《两角差的余弦公式》三角函数ppt课件

合集下载

311两角差的余弦公式共23张PPT

311两角差的余弦公式共23张PPT
cos cos( ) sin sin( )
例4 已知cos = 1,cos( )=- 3,0 , ,
2
5
2
求 cos.
提示:拆角思想:cos cos[( ) ].
解: 由cos = 1,0 , 得sin 3 ,
2
2
2
由cos( )=- 3,0 , 5
得sin(+)= 4 . 5
22 2 2
4
题后小结: 1、把非特殊角拆分成特殊角的差.
2、公式的直接应用.
1
两角差的余弦公式的变通
思考:若已知α+β和β的三角函数值,如何求
cos 的值? cos cos[( ) ]
cos( )cos sin( )sin 思考:利用α-(α-β)=β可得 cos 等于什么
cos cos[ ( )]
5
【例】 已知 cos α-cos β=12,sin α-sin β=-13, 求 cos (α-β)的值.
【解析】将 cos α-cos β=12,sin α-sin β=-13 分别平方得,
cos2α-2cos αcos β+cos2β=1, 4
sin2α-2sin αsin β+sin2β=1. 9
B. 7 0
D. 7 2 10
解析:∵ ( , ), (3 , 5 ),cos( ) 4 ,
2
4 44
45
cos cos[( ) ]
44
cos( ) cos sin( ) sin
44
44
4 2 3 2 2. 5 2 5 2 10
3
cos cos( )
cos( ) cos sin( ) sin
( 3 ) 1 4 3 3 4 3 .

两角差的余弦公式PPT优秀课件

两角差的余弦公式PPT优秀课件
94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]
16

1
65
cos(α+β)=cosαcosβ–sinαsinβ
简记:C ( )
公式的结构特征: 左边是复角α+β 的余弦,右边是单角α、β
的余弦积与正弦积的差.
将 替换为
co s ()cos (())
co cs o )s s(is ni n ) (
3、 在 A B C 中 , 若 sinA sinB = cosA cosB ,
则 A B C 是 ( ).
( A ) 直 角 三 角 形 ( B ) 钝 角 三 角 形
( C ) 锐 角 三 角 形 ( D ) 不 确 定
1
小 结 作业:讲义
• 1.cos(α+β)=cosαcosβ–sinαsin β cos(α–β)=cosαcosβ+sinαsin β
――[阿萨·赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉·海兹利特]
116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子]

两角差的余弦公式-PPT课件

两角差的余弦公式-PPT课件
2
3.若已知α,β的三角函数值,那么 cos(α-β)的值是否确定?它与α,β 的三角函数值有什么关系?这是我们需 要探索的问题.
3
4
探究(一):两角差的余弦公式 思考1:设α,β为两个任意角, 你能 判断cos(α-β)=cosα-cosβ恒成 立吗? cos(30°-30°)≠cos30°-cos30°
cosβ
y
P1
sinβ
A
P
O
x
9
大家学习辛苦了,还是要坚持
继续保持安静
10
思考6:cosαcosβ=OAcosα,它表示
哪条线段长?
sinαsinβ=PAsinα,它表示哪条线段
长?
y
sinαsinβ
P1
A
P
C
OB
x
cosαcosβ 11
思考7:利用OM=OB+BM=OB+CP可得什
么结论? y
3.1 两角和与差的正弦、余弦 和正切公式 3.1.1 两角差的余弦公式
1
问题提出
1.在三角函数中,我们学习了哪些基本 的三角函数公式?
2.对于30°,45°,60°等特殊角的三角 函数值可以直接写出,利用诱导公式还 可进一步求出150°,210°,315°等角的 三角函数值.我们希望再引进一些公式, 能够求更多的非特殊角的三角函数值, 同时也为三角恒等变换提供理论依据.
思考9:根据cosαcosβ+sinαsinβ的 结构特征,你能联想到一个相关计算原 理吗?
14
思考10:如图,设角α,β的终边与单
位圆的交点分别为A、B,则向量 ΟΑ、
ΟB的坐标分别是什么?其数量积是什
么?
y
ΟΑ=(cosα,sinα)A OB=(cosβ,sinβ)

