求∣a -c ∣+∣c -b ∣+∣b -a ∣的值(8分) 7.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A 、B 是数轴上的点,完成下列各题:(1)如果点A 表示数-3,将点A 向右移动7个单位长度,那么终点B 表示的数是_________,A 、B 两点间的距离是________。

(2)如果点A 表示数是3,将点A 向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是_______,A 、B 两点间的距离是________。

一般地,如果点A 表示数为a ,将点A 向右移动b 个单位长度,再向左移动c 个单位长度,那么请你猜想终点B 表示的数是________,A 、B 两点间的距离是______2.读一读:式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.•由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+•…+100”表示为1001n n =∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以的连续奇数的和,可表示为501n =∑(2n-1);又如13+23+33+43+53+63+73+83+93+103可表示为101n =∑n 3. 通过对上以材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以的连续偶数的和)用求和符合可表示为_________________; (2)计算51n =∑(n 2-1)=________________.(填写最后的计算结果)有理数单元检测003一、填空题:(每小题3分,共24分)1.海中一潜艇所在高度为-30米,此时观察到海底一动物位于潜艇的正下方30米处,则海底动物的高度为___________. 2.1--的相反数是______,138⎛⎫-- ⎪⎝⎭的倒数是_________.3.数轴上分属于原点两侧且与原点的距离相等的两点间的距离为5,那么这两个点表示的数为________.4.主峰一天早晨气温为-1℃,中午上升了8℃,夜间又下降了10℃,那么这天夜间主峰的气温是_________.5.我国的国土面积约为九佰六十万平方千米,用科学记数法写成约为___________2km . 6.有一纸的厚度为0.1mm,若将它连续对折10次后,它的厚度为_______mm. 7.若()()22110a b -++=,则20042005a b +=__________. 8.观察下面一列数,按规律在横线上填写适当的数1357,,,261220--,______,________. 二、选择题:(每小题3分,共18分) 1. 下面说确的有( )① π的相反数是-3.14;②符号相反的数互为相反数;③ -(-3.8)的相反数是3.8;④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数.A.0个 B.1个 C.2个 D.3个 2.下面计算正确的是( )A.()2222--=; B.()22363⎛⎫--= ⎪⎝⎭; C.()4433-=-; D.()220.10.1-=3.如图所示,a 、b 、c 表示有理数,则a 、b 、c 的大小顺序是( )A.a b c << B.a c b <<C.b a c << D.c b a <<4.下列各组算式中,其值最小的是( )A.()232---; B.()()32-⨯-;C.()()232-⨯-; D.()()232-÷- 5.用计算器计算632,按键顺序正确的是( ) A. B. C. D. 6.如果,且,那么( )A.0,0a b >> ;B.0,0a b << ;C.a 、b 异号;D. a 、b 异号且负数和绝对值较小三、计算下列各题:(每小题4分,共16)1.()()2732872-+-+-+ 2.()()()()4.34 2.34+--+--+ 3.()4232232--⨯+-⨯3.()()()()()324822542-÷---⨯-+-四、解下列各题:(每小题6分,共42分)1.21151 2.4533612⎡⎤⎛⎫--+⨯÷ ⎪⎢⎥⎝⎭⎣⎦2.()332122316293⎛⎫--⨯-÷- ⎪⎝⎭2 6 3 = 2 × 6 3 = 6 3 ∧ 2 = 2 ∧63=3.在数轴上表示数:-2,2112,,0,1, 1.522--.按从小到大的顺序用”<”连接起来.4.某股民持有一种股票1000股,早上9∶30开盘价是10.5元/股,11∶30上涨了0.8元,下午15∶00收盘时,股价又下跌了0.9元,请你计算一下该股民持有的这种股票在这一天中的盈亏情况.5.已知:3,2,5a b c =-=-=,求2222a ab b c -+-的值.6.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩斐然记录,其中”+”表示成绩大于15秒.问:(1)这个小组男生的达标率为多少?(=达标人数达标率总人数)(2)这个小组男生的平均成绩是多少秒? 7.请先阅读下列一组容,然后解答问题:因为:111111111111,,12223233434910910=-=-=-⋯=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯ 1111112334910⎛⎫⎛⎫⎛⎫=+-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111112334910=-+-+⋯+- 1911010=-=问题: 计算:①111112233420042005+++⋯+⨯⨯⨯⨯;②11111335574951+++⋯+⨯⨯⨯⨯4.用较为简便的方法计算下列各题: 1)3-(+63)-(-259)-(-41); 2)231)-(+1031)+(-851)-(+352);3)598-5412-5331-84; 4)-8721+532119-1279+432125.已知|a|=7,|b|=3,求a+b 的值。

相关文档
最新文档