中文版-第五章 汽车操纵稳定性
第二节传动系性能试验-第五章汽车操纵稳定性试验(.pdf
二、操纵稳定性道路试验 1、稳态回转试验 2、蛇行试验 3、转向回正性能试验 4、转向轻便性试验 5、瞬态响应试验
稳态回转试验
1、试验的基本原理和意义
¾汽车在车速V行驶时,驾驶员以一个固定的转向盘输入,汽车产生转向运 动。根据汽车本身的固有转向特性(由汽车结构参数决定),其后若干时 间一般会出现两种现象:一种是汽车出现不稳定现象,发生激转(或称甩 尾);另—种是转向进入稳定状态,即汽车绕某定点转动且角速度不变, 这种现象称汽车进入稳态转向。前一种情况汽车的转向特性称过多转向; 后一种情况汽车的转向特性理论上有两种:—种称中性转向,另一种称不 足转向。
蛇行试验
1、试验的目的和意义
蛇行试验属于驾驶员——汽车——外界环境组合而成的闭路系统性能 试验方法之一。这种试验方法可反映出此闭路系统进行急剧的转向能力, 同时可反映出在此种急剧转向情况下乘员的舒适性和安全性。
蛇行试验
2、引用标准 ①GB/T 12534 汽车道路试验方法通则 ②GB 3730.1 汽车和挂车的术语和定义 车辆类型 ③GB 3730.2 汽车和挂车的术语和定义 车辆质量 ④GB/T 12549 汽车操纵稳定性术语及其定义
稳态回转试验
具体试验方法:
⑴仪器设备:第五车轮、车辆动态测试仪、操纵稳定性现场数据处理系统
⑵试验步骤:
①在试验场地上,用明显颜色画出半径为15m或20m的圆周。
②试验开始之前,汽车应以侧向加速度为3m/s2的相应车速沿画定的圆周行 驶500m以使轮胎升温。
③驾驶员操纵汽车以最低稳定速度沿所画圆周行驶,待安装于汽车纵向对 称面上的车速传感器(第五轮仪)在半圈内都能对准地面所画圆周时,固定 转向盘不动,然后缓缓连续而均匀地加速(纵向加速度不超0.25m/s2), 直至汽车的侧向加速度达到6.5m/s2(或车速不能再升高而出现甩尾、或轮 胎发出尖叫声)为止。记录整个过程。
汽车理论-操纵稳定性 -
§5-6 提高操纵稳定性的电子控制系统
一、四轮转向系统(Four Wheel Steering System) 二、车辆稳定性控制系统(Vehicle Stability Control System)
§5-4 汽车操纵稳定性与转向系的关系
一、转向系的功能与转向盘力特性
功能: 1.驾驶者通过转向盘控制前轮绕主销的转角来操纵汽车运 动的方向。(角输入和力输入) 2.凭借转向盘(反作用)力,将整车及轮胎的运动、受力 状况反馈给驾驶者。 反馈—路感(Road Feeling) 转向盘力随汽车运动状况而变化的规律称为转向盘力特性。 转向盘力特性决定于下列因素: 转向器传动比及其变化规律、转向器效率、动力转向器的 转向盘操作力特性、转向杆系传动比、转向杆系效率、由悬架 导向杆系决定的主销位置、轮胎上的载荷、轮胎气压、轮胎力 学特性、地面附着条件、转向盘转动惯量、转向柱摩擦阻力以 及汽车整体动力学特性。
B.R/R0<1 K<0 过多转向 C. R/R0>1 K>0 不足转向
§5-3 汽车的转向特性
三、 汽车的瞬态响应特性
1.反应时间τ 应小些,比较好 2.峰值反应时间ε 越小越好 3.超调量 r1 r0 100% 越小越好 4.横摆角速度ωr波动时的固 有圆频率ω0 应高些较好 5.稳定时间σ 越短越好
§5-2 轮胎的侧偏特性
三、影响轮胎侧偏特性的因素 轮胎的尺寸、型式和结构参数对侧偏刚度有显著
