一元一次方程知识点总结

合集下载

简易方程公式知识点总结

简易方程公式知识点总结

简易方程公式知识点总结一、一元一次方程1. 一元一次方程的定义:一元一次方程是指只含有一个未知数的一次方程。

一般地,一元一次方程可以用ax+b=0(a≠0)来表示,其中a和b是已知数,x是未知数。

2. 方程的解:方程ax+b=0的解即为x=-b/a。

其中,如果a=0且b≠0,那么方程无解;如果a=0且b=0,那么方程有无数解。

3. 解方程的方法:解一元一次方程可以通过如下几种方法:a. 移项法:将未知数的项移到等式的一边,其他项移到另一边。

b. 相消法:通过相等的两边增加或减少同一个量,使得方程两边的某个项相消掉。

c. 等价变形法:通过等式的加减乘除变形,使得方程的解变得更明显。

4. 例题:解方程3x+5=2x-7解:将未知数项移到左边去,得到3x-2x=-7-5,即x=-12。

二、一元二次方程1. 一元二次方程的定义:一元二次方程是指含有一个未知数的二次方程。

一般地,一元二次方程可以用ax^2+bx+c=0(a≠0)来表示,其中a、b和c是已知数,x是未知数。

2. 方程的解:一元二次方程的解可以用求根公式来表示,即x=[-b±√(b^2-4ac)]/(2a)。

其中,当Δ=b^2-4ac>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程没有实根。

3. 方程的图像:一元二次方程的图像是一个开口朝上或开口朝下的抛物线,其顶点坐标为(-b/2a,-Δ/4a)。

4. 例题:解方程x^2-5x+6=0解:根据求根公式,Δ=5^2-4*1*6=1,因此方程有两个不相等的实根,即x=[5±√1]/2=3或2。

三、一元三次方程1. 一元三次方程的定义:一元三次方程是指含有一个未知数的三次方程。

一般地,一元三次方程可以用ax^3+bx^2+cx+d=0(a≠0)来表示,其中a、b、c和d是已知数,x是未知数。

2. 方程的解:一般地,一元三次方程没有通用的求解公式,而是需要通过因式分解、配方法、换元等多种方法来求解。

高中数学方程的知识点总结

高中数学方程的知识点总结

高中数学方程的知识点总结一、一元一次方程一元一次方程是高中数学中首先接触到的一种方程类型,也是最基础的方程类型之一。

一元一次方程的一般形式为ax+b=0,其中a和b为已知数,x为未知数。

解一元一次方程的基本方法是化简、变形,通过加减或乘除等运算得到方程的解。

1. 一元一次方程的解法(1)加减法,将方程化简成形如x=c的形式,即可求得x的值。

(2)代入法,将已知条件代入方程中,求出未知数的值。

(3)变形法,通过变形方程的形式或者将未知数移到方程的一侧,使方程等号两边相等,从而求得未知数的值。

(4)克莱姆法则,利用克莱姆法则可以得到一元一次方程的解,该方法通常适用于二元一次方程组求解。

2. 一元一次方程的应用(1)线性规划问题,通过建立一元一次方程模型,可以求解实际生活中的最优化问题。

(2)物品价格、消费等问题,通过一元一次方程可以解决生活中的购物、消费等实际问题。

二、一元二次方程一元二次方程是高中数学中比较重要的方程类型之一,一般形式为ax^2+bx+c=0,其中a、b、c为已知数,x为未知数。

一元二次方程的求解需要利用一元二次方程的求根公式或者配方法等方法。

1. 一元二次方程的求根(1)求根公式,即利用一元二次方程的一般形式ax^2+bx+c=0,通过求解二次方程的根公式x=\frac{-b±\sqrt{b^2-4ac}}{2a},得到方程的解。

(2)配方法,将一元二次方程利用配方法化为全平方或者差平方的形式,然后根据公式求解方程。

2. 一元二次方程的图像一元二次方程在平面直角坐标系中表示为一个抛物线的图像,通过方程的系数可以看出抛物线的开口方向、开口大小等特征。

3. 一元二次方程的应用(1)物理问题,通过一元二次方程可以解决流体力学、电磁学等领域的问题。

(2)几何问题,一元二次方程可以求解几何问题中的距离、面积等问题。

三、高次方程高次方程是指次数大于二的方程,一般形式为a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0=0。

初中数学方程与不等式知识点总结

初中数学方程与不等式知识点总结

初中数学方程与不等式知识点总结方程和不等式是初中数学中的重要内容,它们在解决实际问题和数学运算中都有着广泛的应用。

接下来,让我们一起系统地梳理一下这部分的知识点。

一、方程(一)一元一次方程1、定义:只含有一个未知数,并且未知数的最高次数是 1 的整式方程叫做一元一次方程。

一般形式为:$ax + b = 0$($a \neq 0$,$a$,$b$为常数)。

2、解法:(1)移项:把含未知数的项移到方程的一边,常数项移到方程的另一边。

(2)合并同类项:将同类项进行合并,化简方程。

(3)系数化为 1:方程两边同时除以未知数的系数,得到方程的解。

例如:解方程$3x + 5 = 14$移项得:$3x = 14 5$合并同类项得:$3x = 9$系数化为 1 得:$x = 3$(二)二元一次方程组1、定义:由两个含有两个未知数,且未知数的次数都是 1 的整式方程组成的方程组叫做二元一次方程组。

