九年级下学期数学复习试题
广东省广州市白云区太和中学2022-2023学年下学期九年级数学中考复习第一次模拟测试题
![广东省广州市白云区太和中学2022-2023学年下学期九年级数学中考复习第一次模拟测试题](https://img.taocdn.com/s3/m/a23ad992f021dd36a32d7375a417866fb84ac01a.png)
广东省广州市白云区太和中学2022-2023学年第二学期九年级数学中考复习第一次模拟测试题(附答案)一.选择题(满分30分)1.2022的相反数是()A.B.﹣C.2022D.﹣2022 2.2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为()A.47×107B.4.7×107C.4.7×108D.0.47×1093.若分式有意义,则x的取值范围是()A.x>2B.x≤2C.x=2D.x≠24.一组数据:3,4,4,6,若添加一个数据6,则不发生变化的统计量是()A.平均数B.中位数C.众数D.方差5.如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°6.如图,D、E为△ABC边上的点,DE∥BC,,△ADE的面积等于2,则四边形DBCE的面积等于()A.8B.9C.16D.257.如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是()A.10B.8C.6D.48.某工厂今年元月份的产量是50万元,3月份的产值达到了72万元.求2、3月份的产值平均增长率,设这两个月的产值平均月增长率为x,依题意可列方程()A.72(1+x)2=50B.50(1+x)2=72C.50(1﹣x)2=72D.72(1﹣x)2=509.将4个数a、b、c、d排成2行、2列,两边各加一条竖直线记成,定义=ad ﹣bc.例如=8×5﹣9×3=40﹣27=13.则方程=﹣9的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根10.如图,点A是y轴正半轴上的一个定点,点B是反比例函数(x>0)图象上的一个动点,当点B的纵坐标逐渐增大时,△OAB的面积将()A.逐渐增大B.不变C.逐渐减小D.先增大后减小二.填空题(满分18分)11.分解因式:x2﹣9y2=.12.正五边形的一个内角是度.13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后不放回,再随机摸取一个小球,则两次取出的小球标号的和等于5的概率为.14.在同一坐标系中,图形a是图形b向上平移3个单位长度,再向左平移2个单位得到,如果图形a中A点的坐标为(4,﹣2),则图形b中与A点对应的A'点的坐标为.15.已知直线y1=x,,的图象如图,若无论x取何值,y总取y1、y2、y3中的最小值,则y的最大值为.16.如图,正方形ABCD中,AB=1,连接AC,∠ACD的平分线交AD于点E,在AB上截取AF=DE,连接DF,分别交CE,CA于点G,H,点P是线段GC上的动点,PQ⊥AC 于点Q,连接PH.下列结论:①CE⊥DF;②DE+DC=AC;③EA=AH;④PH+PQ的最小值是,其中所有正确结论的序号是.三.解答题(满分72分)17.计算:()﹣1+4cos45°﹣+(2023﹣π)0.18.解不等式组,并将其解集在数轴上表示出来.19.今年“五•一”期间,文昌市某旅行社接待文昌一日游和三日游的旅客共1500人,共收取旅游费50万元,其中一日游每人收费100元,三日游每人收费800元.该旅行社接待的一日游和三日游旅客各多少人?20.先化简,然后从﹣1,0,1,3中选一个合适的数代入求值.21.“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)22.如图,AB是⊙O的直径,点E是劣弧BD上一点,∠P AD=∠AED,且DE=,AE 平分∠BAD,AE与BD交于点F.(1)求证:P A是⊙O的切线;(2)若tan∠DAE=,求EF的长;(3)延长DE,AB交于点C,若OB=BC,求⊙O的半径.23.在△ABC中,点D,E分别是AB,AC边上的点,DE∥BC.基础理解:(1)如图1,若AD=4,BD=3,求的值;证明与拓展:(2)如图2,将△ADE绕点A逆时针旋转度,得到△AD1E1,连接BD1,CE1.