的影响。尺寸较大的轮胎有较高的侧偏刚度。 1.扁平率(H/B×100%)
H/B越小,侧偏刚度越大。
2.垂直载荷
K随着垂直载荷的增加而增大,但W过大时,轮胎产生很 大的径向变形,K反而有所减小。
3.轮胎气压
2.垂直载荷 垂直载荷增加,回正力矩增加 3.α一定时,尺寸大的轮胎, TZ也大 4.子午线轮胎回正力矩大
第章 汽车操纵稳定性.doc
第5章汽车的操纵稳定性学习目标通过本章的学习,应掌握汽车行驶的纵向和横向稳定性条件;掌握车辆坐标系的有关术语,了解影响侧偏特性的因素,掌握轮胎回正力矩与侧偏特性的关系;熟练掌握汽车的稳态转向特性及其影响因素;了解汽车转向轮的振动和操纵稳定性的道路试验内容。
汽车在其行驶过程中,会碰到各种复杂的情况,有时沿直线行驶,有时沿曲线行驶。
在出现意外情况时,驾驶员还要作出紧急的转向操作,以求避免事故。
此外,汽车还要经受来自地面不平、坡道、大风等各种外部因素的干扰。
一辆操纵性能良好的汽车必须具备以下的能力:(1)根据道路、地形和交通情况的限制,汽车能够正确地遵循驾驶员通过操纵机构所给定的方向行驶的能力——汽车的操纵性。
(2)汽车在行驶过程中具有抵抗力图改变其行驶方向的各种干扰,并保持稳定行驶的能力——汽车的稳定性。
操纵性和稳定性有紧密的关系:操纵性差,导致汽车侧滑、倾覆,汽车的稳定性就破坏了。
如稳定性差,则会失去操纵性,因此,通常将两者统称为汽车的操纵稳定性。
汽车的操纵稳定性,是汽车的主要使用性能之一,随着汽车平均速度的提高,操纵稳定性显得越来越重要。
它不仅影响着汽车的行驶安全,而且与运输生产率与驾驶员的疲劳强度有关。
5.1节汽车行驶的纵向和横向稳定性5.1.1 汽车行驶的纵向稳定性汽车在纵向坡道上行驶,例如等速上坡,随着道路坡度增大,前轮的地面法向反作用力不断减小。
当道路坡度大到一定程度时,前轮的地面法向反作用力为零。
在这样的坡度下,汽车将失去操纵性,并可能产生纵向翻倒。
汽车上坡时,坡度阻力随坡度的增大而增加,在坡度大到一定程度时,为克服坡度阻力所需的驱动力超过附着力时,驱动轮将滑转。
这两种情况均使汽车的行驶稳定性遭到破坏。
图5.1 汽车上坡时的受力图F可图5.1为汽车上坡时的受力图,如汽车在硬路面上以较低的速度上坡,空气阻力w以忽略不计,由于剩余驱动力用于等速爬坡,即汽车的加速阻力0=j F ,加速阻力矩0=j M ,而车轮的滚动阻力矩f M 的数值相对来说比较小,可不计入。
汽车理论课件-汽车的操纵稳定性
極限側向加速度 極限車速
發生側滑時的 控制能力
ቤተ መጻሕፍቲ ባይዱ
評價參量
回至原來路徑 所需時間
操縱穩定性包含的內容
*
汽車理論
第二十五講
主講教師:楊志華
學時:48
第一節 操縱穩定性概述
二、車輛坐標系與轉向盤角階躍 輸入下的時域回應
1.車輛坐標系
右手系
*
第一節 操縱穩定性概述
2.穩態回應特性
➢汽車直線行駛時,急速轉動轉向盤至某一轉角時,停止轉 動轉向盤並維持此轉角不變,即給汽車以轉向盤角階躍輸入。
*
第一節 操縱穩定性概述
2.橫擺角速度頻率回應特性
轉向盤轉角正弦輸 入下,頻率由0→∞變 化時,汽車橫擺角速 度與轉向盤轉角的振 幅比及相位差的變化 規律。
評價參量
➢共振峰頻率。 ➢共振時振幅比。 ➢相位滯後角。 ➢穩態增益。
操縱穩定性包含的內容
*
第一節 操縱穩定性概述
3.轉向盤中間位置操縱穩定性
*
第一節 操縱穩定性概述
瞬態回應的評價指標
1)時間上的滯後