2、解法:(1)代入消元法:将一个方程中的某个未知数用含有另一个未知数的代数式表示出来,然后代入另一个方程,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求得一个未知数的值,再将其代入原方程组中的一个方程,求得另一个未知数的值。

例如:解方程组$\begin{cases}x + y = 5 \\ x y = 1\end{cases}$由第一个方程得:$x = 5 y$,将其代入第二个方程得:$5 y y = 1$$5 2y = 1$$-2y =-4$$y = 2$将$y = 2$代入$x = 5 y$得:$x = 3$所以方程组的解为$\begin{cases}x = 3 \\ y = 2\end{cases}$(2)加减消元法:当两个方程中同一未知数的系数相等或互为相反数时,将两个方程的两边分别相加或相减,消去这个未知数,得到一个一元一次方程,解这个一元一次方程,求得一个未知数的值,再将其代入原方程组中的一个方程,求得另一个未知数的值。

一元一次方程知识点归纳

一元一次方程知识点归纳

一元一次方程方程的有关概念夯实基础一.等式用等号(“=”)来表示相等关系的式子叫做等式。

温馨提示①等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等,所以等式可以表示不同的意义。

②不能将等式与代数式混淆,等式含有等号,是表示两个式子的“相等关系”,而代数式不含等号,它只能作为等式的一边。

如x x 2735-=+才是等式。

二.等式的性质性质1:等式两边同时加(或减)同一个数(或式子),结果仍相等。

即如果b a =,那么c b c a ±=±。

性质2:等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

即如果b a =,那么bc ac =;如果b a =()0≠c ,那么cb c a =。

温馨提示①等式类似天平,当天平两端放有相同质量的物体时,天平处于平衡状态。

若在天平的两端各加(或减)相同质量的物体,则天平仍处于平衡状态。

所以运用等式性质1时,当等式两边都加上(或减去)同一个数或同一个整式时,才能保证所得的结果仍是等式,应特别注意“都”和“同一个”。

如31=+x ,左边加2,右边也加2,则有2321+=++x 。

②运用等式的性质2时,等式两边不能同除以0,因为0不能作除数或分母。

③等式性质的延伸:a.对称性:等式左、右两边互换,所得结果仍是等式,即如果b a =,那么a b =。

b.传递性:如果c b b a ==,,那么c a =(也叫等量代换)。

例1:用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式哪一条性质,以及怎样变形得到的。

(1)如果51134=-x ,那么+=534x ; (2)如果c by ax -=+,那么+-=c ax ;(3)如果4334=-t ,那么=t 。

三.方程含有未知数的等式叫做方程。

温馨提示 方程有两层含义:①方程必须是一个等式,即是用等号连接而成的式子。

②方程中必有一个待确定的数,即未知的字母,这个字母就是未知数。

初中数学一元一次方程的解法知识点总结

初中数学一元一次方程的解法知识点总结

初中数学一元一次方程的解法知识点总结一元一次方程是初中数学中最基本的方程类型之一,也是解题的起点和基础。

掌握一元一次方程的解法是学好数学的必备基础,本文将对一元一次方程的解法进行总结。

一、一元一次方程的定义一元一次方程是指仅含有一个未知数的一次方程,一般表现形式为:ax + b = 0。

其中,a和b为已知数,a≠0。

方程中的未知数为x。

二、一元一次方程解的概念解是指使方程成立的未知数的值。

对于一元一次方程来说,解即是能使ax + b = 0成立的x的值。

三、一元一次方程的解法1. 相反数法相反数法是一元一次方程的基本解法,其基本思想是方程两边同时加上或减去相同的数,使得方程变形后,未知数的系数或常数项可以消去。

举例说明:例1:求解方程2x - 5 = 1。

解:我们可以通过相反数法求解。

首先,将方程两边同时加上5,得到2x = 6。

然后,再将方程两边同时除以2,得到x = 3。

所以,方程2x - 5 = 1的解为x = 3。

2. 移项法移项法是一种较为常用的解一元一次方程的方法,其基本思想是将方程中包含未知数的项移动到方程的一边,使方程变形为ax = b的形式,进而求解未知数的值。

举例说明:例2:求解方程3x + 2 = 8。

解:我们可以通过移项法求解。

首先,将方程中包含未知数的项3x移动到方程的右边,得到2 = 8 - 3x。

然后,进一步化简得到3x = 8 - 2,即3x = 6。

最后,将方程两边同时除以3,得到x = 2。

所以,方程3x + 2 = 8的解为x = 2。

3. 等价方程法等价方程法是通过变形将一个方程转化为与之等价的方程,从而得到方程的解。

常用的等价方程变形方法包括通分、合并同类项等。

举例说明:例3:求解方程2(x + 3) - 5x = 3(2 - x) + 4。

解:我们可以通过等价方程法求解。

首先,将方程两边进行合并同类项,化简得到2x + 6 - 5x = 6 - 3x + 4。

一次方程与方程组知识点总结归纳

一次方程与方程组知识点总结归纳

一次方程与方程组知识点总结归纳一、一元一次方程。

1. 定义。

- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。

- 一般形式:ax + b=0(a≠0),其中a是未知数x的系数,b是常数项。

例如2x + 3 = 0就是一元一次方程。

2. 方程的解。

- 使方程左右两边相等的未知数的值叫做方程的解。

例如x = - (3)/(2)是方程2x+3 = 0的解。

3. 等式的性质。

- 性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b,那么a±c = b±c。

- 性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果a = b,那么ac=bc;如果a=b(c≠0),那么(a)/(c)=(b)/(c)。

