第六章 真核生物的遗传分析 (2)

合集下载

6原核、真核生物基因组

6原核、真核生物基因组
B. 操纵子是原核生物基因组的特征 • 操纵子 : 一组在基因组中彼此相邻的基因 , 它们 一 操纵子:一组在基因组中彼此相邻的基因,它们一 参与单一的生化途径, 般 参与单一的生化途径 , 并且受共同的调控基因调 作为一个整体来表达。 整体来表达 控,作为一个整体来表达。 • 比较典型的例子是 : 大肠杆菌的 乳糖操纵子 和 色氨 比较典型的例子是: 大肠杆菌的乳糖操纵子 乳糖操纵子和 酸操纵子。 酸操纵子。
2.1 在原核生物基因组中,基因是如何组织的 在原核生物基因组中,
• 原核生物基因组具有 紧密的基因编排,基因间几 原核生物基因组具有紧密的基因编排, 紧密的基因编排 乎没有间隔,因此利用ORF扫描来定位基因相对 乎没有间隔,因此利用 扫描来定位基因相对 容易。 容易。 • 在已测序的大肠杆菌的基因组中也存在非编码 DNA,但只占 ,但只占11%,以小片段的形式分布于整个 , 小片段的形式分布于整个 基因组,基因组几乎不存在其它被浪费的空间。 基因组,基因组几乎不存在其它被浪费的空间。
1. 原核生物基因组的物理特征
1.1 原核生物的染色体
A. 有关原核生物基因组的传统观点 • 在典型的原核生物中 , 基因组包含于单一的环状 在典型的原核生物中, DNA分子中,这个分子位于拟核中。 分子中, 拟核中 分子中 这个分子位于拟核 • 原核生物细胞具有原始的核,没有核膜 ,更没有核 原核生物细胞具有原始的核, 没有核膜, 细胞具有原始的核 结构简单, 仁 ,结构简单 ,为了与真核细胞中典型的细胞核有 所别,称为拟核 所区别,称为拟核 (nucleoid)。 。
1.1 原核生物的染色体
A. 有关原核生物基因组的传统观点 • 和真核生物基因组一样 , 原核生物基因组也必须 和真核生物基因组一样, 压缩到一个相对微小的体积,也需要在DNA结合 压缩到一个相对微小的体积 , 也需要在 结合 蛋白的帮助下, 以一定的有序形式包装 起来( 包装起来 蛋白的帮助下 , 以一定的有序形式 包装 起来 ( 大 肠杆菌环状染色体总长1.6 mm,而大肠杆菌细胞 肠杆菌环状染色体总长 , 只有1x2 µm)。 只有 ) • 目前已知的有关拟核中 目前已知的有关拟核中DNA组织排布情况大多来 组织排布情况大多来 自于对大肠杆菌的研究。 在大肠杆菌基因组中, 自于对大肠杆菌的研究 。 在大肠杆菌基因组中 , 环状DNA分子是以超螺旋形式存在于细胞中的。 分子是以超螺旋形式存在于细胞中的。 环状 分子是以超螺旋形式存在于细胞中的

微生物学-第六章微生物的遗传

微生物学-第六章微生物的遗传

将待测样品与从老鼠肝脏抽提的酶混合在 一起适当保温后,用直径约2~3mm的圆形滤纸 片吸取待测样品,放置在含有鼠伤寒沙门氏细 菌组氨酸缺陷型突变株的基本培养基平板中央, 370C培养16~24小时。如有诱变作用,则在滤纸 片周围即可长出回复突变的菌落,由于试验纸 片的化学药剂向四周扩散而形成自然的浓度梯 度,故在浓度最高即离试验纸片近的地方,细 菌会全部被杀死,因而无菌落形成;而离试验 滤纸片较远的适宜地方形成回复突变的菌落最 多。
2,自发基因突变的分子基础
• (1)碱基的互变异构体形成不同碱基配 对
• (2)在DNA复制时短的DNA片断的插 入或缺失
• (3)随机插入基因组的转座因子
3,突变规律
• (1)非对称性(随机性) • (2)稀有性 • (3)规律性 • (4)独立性 • (5)遗传和回复性 • (6)可诱变性
等特性均与留在细胞外的蛋白质外壳完全相
同,这说明决定蛋白质外壳的遗传信息是在 DNA上。
二、RNA作为遗传物质
TMV拆分重建实验:分别提取TMV的蛋 白质和HR(TMV的变种)的RNA,通过重建 获得杂种病毒。TMV抗血清使杂种病毒失活, HR抗血清不能使杂种病毒失活,说明杂种病 毒的蛋白质外壳来自TMV;杂种病毒感染烟草 产生HR所特有的病斑,说明杂种病毒的感染 特性是由HR的RNA所决定;从病斑中再分离 得到的子代病毒的蛋白质外壳是HR蛋白质, 而不是TMV蛋白质。实验表明T2的遗传物质是 RNA。
B:抗性质粒(抗性因子、R因子、R质 粒): 包括抗药性和抗金属性两大类。
C:细菌素质粒 : (细菌素是细菌产生的一般只 能抑制或杀死种内不同亚种或菌株中敏感细菌 的特殊多肽类代谢产物。)如col质粒。
D:毒性质粒(致病质粒):质粒上具有编码 毒素的基因,如Ti质粒。

