毕业设计外文翻译--组合钻床动力滑台液压系统及电控系统设计
基于PLC的液压传动组合机床电气控制系统设计
表2 I/O端子分配表
输 入
输 入 设 备
输入端子
输 出 输 出负 载 输 出 端 子
SAl SA2 FR1
10.O 10.1 10-2
KM 1 KM2 l(=M3
QO.O Q0.1 QO.2
FR2 SB1 SB2
10-3 10.4 10.5
YV1 YV2 YV3
及软件设计 ,提供了主要的硬件 原理图和软件 程序 。
关键 词 : 可编程序控 制器 ;组合机床 ;控制系统
中图分类号 :TP273
文献标识码 :A
文章编号 :1 009—01 34(201 2)06(下)一0064—03
Doi:1 0.3969/J.issn.1 009-01 34.201 2.6(下 ).22
(1.郑州工业安全职业学院 机 电工程系 。郑州 451150;2.济源职业技术学 院 电气系 。济源 454650) 摘 要 : 本文设计 了一种以德国西 门子公司的微型可编 程序控制器 (PLC)为核心 的控制系统 ,以替
代组合机床 上原有的继 电控 制线路 ,实现 了对组合机床控 制系统的改造 。分 析了系统 的硬 件
I1 4
SQ8 回 KP2
I1.5
Q0.7
一 __= /一 — I1.6
L+ 1M
2M M
24V .
2L l
I
FU2
图 3 PLC的 I/O端 子 接 线 图
第34卷 第6期 2012—6(下 ) [651
务l 匐 化
网络 1Q0 . 1
白凸白 换 得 到 ,转 换 过 程 中应 注 意 以
图2 左 右 动 力 头 的 工 作 循 环 示 意 图
组合机床动力滑台液压系统解析
酒店管理专业求职信大学生尊敬的招聘经理:您好!我是XXX大学酒店管理专业的一名应届毕业生,我对贵公司招聘的酒店管理岗位表现出极大的兴趣,为此我特此致函申请相关岗位。
我希望通过这封求职信能够向您展示我在酒店管理领域的专业知识、实践经验和团队合作能力,并且表达我对酒店管理行业的热爱和追求。
我选择学习酒店管理专业是因为我对这个行业有着浓厚的兴趣,并且希望通过自己的努力和学习能够成为一名优秀的酒店管理人才。
在校期间,我通过课堂学习和实践实习,积累了丰富的专业知识和经验。
我深刻理解酒店管理行业的特点和要求,具备了扎实的专业基础和实践能力。
在大学期间,我参加了多次有关酒店管理的实践活动和实习项目,如酒店前台接待、客房管理、餐厅服务等。
通过这些实践经验,我不仅学到了很多专业知识,还培养了自己的沟通能力、团队协作能力和解决问题的能力。
在实习过程中,我吃苦耐劳、严谨细致的工作态度得到了领导和同事的认可,积累了宝贵的工作经验,对酒店管理行业有着更深刻的认识和理解。
此外,我还通过自己的努力获得了丰富的荣誉和奖励,如XXX奖学金、学生干部荣誉称号等。
这些荣誉的获得不仅是对我个人学习和能力的认可,更是对我未来发展的激励和动力。
我相信在酒店管理领域的求职过程中,这些优秀的荣誉将成为我竞争力的重要组成部分。
从长远来看,我希望能够在贵公司这个优秀的平台上发挥自己的才能和能力,不断提升自己,实现个人的职业发展目标。
我相信通过自己的热情和努力,一定能够在酒店管理领域取得更大的成就,成为一名受人尊敬和信赖的酒店管理专业人才。
在此,我真诚希望能够得到贵公司的青睐和重视,我愿意随时接受面试,并将我的专业知识、实践经验和团队合作能力在面试中展现给您。
我相信我就职于贵公司后,一定会为贵公司的发展和壮大做出自己的贡献,成为贵公司的一员。
期待能得到您的回复!最后,再次感谢您花时间阅读我的求职信。
祝贵公司招聘工作顺利进行,期待我们的合作!此致敬礼XXX【你的名字】。
基于Automation_Studio_的液压动力滑台控制系统仿真设计
DOI:10.15913/ki.kjycx.2024.05.023基于Automation Studio的液压动力滑台控制系统仿真设计刘道寿1,周志红1,刘登宇2(1.湖南工业职业技术学院机械工程学院,湖南长沙410208;2.合肥工业大学机械工程学院,安徽宣城242099)摘要:动力滑台是组合机床实现进给运动的通用部件,其控制系统是实现组合机床自动化或半自动化的关键环节。
在分析动力滑台工作过程及液压控制回路的基础上,基于Automation Studio进行了控制系统仿真设计,主要包括液压系统建模、PLC控制系统建模及软件设计,仿真结果满足各种控制要求。
关键词:Automation Studio;动力滑台;PLC;液压中图分类号:TH137 文献标志码:A 文章编号:2095-6835(2024)05-0087-03机床动力滑台是组合机床上用来实现进给运动的通用部件,液压动力滑台由液压缸驱动,根据加工需要可在滑台上配置动力头、主轴箱或各种专用切削头等工作部件,以完成钻、扩、铰、车、镗、倒角、攻螺纹等加工工艺,并可实现多种进给工作循环[1-2]。
控制系统是实现组合机床自动化或半自动化的关键环节,目前,基于PLC的控制系统设计因具有功能强大、易于实现、成本较低、可靠性高等优点而得到了广泛应用[3-4]。
设计一个满足液压动力滑台要求的液压及控制系统往往需要通过各种试验来确定其动静态特性,并进行反复修正,导致试验费用昂贵、开发成本高、开发周期长。
随着流体力学、现代控制理论、算法理论、可靠性理论等相关学科和理论的发展,特别是计算机技术的突飞猛进,液压仿真技术水平越来越高,逐渐成为液压系统设计人员的有力辅助工具,同时相应的仿真软件也相继出现,主要有FluidSIM、Automation Studio、AMESim等[5-8]。
Automation Studio仿真软件是由加拿大Famic公司开发的支持多学科领域的专业仿真设计平台,包括液压与气压传动、传感器、电气工程、电子、PLC、HMI 等专业模块,基于项目的理念,在平台不但可以对单个专业模块进行设计及仿真,而且还可以在同一个项目中实现多个专业模块的关联,实现机电一体化的项目仿真。
组合机床动力滑台液压系统设计
组合机床动力滑台液压系统设计(1) 组合机床动力滑台液压系统设计液压系统是组合机床的重要组成部分,它为机床提供动力和润滑。
本文将介绍一种组合机床动力滑台液压系统的设计。
一、概述液压系统是一种利用液体压力能为主要驱动力的传动方式。
在组合机床中,液压系统主要用于驱动动力滑台,实现工件的加工操作。
本次设计的液压系统主要包括液压泵、油缸、油路和电气控制系统等部分。
二、液压泵液压泵是液压系统的核心部件,它把机械能转化为液压能,为液压系统提供压力油。
本设计选用变量叶片泵作为液压泵,其主要特点包括负载能力强、运行稳定、寿命长、效率高等。
三、油缸油缸是液压系统的执行元件,它将液压能转化为机械能,驱动动力滑台进行运动。
根据本次设计要求,选用双作用活塞式油缸。
这种油缸具有较大的推力和较高的速度,能够满足动力滑台在加工过程中对驱动力和速度的需求。
四、油路油路是液压系统中压力油流动的通道。
本设计采用较为简单的并联油路,即液压泵输出的压力油通过两个分油路分别进入两个油缸,推动活塞运动,实现动力滑台的往复运动。
在油路中设置溢流阀和节流阀,分别用于调节系统的压力和流量。
五、电气控制系统电气控制系统是液压系统的控制中心,它控制液压泵的运行和电磁阀的通断,从而实现液压系统的自动化控制。
本设计选用可编程控制器(PLC)作为控制系统的主要元件,根据加工工艺的要求,PLC控制液压泵和电磁阀的动作,保证动力滑台按要求的程序进行加工操作。
同时,PLC还可以实时检测系统的运行状态,保证系统的稳定性和安全性。
六、系统调试与优化完成液压系统的设计后,需要对系统进行调试和优化,以保证其性能和可靠性。
首先进行空载调试,检查系统是否存在泄漏或异常噪声等问题;然后进行负载调试,在一定的负载条件下测试系统的性能;最后进行加工试验,以检验液压系统在真实加工条件下的性能。
根据试验结果对系统进行优化调整,以使液压系统的性能达到最佳状态。
七、结论本文对组合机床动力滑台液压系统进行了设计。
有关组合机床的中英文翻译
翻译文献:INVESTIGATION ON DYNAMIC PERFORMANCE OF SLIDE UNIT IN MODULAR MACHINE TOOL (对组合机床滑台动态性能的调查报告)文献作者:Peter Dransfield,出处:Peter Dransfield, Hydraulic Control System-Design and Analysis of TheirDynamics, Springer-Verlag, 1981翻译页数:p139—144英文译文:对组合机床滑台动态性能的调查报告【摘要】这一张纸处理调查利用有束缚力的曲线图和状态空间分析法对组合机床滑台的滑动影响和运动平稳性问题进行分析与研究,从而建立了滑台的液压驱动系统一自调背压调速系统的动态数学模型。
通过计算机数字仿真系统,分析了滑台产生滑动影响和运动不平稳的原因及主要影响因素。
从那些中可以得出那样的结论,如果能合理地设计液压缸和自调背压调压阀的结构尺寸.本文中所使用的符号如下:s1-流源,即调速阀出口流量;S el—滑台滑动摩擦力R一滑台等效粘性摩擦系数:I1—滑台与油缸的质量12—自调背压阀阀心质量C1、c2—油缸无杆腔及有杆腔的液容;C2—自调背压阀弹簧柔度;R1, R2自调背压阀阻尼孔液阻,R9—自调背压阀阀口液阻S e2—自调背压阀弹簧的初始预紧力;I4, I5—管路的等效液感C5、C6—管路的等效液容:R5, R7-管路的等效液阻;V3, V4—油缸无杆腔及有杆腔内容积;P3, P4—油缸无杆腔及有杆腔的压力F—滑台承受负载,V—滑台运动速度。
本文采用功率键合图和状态空间分折法建立系统的运动数学模型,滑台的动态特性可以能得到显著改善。
一、引言在组合机床正常工作中,滑台运动速度的大小和它的方向以及所承受负载的变化都将以程度不同地影响其工作性能。
特别是在工进过程中。
滑台上负载的突然消失引起的前进以及负载的周期性变化而引起的运动不平稳性,都将影响被加工件的表面质量,在严重的情况下会使刀具折断掉。
双面钻孔组合机床液压系统设计毕业设计
双面钻孔组合机床液压系统设计毕业设计1 绪论1.1 组合机床的发展现状及前景组合机床(transfer and unit machine)是根据工件加工需要,以大量通用部件为基础,配以按工件特定形状和加工工艺设计的专用部件和夹具,组成的一种高效的半自动或自动专用机床[5]。
在我国,组合机床发展已有28年的历史,其科研和生产都具有相当的基础,应用也已深入到很多行业。
是当前机械制造业实现产品更新,进行技术改造,提高生产效率和高速发展必不可少的设备之一。
它的特征是高效、高质、经济实用,因而被广泛应用于工程机械、交通、能源、军工、轻工、家电等行业[8]。
我国传统的组合机床及组合机床自动线主要采用机、电、气、液压控制,它的加工对象主要是生产批量比较大的大中型箱体类和轴类零件(近年研制的组合机床加工连杆、板件等也占一定份额),完成钻孔、扩孔、铰孔,加工各种螺纹、镗孔、车端面和凸台,在孔内镗各种形状槽,以及铣削平面和成形面等[5]。
随着技术的不断进步,一种新型的组合机床——柔性组合机床越来越受到人们的青睐,它应用多位主轴箱、可换主轴箱、编码随行夹具和刀具的自动更换,配以可编程序控制器(PLC)、数字控制(NC)等,能任意改变工作循环控制和驱动系统,并能灵活适应多品种加工的可调可变的组合机床。
另外,近年来组合机床加工中心、数控组合机床、机床辅机(清洗机、装配机、综合测量机、试验机、输送线)等在组合机床行业中所占份额也越来越大。
由于组合机床及其自动线是一种技术综合性很高的高技术专用产品,是根据用户特殊要求而设计的,它涉及到加工工艺、刀具、测量、控制、诊断监控、清洗、装配和试漏等技术。
我国组合机床及组合机床自动线总体技术水平比发达国家要相对落后,国内所需的一些高水平组合机床及自动线几乎都从国外进口。
工艺装备的大量进口势必导致投资规模的扩大,并使产品生产成本提高。
因此,市场要求我们不断开发新技术、新工艺,研制新产品,由过去的“刚性”机床结构,向“柔性”化方向发展,满足用户需求,真正成为刚柔兼备的自动化装备[16]。
组合机床滑台液压系统设计课件
组合机床滑台液压系统设计The design of hydraulic system of modular machine tool slide组合机床滑台液压系统设计摘要作为一种高效率的专用机床,组合机床在大批量机械加工生产中应用广泛。
本次课程设计将以组合机床动力滑台液压系统设计为例,介绍该组合机床液压系统的设计方法和设计步骤,其中包括组合机床动力滑台液压系统的工况分析、主要参数确定、液压系统原理图的拟定、液压元件的选择以及系统性能验算等。
组合机床是以通用部件为基础,配以按工件特定外形和加工工艺设计的专用部件和夹具而组成的半自动或自动专用机床。
组合机床一般采用多轴、多刀、多工序、多面或多工位同时加工的方式,生产效率比通用机床高几倍至几十倍。
组合机床兼有低成本和高效率的优点,在大批量生产中得到广泛应用,并可用以组成自动生产线。
组合机床通常采用多轴、多刀、多面、多工位同时加工的方式,能完成钻、扩、铰、镗孔、攻丝、车、铣、磨削及其他精加工工序。