人教版新课程第三章高中数学两角差的余弦公式(共19张PPT)教育课件

人教版新课程第三章高中数学两角差的余弦公式(共19张PPT)教育课件

有些人经常做一些计划,有的计划几乎 不去做 或者做 了坚持 不了多 久。其 实成功 的关键 是做很 坚持。 上帝没 有在我 们出生 的时候 给我们 什么额 外的装 备,也 许你对 未来充 满迷惑 ,也许 你觉得 是在雾 里看花 ,但是 只要我 们不停 的去做 ,去实 践,总 是可以 走到一 个鲜花 盛开的 地方, 也许在 那个时 候,你 就能感 受到什 么叫柳 暗花明 。走向 成功的 过程就 好像你 的起点 是南极 ,而成 功路径 的重点 在北极 。那么 无论你 往哪个 方向走 ,只要 中途的 方向不 变,最 终都会 到达北 极,那 就在于 坚持。
凡 事都是 多棱 镜, 不同 的角度 会看 到不 同的 结果 。若 能把一 些事 看淡 了, 就会 有个好 心境 ,若 把很 多事 看开 了 ,就会 有个 好心 情。 让聚散 离合 犹如 月缺 月圆 那样 寻常, 让得 失利 弊犹 如花 开花谢 那样 自然 ,不 计较 ,也 不 刻意执 着; 让生 命中 各种的 喜怒 哀乐 ,就 像风 儿一 样,来 了, 不管 是清 风拂 面,还 是寒 风凛 冽, 都报 以自 然 的微笑 ,坦 然的 接受 命运的 馈赠 ,把 是非 曲折 ,都 当作是 人生 的
变式2:求 1 cos15+ 3 sin15 的值.
2
2

思路分析: 比较已知的角与所求的角之间的关系,
注意构造角以及研究角的范围.
变式训练
已知 cos(600)1,00900,
10
求 cos,sin
思考
对于两角差的余弦公式,适当
变换两角的形式,例如将 换
成 ,或将 换成 ,你能得
到哪些结论?
新人教A版 数学必修4 第三章 三角恒等变换
复习引入
三角函数 sin 30 sin 45 sin 60

人教版高中数学第三章1两角差的余弦公式(共17张PPT)教育课件

人教版高中数学第三章1两角差的余弦公式(共17张PPT)教育课件

2
2
15
课 堂
1、


cos=

5, 13
,3 2


练 习
cos

6



_
_
_
_

2 、c o s 2 1 5 - s i n 2 1 5 _ _ _ _ _ _ _ ;
3、 在 A B C 中 , 若 sinA sinB = cosA cosB ,
则 A B C 是 ( ).
: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。

高中数学两角和与差的正弦、余弦、正切公式课件

高中数学两角和与差的正弦、余弦、正切公式课件

Thanks.
小结:
1.掌握C ( ) , C( ) 公式的推导,小心
它们的差别与联系;
2.注意角的拆分与组合,如:
( ) , 2 ( ) ,
2 ( ) ( ),
2 ( ) ( ),
( − ) = − .
公式五

( − ) = ,


( − ) = .

公式六

( + ) = ,
2

( + ) = − .
2
3.两点间的距离公式
平面上任取两点A(x 1 , y1 ), B(x 2 , y 2 )
2
2
sin cos cos sin
两角差的正弦公式
两角和的正弦公式:sin( ) sin cos cos sin
两角差的正弦公式:sin( ) sin cos cos sin
法一:
sin( )
sin[ ( )]
A(x 1 , y 1 )
y
| y1 y 2 |
B(x 2 , y 2 )
| x1 x 2 |
0
x
2
2
AB (x1 x2 ) (y 1 y 2 )
02
两角和与差的余弦公式
终边
两角差的余弦公式
y
P1 (cos , sin )
终边
A1 (cos , sin )源自,
2
2
2
3.注意整体代换思想的应用.


2
;

1
④ cos

3.1.1两角差的余弦公式课件

3.1.1两角差的余弦公式课件
0
思考题:已知 α ,β
5 cos α +β 13
4 都是锐角, cosα = , 5
求 cosβ 的值
α +β α 变角: β =
分析: cos
cos
cosα sinα cos αβ sin αβ
5 4 12 3 13 5 13 5
问 题 探 究
如何用任意角α 与β 的正弦、余 弦来表示cos(α -β )?
思考:你认为会是 cos(α -β )=cosα -cosβ 吗?
OA cosα ,sinα
OB cosβ , sinβ
y
OA OB OA OB cos( )
cos( )
3.1.1两角差的余弦公式
学习目标
1、了解两角差的余弦公式的推导和证明 过程 ; 2、掌握两角差的余弦公式并能利用公式 进行简单的三角函数式的求值、化简和 证明。
公式引入:
.已知OP为角的终边,求单位圆上向量 OP 的坐标
Y P