2)執行上的誤差 (ωr1/ωr0)×100%
稱為超調量
3)橫擺角速度的波動 波動的ω =2π/T , 取
決於汽車的結構參數
4)進入穩態所經歷 的時間σ
*
第一節 操縱穩定性概述
三、操縱穩定性的研究方法
將汽車作為開路控制系統 人—汽車系統作為閉路系統
轉向盤小轉角、低頻 正弦輸入下,汽車高速 行駛時的操縱穩定性。
評價參量
4.回正性
➢轉向靈敏度。 ➢轉向盤力特性。 ➢轉向功靈敏度。
轉向盤力輸入 下的時域回應。
評價參量
➢回正後剩餘橫擺角 速度與剩餘橫擺角。
汽车理论第五版_课后习题答案正确 2
第五章 汽车的操纵稳定性5.1 一轿车(每个)前轮的侧偏刚度为-50176N/rad 、外倾刚度为-7665N/rad 。
若轿车向左转弯,将使前轮均产生正的外倾角,其大小为4度。
设侧偏刚度与外倾刚度均不受左、右轮负载转移的影响,试求由外倾角引起的前轮侧偏角。
解:有外倾角时候的地面侧向反作用力为Y F k k γαγ=+(其中k 为侧偏刚度,k r 为外倾刚度,γ为外倾角)于是,有外倾角引起的前轮侧偏角的大小为:1k kγγα=代入数据,解得1α==0.611 rad ,另外由分析知正的外倾角应该产生负的侧偏角,所以由外倾角引起的前轮侧偏角为-0.611rad 。
5.2 6450N 轻型客车在试验中发现过多转向和中性转向现象,工程师们在悬架上加装横向稳定杆以提高前悬架的侧倾角刚度,结果汽车的转向特性变为不足转向。
试分析其理论依据(要求有必要的公式和曲线)。
答:由课本P138-140的分析知,汽车稳态行驶时,车厢侧倾角决定于侧倾力矩r M φ和悬架总的角刚度rK φ∑,即rr rM K φφφ=∑。
前、后悬架作用于车厢的恢复力矩增加:11r r r T K φφφ=,22r r r T K φφφ=其中1r K φ,2r K φ分别为前、后悬架的侧倾角刚度,悬架总的角刚度rK φ∑为前、后悬架及横向稳定杆的侧倾角刚度之和。
由以上的分析易知,当增加横向稳定杆后汽车前悬架的侧倾角刚度增大,后悬架侧倾角刚度不变,所以前悬架作用于车厢的恢复力矩增加(总侧倾力矩不变),由此汽车前轴左、右车轮载荷变化量就较大。
由课本图5-46知在这种情况下,如果左右车轮轮胎的侧偏刚度在非线性区,则汽车趋于增加不足转向量。
5.3汽车的稳态响应有哪几种类型?表征稳态响应的具体参数有哪些?它们彼此之间的关系如何? 答:汽车的稳态响应有三种类型,即中性转向、不足转向和过多转向。
表征稳态响应的参数有稳定性因数,前、后轮的侧偏角角绝对值之差12()αα-,转向半径的比R/R 0,静态储备系数S.M.等。
汽车理论---第五章 汽车操纵稳定性(5.4-5.5)
第四节 汽车操纵稳定性与悬架的关系
车厢侧倾时不同形式悬架所引起的车轮外倾角的γ变化
单纵臂悬架前轮外倾角与地面侧向力方向相反。
32
第四节 汽车操纵稳定性与悬架的关系
车厢侧倾时不同形式悬架所引起的车轮外倾角的γ变化
单横臂悬架前轮外倾角与地面侧向力方向相同(或相反)。
33
第四节 汽车操纵稳定性与悬架的关系
a y Gs
M r Fsy h
h1bs h2 as h hs HN hs L
18
第四节 汽车操纵稳定性与悬架的关系
2)侧倾后悬挂质量重力引起的侧倾力矩MΦrⅡ
M ΦrΠ Gs e Gs h r
19
第四节 汽车操纵稳定性与悬架的关系
3)变形转向角(悬架导向杆系变形引起的车轮转角的变化)。
2