液压系统由于具有结构简单、动作灵活、操作方便、调速范围大、可无级连续调节等优点,在组合机床中得到了广泛应用。
液压系统在组合机床上主要是用于实现工作台的直线运动和回转运动,本次设计组合机床动力滑台为一台卧式钻、镗组合机床上的动力滑台液压系统要求完成动作为“快进—工进—快退—原位停止”的工作循环:最大切削力为FL=12KN,动力头自重FG=20KN,工作进给要求能在0.02—1.2m/min的范围内无级调速,快进、快退速度为6m/min;工进行程为100mm,快进行程为300mm;采用平导轨,其静、动摩擦系数取fs=0.2、fd=0.1;往复运动的加速、减速时间要求不大于0.5S。
关键词:液压系统修正节流阀分流集流阀液压锁The design of hydraulic system of modular machine tool slideAbstract as a special machine for high efficiency, the combination of machine tools are widely used in large batch machining production. The curriculum designto combination machine tool hydraulic pressure system design as an example,introduces the design method of the hydraulic system of modular machine tooland the design procedure, including combination machinetool hydraulic system of power slipway condition analysis, the main parameters, hydraulic system principle diagram of the quasi fixed, the choice of hydraulic components and systemperformance checking.Combination machine is based on common components, with special componentsdesigned according to workpiece specific shape and process and fixture andconsisting of semi-automaticor automatic machine tool. Combination machinegenerally adopts the multi axis, multi knife, multi process, multi or multistage and processing, production efficiency several times to several times higher than the general machine tool. The combination machine has the advantages of high efficiency and low cost, widely used in mass production, and can be used tocompose the automatic production line. Combination machine tools usually adopts the multi axis, multiknife, multi-faceted, multi station and processing, can complete thedrilling, boring, tapping, reaming, expansion, cars, milling, grindingand other finishing processes.The hydraulic system has the advantages of simple structure, flexible action,convenient operation, wide speed range, the advantages of continuous stepless regulation, has been widely applied in the modular machine tool. Hydraulicsystem in modular machine is mainly used to achieve the worktable linearmovement and rotary movement, the design of combined machine tool power sliding table is a horizontal drilling, hydraulic system of power slipway boring modular machine to complete the requirements of action as "fast forward -feeding - rewind in-situ stop" work cycle: the maximum cutting force for FL=12KN,a power head weight FG=20KN, feed requirements canbe stepless in the range of 0.02 - 1.2m/min in speed, fast forward, rewind speed is6m/min; feedingschedule for 100mm, fast forward stroke is 300mm; using flat guide rail, thestatic,dynamic friction coefficient fs=0.2, fd=0.1; acceleration, the reciprocating motion of the time requirements not more than 0.5S.Key words: Hydraulic system Amendment throttle valve Flow distributing and collecting valve Hydraulic lock目录第一章绪论 (1)1.1 液压传动的发展状况 (1)1.2 液压技术的应用 (2)第二章组合机床滑台设计依据 (2)第三章工况分析 (2)3.1 负载分析 (2)3.2 负载图和速度图 (3)第四章初步拟定液压系统原理图 (4)4.1 选择液压基本回路 (4)4.2 组成液压系统原理图 (5)第五章确定液压系统参数 (6)5.1 初选液压缸工作压力 (6)5.2 计算液压缸的结构尺寸 (7)5.3 绘制工况图 (8)第六章液压元件的计算和选择 (8)6.1 确定液压泵的规格和电机功率 (8)6.2 选择液压阀 (9)6.3 确定管道尺寸 (10)6.4 确定油箱容量 (11)第七章液压系统的性能验算 (11)7.1 液压缸的速度验算 (11)7.2 回路压力损失验算 (11)7.3 液压系统发热与温升验算 (12)第八章液压技术未来的发展 (13)总结 (14)致谢 (14)参考文献 ....................................................................................................错误!未定义书签。
(完整word版)组合钻床动力滑台液压传动系统的设计
第1章概论 (3)1.1液压技术发展简史 (3)1.2液压技术的发展趋势 (3)1.3液压传动系统的设计 (3)1.4本课题的任务 (3)第2章传动方式的选择及基本设计参数 (4)2.1液压传动与电气传动、机械传动相比的主要优点 (4)2.2液压传动的主要缺点 (4)2.3基本设计参数 (4)第3章工况分析 (5)3.1动力分析 (5)3.2运动分析 (7)第4章确定液压系统主要参数 (9)4.1确定液压缸主要几何尺寸 (9)4.1.1初选系统工作压力 (9)4.1.2计算液压缸的主要结构参数 (9)4.2计算液压缸工作循环各个阶段的工作压力、输入流量及输入功率 (10)4.2.1快进阶段: (10)4.2.2工进阶段: (11)4.2.3快退阶段: (12)4.3绘制液压缸的工况图 (13)第5章拟定液压系统原理图 (15)5.1选择液压基本回路 (15)5.1.1选定液压系统的类型 (15)5.1.2液压执行元件的选择 (15)5.1.3选择液压泵的类型及油源回路 (15)5.1.4选择调速回路和速度换接回路 (15)5.1.5选择压力控制回路 (15)5.2组成液压系统图 (16)5.3液压系统的工作原理 (16)第6章液压元辅件及液压油的选择 (17)6.1选择液压泵及驱动电动机 (17)6.1.1确定液压泵的最大工作压力 (17)6.1.2确定液压泵的最大供油流量 (18)6.1.3选择液压泵 (18)6.1.4选择电动机 (18)6.1.5计算液压缸实际的输入流量、输出流量、运动速度和持续时间 (19)6.1.6选择液压控制阀 (21)6.1.7液压油管的计算确定 (21)6.1.8确定油箱的容量 (23)6.1.9液压油的选择 (24)6.1.10滤油器的选择 (24)第7章液压系统的性能验算 (25)7.1验算系统压力损失 (25)7.2验算系统发热温升 (28)第1章概论1.1液压技术发展简史1.2液压技术的发展趋势1.3液压传动系统的设计液压系统是液压设备的一个组成部分,液压系统设计是主机设计的重要组成部分……液压系统的设计包括如下步骤:1.4本课题的任务组合机床是在综合了通用机床和专用机床的应用特点的基础上发展起来的一种新型专用机床,组合机床是以系列化、标准化设计的通用部件为基础,配以以工件形状和加工工艺要求而设计的少量专用部件,对一种或若干种零件按预先确定的工序进行加工的机床。
钻孔组合机床动力滑台液压系统设计说明书
摘要组合机床是由通用部件和部分专用部件所组成的高效率专用机床,而动力滑台则是组合机床一种重要的通用部件,可以根据不同的工作要求实现各种工作循环,如果配上动力头和主轴箱后可以完成钻、铣、镗等工序的加工要求,通过液压的配合可以实现各种自动工作循环。
动力滑台的液压系统是能完成较为复杂工作循环的典型单缸系统,此系统的回路组成具有一定的代表性,制作此液压控制系统不仅有助于学生对所学液压知识进行融会贯通,而且为后来的学生提供了解液压系统和自己动手拆装的实验装置。
设计验算结果说明,设计的工作装置满足设计要求.在AUTO CAD软件下绘制的液压系统原理图有利于为新产品设计或改型设计提供参考.关键词:钻孔组合机床动力滑台液压系统设计;设计参数及验算;AUTO CAD制图1目录摘要 (1)第一章绪论 (1)1.1液压传动 (1)1.2 组合机床发展的历史 (2)1.3组合机床的发展趋势 (2)1。
4组合机床类型及部件的分类 (3)第二章动力滑台液压系统的相关参数计算 (5)2.1已知设计条件 (5)2。
2 负载计算 (5)第三章液压缸主要参数确定 (7)3。
1 确定液压缸工作压力 (7)3。
2 确定液压缸主要结构参数 (7)23。
3 绘制液压缸工况图 (9)3。
4 液压缸主要零件强度的校核 (10)3。
5 液压缸稳定性计算 (11)第四章液压系统组成及原理图设计 (12)4.1 主题方案的确定 (12)4.2 基本回路确定 (12)4.3 液压系统原理图的综合 (14)第五章液压元件选型 (16)5。
1 液压泵的选择 (16)5.2 液压泵驱动电机的选择 (17)5.3 液压控制元件及辅助元件的选择 (17)第六章液压管路和油箱的确定 (19)6。
1 液压管路的确定 (19)6。
2 油箱容积V的计算 (20)3第七章液压系统性能验算 (21)7.1 回路压力损失计算 (21)7。
2 系统温升验算 (21)7。
3 油箱散热面积A (21)设计小结 (23)参考文献 (24)4第一章绪论制造业的历史可追溯到几百年前的旧石器的时代。
ZH1TZ16组合机床动力滑台液压系统设计
机电工程学院毕业设计说明书设计题目: ZH1TZ16组合机床动力滑台液压系统设计学生姓名:学号: 200848050604专业班级:机制F0808指导教师:2012 年 5 月 21 日目次第一章前言 (1)第二章设计要求和工况分析 (2)2.1设计要求 (2)2.2工况分析 (2)2.2.1运动分析 (2)2.2.2负载分析 (2)2.2.3负载图和速度图的绘制 (3)第三章液压缸主要参数的确定 (5)3.1初选液压缸的工作压力 (5)3.2计算液压缸的尺寸 (5)3.3绘制工况图 (7)第四章液压系统图的拟定 (9)4.1所用液压执行元件的类型 (9)4.2供油方式的选择 (9)4.3调速回路的选择 (10)4.4速度换接回路和快速回路的选择 (10)4.5换向回路的选择 (10)4.6绘制液压系统原理图 (11)4.7液压系统原理图的工作原理 (12)第五章液压元件的计算和选择 (14)5.1确定液压泵的型号及电动机功率 (14)5.1.1计算液压泵的最大工作压力 (14)5.1.2计算总流量 (14)5.1.3电机的选择 (15)5.2选择阀类元件及辅助元件 (15)5.2.1油管 (15)5.2.2油箱 (17)5.3活塞杆直径校核 (17)第六章液压系统性能的验算 (18)设计总结 (21)辞谢 (22)参考文献 (23)第一章前言组合机床往往由一些通用和专用的部件组合而来,在操作上它比一般的机床效率高,而且操作上简单,在大批量的生产中得到了广泛的应用。