遗传学习题讲解2

遗传学习题讲解2

a
A
G
C
T
G
A
C
T
A 3A:1a
T
A
1A:3a
T
A
2A:2a
T
真核生物的遗传分析
2、首先注意基因转变的发生。杂交1中,a1发生转变 (1:3);杂交2和杂交3中,a3发生转变。而a2在杂交 1,2,3中均未发生转变。这里显然有极性。根据基因 转变的极化子模型,内切酶首先作用于基因的一端, 从起点开始,基因转变频率由高到低形成一个梯度。 故三个基因位点的顺序为: (重组位点)a3 —a1 —a2
遗传的细胞学基础
6、(1)细胞周期的四个阶段为:G1,S,G2,M期。 (2)其中, G1,S,G2包括在间期。 (3)G1期:与DNA合成启动相关,开始合成细胞生长
所需的多种蛋白质、RNA、糖类、脂质等。S期:DNA复 制与组蛋白合成同步,组成核小体串珠结构。G2期:DNA 复制完成,在G2期合成一定数量的蛋白质和RNA分子。
倍性 二倍体 二倍体 单倍体 单倍体
染色体数目 2 2 1 1
遗传的细胞学基础
10、对于有丝分裂:染色体数目从2n到2n.DNA 含量在G1 期为2C,S期由于DNA复制,含量增加为4C,最后形成的 每个子细胞中DNA含量为2C。 对于减数分裂:染色体数目从2n变为n。DNA含量在G1期 为2C,S期开始为4C,减数第一次分裂形成的每个子细胞 DNA含量2C,减数第二次分裂形成的每个细胞DNA含量为 C。
45%(9) 45%(9) 5%(1) 5%(1)
4
5
4
5
因此:4的儿子患血友病概率:10%×50%=5%;
5的儿子:90%×50%=45%。
真核生物的遗传分析

真核生物的遗传分析

真核生物的遗传分析

a +
+ n
a +
NPD
若两连锁基因在异臂上,则PD与NPD都由双交 换形成且机会相等,所以PD=NPD。但事实上 PD≠NPD故此情况不可能 ∴ nic和ade在同臂上 已知RF(0-nic)+ RF(nic-ade)=5.05%+ 5.2% RF(0-ade)=9.3% 即RF(0-nic)+ RF(nic-ade) ≠ RF(0-ade) 原因:着丝粒和ade间发生过双交换,但在计算 RF (0-ade)时却没有计算在内,而在计算RF(0-nic)和 RF(nic-ade)时都各计算一次。

(3-6)四种排列方式:第一分裂产物中野生
型与突变型未发生分离,野生型和突变型
M2发生分离,称第二次分裂分离(second
division segregation)。
着丝粒与基因位点间发生非姊妹染色单
体交换,因此这四种子囊均为交换型子
囊。
非交换型、交换型子囊的形成
着丝点距离与着丝点作图

0 0 10 180 2 10 202
4 180 10 0 4 10 208
0 180 0 180 2 10 372


由上表可以看出202+208 ≠372,
低估的重组值= (202+208-372)/4000 ×100%=0.95%

RF(0-nic)+ RF(nic-ade) = RF(0-ade)+0.95%=9.3% +0.95%=10.25%
六种子囊孢子排列方式
六种子囊孢子排列方式
第一次分裂分离与第二次分裂分离