第四节 汽车操纵稳定性与悬架的关系
一、车厢侧倾
1.车厢侧倾轴线 1)侧倾轴线:车厢相对于地面转动时的瞬时轴线; 2)侧倾中心:侧倾轴线通过前、后轴处横断面上的瞬时转 动中心;其位置由悬架导向机构决定,常用图解法确定。 侧倾轴线是侧倾中心的连线。 想一想:先确定侧倾轴线再确定侧倾中心,还是先
K l 2Ks Δss ss Δst st
2
ΔFZ ΔQ
Kl
ss Δst K s Δss 2 st
ss K l 2K s st
2
Δss
ss Δst st
m K l 2k s n
12
第四节 汽车操纵稳定性和悬架的关系
9
第四节 汽车操纵稳定性与悬架的关系
Q ks ss
Δss m Δst n
Fa ΔFa
汽车理论(第五版) 第五章(6-9节)
7
第六节 汽车操纵稳定性与传动系的关系
二、地面切向反作用力控制转向特性 的基本概念简介
1.切向力对 r的影响 切向力对ω 切向力对
8
第六节 汽车操纵稳定性与传动系的关系
2.切向力控制方法 切向力控制方法
1)总切向反作用力控制
ABS就是总制动力控制,保证较佳的滑动率,提 就是总制动力控制,保证较佳的滑动率, 就是总制动力控制 高制动时汽车的方向稳定性。 高制动时汽车的方向稳定性。 TCS 是总驱动力控制,防止出现过大的滑转率, 是总驱动力控制,防止出现过大的滑转率, 提高驱动时汽车的方向稳定性。 提高驱动时汽车的方向稳定性。
பைடு நூலகம்
41
第七节 提高操纵稳定性的电子控制系统
六、装有VSC系统汽车的试验结果
42
第七节 提高操纵稳定性的电子控制系统
六、装有VSC系统汽车的试验结果
43
第七节 提高操纵稳定性的电子控制系统
本节内容结束
下一节
44
第五章 汽车的操纵稳定性
第八节
汽车的侧翻
返回目录
45
第八节 汽车的侧翻
汽车侧翻是指汽车在行驶过程中绕其纵轴线转动90° 汽车侧翻是指汽车在行驶过程中绕其纵轴线转动 ° 或更大的角度, 或更大的角度,以至车身与地面相接触的一种极其危险的 侧向运动。 侧向运动。
28
第七节 提高操纵稳定性的电子控制系统
起始车速为110km/h时正弦 时正弦 起始车速为
起始车速为140km/h时正弦 时正弦 起始车速为
& 转向角输入下的 β − β 曲线
& 转向角输入下的 β − β曲线
29
第七节 提高操纵稳定性的电子控制系统
第五章 汽车操纵稳定性
在空载、静态状态下,向左侧和右侧倾斜最大侧倾稳定角,双 层客车不允许小于28°;总质量为车辆整备质量的1.2以下的 车辆不允许小于30°;卧铺客车不允许小于32°。
在国外,有的国家对轿车的抗侧翻能力,规定了检验的高 标准和低要求。高标准是指在平坦的水泥或沥青路面的场地 上,以任意的行驶速度和转向组合操纵,都不得翻车。低要求 是:在平坦坚实的场地上,以50km/h和80km/h的车速行驶,以 500度/秒的角速度把转向盘转过180°,不得翻车;在平坦的 水泥或沥青路面的场地上,成一直线布置11根标杆,间距为 30m,汽车以72km/h的车速绕杆行驶,不得翻车。
L 1 F Y 1 L 2 F Y 2 I z Z
V
1
u1
对质心取矩
u
FY1
x
L1
, L1z
u
u
1
(
)
L1z
u
Z
2
y
2
L2z
u
L2z
u
2
V
u2
u
FY 2
L2
L1
L
1 u1
FY1
x
F Y 1 k 11 F Y 2 k 22
运动微分方程
kL11k111