动力滑台是组合机床上的主要通用部件,进给方向上的运动主要是由动力滑台来实现的。
主轴上更换不同用途的主轴头,就可以实现很多的加工,比如钻、扩、铰、倒角和螺纹加工等。
液压动力滑台是使用液压泵提供的液压能转化成滑台运动的机械能来实现进给运动的。
液压动力滑台要求液压系统在速度上换接稳定,功率使用要合理,效率高,发热少。
本次毕业设计是以组合机床动力滑台液压系统为例,大致介绍了液压系统的设计方法和计算步骤。
基于AMESim的组合钻床动力滑台液压系统的设计探讨论文
基于AMESim的组合钻床动力滑台液压系统的设计探讨论文基于AMESim的组合钻床动力滑台液压系统的设计探讨论文0 引言随着科学技术的发展,机械零部件一体化程度不断提高,因为加工的形状日益复杂,导致机械加工的要求越来越高,使得复合、多功能、多轴化控制装备的前景逐渐被看好,而组合钻床作为液压机床中最具有代表性的一种钻床设备,其具有广泛的应用性,可对零件进行钻孔、扩孔、铰孔、惚平面和攻螺纹等加工。
此外,在钻床上配有工艺装备时,还可以进行镬孔,在钻床上配万能工作台还能进行钻孔、扩孔、铰孔,这使得组合钻床得到了较快的发展。
但就目前来看,组合钻床在设计上还存在着一定的不足,如在供液回路上,其多采用限压式变量叶片泵,这就导致当遇到流量剧变时,定子反应滞后,液压冲击极大;当存在不平衡的内部径向力时,便产生较大的压力波动和噪音,造成工作平衡性差等问题。
此外,在反应速度上,不能达到组合机床快进快退的要求,假如加大了流量从而提高速度,就会造成换向时的冲击,对机床造成极大的损坏,降低了其使用寿命,并且影响机械零部件的正常生产。
因此,需要设计一种,可以实现快进快退以及慢速工进等动作,具有灵敏度高、换向冲击小、能耗低、液压系统结构简单等特点的液压系统,从而有效提高了液压机床的.工作效率,确保机械工件的稳定生产。
1 液压系统的工作原理及组成根据以上分析可知,组合钻床的液压系统需要实现快进快退以及慢速工进等动作,并具有液压冲击小、灵敏度高等特点,因此,将使用双联液压泵作为液压源为系统供油,在换向回路上使用电液换向阀,能够使执行元件的进液回路及出油回路形成差动回路,提高执行元件的速度,在调速回路上,采用行程阀与调速阀并联的方式,确保快进快退及慢速工进动作的实现。
2 关键技术的具体实现2.1 参数计算在设计液压系统的过程中,各个关键元件的参数计算是至关重要的,直接关系到液压系统是否能够有效的运行。
其中,液压系统、液压泵以及执行元件的压力、流量等参数是最为重要的,因此,在计算液压系统的关键参数时,主要对以上参数进行计算。
组合机床滑台液压系统设计
组合机床滑台液压系统设计The design of hydraulic system of modular machine tool slide组合机床滑台液压系统设计摘要作为一种高效率的专用机床,组合机床在大批量机械加工生产中应用广泛。
本次课程设计将以组合机床动力滑台液压系统设计为例,介绍该组合机床液压系统的设计方法和设计步骤,其中包括组合机床动力滑台液压系统的工况分析、主要参数确定、液压系统原理图的拟定、液压元件的选择以及系统性能验算等。
组合机床是以通用部件为基础,配以按工件特定外形和加工工艺设计的专用部件和夹具而组成的半自动或自动专用机床。
组合机床一般采用多轴、多刀、多工序、多面或多工位同时加工的方式,生产效率比通用机床高几倍至几十倍。
组合机床兼有低成本和高效率的优点,在大批量生产中得到广泛应用,并可用以组成自动生产线。
组合机床通常采用多轴、多刀、多面、多工位同时加工的方式,能完成钻、扩、铰、镗孔、攻丝、车、铣、磨削及其他精加工工序。
液压系统由于具有结构简单、动作灵活、操作方便、调速范围大、可无级连续调节等优点,在组合机床中得到了广泛应用。
液压系统在组合机床上主要是用于实现工作台的直线运动和回转运动,本次设计组合机床动力滑台为一台卧式钻、镗组合机床上的动力滑台液压系统要求完成动作为“快进—工进—快退—原位停止”的工作循环:最大切削力为FL=12KN,动力头自重FG=20KN,工作进给要求能在0.02—1.2m/min的范围内无级调速,快进、快退速度为6m/min;工进行程为100mm,快进行程为300mm;采用平导轨,其静、动摩擦系数取fs=0.2、fd=0.1;往复运动的加速、减速时间要求不大于0.5S。
关键词:液压系统修正节流阀分流集流阀液压锁The design of hydraulic system of modular machine tool slideAbstract as a special machine for high efficiency, the combination of machine tools are widely used in large batch machining production. The curriculum designto combination machine tool hydraulic pressure system design as an example,introduces the design method of the hydraulic system of modular machine tooland the design procedure, including combination machinetool hydraulic system of power slipway condition analysis, the main parameters, hydraulic system principle diagram of the quasi fixed, the choice of hydraulic components and systemperformance checking.Combination machine is based on common components, with special componentsdesigned according to workpiece specific shape and process and fixture andconsisting of semi-automaticor automatic machine tool. Combination machinegenerally adopts the multi axis, multi knife, multi process, multi or multistage and processing, production efficiency several times to several times higher than the general machine tool. The combination machine has the advantages of high efficiency and low cost, widely used in mass production, and can be used tocompose the automatic production line. Combination machine tools usually adopts the multi axis, multiknife, multi-faceted, multi station and processing, can complete thedrilling, boring, tapping, reaming, expansion, cars, milling, grindingand other finishing processes.The hydraulic system has the advantages of simple structure, flexible action,convenient operation, wide speed range, the advantages of continuous stepless regulation, has been widely applied in the modular machine tool. Hydraulicsystem in modular machine is mainly used to achieve the worktable linearmovement and rotary movement, the design of combined machine tool power sliding table is a horizontal drilling, hydraulic system of power slipway boring modular machine to complete the requirements of action as "fast forward -feeding - rewind in-situ stop" work cycle: the maximum cutting force for FL=12KN,a power head weight FG=20KN, feed requirements canbe stepless in the range of 0.02 - 1.2m/min in speed, fast forward, rewind speed is6m/min; feedingschedule for 100mm, fast forward stroke is 300mm; using flat guide rail, thestatic,dynamic friction coefficient fs=0.2, fd=0.1; acceleration, the reciprocating motion of the time requirements not more than 0.5S.Key words: Hydraulic system Amendment throttle valve Flow distributing and collecting valve Hydraulic lock目录第一章绪论 (1)1.1 液压传动的发展状况 (1)1.2 液压技术的应用 (2)第二章组合机床滑台设计依据 (2)第三章工况分析 (2)3.1 负载分析 (2)3.2 负载图和速度图 (3)第四章初步拟定液压系统原理图 (4)4.1 选择液压基本回路 (4)4.2 组成液压系统原理图 (5)第五章确定液压系统参数 (6)5.1 初选液压缸工作压力 (6)5.2 计算液压缸的结构尺寸 (7)5.3 绘制工况图 (8)第六章液压元件的计算和选择 (8)6.1 确定液压泵的规格和电机功率 (8)6.2 选择液压阀 (9)6.3 确定管道尺寸 (10)6.4 确定油箱容量 (11)第七章液压系统的性能验算 (11)7.1 液压缸的速度验算 (11)7.2 回路压力损失验算 (11)7.3 液压系统发热与温升验算 (12)第八章液压技术未来的发展 (13)总结 (14)致谢 (14)参考文献 ....................................................................................................错误!未定义书签。
组合机床液压动力滑台的液压及电气设计设计说明书
设计说明书目录第一章绪论1、课题意义、背景及应用现状2、液压控制特点3、机械式与液压式滑台特点第二章液压滑台的液压系统动力设计1、运动负载分析计算2、确定执行元件类型及基本参数3、确定液压控制方案4、确定液压控制元件5、校核第三章液压滑台的电气控制设计1、确定控制对象2、确定电气控制方案第四章液压缸结构设计1、确定类型主要参数2、确定部件连接方式3、排气缓冲设计4、检验第五章总结第一章绪论1课题意义、背景及应用现状1.1课题意义通过对专用铣床动力滑台的负载分析及工艺分析,熟悉机床液压及电气设计的基本思路、方法,掌握机电设备电气与液压系统设计机液压执行机构的机构设计方法。
通过本课题的训练加强对机床液压与电气控制知识的综合应用,具备初步的工程实践能力。
1.2液压动力滑台背景及应用现状动力滑台是组合机床用以实现进给运动的通用部件,其运动由液压缸驱动。