①求证:=;②如图3,若∠BAC=90°,AB<AC,AD=6,△ADE在旋转过程中,点D1恰好落在DE上时,连接EE1,=,则△E1D1E的面积为.24.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.(1)求抛物线的表达式;(2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;(3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.参考答案一.选择题(满分30分)1.解:2022的相反数等于﹣2022,故选:D.2.解:470000000=4.7×108,故选:C.3.解:依题意得:x﹣2>0,解得x>2.故选:A.4.解:A、原来数据的平均数是,添加数字6后平均数为,故不符合题意;B、原来数据的中位数是4,添加数字6后中位数仍为4,故符合题意;C、原来数据的众数是4,添加数字6后众数为4和6,故不符合题意;D、原来数据的方差=[(3﹣)2+2×(4﹣)2+(6﹣)2]=,添加数字6后的方差=[(3﹣)2+2×(4﹣)2+2×(6﹣)2]=,故方差发生了变化,故不符合题意;故选:B.5.解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.6.解:∵DE∥BC,∴△ADE∽△ABC,∵AD:AB=1:3,相似三角形的面积比是相似比的平方,∴S△ADE:S△ABC=1:9,∴△ADE的面积:四边形DBCE的面积=1:8,又∵△ADE的面积等于2,∴四边形DBCE的面积等于16.故选:C.7.解:由题知,AC为直径,∴∠ABC=90°,∵OE⊥AB,∴OD∥BC,∵OA=OC,∴OD为三角形ABC的中位线,∴AD=AB=×8=4,又∵OD=3,∴OA===5,∴OE=OA=5,∵OE∥CF,点O是AC中点,∴OE是三角形ACF的中位线,∴CF=2OE=2×5=10,故选:A.8.解:根据题意,得:50(x+1)2=72.故选:B.9.解:∵方程=﹣9,∴x2﹣6x=﹣9,∴x2﹣6x+9=0,∴Δ=(﹣6)2﹣4×1×9=0,∴方程=﹣9有两个相等的实数根,故选:B.10.解:根据反比例函数的增减性可知,反比例函数y=(x>0)图象y随x的增大而减小,所以OA不变,△OAB的高随着点B的纵坐标逐渐增大而减小,所以△OAB的面积将逐渐减小.故选:C.二.填空题(满分18分)11.解:原式=(x﹣3y)(x+3y).故答案为:(x﹣3y)(x+3y).12.解:(5﹣2)•180°=540°,540°÷5=108°,所以正五边形的一个内角的度数是108度.13.解:画树状图如下:共有12种等可能的结果,其中两次取出的小球标号和等于5的结果有4种,∴两次取出的小球标号和等于5的概率为=,故答案为:.14.解:∵图形a是图形b向上平移3个单位长度得到的,再向左平移2个单位得到,图形a中点A的坐标为(4,﹣2),∴设图形b中与点A对应的点A′的坐标为(x,y),则y+3=﹣2,x﹣2=4,解得y=﹣5,x=6∴点A′的坐标为(6,﹣5).故答案为:(6,﹣5).15.解:∵无论x取何值,y总取y1、y2、y3中的最小值,∴y的取值如图所示,∴y的最大值为直线y2与y3的交点的纵坐标,联立,解得,所以,当x=3时,y的值最大,为2.故答案为:2.16.解:∵正方形ABCD,∴CD=AD,∠CDE=∠DAF=90°,∴∠ADF+∠CDF=90°,在△CDE和△DAF中,,∴△CDE≌△DAF(ASA),∴∠DCE=∠ADF,∴∠DCF+∠CDF=90°,∴∠DGC=90°,∴CE⊥DF,故①正确;∵CE平分∠ACD,∴∠DCE=∠HCG,在△GCD和△GCH中,,∴△GCD≌△GCH(ASA),∴CD=CH,∠CDH=∠CHD,∵正方形ABCD,∴CD∥AB,∴∠CDF=∠AFD,∴∠CHD=∠AFD,∵∠CHD=∠AHF,∴∠AFD=∠AHF,∴AF=AH,∴AC=AH+CH=AF+CD=DE+CD,故②正确,设DE=AF=AH=a,∵∠AHF=∠DHC,∠CDF=∠AFH,∴△DHC∽△FHA,∴=,∴=,∴a=﹣1,∴DE=AF=AH=﹣1,∴AE=1﹣DE=2﹣,∴EA≠AH,故③错误;∵△GCD≌△GCH,∴DG=GH,∵CE⊥DF,∴CG垂直平分DH,∴DP=PH,当DQ⊥HC时,PH+PQ=DP+PQ有最小值,过点D作DM⊥HC,则DM的长度为PH+PQ的最小值,∵S△ADC==,∴DM=,故④正确.故答案为:①②④.三.