前方交会
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前方交会
前方交会
在两个已知点以上分别对待定点相互进行水平角观测,并根据已知点的坐标及观测角值计算出待定点坐标的方法。
后方交会
在待定点上向至少三个已知点进行水平角观测,并根据三个已知点的坐标及两个水平角值计算待定点坐标的方法。
翠华山
2.1 奇石(崩积体与巨砾)
甘湫池和水湫池旁,崩积物的总量可达3亿立方。
大块砾石以山体崩裂处向下,堆积成巨大的崩积体。
有一块巨砾的长、翠华山山崩奇观宽、高分别达60米、40米、30米。
当地有人将房子直接建在巨砾上,稳如磐石,这些山崩砾石沿沟谷堆积,形成大面积的砾石斜坡。
一坡巨石前挤后拥,似有翻滚奔腾之势;从高处俯视,砾石奇形怪状,或立或卧,或直或斜,千姿百态,嶙峋峥嵘,甚为壮观。
山崩时,巨大的砾石在崩落过程中,有时会沿节理断开。
水湫池旁,就有一砾石被锯齿状节理分为两块,犬牙交错的破裂面甚为典型。
风洞下面的玄关,是两块高30余米的巨砾之间的一道狭缝,缝宽仅数米。
这也可能是巨砾断开所形成的狭窄通道。
2.2 奇洞--冰洞与风洞
山崩时,巨大的砾石相互碰撞、挤压、垒叠,在巨砾间留下许多幽深的缝隙。
冰洞和风洞就是这类缝隙中最特殊的两种。
冰
洞和风洞位于翠华峰崩积体的上部,海拔约1200米。
冰洞较深,洞内地势低陷,形成形状不规则的外洞与内洞。
由于缺少与洞外进行冷暖空气交换的条件,因而洞内外夏季温差可达到23℃以上,外洞阴冷,内洞结冰常年不化。
风洞是由两块巨大砾石呈“人”字形相互支撑而形成的狭长缝隙。
洞呈狭长的三角形,长30余米,高15米。
洞内常年不见阳光,气流经过时,速度加快,风力变小。
游人进入洞内,便觉凉风嗖嗖。
2.3 奇景-残风断崖
翠华峰与甘湫峰是山崩破坏最严重的两座小峰。
翠华峰海拔1414米,周围耸立着一座座山崩后留下的残峰。
这些残峰规模不大,尖角突出,直指苍穹,构成一幅奇特的花岗岩峰岭地貌景观。
在翠华峰旁有一孤立残峰,四壁如削,傲然耸立,气势不凡。
翠华峰侧的断崖峭壁高约200米,十分险峻,这里是山崩源地之一,大量崩塌积物就堆积在断崖下面。
甘湫峰海拔2145米,这里也是山崩源之一。
在这里,一条1500多米,宽260-900米,高400多米的山体,近南北方向就地崩塌,形成巨大的崩积体。
翠华山的悬崖峭壁几乎随处可见。
鹰崖瀑布正是在60余米高的断崖面上人工引水而形成的珠帘式瀑布。
2.4 奇湖-堰塞湖
天池堰塞湖、甘湫池堰塞湖和大坪堰塞湖。
山崩地质形迹和地貌类型保存齐全,特别是山崩凌空面及冰风洞以北的崩塌石海区由于巨石相互叠置,高低错落,植被茂密,通达性极差,加之
石体本身的耐受性,遗迹保存的更加完好。
山崩后山谷两侧形成的垂直断裂面,犹如刀削过一样,光滑陡峭,十分险要,气势及其磅礴。
天然大坝堵截了太乙河上游的山间流水,在坝后1公里处,形成一个面积为0.14平方公里的天然湖泊—堰塞湖。