在滑台上可根据加工工艺要求安装各类动力箱和切削头,以完成车、铣、镗、钻、扩、铰、攻螺纹等加工工序,并能按多种进给方式实现自动工作循环。
液压动力滑台应满足进给速度稳定、速度换接平稳、系统效率高、发热小等要求。
液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。
如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。
第一个使用液压原理的是1795年英国约瑟夫·布拉曼(JosephBraman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。
1905年他又将工作介质水改为油,进一步得到改善。
第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。
液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。
1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。
机电一体化本科毕业论文组合机床动力滑台液压系统
机电一体化本科毕业论文组合机床动力滑台液压系统一、背景和意义组合机床是一种机电一体化的高精度机床,它由加工主轴和滑台两个单元组合而成,能够实现钻、铣、刨、磨等多种加工功能,是当前机械制造行业中一种重要的设备。
动力滑台是组合机床的重要组成部分,它能够在加工过程中实现工件的自动进给和移动,其性能对组合机床的精度和效率具有非常重要的影响。
由于组合机床动力滑台涉及到液压系统的设计和优化,涵盖了机械、电子、液压等多个学科的知识,因此研究其动力滑台液压系统的设计和优化,对于提高组合机床的精度和效率具有很重要的意义。
二、组合机床动力滑台液压系统的设计和优化过程1. 动力滑台液压系统设计的原则和要求在设计组合机床动力滑台液压系统时,需要遵循以下设计原则和要求:(1)系统的控制精度高,能够实现工件高精度加工。
(2)系统的速度控制范围宽,能够适应不同工作状态下的加工需求。
(3)系统的响应速度快,能够迅速响应操作指令。
(4)系统结构简单、可靠,维护成本低。
(5)系统的安全性能好,能够确保操作人员的安全。
2. 液压系统的基本组成组合机床动力滑台液压系统是由液压装置、液压控制阀、液压执行元件等部分组成。
其中,液压装置负责产生压力源,液压控制阀负责控制和调节液压系统的工作状态,液压执行元件负责将液压能转化为机械能,实现动力滑台的移动。
3. 液压系统的参数设计在液压系统的参数设计中,需要考虑系统的运行环境、工作条件、机床结构等因素。
主要涉及液压系统的压力、流量、速度、功率等参数选择和优化,以满足机床加工的需求。
4. 液压系统的控制方式液压系统的控制方式包括手动控制、自动控制和数控控制等手段。
在组合机床动力滑台液压系统中,数控控制方式是较为常见和有效的控制方式,能够实现更高的加工精度和效率。
三、组合机床动力滑台液压系统的优化方案1. 采用高质量的液压元器件,以保证系统稳定性和可靠性。
2. 采用电液伺服控制系统,以实现更高的控制精度和速度响应能力。
液压系统设计外文文献翻译、中英文翻译
附录A液压系统设计液压技术被引入工业领域已经有一百多年的历史了,随着工业的迅猛发展,液压技术更日新月异。
伴随着数学、控制理论、计算机、电子器件和液压流体学的发展,出现了液压伺服系统,并作为一门应用科学已经发展成熟,形成自己的体系和一套行之有效的分析和设计方法。
好了,不多说了,现在我和大家来说说液压系统设计的方法和注意问题。
举个液压系统在机床运用的例子来和大家聊,并欢迎大家提出意见。
1 设计机床液压传动系统的依据1.机床的总体布局和工艺要求,包括采用液压传动所完成的机床运动种类、机械设计时提出可能用的液压执行元件的种类和型号、执行元件的位置及其空间的尺寸范围、要求的自动化程度等。
2.机床的工作循环、执行机构的运动方式(移动、转动或摆动),以及完成的工作范围。
3.液压执行元件的运动速度、调速范围、工作行程、载荷性质和变化范围。
4.机床各部件的动作顺序和互锁要求,以及各部件的工作环境与占地面积等。
5.液压系统的工作性能,如工作平稳性、可靠性、换向精度、停留时间和冲出量等方面的要求。
6.其它要求,如污染、腐蚀性、易燃性以及液压装置的质量、外形尺寸和经济性等。
2 设计液压传动系统的步骤1.明确对液压传动系统的工作要求,是设计液压传动系统的依据,由使用部门以技术任务书的形式提出。
2. 拟定液压传动系统图。
(1) 根据工作部件的运动形式,合理地选择液压执行元件;(2) 根据工作部件的性能要求和动作顺序,列出可能实现的各种基本回路。
此时应注意选择合适的调速方案、速度换接方案,确定安全措施和卸荷措施,保证自动工作循环的完成和顺序动作和可靠。
液压传动方案拟定后,应按国家标准规定的图形符号绘制正式原理图。
图中应标注出各液压元件的型号规格,还应有执行元件的动作循环图和电气元件的动作循环表。
3. 计算液压系统的主要参数和选择液压元件。
(1) 计算液压缸的主要参数;(2) 计算液压缸所需的流量并选用液压泵;(3) 选用油管;(4) 选取元件规格;(5) 计算系统实际工作压力;(6) 计算功率,选用电动机;(7) 发热和油箱容积计算;4.进行必要的液压系统验算。
中英文文献翻译-组合机床与控制设计
英语原文:Integrated Machine and Control DesignAbstract—In this paper, we describe a systematic design procedure for reconfigurable machine tools and their associated control systems. The starting point for the design is a set of operations that must be performed on a given part or part family. These operations are decomposed into a set of functions that the machine must perform and the functions are mapped to machine modules, each of which has an associated machine control module. Once the machine is constructed from a set of modules, the machine control modules are connected. An operation sequence control mod ule, user interface control module, and mode-switching logic complete the control design. The integration of the machine and control design and the reconfigurability of the resulting machine tool are described in detail.I. IntroductionIn today’s competitive markets, manufacturing systems must quickly respond to changing customer demands and diminishing product life cycles. Traditional transfer lines are designed for high volume production, operate in a fixed automation paradigm, and therefore cannot readily accommodate changes in the product design. On the other hand, conventional CNC-based “flexible” manufacturing system offer generalized flexibility but are generally slow and expensive since they are not optimized for any particular product or a family of products.An effort at the University of Michigan aims to develop the theory and enabling technology for reconfigurable machining systems. Instead of building a machining system from scratch each time a new part is needed, an existing system can be reconfigured to produce the new part. In this paper, we describe how an integrated machine and control design strategy can result in machine tools which can be quickly and easily configured and reconfigured.In order to provide exactly the functionality and capacity needed to process a family of parts, RMTs are designed around a given family of parts. Given a set of operations to be performed, RMTs can be configured by assembling appropriate machine modules. Each active module in the library has a control module associated with it. As the mechanical modules are assembled, the control modules will be connected and the machine will be ready to operate. Extensive and time-consuming specialized control system design will not be required. Section II describes how the machine is designed from a set of basic machine modules,This research was supported in part by the NSF-ERC connected in a well-defined fashion, and Section III describes how the control is similarly assembled from a library of control modules. This modular construction of the machine and control allows formany levels of reconfigurability as described in Section IV. The paper concludes with a description of future work in Section V.II. Machine DesignOngoing work on manufacturing system configuration at the University of Michigan addresses the problem of starting from a part (or part family) description and extracting the machining operations necessary to produce the part(s). The operations are grouped according to tolerance, order of execution, and desired cycle time of the system, with the intention that each operation “cluster” can be produced on a single machine tool. The operation cluster considered here is to drill a set of holes