(1-2)两种排列方式:野生型lys+和突变型lys-在 M1彼 此分离,称第一次分裂分离(first division

遗传学_第二版_课后部分答案(4_8章)_

遗传学_第二版_课后部分答案(4_8章)_

3
0
2
2
90
0
180 180(0)
4
2
2
0
5
10
10
0(20)
5
2
0
2
90
180
0
180(0)
6
2
4
2
1
2
4
2 (4)
7
2
2
2
5
10
10
10(10)
202  c 44
a+ c
5
并发系数 = 0.9%/(10%×18%)= 0.5
+ b+
4
(1)a 与 b,b 与 c 之间的重组率是多少?
(2)并发系数是多少?
第五章 连锁遗传分析
12. Abc/aBC与abc/abc杂交,后代基因型如何? 双交换ABc/abC = 20%×30%=6% 单交换ABC/abc = 20%-6%=14% 单交换AbC/aBc = 30%-6%=24% 亲本型Abc/aBC = 1-24%-14%-6%
AA_aRR_r
AA_arrrr
A_rr
A_R_
aaR_
aarr
第四章 孟德尔式遗传分析
3. 果蝇中野生型眼色的色素的产生必需显性等位基因 A。第二个独立的显性 基因 P 使得色素呈紫色,但它处于隐性地位时眼色仍为红色。不产生色素 的个体的眼睛呈白色。两个纯系杂交,结果如下:
AAXpXp AaXPXp
白色
AaBb
表明遗传很有可能涉及有两对 基因之差。 假设: 1. 基因 A 控制白色,即基因型
118
F2 12白色 :
A_B_ A_bb

遗传学 第六章 真核生物遗传分析

遗传学 第六章 真核生物遗传分析

1、单一序列(unique sequence)
➢ 真核生物的大多数基因在单倍体基因 组中都是单拷贝的。
➢ 单一序列所占的比例在不同生物基因 组中变化较大:
原核生物中一般只含有非重复序列;
较低等的真核生物中大部分DNA也 是单拷贝的;
动物中将近50%DNA是中度或高度 重复的;
植物和两栖类生物中单拷贝DNA序 列降低,而中度和高度重复序列增加, 如玉米的重复序列在80%以上。
(2)卫星DNA (satellite DNA)
➢ 其碱基组成不同于其他部份,可用 等密度梯度离心法将其与主体 DNA 分开,因而称为卫星DNA 或 随体DNA。
➢ 各类卫星DNA都由不同的重复序 列家族构成。
➢ 重复单位串联排列。 ➢ 卫星 DNA约占人基因组 5~6%。
卫星DNA 根据长度可将其分为3类:
➢ 基因组(genome):一个物种单倍体的染色体数 目及其所携带的全部遗传信息。
基因组DNA测序结果表明基因组中不仅包含着整 套基因的编码序列,同时还包含着大量非编码序列, 这些序列同样包含着遗传指令(genetic instruction)。 因此,基因组(应该)是整套染色体所包含的 DNA分子以及DNA分子所携带的全部遗传指令。
➢ 可用遗传学方法区分每个染色单 体。
顺序四分子分析( ordered tetrad analysis)
顺序四分子遗传分析的特殊意义在于: (1) 能从四分子不同类型出现的相对频率分析基因间的连
锁关系; (2) 能计算标记基因与着丝点之间的重组值,进行着丝粒
作图; (3) 子囊中子囊孢子严格的对称性质,表明减数分裂是一
Co = DNA concentration t1/2 = time for half reaction

2024版高考生物一轮复习教材基础练第六章遗传的分子基础第2节DNA的结构和复制教学课件

2024版高考生物一轮复习教材基础练第六章遗传的分子基础第2节DNA的结构和复制教学课件

教材素材变式
5 [生物兴趣小组将大肠杆菌在含15N的培养基中繁殖数代后,使大肠杆菌DNA的含氮碱基几乎都含有 15N。然后再将其转入含14N的培养基中培养。在不同时刻收集大肠杆菌并提取DNA进行离心,如图① ~⑤为可能的结果。下列有关叙述错误的是 A.实验过程中,所使用的研究方法是同位素标记法、密度梯度离心法 B.根据含14N或15N的DNA离心后的位置,⑤为亲代、②为子一代 C.若出现图中③的结果(带宽比3∶1),则亲代DNA进行了3次复制 D.研究DNA的复制方式采用的是假说—演绎法,本实验是演绎的环节
教材素材变式
第一代细菌DNA离心后,试管中出现1条中带,说明DNA复制方式一定不是全保留复制,可能为半保留复制或分 散复制,A错误;若DNA复制方式为全保留复制,则第二代细菌DNA离心后,试管中会出现1条重带和1条轻带,与 题图信息不符,B错误;若DNA复制方式为分散复制,则第一代和第二代细菌DNA离心后,试管中只出现1条中带, 与题图信息不符,C错误;若DNA复制方式为半保留复制,继续培养至第三代,得到的子代DNA分子离心后,试管 中会出现1条中带和1条轻带,D正确。
教材素材变式
4 下列关于人脸识别技术的原理以及该技术的可行性的表述,不正确的是 A.使用人脸识别技术的前提是每个人都具有独一无二的面部特征 B.人脸识别技术的原理是遗传物质DNA分子具有多样性和特异性 C.DNA分子的多样性是指一个DNA分子上有许多个基因 D.指纹开锁技术与人脸识别技术的原理相同
教材素材变式
答案
7.D 解题关键: (1)如果DNA的复制方式为全保留复制,则一个亲代15N/15N-DNA分子在含14NH4Cl的培养液中复制一次后,形成 的两个子代DNA分子为15N/15N-DNA和14N/14N-DNA,离心后,试管中出现一条轻带、一条重带;如果DNA的复 制方式为半保留复制,则一个亲代15N/15N-DNA分子在含14NH4Cl的培养液中复制一次后,形成的两个子代DNA 分子都是15N/14N-DNA,离心后,试管中出现一条中带;如果DNA的复制方式为分散复制,则一个亲代15N/15NDNA分子在含14NH4Cl的培养液中复制一次后,形成的子代DNA分子离心后,试管中出现一条中带。 (2)如果DNA的复制方式为全保留复制,则一个亲代15N/15N-DNA分子在含14NH4Cl的培养液中复制2次后,得到 的4个DNA分子中,其中一个是15N/15N-DNA,另外3个是14N/14N-DNA,离心后,试管中出现一条重带、一条轻带; 如果DNA的复制方式为半保留复制,则一个亲代15N/15N-DNA分子在含14NH4Cl的培养液中复制2次后,得到的4 个DNA分子中,其中2个DNA分子是15N/14N-DNA,另外2个DNA分子是14N/14N-DNA,离心后,试管中出现一条中 带、一条轻带;如果DNA的复制方式为分散复制,则一个亲代15N/15N-DNA分子在含14NH4Cl的培养液中复制2 次后,得到的4个DNA分子离心后,试管中只有一条中带。