k22 m(uz L2k22 Izz
不侧滑的最高车速
设汽车在弯道行驶时,不发生侧向滑移的最高车速为V max
第五章汽车操纵稳定性
边缘不可能陷入路面之下,
而是车轮连同整个汽车前部 被向上抬起相应高度h。一 旦外力消失,转向轮就会在
汽车前部重力作用下力图自 动回正到旋转前的中间位置
➢由于主销内倾, 转向时,路面作用在 转向轮上的阻力对主销轴线产生的力矩 减小,从而可减少转向时驾驶员施加在 转向盘上的力,使转向操纵轻便
(A)若轮胎内倾,路面垂直反力F 产生的分力F2向外,增加了轮胎脱 出的可能性。(说明汽车超载是很 危险的,它会大大增加轮胎内倾的 可能性,造成轮胎甩出) (B)轮胎垂直于地面,路面垂直 反力F ,不产生分力。(说明:汽 车要按规定装载,因为有了前轮外 倾,汽车满载后,轮胎基本上垂直 于地面。) (C)只有轮胎外倾,路面垂直反 力F产生的分力F2向内,使得轮胎 紧紧靠在转向节上,提高了轮胎的 工作安全性。
反力 Y 对车轮形成饶主销轴线作用的力矩 M〓F× L,其方向正好与车轮偏转方向相 反。在此力矩作用下,将使车轮回复到原 来中间位置,从而保证汽车能稳定地直线 行驶,故此力矩称为稳定力矩(回正力 矩)。
同理:在汽车转向后的回正过程中,此力矩具有帮助驾 驶员使转向车轮回正的作用,使汽车转向后回正操纵轻 便
主销内倾
定义:当汽车水平停放时,在汽车的横向垂面内,主销轴线与地面垂线的夹 角β为主销内倾角。 作用:①自动回正作用(尤其是在静态下) ②转向轻便
当转向轮在外力作用下绕主
销旋转(假设旋转180°,即 由图b中左边位置转到右边 位置)而偏离中间位置时, 由于主销内倾,车轮的最低 点将陷入路面以下h处,即 定性?即方程的解什么情况下是稳定的?
单横臂独立悬架车厢上的侧倾中心
根据杠杆原理
转向桥
转向轮定位
一、概述:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、计算转向灵敏度
汽车看成一个系统,前轮转角δ视为输入,汽车稳 态横摆角速度ωr视为输出,ωr = v/R 汽车稳态横摆角速度ωr与前轮转角δ之比称为汽 车的稳态横摆角速度增益(teady state yaw velocity gain)。
r v/R v/L v/L L 2 G1 G2 v s 1 Kv 2 1 2 1 ( )
下汽车产生的横摆角速度,即绕转向中 心旋转角速度的响应值,因此稳态横摆
r 速度增益 也称转向灵敏度。 s
4、稳态转向特性
r 评价参数:横摆角速度增益 )(转向灵敏度) r v/R v/L v/L ) 2 L G1 G2 v 1 Kv 2
R
1 2
Fy2
B
α2 E
v2
L Fyc A C vc α1Fy1 Nhomakorabeav1
δ0
R α2
δ 0 - α1
ωr
O 图5-5 汽车稳态转向运动简图
参数说明:设前轮转角δ,转弯半径r,
FY1,FY2:前、后轮的侧偏力。 v1,vc,v2:A,B,C三点的速度。 Fc:质心的离心力 FcY:Fc在Y方向上的分力
1、计算转向角δ
b1
f e d c b a c1 e1
W e
f
FY b1′ c1 ′ d1 ′ α e1 ′ f1′
d c b a b1 c1 d1 e1 f1
FY
d1
f1
α