- 利用等式的性质可以求解一元一次方程,例如解方程2x+3 = 0,首先根据等式性质1,两边同时减3得2x=-3,再根据性质2,两边同时除以2得x = - (3)/(2)。

4. 一元一次方程的解法步骤。

- 去分母(若方程中存在分母时):根据等式性质2,在方程两边同时乘以各分母的最小公倍数,将分母去掉。

例如方程(x + 1)/(2)+(x - 1)/(3)=1,分母2和3的最小公倍数是6,方程两边同时乘以6得3(x + 1)+2(x - 1)=6。

- 去括号:根据乘法分配律将括号去掉。

如3(x + 1)+2(x - 1)=6去括号后变为3x+3 + 2x-2 = 6。

- 移项:把含未知数的项移到方程一边,常数项移到另一边,移项要变号。

例如3x+3 + 2x-2 = 6移项后得3x+2x=6 - 3+2。

- 合并同类项:将方程中同类项合并。

如3x+2x=6 - 3+2合并同类项得5x = 5。

- 系数化为1:根据等式性质2,方程两边同时除以未知数的系数。

如5x = 5两边同时除以5得x = 1。

二、二元一次方程(组)1. 二元一次方程。

初中数学知识点总结 一元一次方程

初中数学知识点总结 一元一次方程

初中数学知识点总结一元一次方程一元一次方程知识点总结一、从算式到方程(一)方程:含有未知数的等式叫做方程。

1、方程必须具备的两个条件(1)是等式。

(2)含有未知数。

(二)解方程:就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

二、等式的性质(一)等式的性质1:等式两边同加(或减)司一个数(或式子),结果仍相等。

符号语言:如果a=b,那么B土C=B土C。

(二)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

符号语言:如果a=b,那么ac=bc;(三)等式的性质是解方程的依据。

三、一元一次方程(一)定义:只含有一个未知数(元),并且未知数的次数都是1,等号两边都是整式,形如ax+b=0,这样的方程就叫一元一次方程。

(二)列一元一次方程(三)解一元一次方程1、去分母:解含有分母的一元一次方程时,方程两边乘各自分母的最小分倍数,从而约去分母,这个过程叫做去分母。

依据:等式的性质2;2、去括号:解一元一次方程式时,按照去括号法则把方程中的括号去掉,这个过程叫做去括号。

依据:乘法分配律、去括号法则;3、移项:把等号一边的某项变号后移到另一边,叫做移项。

(1)依据:等式的性质1;(2)目的:将含有未知数的项移到等号的一边,将常数项移到等号的另一边;移项时,一般都习惯把含未知数的项数到等号的左边,把常数项移到等号的右边。

4、合并同类项:即将等号同侧的含未知数的项、常数项分别合并,把方程式转化为ax=b(a不等于0)的形式。

依据:合并同类项法则;5、系数化为1:即在方程两边同时除以未知数的系数(或乘以未知数系数的倒数,将未知数的系数为1,得到=—a不等于0)。

依据:等式的性质2;四、实际问题与一元一次方程(一)列一元一次方程解决实际问题的一般步骤1.审题找相等关系2、设未知数3、列方程4、解方程5、检验(1)检验所得结果是不是方程的解。