O X
两个向量的数量积
a b a b cosθ 其中θ
∵ OA OB
A
1
α -β B β 1 x
α
-1 o
cos cos sin sin
-1

cos(α -β )=cosα cosβ +sinα sinβ
对于任意角
α , β
结 论 归 纳
cos( α -β ) cosα cosβ + sinα sinβ
差角的余弦公式
C
αβ
∈[0,π
]
a x1 , y1
b x2 , y2

《两角和与差的正弦、余弦、正切公式》三角函数PPT

《两角和与差的正弦、余弦、正切公式》三角函数PPT
何选择公式,选择哪一个公式会更好.需要说明的是,(4)运用到了切
化弦,将特殊值 化为tan 60°等,为此可以熟记一些常见的特殊角
的函数值,如1=sin 90°=cos 0°=tan 45°, =tan
3 60°等.
2.公式的推广:本例第(5)小题所得结论可以推广到一般情形:若
π
A+B= ,则(1+tan A)(1+tan B)=2;若(1+tan A)(1+tan B)=2,则
(4)sin 15°+cos 15°= 2 sin 60°.(
)
答案:(1)× (2)× (3)√ (4)√
)
课前篇
自主预习




三、两角和与差的正切公式
1.(1)求tan 15°的值.
提示:(1)∵sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin
6- 2
2sin50°cos10°+2sin10°cos50°
×
cos10°
cos10°
2cos 10°
=2 2(sin 50°cos 10°+sin 10°cos 50°)
=
=2 2sin(50°+10°)=2 2 × 3 = 6.
2
1
(2)原式=sin(α+β)cos α-2[sin(α+α+β)-sin(α+β-α)]=sin(α+β)cos
(2)sin(α-β)=sin αcos β-cos αsin β.
课前篇
自主预习




3.判断正误
(1)sin(α-β)=sin αcos α-cos βsin β.(

两角和与差的正弦、余弦、正切公式 课件

两角和与差的正弦、余弦、正切公式   课件

2 2.
(2)(tan 10°-
Hale Waihona Puke cos 3) sin5100°°=(tan
10°-tan
cos 60°) sin
10° 50°
=csoins
1100°°-csoins
60°cos 60° sin
5100°°=cossin10-°c5o0s°60°·csoins
10° 50°
=-cos160°=-2.
例 3 已知 sin(2α+β)=3sin β,求证:tan(α+β)=2tan α.
证明 sin(2α+β)=3sin β ⇒sin[(α+β)+α]=3sin[(α+β)-α] ⇒sin(α+β)cos α+cos(α+β)sin α =3sin(α+β)cos α-3cos(α+β)sin α ⇒2sin(α+β)cos α=4cos(α+β)sin α ⇒tan(α+β)=2tan α. 小结 证明三角恒等式一般采用“由繁到简”、“等价转化”、 “往中间凑”等办法,注意等式两边角的差异、函数名称的差异、 结构形式的差异.
解 原式=sinπ4-3xcos3π-3x-sinπ3-3xcos4π-3x
=sinπ4-3x-3π-3x=sinπ4-π3=sin
π 4cos
π3-cos
π 4sin
π 3
= 22×12- 22× 23=
2- 4
6 .
【典型例题】
例 1 化简求值: (1)sin(x+27°)cos(18°-x)-sin(63°-x)sin(x-18°);
探究点一 由公式 C(α-β)推导公式 C(α+β) 由于公式 C(α-β)对于任意 α,β 都成立,那么把其中的+β 换成 -β 后,也一定成立.请你根据这种联系,从两角差的余弦公 式出发,推导出用任意角 α,β 的正弦、余弦值表示 cos(α+β) 的公式.试一试写出推导过程. 答 ∵α+β=α-(-β),cos(-β)=cos β,sin(-β)=-sin β,