for the cam tower caps on V6 and V8 cylinder heads shown in Figure 1. The input to the reconfigurable machine tool design procedure is the cutter location data generated by a process planner for this operation cluster. data includes positioning and drilling information.The RMT design procedure consists of three main stages: task clarification, module selection, and evaluation. After a brief literature review, these three stages will be outlined in this section.A. Related researchSince reconfigurability is a relatively new concept in ma chining systems, there is little, if any, published literature on the design of reconfigurable machine tools. However, modular machine tools have been on the market for several years, and some of the published articles on modular robots, modular machines and assembly do have some rel-evance to the design of reconfigurable machine tools. For example, Shinno and Ito proposed a methodology for generating the structural configuration of machine tools. They decomposed the machine tool structures into simple geometric forms: e.g. boxes, cylinders, etc. Yan and Chen [21], [1] extended this work to the ma chining center structural design. [12] adapted Ito’s method for modular machine t ool synthesis and de-veloped a method for enumerating machine tool modules. Paradis and Khosla [15] determined the modular assembly configuration which is optimally suited to perform a specific task. On the systems front, Rogers and Bottaci [16] discussed the significance of reconfigurable manufacturing systems, and Owen et al. [13] developed a modular reconfigurable manufacturing system synthesis program for educational pur poses.In our work, traditional methods of motion representation and topology (i.e. screw theory, graph theory, etc.) are employed to capture the characteristics of RMTs. These mathematical schemes are used for topological synthesis, function-decomposition, and mapping procedures; details can be found in [9].Figure 1B.Task clarificationThe design of an RMT begins with task clarification, which entails analyzing the cutter location data to determine the set of functions which are necessary to accomplish the desired kinematic motions. There are three steps. First, graphs are generated which abstractly representationFig. 3. High-level operation sequence, showing causal dependencies and concurrencies.This abstract representation of the sequence of operations is derived from the CL data, and will be used to design the sequencing control the motions. These graphs are then decomposed into functions, and finally the functions are mapped onto machine modules which exist in the library.A graph representation of the machine tool structure allows for systematic enumeration of alternate configurations and also provides a method of identification of nonisomorphic graphs. The graph representation is also used for bookkeeping to assign machine modules to the graph elements. A graph consists of a set of vertices connected together by edges. In using a graph as an abstract represen tation of a machine tool structure, we define two different types of vertices: type 0 and type 1. A vertex represents a physical object with two ports; each port represents the location on the object where it can be attached to a neighboring object. A type 0 vertex has input and output ports that are in-line with respect to each other, whereas a type 1 vertex has input and output ports that are perpendicular to each other. Machining tasks are also classified as type 0 or type 1, depending on whether the tool is parallel or per pendicular to the workpiece.C. Module selectionCommercially available modules are selected from the module library for each ofthe functions (structural as well as kinematic) that were mapped to the graph in the task clarification stage. The data stored for each module in the library includes the homogenous transformation matrix representing its kinematic or structural function, the twist vector supplemented by range of motion information, a compliance matrix representing the module stiffness, module connectivity information, and power requirements (for active modules such as spindles and slides).The first step in module selection is to compare the homogeneous transformation matrices of the modules with the task requirement matrix such that when appropriate modules are selected to meet the task requirements, the product of all module matrices should be equal to the desired task matrix: T = T1· T2 · · · Tn. Again, there may be many possible choices of modules for a given structural configuration. Figure 6 shows how different slides, spindles, and structural elements can be assembled according to the graph of Figure 4.A slide module, with its CAD model and transformation matrix, is shown in Figure7. It is capable of one direction of linear motion, indicated by the ~1 variable in its transformation matrix. Its database entry, shown in Table I, stores not only its transformation matrix but also the manufacturer name, model number, initial position, power level, and motion data. The twist vector is augmented by information on the minimum, initial, and maximum displacement of the module.TABLE IDatabase information and documentation for the machinemodule shown in Figure 7.(a) V6 machine (b) V8 machineFig. 