5真核生物的遗传分析

5真核生物的遗传分析

C/C0=1/2 时,也就是单链 50% 复
性时,则方程: C 1 1 1 因此, C0t 1 C0 2 1 kC0t k 2 如果基因组中每一种基因只有一个(单拷贝),那么基因组愈 大则基因组的复杂性愈大,复性速率愈小。C0t1/2与非重复序列 的基因组大小呈正比。
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
基因组A的C0t 1
2
基因组B 的C0t 1
2 = 基因组A的核苷酸对数 基因组B的核苷酸对数
C0t1/2与基因组的大小成正比。其中poly(U)+poly(A),其kC0t1/2=1 对核苷酸,因而复性最快;MS2是RNA噬菌体。 不同生物基因组的C0t1/2不同,除了决定于基因组的大小之外,还 取决于每个基因的核苷酸序列的重复次数。重复次数愈少则复性 愈慢,C0t1/2的位置愈后。
真核生物的遗传分析
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
5.1
真核生物的基因组
5.1.1 C值悖理(C值佯谬)
物种的C值(单倍体所含DNA量)及其进化复杂性之间没有严格的对应关系。
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
单位:pg
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
5.1.3.2 中度重复序列 重复单位平均长度约300bp,重复次数为10~102,如人的珠蛋白(血红蛋白) 基因,包含8个珠蛋白功能基因和3个珠蛋白假基因(中度重复序列),还有 一个近年发现的基因。 另一类重复序列的重复次数为
103~105 ,该序列常以回文序列
方式出现在基因组的许多位置上。 回文序列中间有的存在单拷贝序

2022届高考生物一轮复习第6单元遗传的分子基础第3讲基因的表达教案新人教版必修2

2022届高考生物一轮复习第6单元遗传的分子基础第3讲基因的表达教案新人教版必修2

第3讲 基因的表达1.遗传信息的转录和翻译(Ⅱ)2.基因与性状的关系(Ⅱ)1.结合DNA 双螺旋结构模型,阐明DNA 分子转录、翻译的过程(生命观念)2.运用中心法则,阐明DNA 分子上的遗传信息通过RNA 指导蛋白质合成的过程(科学思维)3.结合实例分析基因表达的异常情况(社会责任)考点一 遗传信息的转录和翻译1.RNA 的结构和种类 (1)基本单位:核糖核苷酸。

(2)组成成分:(3)结构:一般是单链,长度比DNA 短;能通过核孔从细胞核转移到细胞质中。

(4)种类及功能:⎩⎪⎨⎪⎧信使RNA mRNA :蛋白质合成的模板转运RNA tRNA :识别并转运氨基酸核糖体RNA rRNA :核糖体的组成成分(5)DNA 与RNA 的区别:物质组成结构特点五碳糖特有碱基 DNA 脱氧核糖 T(胸腺嘧啶) 一般是双链 RNA核糖U(尿嘧啶)通常是单链2.遗传信息的转录(1)概念:以DNA的一条链为模板,按碱基互补配对原则合成RNA的过程。