两角和与差正弦余弦公式课件

两角和与差正弦余弦公式课件
于信号的合成、滤波等操作。
在数学竞赛中的应用
代数问题
在数学竞赛中,两角和与差的正弦、 余弦公式常与其他数学知识结合,用 于解决代数问题,例如求值、证明等 。
几何问题
在几何学中,两角和与差的正弦、余 弦公式常用于证明几何定理或解决几 何问题,例如角度计算、面积计算等 。
03
两角和与差正弦余弦公式的 扩展
案例三:数学竞赛中的应用
总结词
用于解决数学竞赛中的三角函数问题
详细描述
在数学竞赛中,两角和与差正弦余弦公式是解决三角函数问题的关键工具。通过这些公 式,可以快速求解复杂的三角函数表达式,解决诸如求三角函数的最值、判断三角函数 的单调性等问题。同时,这些公式也是数学竞赛中考察学生数学思维和解题能力的重要
两角和与差正弦余弦公式ppt课件
$number {01}
目录
• 两角和与差正弦余弦公式的基本 概念
• 两角和与差正弦余弦公式的应用 • 两角和与差正弦余弦公式的扩展 • 两角和与差正弦余弦公式的变种 • 两角和与差正弦余弦公式的实际
应用案例
01
两角和与差正弦余弦公式的 基本概念
定义
1 3
定义
两角和与差正弦余弦公式是三角函数中重要的公式之一,用 于计算两个角度的和或差的三角函数值。
利用扩展公式解决一些实 际问题,如测量、物理、 工程等领域的问题。
简化计算
扩展公式可以简化一些复 杂的三角函数计算,提高 计算的效率和准确性。
推广到其他领域
扩展公式可以推广到其他 领域,如复数、矩阵等领 域,促进数学和其他学科 的交叉融合。
扩展公式的证明
证明方法
利用三角函数的性质、三角恒等变换和代数运算等工具,证明扩展公式的正确 性。

两角和与差的正弦、余弦、正切公式课件

两角和与差的正弦、余弦、正切公式课件

3.两角和与差的正切公式
名称
公式
两角和的正切
tan(α+β) =
tan α+tan β 1-tan αtan β
两角差的正切
tan(α-β) =
tan α-tan β 1+tan αtan β
简记符号
使用条件
T(α+β)
α,β,α+β≠kπ+π2 (k∈Z)
T(α-β)
α,β,α-β≠kπ+π2 (k∈Z)
∴cos(α+β)=cos α·cos β-sin αsin β
=2 5 5·3 1010-
55·1100=
2 2.
由 0<α<2π,0<β<2π得 0<α+β<π,
又 cos(α+β)>0,∴α+β 为锐角,∴α+β=4π.
规律方法 此类题是给值求角问题,步骤如下:①求所求角的 某一个三角函数值,②确定所求角的范围,此类题常犯的错误 是对角的范围不加讨论,或范围讨论的程度过大或过小,这样 就会使求出的角不合题意或者漏解,同时要根据角的范围确定 取该角的哪一种三角函数值.
规律方法 化简三角函数式是为了更清楚地显示式中所含量之 间的关系,以便于应用,对于三角函数式的化简要求应熟练掌 握:(1)能求出值的应求出值.(2)使三角函数种数尽量少.(3) 使三角函数式中的项数尽量少.(4)尽量使分母不含有三角函 数.(5)尽量使被开方数不含三角函数.
题型二 给角求值问题
【例 2】 求下列各式的值:
两角和与差的正弦、余弦、正切公式
自学导引
1.两角和与差的余弦公式
C(α+β):cos(α+β)= cos αcos β-sin αsin β

C(α-β):cos(α-β)= cos αcos β+sin αsin β.来自2.两角和与差的正弦公式

《两角差余弦公式》课件

《两角差余弦公式》课件
《两角差余弦公式》PPT课件
目录
引言两角差余弦公式的推导两角差余弦公式的应用公式证明习题与思考总结与展望
01
CHAPTER
引言
历史背景
余弦公式在三角函数中有着悠久的历史,其发展历程与三角学、几何学等学科紧密相关。早在古希腊时期,数学家们就开始研究三角函数及其性质。
应用领域
两角差余弦公式在解决实际问题中有着广泛的应用,如物理、工程、天文等领域。通过该公式,我们可以更方便地计算和解决与角度相关的各种问题。
06
CHAPTER
总结与展望
两角差余弦公式是三角函数中一个重要的公式,它表示两个角度之间的余弦差值与其它三角函数值的关系。
公式定义
cos(α - β) = cosαcosβ + sinαsinβ。
公式形式
通过三角函数的和差化积公式,可以证明两角差余弦公式的正确性。
公式证明
两角差余弦公式在解决实际问题、数学建模、信号处理等领域有广泛的应用。
最后,通过比较两个公式,我们可以发现cos(A-B) = cosAcosB + sinAsinB = 1/2[cos(A+B) + cos(A-B)],这就是两角差余弦公式的推导过程。
首先,利用正弦的加法公式,我们可以得到sin(A-B) = sinAcosB - cosAsinB。
然后,利用余弦的加法公式,我们可以得到cos(A-B) = cosAcosB + sinAsinB。
思考1: 两角差余弦公式的应用范围
两角差余弦公式适用于角度在0°到180°之间的情况。
当角度超过180°时,可以利用诱导公式将角度变换到0°到180°之间,再利用两角差余弦公式进行计算。
思考2: 两角差余弦公式的推导过程

