光致发光实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辐射出光子(或电磁波)的过程。从量子力学理论上,这一过程可以描述为物质吸收光子跃

(Fluorescence)中的一种。

光致发光光谱是一种探测材料电子结构的方法,它与材料无接触且不损坏材料。光直

接照射到材料上,被材料吸收并将多余能量传递给材料,这个过程叫做光激发。这些多余的能量可以通过发光的形式消耗掉。由于光激发而发光的过程叫做光致发光。光致发光的光谱结构和光强是测量许多重要材料的直接手段。光激发导致材料内部的电子跃迁到允许的激发态。当这些电子回到他们的热平衡态时,多余的能量可以通过发光过程和非辐射过程释放。光致发光辐射光的能量是与两个电子态间不同的能级差相联系的,这其中涉及到了激发态与平衡态之间的跃迁。激发光的数量是与辐射过程的贡献相联系的。

光致发光光谱可以应用于:带隙检测,杂质等级和缺陷检测,复合机制以及材料品质

鉴定。

PL光致发光光谱测量系统

PL光致发光光谱测量系统介绍

光致发光(photoluminescence)即PL,是用紫外、可见或红外辐射激发发光材料而产生的发光。PL荧光测量系统是用短波长激光(如325nm/442nm等)激发材料(如GaN/ZnO)产生荧光,通过对其荧光光谱的测量,分析该材料的光学特性。典型应用于LED发光材料、半导体材料的研究。

系统组成:光源系统+分光系统+样品检测系统+数据采集及处理系统+软件系统+计算机系统

★常温系统可升级到低温系统

■ ZLX-PL-Ⅰ型(II型)PL光致发光光谱测量系统

体依赖外界光源进行照射,从而获得能量,产生激发导至发光的现象,它大致经过吸收、能量传递及光发射三个主要阶段,光的吸收及发射都发生于能级之间的跃迁,都经过激发态。而能量传递则是由于激发态的运动。紫外辐射、可见光及红外辐射均可引起光致发光。如磷光与荧

产生激发态的分布按能量的高低可以分为三个区域。低于禁带宽度的激发态主要是分立中心的激发态。关于这些激发态能谱项及其性质的研究,涉及到杂质中心与点阵的相互作用,可利用晶体场理论进行分析。随着这一相互作用的加强,吸收及发射谱带都由窄变宽,温度效应也由弱变强,特别是猝灭现象变强,使一部分激发能变为点阵振动。在相互作用较强的情况下,激发态或基态都只能表示中心及点阵作为一个统一系统的状态。通常用位形坐标曲[1] 线表示。电子跃迁一般都在曲线的极小值附近发生。但是,近年关于过热发光的研究,证明发光也

可以从比较高的振动能级起始,这在分时光谱中可得到直观的图像,反映出参与跃迁的声子结构。接近禁带宽度的激发态是比较丰富的,包括自由激子、束缚激子及施主-受主对等。当

激发密度很高时,还可出现激子分子,而在间接带隙半导体内甚至观察到电子-空穴液滴。激子又可以和能量相近的光子耦合在一起,形成电磁激子(excitonic polariton)。束缚激子的发光是常见的现象,它在束缚能上的微小差异常被用来反映束缚中心的特征。在有机分子晶体中,最低的电子激发态是三重激子态,而单态激子的能量几乎是三重态激子能量的两倍。分子晶体中的分子由于近邻同类分子的存在,会出现两种效应:“红移”(约几百cm)及“达维多夫劈裂”。这两种效应对单态的影响都大于对三重态的影响。能量更高的激发态是导带中的电子,包括热载流子所处的状态。后者是在能量较高的光学激发下。载流子被激发到高出在导带(或价带)中热平衡态的情况,通常可用电子(或空穴)温度(不同于点阵温度)描述它们的分布。实验证明,热载流子不需要和点阵充分交换能量直至达到和点阵处于热平衡的状态即可复合发光,

尽管它的复合截面较后者小。热载流子也可在导带(或价带)内部向低能跃迁。这类发光可以反映能带结构及有关性质。激发态的运动是发光中的重要过程,能量传递是它的一个重要途径。分子之间的能量传递几率很大,处于激发态的分子被看作是激子态。无机材料中的能量传递也非常重要,在技术上已得到应用。无辐射跃迁是激发态弛豫中的另一重要途径。对发光效率有决定性的影光谱学是光学的一个分支学科,研究各种物质的光谱的产生及其同物质之间相互作用。光谱是电磁辐射按照波长的有序排列。根据实验条件的不同,各个辐射波长都具有各自的特征强度。通过光谱的研究,人们可以得到原子、分子等的能级结构、能级寿命、电子的组态、分子的几何形状、化学键的性质、反应动力学...

简史 - 内容 - 分类 - 综述 - 应用

相关文档
最新文档