(2)检验方程的解是否符合实际意义。

6、写出答案。

关于一元一次方程的知识点

关于一元一次方程的知识点

关于一元一次方程的知识点关键信息项1、一元一次方程的定义定义:只含有一个未知数(元),未知数的次数都是 1,等号两边都是整式,这样的方程叫做一元一次方程。

形式:一般形式为 ax + b = 0(a ≠ 0,a、b 为常数)。

2、一元一次方程的解定义:使方程左右两边相等的未知数的值叫做方程的解。

求解方法:通过移项、合并同类项、系数化为 1 等步骤求得。

3、等式的性质性质 1:等式两边加(或减)同一个数(或式子),结果仍相等。

性质 2:等式两边乘同一个数,或除以同一个不为 0 的数,结果仍相等。

4、解一元一次方程的一般步骤去分母:方程两边同时乘各分母的最小公倍数。

去括号:先去小括号,再去中括号,最后去大括号。

移项:把含未知数的项移到方程左边,常数项移到方程右边。

合并同类项:将同类项合并,化为 ax = b 的形式(a ≠ 0)。

系数化为 1:方程两边同时除以未知数的系数,得到方程的解 x =b/a 。

11 一元一次方程的定义一元一次方程是数学中最基础的方程类型之一。

它具有简洁明了的形式和明确的求解方法。

只含有一个未知数,并且这个未知数的次数是 1,同时方程的等号两边都是整式。

例如,方程 3x + 5 = 11 就是一个典型的一元一次方程,其中 x 是未知数,3 是 x 的系数,5 是常数项。

111 一元一次方程的标准形式一元一次方程的一般形式为 ax + b = 0(a ≠ 0,a、b 为常数)。

其中,a 被称为方程的系数,b 是常数项。

当 a = 0 时,方程不再是一元一次方程。

112 一元一次方程的特点其特点在于未知数的个数为一个,且未知数的最高次数为 1。

这使得一元一次方程在解决实际问题中具有广泛的应用,因为它能够相对简单地描述一些线性关系。

12 一元一次方程的解方程的解是使方程左右两边相等的未知数的值。

对于给定的一元一次方程,通过一系列的运算步骤可以求出其解。

121 解的验证求出方程的解后,可以将其代入原方程进行验证。

一元一次方程知识点总结

一元一次方程知识点总结

一元一次方程【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b ,那么a±c=b±c(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=b a). 六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.2. 设:设未知数(可分直接设法,间接设法)3. 列:根据题意列方程.4. 解:解出所列方程.5. 检:检验所求的解是否符合题意.6. 答:写出答案(有单位要注明答案)七、有关常用应用类型题及各量之间的关系1. 和、差、倍、分问题:增长量=原有量×增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.(2 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h = r2h②长方体的体积 V =长×宽×高=abc3. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题(1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.5. 工程问题:工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=16.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.商品销售问题(1)商品利润率=商品利润商品成本价×100%(2)商品销售额=商品销售价×商品销售量(3)商品的销售利润=(销售价-成本价)×销售量(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.有关关系式:商品售价=商品标价×折扣率(5)商品利润=商品售价—商品进价=商品标价×折扣率—商品进价8. 储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)(3)利润=每个期数内的利息本金×100% 、【典型例题】一、一元一次方程的有关概念例1.一个一元一次方程的解为2,请写出这个一元一次方程 .二、一元一次方程的解例2.若关于x 的一元一次方程23132x kx k---=的解是1x =-,则k 的值是( )A . 27B .1C .1311- D .0三、一元一次方程的解法例3.如果2005200.520.05x -=-,那么x 等于( )(A)1814.55 (B)1824.55 (C)1774.45 (D)1784.45例4. 23{32[12(x-1)-3]-3}=四、一元一次方程的实际应用例5.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.例6.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?例7.(2006·益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?。

一元一次方程知识点及经典例题

一元一次方程知识点及经典例题

一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。

要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果,那么;(c 为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。

方程的右边没有变化,这要与“去分母”区别开。

2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。

一元一次方程知识点总结

一元一次方程知识点总结

一元一次方程知识点总结一、知识1.含有未知数的等式叫方程2.只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程二、知识1.判断下列各式哪些是一元一次方程:(1)43x=21; (2)3x -2; (3)71y -51=32x -1; (4)5x 2-3x+1; (5)3x+y=1-2y ; (6)1-7y 2=2y.2.若关于x 的方程3x3a+1-5=0是一元一次方程, 则a=____.3.写出一个解是-2的一元一次方程为____.4.若2x -a=3,则2x=3+___,这是根据等式的性质1,在等式两边同时______. 若-6a=4.5,则___=-1.5,这是根据等式的性质,在等式两边同时________.5.下列方程中以x=21为解的是( ) A.-2x=4 B.-2x -1=-3 C.-21x -1=-43 D.-21x+1=43 6.已知5a -3b -1=5b -3a, 利用等式的性质比较a 、b 的大小.7.某钢铁厂今年5月份的某种钢产量是50吨, 预计6月份产量是a 吨, 比5月份增长x%, 那么a 是( )A.50(1+x%)B.50x%C.50+x%D.50(1+x )%8.已知关于x 的方程5x+3k=24的解为3, 求k2-1+k 的值9.利用等式性质解方程: - x+3=-10.10.服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童每套平均用布1.5米,现在已做了80套成人服装,用余下的布还可以做几套儿童服装?三、直通中考[2008年山东中考]下列方程是一元一次方程的是( ).A. -5x+4=3y2B. 5(m2-1)=1-5m2C. 2-D. 5x-33.2-3.3解一元一次方程【一元一次方程合并同类项与移向】一、基础知识把等式一边的某项变号后移向等式的另一边, 叫做移向。

(移向要变号)二、知识题库1.在1,-2, 21这三个数中,是方程7x+1=10-2x 的解的是____. 2.当k=____时,方程5x -k=3x+8的解是-2.3.若代数式21-x +612x 与31-x +1的值相等,则x=____. 4.如果2x 5a -4-3=0是关于x 的一元一次方程,那么a=____,此时方程的解是____. 5.如果x =-2是方程3x +5= -m 的解, 那么m2=____.6.解方程:5x-|x|=8.7.今年儿子13岁,父亲40岁,多少年后父亲的年龄是儿子年龄的2.5倍?8.一群小孩分一堆梨,1人1个多1个,1人两个少2个,问有几个小孩、几个梨?9.一个三位数, 三个数位上的和是17, 百位上的数比十位上的数大7, 个位上的数是十位上的3倍, 求这个三位数.10.某市居民生活用电基本价格为每度0.40元, 若每月用电量超过a 度, 超出部分按基本电价的70%收费.(1)某户五月份用电84度, 共交电费30.72元, 求a.(2)若该户六月份的电费平均为每度0.36元, 求六月份共用电多少度?应交电费多少元?三、直通中考[2010年辽宁中考]已知关于x的方程ax+2=2(a-x), 它的解满足|x+|=0, 则a=_。