第1课时 两角差的余弦公式 课件(共12张PPT) 高一数学人教A版(2019)必修第一册

第1课时 两角差的余弦公式 课件(共12张PPT) 高一数学人教A版(2019)必修第一册
化简得:cos (α−β) = cosα·cosβ + sinα·sinβ;
将 α = 2kπ + β(k∈Z)带入上式,易证上式仍然成立;
所以,对于任意 α,β 有:cos (α−β) = cosα·cosβ + sinα·sinβ,
简记作:C( α − β ) .
思考:上述差角的余弦公式,在三角函数计算过程中有何作用?
5.5.1.1 两角差的余弦公式
学习目标
新课讲授
课堂总结
1.理解两角差的余弦公式的推导过程;(重点)
2. 会利用两角差的余弦公式化简、求值、证明等.(难点)
学习目标
新课讲授
课堂总结
回顾:诱导公式都是特殊角与任意角 α 的和(或差)的三角函数与这个任
意角 α 的三角函数的恒等关系.
思考:如果把特殊角换为任意角 β,那么任意角 α 与 β 的和(或差)的三
PQ =
1 − 2
2
+ 1 − 2
2
.
注:公式使用过程中,可先建立直角坐标系,将任意两点的坐标标出,再
套公式求解!
学习目标
新课讲授
课堂总结
问题 2:如果已知任意角 α、β 的正弦、余弦,你能由此推出 α – β 的余弦吗?
若能,请说明理由.
令 ≠ 2kπ + β,k∈Z,如图,以 x 轴非负半轴为始边作角 α,β,α – β,
根据勾股定理得:MQ2+MP2
=
M
PQ2,
即:(x2 – x1)2 + (y2 – y1)2 = PQ2,
故 PQ 的距离为:
2 − 1
2
+ 2 − 1
2
o
.

1 第1课时 两角差的余弦公式(共34张PPT)

1 第1课时 两角差的余弦公式(共34张PPT)

解:(1) 23cos 75°+12sin 75° =cos 30°cos 75°+sin 30°sin 75°
=cos(30°-75°)=cos(-45°)

2 2.
(2)cosπ4+θcos θ+sinπ4+θsin θ =cos[π4+θ-θ]=cos π4= 22.
探究点 2 给值求值 (1)已知 cos α=13,α 是第四象限角,sin β=35,β 是第二象限角,求
2.已知 sinα+π4=45,且54π<α<74π,求 cos α 的值.
解:因为54π<α<74π,
所以32π<α+π4<2π.所以 cosα+π4>0,
所以 cosα+π4= 1-sin2α+π4= 1-1265=35,
所以 cos α=cosα+π4-π4=
cosα+π4cos
π4+sin
(变条件)若把本例(2)中的“α,β∈0,π2”改为“α,β∈π2,π”,求 cos β
的值.
解:因为 α,β∈π2,π,所以 π<α+β<2π, 由 cos(α+β)=-6156,得 sin(α+β)=-6635,
又 sin α=45, 所以 cos α=-35, 所以 cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-6156×-53+-6635×45 =-230245.
给值求值问题的解题策略 (1)从角的关系中找解题思路:已知某些角的三角函数值,求另外一些角的 三角函数值,要注意观察已知角与所求表达式中角的关系,根据需要灵活 地进行拆角或凑角的变换. (2)常见角的变换:①α=(α-β)+β;②α=α+2 β+α-2 β; ③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).