解答题(满分72分)17.解:原式=2+4×﹣2+1=2+2﹣2+1=3.18.解:由①得:x≤1,由②得:x<6,∴不等式组的解集为x≤1,解集表示在数轴上,如图所示:.19.解:设接待1日游旅客x人,接待3日游旅客y人,根据题意得,解得,答:该旅行社接待1日游旅客1000人,接待3日游旅客500人.20.解:==,∵a2﹣1≠0,a≠0,∴a≠±1,a≠0,∴当a=3时,原式==.21.解:(1)由对称知,CD=2OD,AD=AC=2m,∠AOD=90°,在Rt△AOD中,∠OAD=α=65°,∴sinα=,∴OD=AD•sinα=2×sin65°≈2×0.90=1.80m,∴CD=2OD=3.6m,答:遮阳宽度CD约为3.6米;(2)如图,过点E作EH⊥AB于H,∴∠BHE=90°,∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,∴∠ABF=∠EFB=∠BHE=90°,∴EH=BF=3m,在Rt△AHE中,tan a=,∴AH=,当∠α=65°时,AH=≈≈1.40m,当∠α=45°时,AH==3,∴当∠α从65°减少到45°时,点E下降的高度约为3﹣1.40=1.6m.22.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∵∠P AD=∠AED,∠AED=∠ABD,∴∠P AD=∠ABD,∴∠DAB+∠P AD=90°,即∠P AB=90°,∴AB⊥P A,∵AB是⊙O的直径,∴P A是⊙O的切线;(2)解:连接BE,如图:∵AB是⊙O的直径,∴∠AEB=90°,∵AE平分∠BAD,∴∠DAE=∠BAE,∴=,∠DAE=∠BAE=∠DBE,∴BE=DE=,tan∠DAE=tan∠BAE=tan∠DBE==,∴=,∴EF=1;(3)解:连接OE,如图:∵OE=OA,∴∠AEO=∠OAE,∵∠OAE=∠DAE,∴∠AEO=∠DAE,∴OE∥AD,∴=,∵OA=OB=BC,∴=2,∴=2,∵DE=,∴CE=2,CD=CE+DE=3设BC=OB=OA=R,∵∠BDC=∠BAE,∠C=∠C,∴△CBD∽△CEA,∴=,即=,∴R=2,∴⊙O的半径是2.23.(1)解:∵DE∥BC,AD=4,BD=3,∴;(2)①证明:∵将△ADE绕点A逆时针旋转度,得到△AD1E1,∴AD=AD1,AE=AE1,∠BAD1=∠CAE1,∵DE∥BC,∴,∴,∴△ABD1∽△ACE1,∴;②解:由①可知,△ABD1∽△ACE1,∴,∵将△ADE绕点A逆时针旋转度,得到△AD1E1,∴AD=AD1=6,∠D1AE1=∠DAE=90°,∴AE=AE1==8,DE=D1E=10,过点A作AM⊥DE于点M,则DM=D1M=AD×cos∠ADE=3.6,∴D1E=10﹣3.6×2=2.8,∴∠D1AE1=∠DAE=90°,∴∠DAD1=∠EAE1,∵AD=AD1,AE=AE1,∴∠ADE=∠AEE1,∴∠AED+∠AEE1=∠AED+∠ADE=90°,∴∠D1EE1=90°,∴EE1=9.6,∴△E1D1E的面积为=,故答案为:13.44.24.解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),∴,解得:.∴抛物线的表达式为y=﹣+x+4;(2)点D的坐标为(﹣8,8),理由:将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,如图,过点D作DE⊥x轴于点E,∵A(﹣2,0)、B(8,0),C(0,4),∴OA=2,OB=8,OC=4.∵,,∴.∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠ACO=∠CBO.∵∠CBO+∠OCB=90°,∴∠ACO+∠OCB=90°,∴∠ACB=90°,∵将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,∴点D,C,B三点在一条直线上.由轴对称的性质得:BC=CD,AB=AD.∵OC⊥AB,DE⊥AB,∴DE∥OC,∴OC为△BDE的中位线,∴OE=OB=8,DE=2OC=8,∴D(﹣8,8);由题意得:S△ACD=S△ABC,∴四边形OADC的面积=S△OAC+S△ADC =S△OAC+S△ABC=OC•OA+AB•OC=4×2+10×4=4+20=24;(3)①当点P在BC上方时,如图,∵∠PCB=∠ABC,∴PC∥AB,∴点C,P的纵坐标相等,∴点P的纵坐标为4,令y=4,则﹣+x+4=4,解得:x=0或x=6,∴P(6,4);②当点P在BC下方时,如图,设PC交x轴于点H,∵∠PCB=∠ABC,∴HC=HB.设HB=HC=m,∴OH=OB﹣HB=8﹣m,在Rt△COH中,∵OC2+OH2=CH2,∴42+(8﹣m)2=m2,解得:m=5,∴OH=3,∴H(3,0).设直线PC的解析式为y=kx+n,∴,解得:.∴y=﹣x+4.∴,解得:,.∴P(,﹣).综上,点P的坐标为(6,4)或(,﹣).。