一元一次方程所有知识点

一元一次方程所有知识点

一元一次方程所有知识点一、一元一次方程的概念。

1. 定义。

- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。

- 例如:2x + 3=5x - 1是一元一次方程,它只含有一个未知数x,x的次数是1,等号两边2x + 3和5x-1都是整式。

- 一般形式:ax + b = 0(a≠0),其中a是未知数x的系数,b是常数项。

2. 方程的解。

- 使方程左右两边相等的未知数的值叫做方程的解。

- 例如:对于方程2x+3 = 7,当x = 2时,左边=2×2 + 3=4 + 3 = 7,右边=7,所以x = 2就是方程2x+3 = 7的解。

二、一元一次方程的解法。

1. 移项。

- 把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。

- 例如:在方程2x+3 = 5x - 1中,为了求解x,我们将5x移到左边变为-5x,3移到右边变为-3,得到2x-5x=-1 - 3。

- 移项的依据是等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

2. 合并同类项。

- 将方程中含有相同字母且相同字母的指数也相同的项合并在一起。

- 例如:在2x-5x=-1 - 3中,2x-5x=-3x,-1-3 = -4,方程变为-3x=-4。

3. 系数化为1。

- 在方程ax = b(a≠0)的形式下,将方程两边同时除以a,得到x=(b)/(a)。

- 例如:对于方程-3x=-4,两边同时除以-3,得到x=(4)/(3)。

三、一元一次方程的应用。

1. 行程问题。

- 基本公式:路程=速度×时间。

- 相遇问题:两者路程之和等于总路程。

例如:甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是v_1,乙的速度是v_2,经过t小时相遇,AB两地间的距离s=(v_1 + v_2)t。

- 追及问题:两者路程之差等于初始距离。

例如:甲、乙两人同向而行,甲的速度是v_1,乙的速度是v_2(v_1>v_2),开始时甲、乙相距s_0,经过t小时甲追上乙,则s_0=(v_1 - v_2)t。

一元一次方程知识点总结

一元一次方程知识点总结

一元一次方程知识点总结元一次方程知识点总结篇一概念、定义:1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。

2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。

3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

6、把等式一边的某项变号后移到另一边,叫做移项。

7、应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间盈亏问题:利润=售价-成本利率=利润÷成本×100%售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间本息和=本金+利息元一次方程知识点总结篇二1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。

4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。

一元一次方程知识点总结

一元一次方程知识点总结

《一元一次方程》知识要点总结1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解通常用代入法解答”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1,移项要变号。

6.一元一次方程:只含有一个未知数,并且含未知数项的次数是1的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).8.一元一次方程解法的一般步骤:去 分母----------同乘(不漏乘)最简公分母去 括号----------注意符号变化移 项----------变号合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几9.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.10.应用题类型:知识点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量 知识点2: 方案选择问题知识点3储蓄、储蓄利息问题(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。

一元一次方程知识点

一元一次方程知识点

一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.注意:判断一个式子是否为方程:一看是否是等式;二看是否含有未知数,二者缺一不可。

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1. 移项原则:把含有未知数的项移到等号左边,不含有未知数的项移到等号右边。

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).8.一元一次方程解法的一般步骤:去 分母----------同乘(不漏乘)最简公分母去 括号----------注意符号变化移 项----------变号(留下靠前)合并同类项--------合并后符号系数化为1---------除前面9.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.10.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; a.相遇问题:总路程=甲走的路程+乙走的路程追及问题:追者走的路程=前者走的路程+两地间的路程b.环形跑道问题:同时同地同向出发:快的多跑一圈才能追上慢的同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。

