应变锗的结构参数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章应变Ge空穴能带结构参数
本章基于弛豫Ge 的物理特性,研究应变Ge 的形成机制,并分析应变对Ge能带结构引起的结果,对比应变Si和应变Ge的相同点与不同点。
2.1 应变Ge 形成机理
在元素周期表中,锗(Ge)正好位于金属和非金属之间。在化学上,锗尽管是金属,但却具有许多跟非金属相类似的性质,所以它被称为“半金属”;在物理上,锗的导电能力比普通非金属强,但却弱于普通金属,所以它被称为“半导体”。锗被称为“稀散金属”,并非因为它在地球上的含量很稀少,而是由于几乎没有比较集中的锗矿。锗的主要用途是作为半导体工业的重要原料。本章将从锗晶体的晶格结构、能带结构、有效质量、状态密度和状态密度有效质量这几方面分别讨论锗的半导体材料特性。
对于Si、Ge等这类半导体来说,它们每个原子与四个最近邻原子都会组成正四面体,所以当它们排成晶体时,其结构必定是以共价四面体为基础来构成的。如图2.1所示,C、Si、Ge晶格都是这种搭接结构,被称为金刚石结构。从图中可以看出,Si、Ge这类金刚石结构是一种典型的复式格子,这种复式格子由两个相同的面心立方,沿着它们体对角线方向错开四分之一对角线的长度套构而成。弛豫Ge的晶格常数是0.56579nm,Si的晶格常数为0.54310nm,由于Ge的晶格常数比Si大,所以Si和Ge能以任意比例形成Si1-xGex固溶体。这种固溶体是合金,并不属于化合物,形成合金后的晶格常数也同样的遵从Vegard定则,如下式。
上式中的x可在0~1 之间任意取值,Si1-xGex固溶体通常被称为体Si1-xGex 或弛豫Si1-xGex,Si和Ge 等半导体的固体物理原胞与面心立方晶体的相同,它们都具有相同的基矢,因此也有相同的倒格子和布里渊区。下图是Ge 的第一布里渊区简图。
硅和锗等半导体都属于金刚石型结构,它们的固体物理原胞和面心立方晶体的相同,两者都有相同的基矢,所以它们有相同的倒格子和布里渊区。图2.2 是Ge 的第一布里渊区简图,Γ为布里渊区中心,坐标为1/a(0,0,0);L 是布里渊区边沿与<111>轴的交点,坐标为1/a(0.5,0.5,0.5);X是布里渊区边沿与<100>轴的交点,坐标为1/a(0,0,1);K 是布里渊区边沿与<11>轴的交点,坐标为1/a(3/4,3/4,0)。大家知道,面心立方晶体的倒格子为体心立方。如果选择体心作为原点,原点和八个临近格点的连线的垂直平分面会形成一个正八面体,原点和沿着立方轴平行方向的六个次近邻的垂直平分面割去八面体的六个角,形成十四面体——截角八面体,那么形成的这个是四面体就是面心立方晶体的第一布里渊区,它的第二布里渊区的形状则更加复杂。
2.1.2 应变Ge 的形成
工程上有许多种产生应变的方法,按照应变的作用方向,应变可以分为单轴应变、双轴应变、张应变和压应变等,在这些文献[2]中作者进行了详细的介绍。使晶格产生应变的方法有很多,本文所建立的是双轴应变的模型,使用的是晶格失配法,下面首先介绍一下全局应变的形成。当在整个衬底上引入应变时,叫做全局应变。全局应变主要包括以下几种:(1) 在弛豫SiGe 上生长应变硅层;( 2 )晶圆焊接;(wafer bonding) ;
(3)SIMOX(separation-by- implantation-of-oxygen) ;(4)SiGe 的氧化富集方法(oxidation enrichment of SiGe)。第一种方法是最为常用的一种方法,本文介绍的就是该方法。