2)轮胎的侧偏现象、侧偏特性曲线 轮胎侧偏角(side-slip-angle): 轮胎接地中心的引进方向与车轮中心平面 方向间的夹角。 侧向力与产生的侧偏角α的关系曲线,称为 车轮的侧偏特性。当α不超过4°~5°时,Fy与α 成线性关系Fy∝α,即:Fy=kα Fy-α曲线在α=0°处的斜率称为侧偏刚度 k(cornering stiffness),其单位为 N/rad (或N/(º )) 其值为负值,因负的侧偏力产生正的侧偏角。 因此,侧偏刚度为负值,即Fy=-FY,Fk=-kα。
下面进一步分析汽车侧滑在翻倾之前的条件:
a.发生翻倾条件: 设在坡道上转向,则产生一离心力Fc,在离心力的作 用下可能向左翻倾,则向左的力矩必须大于向右的力矩:
Fc cos hg Fc sin G cos B 2
B G sin .hg 2 mv 2 Gv 2 式中离心力 Fc= gR R 代入上式整理得: v max 若 tg gR ( B 2hg tg ) 2hg Btg
mv 2 Gv 2 Fcy R gR 当 不大时, FY 1 cos FY 1
FY 1 Fcy b L ,FY 2 Fcy a L
Gv 2 b Gv 2 a 故 FY 1 ,FY 2 gR L gR L
G1v 2 G2 v 2 则 FY 1 ,FY 2 gR gR G1 v 2 G2 v 2 又 FY k ,故 1 , 2 k1 gR k2 gR
故考虑不产生侧滑的最大坡度为:tgαmax=φ 如:附着系数为φ =0.3的滑溜路面,不产生侧滑 的最大坡度为:αmax=16.7°。
2.横向倾翻的最大车速
ω
Fc
A
Fzl
Fxl
G hg
A′ F xt θ
Fzr
图5-1 汽车在横坡上转向时的受力简图
在离心力Fc的作用下,汽车可能以A’为支点向外侧翻, 当Fzr=0时,汽车将失去横向稳定性而开始侧翻。 汽车绕A’侧翻的条件为: Fc·g≥G· h B/2
z
横摆角速度ωr
垂直速度w
侧倾角速度ωp 俯仰角速度ωq
x
图5-2 车辆坐标系与汽车的主要运动形式
y
5.3 轮胎的侧偏特性
侧偏特性主要是指侧偏力、回正力矩与侧偏 角之间的关系。 1) 轮胎坐标系(tyre axis system)
当车轮中心沿Y 轴方作用有侧向力FY,地面将产生 地面侧向反作用力FY 。由于轮胎具有弹性,即使FY没有 达到附着极限,车轮行驶方向亦将偏离X 轴线方向。这 时轮胎出现侧偏特性。 由于轮胎侧向变形,轮上的b点将不与支承面上的b1 接触,而与b1′接触,c点与c1 ′接触,如此类推。轮胎在 支承面上的运动轨迹af ′相对于车轮平面偏离某一角度α。
由几何关系:
AE tg ( 1 ) OE
BE tg 2 OE
两式相加,且AE+BE=L,则 tg(δ-α1) + tgα2 = L/R。因 α2 、δ、α1较小,则 δ-α1 +α2 ≈ L/R, 故 δ = L/R + α1 -α2
2、计算α1 ,α2
设汽车在水平道路上作等速圆周运动,则 作用在汽车上的侧向力为离心力的侧向分力。
1. 横向倾翻的最大坡度 2. 横向倾翻的最大车速 3. 纵向行驶稳定性
1.横向倾翻的最大坡度
Gsinθ 静态受力分析 如右图示:
Gcosθ
G
Fzl Fzr θ hg
当α角增大到重力G通过A点时的α角称为横向倾翻的极限 坡度,此时得
tg max B/2 B hg 2hg
实际上,大多数汽车在未达到αmax时就开始滑动,主要是由 于驱动轮与地面的附着力Fφ不够造成的。
1 (
k1
k2 gL
)
(1) 稳定性因数K:
r )
轴距L=3m
过多转向K= 0.0019s2/m2