可划船、垂钓等。
此湖有“秦岭明珠”之称,为秦岭72峪唯一一处堰塞湖,烟波浩渺,云蒸霞蔚,蔚为壮观。
山崩巨石与天池湖光相融,碧峰绿水,奇石异洞,构成一幅人间仙境。
当地群众称其为“天池”、“水湫池”、“翠华湖”、“太乙池”等。
在太乙河上游源头,还有一个堰塞湖—甘湫池。
甘湫池位于甘湫峰下,面积0.2平方公里,由于水源不足,池水严重渗透,现已成干涸之湖,故名甘湫池。
甘湫池一带山崩堆积物规模更大,山崩堆积体厚达500多米。
据初步测算,整个翠华山山崩堆积物总体积达3亿立方米,山崩遗迹分布范围约5.2平方公里;目前初步开发范围
1.5平方公里,主要集中在天池周围。
2.5 山崩天然博物馆
翠华山山崩形成的各种特殊地貌在中国十分罕见,因而被地学工作者誉为:“山崩天然博物馆”。
黄土
由风搬运沉积的第四纪陆相粉砂质富含碳酸钙的土状沉积物。
第四纪形成的陆相黄色粉砂质土状堆积物。
黄土的粒径从>0.005毫米~<0.05毫米,其粒度成分百分比在
不同地区和不同时代有所不同。
它广泛分布于北半球中纬度干旱和半干旱地区。
黄土的矿物成分有碎屑矿物、粘土矿物及自生矿物3类。
碎屑矿物主要是石英、长石和云母,占碎屑矿物的80%,其次有辉石、角闪石、绿帘石、绿泥石、磁铁矿等;此外,黄土中碳酸盐矿物含量较多,主要是方解石。
粘土矿物主要是伊利石、蒙脱石、高岭石、针铁矿、含水赤铁矿等。
黄土的化学成分以SiO2占优势,其次为Al2O3 、CaO,再次为Fe2O3、MgO、K2O 、Na2O、FeO、ΤiO2和MnO等。
黄土的物理性质表现为疏松、多孔隙,垂直节理发育,极易渗水,且有许多可溶性物质,很容易被流水侵蚀形成沟谷,也易造成沉陷和崩塌。
黄土颗粒之间结合不紧,孔隙度一般在40%~50%。
黄土是指原生黄土,即主要由风力作用形成的均一土体;黄土状沉积是指经过流水改造的次生黄土。
中国北方新生代晚期土状堆积物中常见有古土壤分布,尤以黄土高原地区黄土中最为普遍。
在黄土古土壤层下部的白色钙质淀积层常以结核形式表现出来。
钙结核的形状有长柱状、不规则树枝状及圆球状等,一般长15~25厘米,宽5~10厘米。
黄土在北半球各大陆均有分布,以中国北方的黄土最为典型,在黄河中游构成了著名的黄土高原。
中国黄土的分布区介于北纬34°~45°之间,呈东西向带状分布,位于北半球中纬度沙漠-黄土带东南部。
黄土分布还与东西向山脉的走向大体一致,昆仑山、秦岭、泰山一线以北黄土分布广泛。
中国黄土的总面积为380840平方千米,黄土状沉积的总面积为254440平方千米。
其
中黄河流域黄土面积为317600平方千米。
黄土的厚度各地不一,陕西泾河与洛河流域的中下游地区,最大厚度可达180~200米。
中国黄土物质主要来自里海以东北纬35°~45°的内陆沙漠盆地地区。
沙漠盆地中的上升气流将粉尘颗粒输送至高空,进入西风环流系统,随着西风带的高空气流自西向东、东南飘移,至东经100°以东的地区发生大规模沉降。