(2)转录过程(见图):3.遗传信息的翻译(1)概念:游离在细胞质中的各种氨基酸,以mRNA为模板合成具有一定氨基酸顺序的蛋白质的过程。

(2)密码子①概念:mRNA上3个相邻的碱基决定1个氨基酸,每3个这样的碱基称为1个密码子。

②种类:64种,其中决定氨基酸的密码子有61种,终止密码子有3种。

③密码子的统一性:地球上几乎所有的生物体共用一套遗传密码。

密码子的统一性说明了各种生物都有一定的亲缘关系。

④密码子的简并性:多种密码子编码同一种氨基酸的现象。

密码子简并性的意义:一方面增强了容错性,减少蛋白质或性状的差错,另一方面有利于提高翻译的效率。

(3)翻译过程起始核糖体与mRNA结合↓运输tRNA识别mRNA上的密码子,并将携带的氨基酸置于特定位置↓延伸—核糖体沿着mRNA移动,读取下一个密码子,由对应tRNA运输相应的氨基酸加到延伸中的肽链上一个mRNA可以结合多个核糖体↓停止—当核糖体到达mRNA上的终止密码时,合成停止↓脱离—肽链合成后从核糖体与mRNA的复合物上脱离总结:翻译需要的6个条件:模板(mRNA)、原料(20种氨基酸)、能量(ATP)、酶、 tRNA、核糖体。

遗传学_第二版_课后答案(1~8章)

遗传学_第二版_课后答案(1~8章)
Hfr a+ b+ str s × F - a - b - str r
40 20 10
MM + a + str
MM + b + str
MM + str
a+ b+ str r(10) a+ b+ str r(10) a - b+ str r(30) a + b- str r(10)
a+ b+ str r
第七章 细菌的遗传分析
6. 测验 5 个点突变(a-e)与下面拓扑图表示的 5 个缺失杂交产生野生型重组 的情况。(+ = 重组,0 = 没有重组)。结果列在表中。确定点突变的顺序。
缺 1 2 3 失 4 5来自ab c d e
0
+ 0 0 0
0
+ 0 + +
+
+ + 0 0
+
0 + 0 0
+
+ 0 0 + a c d e b
第六章 真核生物的遗传分析
• 第6题: • 含1号染色体的克隆B、D不同时有任何酶活性; • 含2号染色体的克隆A、D都有II、IV酶活,而不含 该染色体的克隆都不具有这两个酶的活性,表明 这两个基因定位于2号染色体; • 3号染色体不含上述基因; • 因此只能判断II、IV两个基因定位于2号染色体.
(30+10)/(30+10+10)= 80%
第七章 细菌的遗传分析
12. 大肠杆菌 Hfr gal + lac +(A)与 F — gal — lac —(B)杂交,A 向 B 转移 gal + 比较早而且频率高,但是转移 lac + 迟而且频率低。菌株 B 的 gal + 重组子仍 旧是 F — 。从菌株 A 可以分离出一个突变体称为菌株 C ,菌株 C 向 B 转移 lac +早而且频率高,但不转移 gal + 。在 C × B 的杂交中,B 菌株的 lac + 重 组子一般是 F+ 。问菌株 C 的性质是什么?试设计一个实验分离这个菌株。

第六章 真核生物基因表达

第六章 真核生物基因表达
DNA甲基化能引起染色体结构、DNA构象、DNA稳定性及 DNA与蛋白质相互作用方式的改变从而控制基因表达。
(一)真核生物基因组DNA甲基化
1.真核生物DNA甲基化位点 真核生物DNA的mCpG是DNA甲基化的主要形式
CpG岛: 由于CpG通常成串在DNA双链对称出现,被称为~, mCpG占全部CpG的70%
76,000 ?
52,000 ?
44,000 ?
?
?
?
?
普遍 淋巴细胞 淋巴细胞 普遍 普遍
▪ 了解启动子及各个元件的特点、信息有 什么作用?
▪ 启动子有没有改造的空间呢?
▪ 双向启动子
▪ 组织特异性启动子
▪ 诱导性启动子
(二)增强子
增强子(enhancer):又称为远上游序列,位于转录起始位点
人类基因组中免疫球蛋白基因主要片段的数量比较
V、C和J基因片段在胚胎细胞中相隔较远。编码产生免疫球蛋白的细胞,发育 分化时,通过染色体内DNA重排把4个相隔较远的基因片段连接在一起,产生 具有表达活性的免疫球蛋白基因。
▪ 酿酒酵母接合型:
▪酵母细胞通 过交换型转 换过程改变 自己的性别。 MATa或 MATα基因 座位两侧分 别存在两个 MAT样基因 HMLα和 HMRa沉默 交配型盒。
(3)DNA去甲基化位点的特点
① DNA去甲基化位点范围和DNA酶I优先敏感区域十分 吻合
②只有一小部分CG二核苷酸对的去甲基化与基因激活有关, 它们位于对基因表达关系十分密切的序列中
▪ (4) DNA甲基化/去甲基化对基因活性调控的相对性 ① DNA甲基化程度因物种而异
DNA甲基化随进化程度的提高而增强
的上游,它们不是启动子的一部分,但能增强或促进转录的