第五章一元一次方程知识点总结和例题讲解

第五章一元一次方程知识点总结和例题讲解

一元一次方程知识点及题型一、方程的有关概念1.方程: 含有未知数的等式就叫做方程.2.一元一次方程: 只含有一个未知数(元)x, 未知数x的指数都是1(次), 这样的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值, 叫做方程的解.注:.方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程....方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质三、移项法则: 把等式一边的某项变号后移到另一边, 叫做移项.四、去括号法则五、解方程的一般步骤1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边, 其他项都移到方程的另一边, 移项要变号)4.合并(把方程化成a...(a≠0)形式)5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=).六. 列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数, 列出方程:设出未知数后, 表示出有关的含字母的式子, •然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程, 求出未知数的值.(5)检验, 写答案:检验所求出的未知数的值是否是方程的解, •是否符合实际, 写出答案【基础及提高】一. 选择题1.下列各式中, 是方程的个数为()(1)﹣4A.1个B.2个C.3个D.4个﹣3=﹣7;(2)3x﹣5=2x+1;(3)2x+6;(4)x﹣y=v;(4)a+b>3;(5)a2+a﹣6=0.A.如果ac=bc, 那么a=b B.如果, 那么a=b2. 下列说法正确的是()C.如果a=b, 那么D.如果, 那么x=﹣2y 3. 若关A.x=0B.x=3C.x=﹣3D.x=22﹣m+3=0是一元一次方程, 则这个方程的解是()4. 方程(m+1)x|m|+1=0是关于x 的一元一次方程, 则m()A.m=±1B.m=1C.m=﹣1D.m≠﹣15. 若关于x的方程nxn﹣1+n﹣4=0是一元一A.x=﹣1B.x=1C.x=﹣4D.x=4程的解是()A.1B.9C.0D.4 6. 已知x=3是关于x的方程x+m=2x﹣1的解,则(m+1)2的值是()7. 已知A.4B.3C.2D.1 x=﹣6是方程2x﹣6=ax的解, 则代数式的值是()8. 设A.B.C.D.﹣P=2x﹣1,Q=4﹣3x,则5P﹣6Q=7时,x的值应为()9. 服装A.总体上是赚了B.总体上是赔了店同时销售两种商品, 销售价都是100元,结果一种赔了20%, 另一种赚了20%, 那么在这次销售中,该服装店()C.总体上不赔不赚D.没法判断是赚了还是赔了10. 如图是一个长方形试管架, 在a cm长的木条上钻了4个圆孔, 每个孔的直径为2cm, 则x等于()A.cm B.cm C. cm D. cmA.k≠3B.k=﹣2C.k=﹣4D.k=211. 关于x的方程(k﹣3)x﹣1=0的解是x=﹣1, 那么k的值是()12. 江苏卫视《一站到底》栏目中, 有一期的题目如图, 两个天平都保持平衡, 则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.513. 已知A.1B.1或3C.3D.2或3方程2x+k=5的解为正整数, 则k所能取的正整数值为()A.B.3C.8D.9 14. 小芳同学解关于x的一元一次方程﹣时,发现有个数模糊看不清楚,聪明的小芳翻看了书后的答案, 知道3. 于是她很快补上了这个数. 她补的这个数是()A.B.C.D.15. 若代数式3x﹣7和6x+13互为相反数, 则x的值为()A.2个B.3个C.4个D.5个16. 按下面的程序计算, 若开始输入的值x为结果为656, 则满足条件的x的不同值最多有()二. 填空题17.一件衣服先按成本提高50%标价, 再以8折(标价的80%)出售, 结果获利28元. 若设这件衣服的成本是x元, 根据题意, 可得到的方程是_________ .18.图1是边长为30cm的正方形纸板, 裁掉阴影部分后将其折叠成如图2所示的长方体盒子, 已知该长方体的宽是高的2倍, 则它的体积是_________ cm3.19.已知及的值相等时, x= _________ .20.若x=﹣1是关于x方程ax+b=1的根, 则代数式(a﹣b)2011的值是_________ .21.某人用24000元买进甲、乙两种股票, 在甲股票升值15%, 乙股票下跌10%时卖出, 共获利1350元, 则此人买甲股票的钱比买乙股票的钱多_________ 元.22如果要由等式m﹙a+1﹚=x﹙a+1﹚得到m=x, 需要满足的条件是_________ .23. 关于x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程, 则方程的解为_________ .24. 关于x的方程(m+2)x=6解为自然数, 当m为整数时, 则m的值为_________ .25.已知m+n=2008(m﹣n), 则= _________ .三计算题解方程: (1)3(x﹣1)﹣2(2x+1)=12;(2)(3). (4)﹣=.(5). (6)(7). (8)﹣=3.(9)(10)四. 解答题1.若x=2是方程ax-1=3的解, 求a的值2. 方程x+2=5及方程ax-3=9的解相等求a的值3. m为何值时, 关于m的方程的解是的解的2倍?4. 已知, 是方程的解, 求代数式的值.5. 一家商店将某种服装按进价提高40%后标价, 又以8折优惠卖出, 结果每件仍获利15元, 这种服装每件的进价是多少?6. 一批货物, 甲把原价降低10元卖出, 用售价的10%做积累, 乙把原价降低20元, 用售价的20%做积累, 若两种积累一样多, 则这批货物的原售价是多少?7. 某商店开张, 为了吸引顾客, 所有商品一律按八折优惠出售, 已知某种皮鞋进价60元一双, 八折出售后商家获利润率为40%, 问这种皮鞋标价是多少元?优惠价是多少元?8. 某蔬菜公司收购到某种蔬菜140吨, 准备加工上市销售. 该公司的加工能力是: 每天可以精加工6吨或粗加工16吨, 现计划用15天完成加工任务, 该公司应安排几天精加工, 几天粗加工?9.今年“六•一”儿童节, 张红用8.8元钱购买了甲、乙两种礼物, 甲礼物每件1.2元, 乙礼物每件0.8元, 其中甲礼物比乙礼物少1件, 问甲、乙两种礼物各买了多少件?10.小明和小东两人练习跑步, 都从甲地出发跑到乙地, 小明每分钟跑250米, 小东每分钟跑200米, 小明让小东先出发3分钟之后再出发, 结果两人同时到达乙地, 求甲、乙两地之间的路程是多少米?11. 某船从A地顺流而下到达B地, 然后逆流返回, 到达A.B两地之间的C地, 一共航行了7小时, 已知此船在静水中的速度为8千米/时, 水流速度为2千米/时。