人教版高中数学必修1《两角差的余弦公式》PPT课件

人教版高中数学必修1《两角差的余弦公式》PPT课件
解:因为 α,β∈π2,π,所以 π<α+β<2π,由 cos(α+β)=-1665,得 sin(α +β)=-6635,又 sin α=45,所以 cos α=-35,所以 cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α=-1665×-35+-6635×45=-230245.
解 : 由 题 意 , 得 sin B = 1-cos2B =
1--342 =
7 4

cos(A

B)

1-sin2A+B= 1-232= 35,所以 cos A=cos[(A+B)-B]=cos(A+B)cos
B+sin(A+B)sin B
= 35×-34+23× 47=2
7-3 12
5 .
试分析这位同学的解题过程是否正确.若不正确,错在何处?并给出正确的解 题过程. 提示:这位同学解析错误,错误的原因是忽略了隐含条件,没有注意角的范围, 导致求值错误.在解题中应挖掘出π2<A+B<π 这个隐含条件.
3.若 α,β 为锐角,cos(α+β)=1123,cos(2α+β)=35,则 cos α=________. 解析:因为 α,β 为锐角,所以 0<α+β<π.又因为 cos(α+β)=1123,所以 0<α+β<π2, 所以 0<2α+β<π.又因为 cos(2α+β)=35,所以 0<2α+β<π2,所以 sin(α+β)=153, sin(2α+β)=45,所以 cos α=cos[(2α+β)-(α+β)]=cos(2α+β)·cos(α+β)+ sin(2α+β)·sin(α+β)=35×1123+45×153=5665. 答案:5665

《两角差的余弦公式》课件

《两角差的余弦公式》课件

1 2 3
利用三角函数诱导公式推导
通过三角函数的周期性和对称性,利用诱导公式 将角度转换到易于计算的角度范围,然后利用两 角和与差公式进行推导。
利用单位圆性质推导
利用单位圆的性质,将两角差的余弦表示为向量 夹角的余弦值,然后利用向量的数量积和模长进 行推导。
推导过程的证明
证明两角差的余弦公式需要利用三角函数的周期 性和对称性、单位圆的性质以及代数运算和三角 恒等变换进行证明。
学习目标
掌握公式的推导过程,理解公式 的几何意义,能够熟练应用公式 进行计算
THANKS
感谢观看
进阶习题3
已知cos(π/3 + α) = 1/3,求 cos(2π/3 - 2α)的值。
习题解析
解析1
利用两角差的余弦公式,将已知的cos(π/3 - α)转化为 关于cos(2π/3 - 2α)的表达式,然后进行计算。
解析2
利用两角差的余弦公式,将已知的cos(π/4 - α)转化为关 于sin(3π/4 - 2α)的表达式,然后进行计算。
适用于任意角度α、β的三角函数计算
公式应用注意事项
角度范围
在使用两角差的余弦公式时,需 要注意角度α、β的范围,以避免
出现负数平方根的情况
精度问题
在计算过程中,需要注意精度问 题,以避免误差的积累
特殊角的处理
对于一些特殊角,如90°、180° 等,需要特别注意公式的应用方

下章预告
学习内容
学习两角和与差的正弦、余弦、 正切公式
解析6
利用两角差的余弦公式,将已知的cos(π/3 + α)转化为 关于cos(2π/3 - 2α)的表达式,然后进行计算。
05

两角和与差的正弦、余弦函数-PPT课件

两角和与差的正弦、余弦函数-PPT课件
如何求sin 的值?
解:sin
cos
2
cos
2
cos
2
cos
sin
2
sin
sin cos cos sin
sin sin cos cos sin
20
用 代
sin[ ( )] sin cos( ) cos sin( )
sin( ) sin cos cos sin
思考5:如果能,那么一般情况下cos(α-β)能否用角 α,β的三角函数值来表示?请进入本节课的学习!
5
1.利用向量的数量积发现两角差的余弦公式.(重点) 2.能由两角差的余弦公式得到两角和的余弦公式和两 角和与差的正弦公式.(难点) 3.灵活正反运用两角和与差的正弦、余弦函数. (难点)
6
探究点1 两角差的余弦函数
向量b OP2 (cos ,sin ),
因为a b a b cos( )
y
P1(cos ,sin )
O
P2(cos ,sin )
P0 (1,0)
x
a b coscos sinsin 所以 cos( - ) coscos sinsin
我们称上式为两角差的余弦公式,记作 C
8
思 考 : 公 式 cos(α-β)=cosαcosβ+sinαsinβ 是 否对任意角α,β都成立? 提示:当0≤α-β≤π时,公式显然成立; 当α-β不在[0,π]内时,利用诱导公式,存在θ∈ [0,2π],使α-β=θ+2kπ,k∈Z,若θ∈[0,π], cosθ=cos(α-β) ; 若 θ∈(π , 2π ] , 2π-θ∈ [0,π),cos(2π-θ)=cosθ=cos(α-β),故上述公 式对任意角α,β都成立.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档