遗传学_第二版_课后答案

遗传学_第二版_课后答案

幻灯片 1习题参考答案第四章第五章幻灯片2第四章孟德尔式遗传分析2. 在小鼠中,等位基因 A 引起黄色皮毛,纯合时不致死。

等位基因 R 可以单独引起黑色皮毛。

当 A 和 R 在一起时,引起灰色皮毛;当 a 和 r 在一起时,引起白色皮毛。

一个灰色的雄鼠和一个黄色雌鼠交配,F1 表型如下:3/8 黄色小鼠, 3/8 灰色小鼠, 1/8 黑色小鼠, 1/8 白色小鼠。

请写出亲本的基因型。

A_R_A_rrAaRrAarraaR_aarrA_rrA_R_幻灯片3第四章孟德尔式遗传分析3. 果蝇中野生型眼色的色素的产生必需显性等位基因 A。

第二个独立的显性基因 P 使得色素呈紫色,但它处于隐性地位时眼色仍为红色。

不产生色素的个体的眼睛呈白色。

两个纯系杂交,结果如下:AaXPXp AaXpY解释它的遗传模式,并写出亲本、F1 和F2 的基因型。

A/a 位于常染色体上,P/p 位于X染色体上;基因型aa 的个体眼睛呈白色,基因型A_XP_ 的个体眼睛呈紫色,基因型A_XpXp、A_XpY 的个体眼睛呈红色。

幻灯片4第四章孟德尔式遗传分析4. 一条真实遗传的棕色狗和一条真实遗传的白色狗交配,所有F1 的表型都是白色的。

F1 自交得到的 F2 中有 118 条白色狗、32 条黑色狗和 10 条棕色狗。

给出这一结果的遗传学解释。

分析: 子二代分离为 12:3:1,可看作9:3:3:1 的衍生,白色与有色(黑 + 棕)之比 3:1 ,而在有色内部,黑与棕之比也是 3:1,表明遗传很有可能涉及有两对基因之差。

假设: 1. 基因 A 控制白色,即基因型A_B_、A_bb 为白色。

2. 有显性基因 A 时,B(黑色)和 b(棕色)不表现显隐性关系;3. 无显性基因 A 即 aa 时, B(黑色)和 b(棕色)表现显隐性关系。

P 棕色×白色F1 白色118 32 10F2 12白色 : 3黑色 : 1棕色aabb AABBAaBbA_B_ A_bb aaB_ aabb在此,显性基因A 对另一显性基因B 是上位性的。

第六章 真核生物的遗传分析

第六章 真核生物的遗传分析

第六章真核生物遗传分析一、名词解释1、C值悖理(C—value paradox):生物基因组的大小同生物在进化上所处的地位及复杂性之间无严格的对应关系,这种现象称为C值悖理。

2、N值悖理(N value paradox):物种的基因数目与生物进化程度或生物复杂性的不对应性,这被称之为N值悖理。

3、同源重组(homologous recombination):同源重组的发生依赖于大范围的DNA 同源序列的联会,主要利用两个DNA分子序列的同源性识别重组对象,负责DNA配对和重组的蛋白质因子没有碱基序列的特异性,只要两条DNA序列相同或接近,重组就可以在此序列中的任何一点发生,重组中两DNA分子相互交换对等的结构部分。

4、位点专一性重组(site-specific recombination):这类重组依赖于小范围的同源序列联会;重组事件只涉及特定位置的短同源序列,或仅涉及特定的碱基序列,重组时发生精确的切割和连接反应,DNA不丢失、不合成,重组发生在特殊位点上,此位点含有短同源序列,有位点专一性的蛋白因子催化。

两个DNA分子并不交换对等的序列部分,而往往是一个DNA分子整合到另一DNA分子中,因此这种重组又叫做整合式重组5、基因共转变(coconversion):基因转变不仅是专一的,而且是有方向的,它不仅涉及单个位点(或基因座),而且涉及染色体的一个区段,如一对含有两个基因差异的突变型杂交时,在某些子囊中可以发生几个基因同时发生转变的现象,称为基因共转变6、末端连接(end-joining):是指断裂的DNA末端彼此相连。