堆积起来的粉尘颗粒,由于生物化学风化作用,发生次生碳酸盐化形成黄土。
黄土是优质的土壤。
它不仅具备土壤腐殖层、淋溶层、淀积层三层的分层特征,还有其他土壤所不具备的独特品质。
黄土是一种很肥沃的土层,对农业生产极为重要。
但植被稀少,水土流失,给农业生产和工程建设都造成严重的危害,需要科学治理。
黄土是距今约200万年的第四纪时期形成的土状堆积物。
典型的黄土未黄灰色或棕黄色的尘土和粉沙细粒组成,质地均一,含多量钙质或黄土结核,多孔隙,有显著的垂直节理,无层理,在干燥时较坚硬,被流水浸湿后,通常容易剥落和遭受侵蚀,甚至发生坍陷。
黄土主要分布于世界大陆比较干燥的中纬度地带。
全世界黄土分布的总面积大约有1300万平方公里。
我国的黄土的分布,西起甘肃祁连山脉的东端,东至山西、河南、河北交接处的太行山脉,南抵陕西秦岭,北到长城,包括陕西、山西、宁夏、甘肃、青海等五个省区的220多个县市,面积达54万平方公里,占全国土地面积的百分之六。
我国西北的黄土高原是世界上规模最大的黄土高原,华北的黄土平原是世界上规模
最大的黄土平原。
黄土是在干旱气候条件下形成的特种土,一般为浅黄、灰黄或黄褐色,具有目视可见的大孔和垂直节理。
在中国,黄土主要分布在北纬30°~48°间自西而东的条形地带上,面积约64万平方公里。
其中山西、陕西、甘肃等省,是典型的黄土分布区,分布面积广,厚度大,各个地质时期形成的黄土地层俱全。
黄土的厚度各地不一,从数米至数十米,甚至一、二百米。
中国黄土的分布面积,比世界上任何一个国家都大,而且黄土地形在中国发育得最为完善,规模也最为宏大。
中国西北的黄土高原是世界上规模最大的黄土高原;华北的黄土平原也是世界上规模最大的黄土平原。
中国黄土总面积达63.1万平方公里,占全国土地面积的6%。
从地理位置来看,中国的黄土主要分布在北纬40°以南的地区,位于大陆的内部、西北戈壁荒漠以及半荒漠地区的外缘。
从区域来看,中国的黄土主要分布于广大西北地区的黄土高原以及华北平原和东北的南部。
黄土高原的面积约占全国黄土分布总面积的70%以上,黄土层的厚度一般都达100米以上,其中陕北和陇东的局部地区达150米,在陇西地区可超过200米。
具体地说,黄土主要分布于甘肃的中部和东部,陕西的中部和北部,内蒙古伊克昭盟的南部和西部,山西的大部分,河南的北部、西部及西北部,山东西部以及辽宁山地一带。
华北平原的黄土则多被埋藏在较深的冲积层的下部。
总之,在长城以南,秦岭以北,西迄青海东部,东至海边的整个黄
河流域都有黄土分布。
在长城以北,黄土就逐渐消失。
此外值得注意的是,天山北麓、昆仑山麓、祁连山麓也有黄土分布。
一般认为中国黄土的分布南止秦岭,但事实上在宝鸡以南,秦岭中的凤县、双石铺一带,再南至柴关岭也都有黄土分布。
即使在汉中盆地或向东到大别山北坡、江苏北部,甚至南京附近以及长江流域的某些地区也有零星的黄土分布.