现在我们设定衬底材料的晶格常数为asub,设定外延层材料的晶格常数为aepi。当asub
在模型建立过程中,实际上并不需要知道应力具体的实现方法,只需知道应力的方向、大小,用数学模型即可表示出应力,然后进行计算。本文建立的是双轴应变的模型,使用的是晶格失配法。所谓晶格失配法,就是将一种半导体材料生长到另一种晶格常数不同的材料(称底)上,且只生长很薄的一层。由于上层的材料很薄,无法在称底上保持自己原先的晶格常数,Ge会被拉伸或压缩为与衬底相近的晶格常数,从而产生应变。在本文中,应变Ge生长在弛豫的Si1-xGex衬底上,SiGe的晶格常数比Ge要小,当x=0 时(即纯Si)比Ge 的晶格常数最多小约4%。因此,本文中的应变Ge只会受到双轴的压应变,其方向平行于衬底表面,大小与x 的取值,即衬底中Ge组分的多少有关。由于Si 和Ge的晶体结构、
价带结构十分相似,本文使用了与此文献[3]类似的方法进行计算。其中所不同的是,根据Vegard 规则确定的面内应变的大小要以Ge的晶格常数为基准:
在上式中,Gea为未应变Ge的晶格常数;1 x xSi Gea为称底上体Si1-xGex的晶格常数,1 x xSi Gea是由Si、Ge 的晶格常数线性插值获得。Ge与Si 的不同点还在于计算时的参数
因为Ge的晶格常数比固溶体Si1-xGex的大,在弛豫SiGe 虚衬底上外延生长的Ge 是双轴压应变。如图 2.4 所示,当然SiGe 层也会有略微的张应变产生,但由于衬底有足够的厚度,故这种张应变也就不必在再做考虑。
2.2 应变Ge 能带结构
半导体的能带结构反映了半导体材料的重要特性,同时它也是研究半导体材料电学性质的物理基础。锗的能带结构与硅的不同,下面就对锗与硅的能带结构进行一下对比分析,看一下它们之间的异同点。
2.2.1 Ge 与Si 能带结构的异同点
晶体电子处于晶格周期性势场中,晶格电子的能量E与波矢k 的关系不同于要比自由电子的关系复杂得多,并且它的能量大小还会与波矢的方向有关。为了了解Ge 能带结构的特点,下面将对Ge 与Si晶体的能带结构进行对比分析,找出Ge 和Si之间存在着哪些异同点,尤其是不同点,这恰恰是Ge 的代表特性,也正是因为这些区别于Si的代表特
性,才使得Ge材料有了别的半导体材料所不具备的优势,在半导体行业中受人瞩目。图2.6 和2.7 分别示出了Ge和Si晶体的能带图,能带图中各个状态的代表符号就都是按晶体的对称性来标识的;由于晶体电子的状态要受到晶格周期性势场的限制,所以晶体电子的状态就必须满足相应的晶体对称性的要求。
(1)相同点:
由于两者属于同族元素,晶体结构极为相似,所以它们的能带也具有许多共同之处:首先硅和锗都属于直接带隙,并且它们的禁带宽度都具有负的温度系数;其次硅与锗的价带顶都位于布里渊区中心,并且由于这些半导体的晶格基本上都是由四个共价键构成,属于金刚是结构,因此它们所处的状态都是三度简并的态;第三,当温度为0K 时,价带中由于填满了价电子,此时被称作为满带,而导带中此时却是完全空着的,这时候与绝缘体一样,因为没有载流子不可能产生导电。然而当温度为0K 以上时,一些价电子就可以从满带中被热激发到导带,从而载流子产生,这就是导带电子与价带空穴;并且随着温度升高,载流子因为热激发而产生的数目就会越来越多,因而呈现出所有半导体的共同性质:电导率会随着温度的升高而很快的增大。锗、硅半导体由于具有间接跃迁能带,它们的导带底电子与价带顶空