2. Reconfigurable machine tool designs for the two different parts.D. EvaluationOnce a set of kinematically-feasible modules have been selected, the resulting machine design must be evaluated. The criteria for evaluation of the reconfigurable machine tools synthesized by the above systematic procedure include the work envelope, the number of degrees of freedom, the number of modules used, and the dynamic stiffness.The number of kinematic degrees of freedom of the machine tool must be kept to a minimum required to meet the requirements, both to reduce the actuation power and minimize the chain of errors. Machine tool designs which are generated using this methodology for the example parts of Figure 1 are shown in Figure 8.The resulting designs must be evaluated with respect to the expec ted accuracy. The stiffness of the entire machine tool, one of the most important factors in performance, is estimated based on the module compliance matrices and the connection method.III. Control DesignAs the machine is built from modular elements, so is the control. In this work, we focus on the logic control for sequencing and coordination of the machine modules; a discrete-event system formalism is used [6]. There is one control module associated with each active machine module; we refer to these as machine control modules. In the machine design, there are passive elements which connect the active elements together. In the control design, there must also be“glue” modules which connect the machine control modules. The overall architecture of the control system for an RMT is shown in Figure 9.The structure is similar for either of the two machines shown in Figure 8; for the V8 machine, there is no Y -axis control module. As shown, the machine control modules are at the lowest level; these interact directly with the mechanical system. Three modules handle the mode switching logic. In this section, we briefly describe each of these types of control modules as well as their interaction and coordina tion.A. Machine control modulesEach machine control module has awell-defined interface specification: itaccepts discrete-event commands from agiven set, and returns discrete-eventresponses from a given set. Within thecontrol module will be all of the continuous-variable control, such as servo control foraxes. This continuous control is designedusing standard PID algorithms and the axisparameters such as inertia, power, lead screw pitch, which come from the machine module definition. In addition, each machine control module will contain con trols for any machine services associated with the machine module, such as lubrication or coolant. Thus, each machine control module is a self-contained controller for the machinemodule itaccompanies, and can bedesigned andtestedindependentlyof the rest ofthe machine.Fig.10.Slide ControllerThe design of a machine control module must be done only once for each machine module in the library. Whenever the machine module is used in a machine design, the control module can be used in the associated control design. The control module may be used independently, with its own processing power, I/O and a network connection to the rest of the control system, or it may be used as a piece of the overall machine controller which is implemented in a centralized fashion.B. Operation sequenceThe operation sequence module is defined from the high level sequence extracted from the cutter location data shown in Figure 3.C. Modular control structureThe user interface control module interacts with the user through a set of pushbuttons to turn the control system on and off, switch between control modes, and single-step through the operation sequence. Its main functions are to pass the user commands through to the rest of the controller, and to display the current state of the machine to the user.IV. Conclusions and Future WorkHistorically, machine tool design has been experience based. In this research, we described a mathematical basis for synthesis and evaluation of Reconfigurable Machine Tools and their associated controllers. This research work has addressed both the generation of machine tool configurations and modular control design. The systematic design process begins with the machining requirements.The presented methodology for synthesis of machine tools allows a library of machine modules to be precompiled and stored in a database, self-contained with con-trollers and ready to be used in any machine design. The methodology also ensures that all kinematically viable and distinctly different configurations are systematically enu-merated to reduce the chance of missing a good design.We have already developed a Java-based program which automates the machinedesign process; we are currently incorporating the control design procedure withi n the existing framework.The authors would like to acknowledge the support and invaluable feedback from the industrial members of the ERC who have participated in this project.中文译文组合机床与控制设计摘要——在本文中,我们描述一个系统的设计程序的可重构机床及其控制系统。
毕业设计 YT4543型组合机床动力滑台液压系统的PLC改造
毕业生论文YT4543型组合机床动力滑台液压系统的PLC改造2007年6月摘要组合机床是由通用部件和部分专用部件组成的高效、专用、自动化程度较高的机床。
动力滑台是组合机床的一种通用部件。
本课题涉及到的YT4543型原有组合机床液压动力滑台的电气部分采用继电器控制系统,存在可靠性不高,故障发生率高,维护困难;继电器线路接线复杂;若工艺流程改变,则需要改变相应的继电器控制系统的接线等问题。
由于可编程序控制器具有较高的可靠性,控制过程中能得到良好的控制精度,以及能够轻而易举地实现工业自动化;另外,还具有易维护,操作简便等一系列优点。
可编程序控制器在现代工业中得到了大量而广泛的应用。
本课题正是基于以上原因,从实际应用的角度出发,以可编程序控制器(PLC)为基础,以YT4543型原有组合机床液压动力滑台为改造对象,在深入了解YT4543型原有组合机床液压动力滑台工作原理的基础上,利用性能优良、价格合理的三菱FXos-30MR-D超小型PLC对YT4543型原有组合机床液压动力滑台实施改造,形成PLC控制的组合机床液压动力滑台。
从而克服了原有缺点,提高了机床的可靠性,同时给系统的维护和改进带来了很大方便。
实践证明,通过改进,既可提高系统的可靠性,又可以通电编程,灵活改变其控制顺序,达到了应用的目的,取得了良好的工作性能和经济效益。