7、链滑动(strand-slippage):是指DNA复制时,由一个模板跳跃到另一个模板所引起的重组。

8、异源双链DNA(heteroduplex DNA):发生重组时,在重组处每个双链都有一段区域是由亲本DNA分子的各一条链组成,该区域称为异源双链DNA。

9、基因转变(gene conversion):由于异源双链DNA区段不对称碱基对的不同修复过程导致一个基因转变为它的等位基因,称为基因转变。

遗传第六七章习题答案

遗传第六七章习题答案

遗传第六七章习题答案第六章非孟德尔遗传一、名词解释1、非孟德尔遗传:生物性状的遗传不符合经典孟德尔遗传方式的现象。

2、细胞质遗传:由细胞质内的基因即细胞质基因所决定的遗传现象和遗传规律。

3、母性遗传:指性状以母性方式在上下代间进行传递的遗传方式。

不论正交还是反交,F1性状总是受母体(卵细胞)细胞质基因控制,杂交后代不出现一定的分离比。

4、母性影响:又称母性效应,指子代某一性状的表现由母体的核基因型或积累在卵子中的核基因产物所决定,而不受本身基因型的支配。

5、核外遗传:由核外DNA所控制的性状的遗传方式。

6、表观遗传:基因表达的改变不依赖于DNA核苷酸序列的改变,而是受DNA的甲基化,组蛋白修饰以及非编码RNA等的作用,而且这种改变能通过细胞的有丝分裂或减数分裂向后代遗传的现象。

7、核基因组:存在于细胞核上位于染色体上的基因。

8、细胞质基因组:所有细胞器和细胞质颗粒中遗传物质的总称。

9、细胞器基因组:是细胞维持正常生命活动不可缺少的细胞质基因,是细胞器的正常遗传组分,有线粒体基因组和叶绿体基因组。

10、非细胞器基因组:是细胞内非必需组分的基因组,能赋予细胞某种特有的性状或特征,是真核细胞内的内共生体。

11、阈值效应:当突变的mtDNA达到一定比例时,才有受损的表型出现。

当线粒体中ATP产生减少,低于维持各组织,器官正常功能所需能量的最低值时,临床症状就会表现。

12、雄性不育:雄蕊发育不正常,不能产生有正常功能的花粉,但是它的雌蕊发育正常,能接受正常花粉而受精结实。

分为:核不育型、细胞质不育型。

质核互作不育型等三种类型。

13、短暂的母性影响:母本基因型对子代的影响仅体现在子代个体生长发育的幼龄期。

14、持久的母性影响:影响子代个体的终生。

15、基因组印记:父本来源和母本来源的等位基因的表达不同,来自一个亲本的等位基因沉默,而来自另一个亲本的等位基因则表达,这种后代中来自亲本的两个等位基因只有一个表达的现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⑤同一种属中不同个体的高度重复顺序的重复次数 不一样,这可以作为每一个体的特征,即DNA指 纹。
⑥卫星 DNA 成簇的分布在染色体着丝粒附近,可能 与减数分裂时染色体配对有关,即同源染色体之 间的联会可能依赖于具有染色体专一性的特定卫 星DNA顺序。
第二节 真菌类的四分子分析与作图
一、顺序四分子的遗传分析 二、非顺序四分子的遗传分析
③参与转位作用
几乎所有转位因子的末端都包括反向重复顺序, 长度由几个bp到1400bp,形成回文结构,在转位 作用中既能连接非同源的基因,又可以被参与转 位的特异酶所识别。
④与进化有关 不同种属的高度重复顺序,具有种属特异性,但 相近种属又有相似性。
如:人与非洲绿猴的α卫星 DNA长度仅差1个碱基 (前者为171 bp,后者为172bp),而且碱基序列 有65%是相同的,表明它们来自共同的祖先。
真核生物的基因组比较庞大
人:基因组共有3.16×109 bp 按1000个碱基编码一种蛋白质计算,理论上应有约 300万个基因,实际大约只有2.5万个。
非结构基因的DNA序列的功能? C值巨大差异在进化中的意义?
对C值悖理的解释
Petroy:
各种生物基因组的大小是由于基因组中长期积累 起来的过量非编码DNA被清除的速率不同所造成 的结果,即DNA丢失的速率愈慢,基因组DNA含 量越高。
一、顺序四分子的遗传分析
(一)四分子与8子囊孢子
2. 八子囊孢子:四分子
1.四分子(tetrad):脉孢菌减数 经一次有丝分裂,每
分裂形成的4个单倍体子囊孢 一成熟子囊中含8个
子在一起,称为四分子。
孢子。
3. 顺序四分子(ordered tetrad)
由于脉孢霉子囊非常狭窄,以致纺锤体不能重叠, 减数分裂所产生的四分子只能纵立于其长轴之中顺 序直线排列,称为顺序四分子。
生物的复杂性不能仅用基因数目衡量,而应该 用整个基因组的理论上的转录物组衡量。
三、真核生物基因组DNA序列的复杂度
单拷贝序列 中度重复序列 高度重复序列 ♣重复序列的检测方法: 通过复性动力学检测基因组DNA序列的复杂性。
即通过DNA的变性和复性反应的动力学过程分析 DNA序列的性质。
如果基因组中每一种基因只有一个,即都是单拷 贝序列,那么基因组愈大则基因组的复杂性愈大, 复性速率愈小。
第六章 真核生物的遗传分析
第一节 真核生物基因组
一、C值悖理 二、N值悖理 三、真核生物基因组DNA序列的复杂度
一、C值悖理
♣ 基因组(genome):一个物种单倍体的染色
体数目及其所携带的全部基因称为该物种的基 因组。
含有一个染色体组的细胞
6-1 25000
♣ C值 (C Value) :一个物种单倍体基因组的DNA含
真菌的生活史
• 单倍体世代:
无性繁殖(为主)
• 二倍体世代:
有性繁殖(短暂)
无性繁殖:
成熟子囊孢子(n,性 孢子)萌发→有丝分 裂→菌丝体
有性繁殖: 两亲本必须是不同交配型A, B,各自的无性子囊孢子落在 不同交配型子实体的受精丝 上→核融合→2n核。
二倍体时期非常短暂,很快进行减数分裂→四分子 →有丝分裂→8个单倍体子囊孢子→顺序地排列在一 个子囊中:一个子囊中的8个孢子是单一减数分裂的 产物。
C值悖理表现在两个方面
★ 结构与功能相似的同一类生物之间的C值差别很
大,或低等生物的C值较高等生物的C值高很多 ;
两栖类、被子植物不同种之间C值差异很大;
肺鱼比人C值高出100倍 ↑
★与预期的编码蛋白质的基因数目相比,基因组
DNA的Байду номын сангаас量过多。