人教新课标第三章一元一次方程知识点总结

人教新课标第三章一元一次方程知识点总结

得到方程的解
六、列一元一次方程分析和解决实际问题
用一元一次方程解决实际问题的关键是依据隐含在题目中的相等关系, 建立数 学模型(一元一次方程), 将实际问题转化为数学问题, 其基本过程如图:
实际问 解方题程
一元一次 方程
实际问 【【警示】设未知数时,
检验 要注意单位,
相数等学关问系题应的是解能表示问题全部含义的关系;
______________________________________.
11.根据等式的性质解下列方程
(1) 2x 7 3(2) 6x 6 8(3)
12.甲、乙两人同时由 A 地步行去 B 地, 甲的速度为 5 千米/小时, 乙的速度为 3 千米/小时, 当甲到达 B 地时, 乙距 B 地还有 6 千米, 甲走了几小时?

商品利润=商品售价-商
数字问题
品进价
设 分别为一个两位数 的个位上和十位上的数 字, 则这个两位数可以 表示为
一般情况下设间 接未知数
行船问题
顺流船实际速度=船在静 水中的速度+水流速度 逆流船实际速度=船在静 水中的速度-水流速度
7/8
人教新课标第三章一元一次方程知识点总结
8/8
4.如果关于 的方程 是一元一次方程, 则 __________.
5.已知 是方程 的解, 则 _________.
6、 的 8 倍加上 4 及 的 5 倍相等, 列方程为_______________________.
7、已知方程 是一元一次方程, 求 的值, 并求出方程的解。
8、已知 , 下面结论错误的是( )
(2)在等式 的两边同_______________________, 得到等式 , 这是依据

数学解方程知识点大全总结

数学解方程知识点大全总结

数学解方程知识点大全总结一、一元一次方程1. 一元一次方程的定义一元一次方程是指方程中只含有一个未知数,并且未知数的最高次数为一的方程。

一般形式为:ax+b=0,其中a≠0,a为系数,b为常数。

2. 一元一次方程的解法(1) 直接相减法对于方程ax+b=0,可以通过将b移到等号的另一侧,再将a约分来求得未知数的值。

(2) 换元法当遇到系数a较大或不便化简的情况时,可以通过引入新的未知数来简化方程的解法。

(3) 代入法可以通过将一个已知的值代入方程中来求解未知数的值。

(4) 图形法通过画出方程对应的直线图形,在图上找到方程的解。

(5) 相等系数法当两个或多个未知数满足同一个方程时,可以将其系数都等式化,然后联立求解。

3. 一元一次方程的实际应用一元一次方程可以应用在日常生活中的各种问题当中,例如物品的购买、运输时间的计算、工程建设的规划等等,都可以通过建立一元一次方程来进行求解。