中国黄土的特性
黄土是最新的地质时期(距今约200万年左右的第四纪时期)形成的土状堆积物,所以其性质比较疏松、特殊。
典型的黄土为黄灰色或棕黄色的尘土和粉沙细粒组成,质地均一,以手搓之易成粉末,含多量钙质或黄土结核,多孔隙,有显著的垂直节理,无层理,在干燥时较坚硬,一被流水浸湿,通常容易剥落和遭受侵蚀,甚至发生坍陷。
所以在黄土地区进行各种工程建设时,如果对黄土的特性不了解,往往会给工程带来严重的损失和破坏。
因此,黄土的特性很早就引起了科学工作者和工程技术人员的注意,并在长期的实践和研究中,已经把黄土的主要特性归结为5个方面。
1.多孔性
由于黄土主要是由极小的粉状颗粒所组成,而在干燥、半干燥的气候条件下,它们相互之间结合得很不紧密,一般只要用肉眼就可以看到颗粒间具有各种大小不同和形状不同的孔隙和孔洞,所以通常有人将黄土称为大孔土。
一般认为黄土的多孔性与
成岩作用、植物根系腐烂和水对黄土的作用等有关,更重要的是与特殊的气候条件有关。
典型的黄土孔隙度较高,而黄土状岩石的孔隙度较低。
2.垂直节理发育
当深厚的黄土层沿垂直节理劈开后,所形成的陡峻而壮观的黄土崖壁是黄土地区特有的景观。
垂直节理发育,就是典型黄土和黄土状岩石所具有的普遍而特殊的性质。
关于黄土垂直节理的成因,曾引起许多学者的兴趣。
目前较多的人认为,垂直节理的形成主要是由于黄土在堆积加厚的过程中受重力的影响,土粒间的上下间距变得愈来愈紧密,而土粒间的左右间距却保持原状不变。
这样水和空气即沿着抵抗力最小的上下方向移动,也就是说沿着黄土的垂直管状孔隙不断地作升降运动并反复进行,这就造成了黄土垂直节理发育的倾向。
3.层理不明显
凡是沉积岩一般都应该具有层理,因为任何成因的沉积岩的形成都必须经过沉积物逐步堆积的过程。
黄土既然也属于沉积岩的范畴,为什么层理却不明显或不清楚呢?很多学者把黄土无层理或层理不明显,作为黄土风成的标志,而有层理的黄土则认为是水成的依据。
如今,有人提出黄土无论是风成的,还是水成的都应具有层理,其层理之所以不明显,主要是由于在观察过程中,人们的注意力主要集中在黄土的孔隙性和垂直节理的显著特征上,忽视了对层理的研究;其次,黄土的组成物质主要是
尘土质物质,它在渐次堆积过程中,形成非常薄的层理,用肉眼观察是很不明显的;另外,黄土崖壁经过不断的雨水淋洗后,常常使表层黄土成泥浆糊状物涂于整个崖壁表面,因而从外观来看,就再也看不清层理了,就像砖砌的墙壁经过泥浆的粉刷再也看不到砖缝一样。
这种说法是有一定道理的。
4.透水性较强
一般典型的黄土透水性较强,而黄土状岩石透水性较弱;未沉陷的黄土透水性较强,沉陷过的黄土透水性较弱。
黄土之所以具有透水性,这是和它具有多孔性以及垂直节理发育等结构特点分不开的。
黄土的多孔性及垂直节理愈发育,黄土层在垂直方向上的透水性愈高,而在水平方向上的透水性则愈微弱。
此外,当黄土层中具有土壤层或黄土结核层时,就会导致黄土层的透水性不良,甚至产生不透水层。
5.沉陷性
黄土经常具有独特的沉陷性质,这是任何其他岩石较少有的。
黄土沉陷的原因多种多样,只有把黄土本身的性质与外在环境的条件结合起来考虑时,才能真正了解黄土沉陷的原因。
粉末性是黄土颗粒组成的最大特征之一。
粉末性表明黄土粉末颗粒间的相互结合是不够紧密的,所以每当土层浸湿时或在重力作用的影响下,黄土层本身就失去了它的固结的性能,因而也就常常引起强烈的沉陷和变形。
此外,黄土的多孔性,大气降水和温度的变化以及人为的影响,对黄土中可溶性盐类的溶解和
黄土沉陷的数量与速度都有着极大的影响。
黄土的上述五种特性并不是互不相干的,而是相互影响,互为作用的,所以对黄土的特性必须全面综合地加以研究。
黄土是在干旱气候条件下形成的特种土,一般为浅黄、灰黄或黄褐色,具有目视可见的大孔和垂直节理。
在中国,黄土主要分布在北纬30°~48°间自西而东的条形地带上,面积约64万平方公里。
其中山西、陕西、甘肃等省,是典型的黄土分布区,分布面积广,厚度大,各个地质时期形成的黄土地层俱全。
黄土的厚度各地不一,从数米至数十米,甚至一、二百米。