关键词:可编程控制继电器液压动力滑台Abstract:The combination machine bed constitute efficiently with parts of appropriations parts from the in general use parts, appropriation, automation higher machine in degree bed.The slippery set in motive is a kind of in general use parts to combine the machine bed.This lesson a the type of YT4543 for involving combines originally possessed the motive that machine bed liquid press electricity part adoption slips the set to control the system after the electric appliances, exsitting the dependable is not high, breaking down to take place the rate high, maintenance difficulty;Connect the line complicacy after the electric appliances circuit;If the craft process changes, then need the changes homologous control after the electric appliances the system connect line etc. problem. Because the programmable preface controller has the higher and dependable, thecontrol process inside can get the good control accuracy, and can realizes easily industry automation;Moreover, still have the easy maintenance, operate a series of advantage in simple etc..The programmable preface controller got large quantity in modern industry but extensive application.In this lesson a foundation for exactly according to above reason, from the actual and applied angle setting out, regarding programmable preface controller( PLC ) as foundation, with the type of YT4543 originally possessed combining machine bed liquid pressing slippery set in motive is reforming object, in the thorough understanding YT4543 type originally possessed combining machine bed liquid pressing slippery set in motive working principle, make use of the function good, the super and small scaled PLC in MRs FXos-30s- Ds in reasonable Mitsubishi in price combines the machine bed originally possessed to the type of YT4543 the liquid presses the slippery set in motive puts reform into practice to, the combination machine that become the PLC control the bed liquid presses the slippery set in motive.From but overcame the weakness originally possessed, increases the dependable of the machine bed, give the maintenance of the system with improved to bring at the same time not stingy then.Practice the proof, pass the improvement, since can increase the dependable of the system, can switch on electricity to weave the distance again, vivid change its control is in proper order, coming to a the applied purpose, obtaining the good work function with the economic performance.Key words: programmable control relay hydraulic power sliding stand目录第一章绪论 (6)§1.1 组合机床液压系统 (6)§1.1.1 概述 (6)§1.1.2 YT4543型动力滑台液压系统特点 (6)§1.2可编程控制器(PLC)引论 (7)§1.2.1可编程控制器的产生、发展与展望 (7)§1.2.2可编程控制器的定义与分类 (10)§1.2.2.1 可编程控制器的定义 (10)§1.2.2.2可编程控制器的分类 (11)§1.2.3可编程控制器的特点和应用范围 (12)§1.2.4可编程控制器的主要技术性能 (15)第二章控制系统工作原理 (15)§2.1 YT4543型动力滑台液压系统工作原理 (16)§2.2 可编程控制器的工作原理 (18)§2.2.1可编程控制器的基本组成 (18)§2.2.2 可编程控制器的基本原理 (18)§2.2.2.1 PLC的系统工作过程 (19)§2.2.2.2 PLC的扫描工作方式与程序执行过程 (20)§2.2.2.3 PLC的I/O响应滞后问题 (22)§2.2.2.4 PLC的中断 (24)§2.3 编程器和编程软件 (25)第三章PLC控制系统设计 (26)§3. 1控制内容的确定 (26)§3. 2控制方案的确定 (29)§3. 3 输入信号的确定 (31)§3. 4 控制对象的确定 (31)第四章硬件系统设计 (32)§4.1 PLC型号的确定 (32)§4.2 FXos-30MR-D资源及性能 (33)第五章软件设计 (34)§5.1主程序设计 (34)§5.2 梯形图 (35)§5.3 由梯形图转化出系统的指令程序 (38)§5.4 PLC外部接线图 (40)第六章结论与展望 (40)§6.1 结论 (40)§6.2 展望 (40)参考文献 (41)致谢 (41)第一章绪论1.1 组合机床液压系统1.1.1 概述组合机床是由通用部件和部分专用部件组成的高效、专用、自动化程度较高的机床。
组合机床动力滑台液压系统的设计
目录前言.........................................................................................................错误!未定义书签。
目录 (1)一、液压传动的发展概况.....................................................................错误!未定义书签。
二、液压传动的工作原理和组成.........................................................错误!未定义书签。
三、液压传动的优缺点.........................................................................错误!未定义书签。
1、优点...........................................................................................错误!未定义书签。
2、液压传动的缺点:...................................................................错误!未定义书签。
四、液压系统的应用领域.....................................................................错误!未定义书签。
1、液压传动在机械行业中的应用: ...........................................错误!未定义书签。
2、静液压传动装置的应用...........................................................错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科生毕业设计(论文)外文翻译毕业设计(论文)题目:组合钻床动力滑台液压系统及电控系统设计外文题目: Drilling machine译文题目:组合钻床学生姓名:马莉莉专业:机械设计制造及其自动化0701班指导教师姓名:王洁评阅日期:正文内容小四号字,宋体,行距1.5倍行距。
The drilling machine is a machine for making holes with removal of chips and it is used to create or enlarge holes. There are many different types of drilling machine for different jobs, but they can be basically broken down into two categories.The bench drill is used for drilling holes through raw materials such as wood, plastic and metal and gets its name because it is bolted to bench for stability so that larger pieces of work can be drilled safely. The pillar drill is a larger version that stands upright on the floor. It can do exactly the same work as the bench drill, but because of its size it can be used to drill larger pieces of materials and produce bigger holes. Most modern drilling machines are digitally automated using the latest computer numerical control (CNC) technology.Because they can be programmed to produce precise results, over and over again, CNC drilling machines are particularly useful for pattern hole drilling, small hole drilling and angled holes.If you need your drilling machine to work at high volume, a multi spindle drill head will allow you to drill many holes at the same time. These are also sometimes referred to as gang drills.Twist drills are suitable for wood, metal and plastics and can be used for both hand and machine drilling, with a drill set typically including sizes from 1mm to 14mm. A type of drill machine known as the turret stores tools in the turret and positions them in the order needed for work.Drilling machines, which can also be referred to as bench mounted drills or floor standing