C值悖理现象
真核生物基因组必然存在大量不编码基因产物的DNA序列?
二、N值悖理
N值(N value): 一个物种基因组的基因数目称
为N值。
人:2.5万
果蝇:1.4万
线虫: 2.0万
N值悖理(N value paradox):
生物的基因数目与生物在进化树上的位置不存在 正相关的事实称为N值悖理,或N值佯谬。
N值悖理现象说明: 生物体的复杂性不仅仅是基因数目的函数,随着生 物复杂性的增加,基因的大小和基因结构的复杂性 亦增加。 如:复杂的生物存在机制能使一个基因产生多个蛋 白质分子,满足生理功能的需要。
真核生物DNA序列的类别
1. 单拷贝序列(unique sequence) :
亦称非重复序列(nonrepetitive sequence), 在一个 基因组中只有一个拷贝或2-3个拷贝。
结构基因大多是单拷贝; 单拷贝基因具高度表达能力; 不是所有单拷贝序列都编码多肽链。
2. 中度重复序列(moderately repetitive sequence) :
大部分集中在异染色质区; 复性速度很快; 无转录能力; 多数高等真核生物含20%以上高度重复序列; 重复序列的确切生物学意义有待阐明。
高度重复顺序的功能
① 维持染色体结构 许多反向重复序列是一些蛋白质与DNA的结合位点。
②调节基因表达 参与基因表达调控的DNA的重复顺序可以转录到核 内不均一RNA(hnRNA)分子中,并形成发夹结构, 这对稳定RNA分子,使其免遭分解有重要作用。
量是相对恒定的,它通常称为该物种DNA的C值。
☻ C值是生物种的一个特征,不同生物之间差别很大。 ☻ 生物结构和功能复杂程度增加,需要的基因数目和基 因产物的种类也越多,因而C值越大。
最小的C值:支原体(106bp) 最大的C值:显花植物、两栖动物(1011bp)
显花植物 哺乳类 两栖类 硬骨鱼类 软骨鱼类

7-1不同门类生物的C值分布 (仿B. Lewin, 2000) Go
♣ C值悖理(C value paradox):
C值的大小不能完全说明生物进化的程度和遗传复 杂性的高低,即物种的C值和它进化复杂性之间没 有严格的对应关系,这种现象称为C值悖理,或C 值佯谬。
高等生物的C值不一定高于比它低等的生物
中度重复序列中的重复单位平均长度约300bp,重
复次数为10~102。
多为非编码序列,也有编码基因产物的,如人珠蛋白基因; 复性速度比单拷贝顺序快,比高度重复顺序慢。
3. 高度重复序列(highly repetitive sequence): 在基因组中的拷贝数一般在106以上。通常这些序列 的长度为6~200bp,如卫星DNA。
相关文档
最新文档