20
当K 0, R L
r L
v
中性转向 K=0
L R
10
不足转向K= -0.0006s2/m2
(相当于转向时纯滚动)
vcr
vch
150
0
50
100
va/(km·-1) h
R k1 k2 gL G1 G2 1 K ( ) k1 k2 gL 式中 故 mgb mga G1 G2 L L m b a K 2 ( ) s 2 /m 2 k1 k2 L
有时也写 : K
m L
2
a b ( ) ,此时k1, k2均为负值。 k2 k1
r 表示在单位前轮转角下的输入 s
1、极限行驶稳定性 横向倾翻的最大坡度;横向倾翻的最大 车速;纵向行驶稳定性。 2、直线行驶性能 抗侧风和路面不平度的稳定性。 3、转向轻便性 原地转向轻便性(静态) 行驶转向轻便性(动态) 4、转向灵敏性 时域响应:稳态响应、瞬态响应; 频域响应:振幅比(增益)、相位比。
5.2 汽车极限行驶稳定性 汽车在坡道尤其是横坡上丧失稳定性的 表现为汽车的翻倾和滑移:
3)回正力矩(aligning torque)
由路面作用在轮胎上的力矩矢量,使轮胎绕 Z 轴旋转的分量,称为回正力矩。
图5-4
的接 分地 布印 与记 回内 正地 力面 矩侧 的向 产反 生作 用 力
c
c
a
v
c
c
a v a
附着极限
a
v
e FY 4 5 a c a c
3
a
a
c
c
5.4 汽车的转向特性 (steering characteristics)
图5-3 轮胎的坐标系与地面作用于轮胎的力和力矩
z
正外倾角γ
正回正力矩Tz
y
正TY
车轮行驶方向
α
正侧偏角
x
正翻转力矩TX 正地面切向 反作用力FX
O
车轮旋转轴线 正地面法向 反作用力FZ 正地面侧向反作用力FY
垂直载荷对k的影响: G↑,Fφ↑,侧滑倾向↓,k↑ 轮胎结构对k的影响: 轮胎宽度↑, k ↑;轮胎气压↑,k ↑;子午胎: k ↑。 必须注意:轮胎的侧偏现象的产生是由于轮 胎的侧向弹性变形,与轮胎在道路上的侧滑有本 质的区别。 轮胎的侧偏现象不仅影响车轮的运动轨迹, 而且加剧轮胎的磨损;轮胎的侧向变形使滚动阻 力增加。
B
Fc A
Fzl
ω
G Fxl
Fzr
A′
θ
hg Fxt
2hg
,
分母为零,
则v max , 任意车速不翻倾.
b.发生侧滑条件:
F Fc cos G sin ( Fc sin G cos ) Gv 2 将 Fc 代入式: 整理 gR v max gR( tg ) 1 tg
横摆角速度ωr 垂直速度w
侧倾角速度ωp
俯仰角速度ωq
x
图5-2 车辆坐标系与汽车的主要运动形式
y
侧向速度v:质心速度沿Y 轴的分量; 俯仰角速度ωq(pitch velocity):质心绕Y轴旋转 角速度; 垂直速度v:质心速度沿Z 轴的分量; 横摆角速度ωr(yaw velocity):质心绕Z轴旋转角 速度。
此时的转向特性为中性转向(nertral steer ),其横摆角速度增益
r v / L,线性关系(通过原点)。 当K 0,其增益分母大于1,比中性转向时的增益要小,将增益 对v求导并令一阶导数为零。即 : 轴距L=3m r ) 过多转向K= 1 2 中性转向 0.0019s2/m2 (1 Kv ) 令 d v/L L 20 K=0 0, dv 1 Kv 2 (1 Kv 2 ) 2 10 则 1- Kv 2 0。 vch 不足转向K= vcr -0.0006s /m