drills are fixed style of drills that may be mounted on a stand or bolted to the floor or workbench. A drilling machine consists of a base, column, table, spindle), and drill head, usually driven by an induction motor.The head typically has a set of three which radiate from a central hub that, when turned, move the spindle and chuck vertically, parallel to the axis of the column. The table can be adjusted vertically and is generally moved by a rack and pinion. Some older models do however rely on the operator to lift and re clamp the table in position. The table may also be offset from the spindles axis and in some cases rotated to a position perpendicular to the column.The size of a drill press is typically measured in terms of swing which can be is defined as twice the throat distance, which is the distance from the centre of the spindle to the closest edge of the pillar. Speed change on these drilling machines is achieved by manually moving a belt across a stepped pulleyarrangement.Some drills add a third stepped pulley to increase the speed range. Modern drilling machines can, however, use a variable-speed motor in conjunction with the stepped-pulley system. Some machine shop drilling machines are equipped with a continuously variable transmission, giving a wide speed range, as well as the ability to change speed while the machine is running.Machine drilling has a number of advantages over a hand-held drill. Firstly, it requires much less to apply the drill to the work piece. The movement of the chuck and spindle is by a lever working on a rack and pinion, which gives the operator considerable mechanical advantage.The use of a table also allows a vice or clamp to be used to position and restrain the work. This makes the operation much more secure. In addition to this, the angle of the spindle is fixed relative to the table, allowing holes to be drilled accurately and repetitively.Most modern drilling machines are digitally automated using the latest computer numerical control (CNC) technology. Because they can be programmed to produce precise results, over and over again, CNC drilling machines are particularly useful for pattern hole drilling, small hole drilling and angled holes.Drilling machines are often used for miscellaneous workshop tasks such as sanding, honing or polishing, by mounting sanding drums, honing wheels and various other rotating accessories in the chuck. To add your products click on the traders account link above.You can click on the links below to browse for new, used or to hire a drilling machine.Drilling machines are used for drilling, boring, countersinking, reaming, and tapping. Several types are used in metalworking: vertical drilling machines, horizontal drilling machines, center-drilling machines, gang drilling machines, multiple-spindle drilling machines, and special-purpose drilling machines. Vertical drilling machines are the most widely used in metalworking. They are used to make holes in relatively small work-pieces in individual and small-lot production; they are also used in maintenance shops. The tool, such as a drill, countersink, or reamer, is fastened on a vertical spindle, and the work-piece is secured on the table of the machine. The axes of the tool and the hole to be drilled are aligned by moving the workpiece. Programmed control is also used to orient the workpiece and to automate the operation. Bench-mounted machines, usually of the single-spindle type, are used to make holes up to 12 mm in diameter, for instance, in instrument-making.Heavy and large workpieces and workpieces with holes located along a curved edge are worked on radial drilling machines. Here the axes of the tool and the hole to be drilled are aligned by moving the spindle relative to the stationary work-piece.Horizontal drilling machines are usually used to make deep holes, for instance, in axles, shafts, and gun barrels for firearms and artillery pieces. Center-drilling machines are used to drill centers in the ends of blanks. They are sometimes equipped with supports that can cut off the blank before centering, and in such cases they are called center-drilling machines. Gang drilling machines with more than one drill head are used to produce several holes at one time. Multiple-spindle drilling machines feature automation of the work process. Such machines can be assembled from several standardized, self-contained heads with electric motors and reduction gears that rotate the spindle and feed the head. There are one-, two-, and three-sidedmultiple-spindle drilling machines with vertical, horizontal, and inclined spindles for drilling and tapping. Several dozen such spindles may be mounted on a single machine. Special-purpose drilling machines, on which a limited range of operations is performed, are equipped with various automated devices.Multiple operations on workpieces are performed by various combination machines. These include one- and two-sided jig boring machines,drilling-tapping machines (usually gang drilling machines with reversible thread-cutting spindles), milling-type drilling machines and drilling-mortising machines used mainly for woodworking, and automatic drilling machines.In woodworking much use is made of single- and multiple-spindle vertical drilling machines, one- and two-sided, horizontal drilling machines (usually with multiple spindles), and machines equipped with a swivel spindle that can be positioned vertically and horizontally. In addition to drilling holes, woodworking machines may be used to make grooves, recesses, and mortises and to remove knots.英文翻译指导教师评阅意见原文已完。