4. 一元一次方程的解的判定一元一次方程存在唯一解的条件是系数a不为零。

当a=0时,如果b=0,方程有无穷多解;如果b≠0,方程无解。

二、一元二次方程1. 一元二次方程的定义一元二次方程是指方程中只含有一个未知数,并且未知数的最高次数为二的方程。

一般形式为:ax^2+bx+c=0,其中a≠0,a、b、c分别为系数。

2. 一元二次方程的解法(1) 因式分解法可以通过将一元二次方程进行因式分解,得到两个一元一次方程,再分别求解,得到方程的解。

(2) 完全平方公式当一元二次方程为完全平方公式的形式时,可以直接应用完全平方公式进行求解。

(3) 公式法通过一元二次方程的求根公式(即二次方程的根公式)进行求解。

(4) 完全平方差公式当一元二次方程为完全平方差公式的形式时,可以直接应用完全平方差公式进行求解。

3. 一元二次方程的实际应用一元二次方程可以应用在各种实际问题当中,例如抛物线运动的轨迹、图形的面积计算、物质的变化规律等,都可以通过建立一元二次方程来进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程知识点总结
一、等式与方程
1.等式:
(1)定义:含有等号的式子叫做等式.
(2)性质:
①等式两边同时加上(或减去)同一个整式,等式的值不变.
若a b
=那么a c b c
+=+
②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.
若a b
=那么有ac bc
=或a c b c
÷=÷(0
c≠)
③对称性:若a b
=,则b a
=.
④传递性:若a b
=,b c
=则a c
=.
(3)拓展:
①等式两边取相反数,结果仍相等.
如果a b
=,那么a b
-=-
②等式两边不等于0时,两边取倒数,结果仍相等.
如果0
a b
=≠,那么11 a b =
③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.
如移项,运用了等式的性质①;去分母,运用了等式的性质②.
④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.
2.方程:
(1)定义:含有未知数的等式叫做方程.
(2)说明:
①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.
②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.
未知数称为元,有几个未知数就叫几元方程.
一道题中设两个方程时,它们的未知数不能一样!
③“次”:方程中次的概念和整式的“次”的概念相似.
指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.
未知数次数最高是几就叫几次方程.
④方程有整式方程和分式方程.
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.
分式方程:分母中含有未知数的方程叫做分式方程.
二、一元一次方程
1.一元一次方程的概念:
(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.
(2)一般形式:0
ax b
+=(a,b为常数,x为未知数,且0
a≠).
(3)注意:
①该方程为整式方程.
②该方程有且只含有一个未知数.
③该方程中未知数的最高次数是1.
④化简后未知数的系数不为0.如:212
x x
-=,它不是一元一次方程.
⑤未知数在分母中时,它的次数不能看成是1次.如1
3x
x
+=,它不是一元一次方程.
2.一元一次方程的解法:
(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?
x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.
(3)移项:
①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.
②说明:
Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.
Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.
(4)解一元一次方程的一般步骤及根据:
①去分母——等式的性质②
②去括号——分配律
③移项——等式的性质①
④合并——合并同类项法则
⑤系数化为1——等式的性质②
⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)
(5)一般方法:
①去分母,程两边同时乘各分母的最小公倍数.
②去括号,一般先去小括号,再去中括号,最后去大括号.
但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.
③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了
要变号.(一般都是把未知数移到一起)
④合并同类项,合并的是系数,将原方程化为ax b
=(0
a≠)的形式.
⑤系数化1,两边都乘以未知数的系数的倒数.
⑥检验,用代入法,在草稿纸上算.
(6)注意:
(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)
①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;
②去分母时,方程两边各项都乘各分母的最小公倍数,
Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘
Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);
③去括号时,不要漏乘括号内的项,不要弄错符号;
④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;
⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);
⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;
⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.
(7)补充:分数的基本性质:与等式基本性质②不同.
分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.
3.一元一次方程的应用:
(1)解决实际应用题的策略:
①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的
精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用
笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.
②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他
相关的量.
③找出等量关系,用符号语言表示就是列出方程.
(2)分析问题方法:
①文字关系分析法,找关键字词句分析实际问题中的数量关系
②表格分析法,借助表格分析分析实际问题中的数量关系
③示意图分析法,通过画图帮助分析实际问题中的数量关系
(3)设未知量方法:
一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.
①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关
系;
②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.
(4)找等量关系的方法:
“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.
①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关
键语句,正确理解关键语句的含义,就能确定等量关系.
②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积
公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总
量等.这些常见的基本数量关系,就是等量关系)
③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等
量关系.
④借助线段图确定等量关系。

线段图能使抽象的数量关系具体化,使隐蔽的数量关系明朗化.对
于较复杂的题目,同学们可借助线段图找等量关系.
(5)列一元一次方程解应用题的基本步骤及注意点:
①“审”要沉着冷静,耐下心去,慢读细读多读,透彻理解题意.即弄清已知量、未知量及
其相互关系.
②“设”设一个恰当的未知数,若有单位一定加单位,表示多项式加单位括号.
③“列”根据等量关系列出方程,即所列的方程应满足两边的量要相等;方程两边的代数式
的单位统一,用题目中的原数;题中条件应充分利用,不能漏也不能将一个条件重
复利用,重复用一个条件会得到恒等式,解不出来.
④“解”解出方程,一定在草纸上一步步认真计算,先化简往往会简化计算.
⑤“验”检验两方面,一是解得是否正确,用代入法;二是是否符合实际情况.
⑥“答”写出答案,一定要答完整,有单位要加单位.
(6)解应用题关键与核心:
根据题意找出能够表示应用题全部含义的一个相等关系(这是关键一步).就是抓住问题中的有关数量的相等关系,列出方程.核心是设出适当未知量,根据关系表示出其它量,表示出等量关系
中的各个部分,从而列出方程.
(8)实际问题的常见题目类型:基本量、基本关系、等量关系:
①“和、差、倍、分类问题”:弄清和谁比,比谁多,比谁少
增长量=原有量×增长率,现有量=原有量+增长量.
②“等积变形问题”:锻造前的体积=锻造后的体积
长方体的体积=长×宽×高,圆柱的体积=底面积×高.
③“打折利润问题”:利润是和成本比的
利润进价,售价=标价×折扣.
利润=售价-进价,利润率=÷
④“行程问题”:(相遇问题和追及问题)
路程=时间×速度,时间=÷
路程速度,速度=÷
路程时间.
(注意单位:路程——米、千米;时间——秒、分、时;速度——米/秒、米/分、千米/小时)
⑤“销售问题”总价=单价×数量,总钱数=各部分钱数和.
⑥“利率(息)问题”本息和=本金+利息,利息=本金×利率×时间(期数).
⑦“工程问题”工作总量=工作时间×工作效率,工作总量=各部分工作量的和.
⑧数字问题(包括日历中数字规律)⑨比例分配问题⑩调配问题
注意:应用题分类只是帮助同学们理解记忆,切不可死记题型,生搬硬套,实际上法无定法,要多加练习,培养分析问题解决问题的能力,熟练掌握列方程解应用题的一般方法.。

相关文档
最新文档