(某某市县区)初中九年级数学下学期中考复习第一次模拟考试试题卷(含答案解析)
![(某某市县区)初中九年级数学下学期中考复习第一次模拟考试试题卷(含答案解析)](https://img.taocdn.com/s3/m/c215def55122aaea998fcc22bcd126fff7055d9f.png)
(某某市县区)初中九年级数学下学期中考复习第一次模拟考试试题卷(含答案解析)一、选择题。
(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.有理数,﹣5,﹣2.5,6中,最大的数是()A.B.﹣5C.﹣2.5D.62.如图,在下列四个几何体中,其主视图是矩形的是()A.B.C.D.3.据统计,第22届冬季奥运会的电视转播时间长达88000小时,其中数据88000用科学记数法表示为()A.0.88×105B.8.8×104C.88×103D.880×1024.点(1,4)关于x轴对称的点的坐标是()A.(1,﹣4)B.(﹣1,4)C.(4,1)D.(﹣1,﹣4)5.下列事件中属于必然事件的是()A.打开电视机,正在播放“天宫课堂”B.对从疫情高风险区归来的人员进行核酸检测,检测结果为阳性C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上6.下列运算正确的是()A.(﹣m2n)3=﹣m6n3B.m5﹣m3=m2C.(m+2)2=m2+4D.(12m4﹣3m)÷3m=4m37.如图,A、B、C是⊙O上的三个点,若∠AOC=100°,则∠ABC=()A.100°B.110°C.120°D.130°8.如图是一张矩形纸板,顺次连接各边中点得到四边形.将一个飞镖随机投掷在矩形纸板上,则飞镖落在阴影区域的概率是()A.B.C.D.9.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件慢马送到900里外的城市,需要的时间比规定时间多1天;如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.B.C.D.10.如图,在平面直角坐标系中,Rt△ABC的顶点A,C的坐标分别是(0,2),(2,0),AC=2BC.若函数y=(k>0,x>0)的图象经过点B,则k的值为()A.3B.2C.D.11.如图,点E在矩形纸片ABCD的边CD上,将纸片沿AE折叠,点D的对应点D′恰好落在线段BE 上.若AD=2,DE=1,则AB的长为()A.B.4C.D.512.当﹣3<x<2时,抛物线y=x2+t与直线y=2x+1有交点,则t的取值范围是()A.﹣2≤t<14B.﹣14<t≤2C.1<t≤2D.t≤2二、填空题。
浙教版数学九年级下学期期末复习试卷(含解析)
![浙教版数学九年级下学期期末复习试卷(含解析)](https://img.taocdn.com/s3/m/1e95fe68f4335a8102d276a20029bd64783e6298.png)
九年级(下)期末数学复习试卷一.选择题(共14小题)1.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地的方位角是北偏东43°,那么从C地测B地的方位角是()A.南偏东47°B.南偏西43°C.北偏东43°D.北偏西47°2.如图,OA是北偏东30°方向的一条射线,若∠BOA=90°,则OB的方位角是()A.北偏西30°B.北偏西60°C.北偏东30°D.北偏东60°3.如图,表示A点的位置,正确的是()A.距O点3km的地方B.在O点的东北方向上C.在O点东偏北40°的方向D.在O点北偏东50°方向,距O点3km的地方4.关于x的不等式组有解,则a的值不可能是()A.0B.1C.D.﹣15.下列实数中,不是x+4≥2的解的是()A.﹣3B.﹣2C.0D.3.56.下列x的值中,是不等式x>2的解的是()A.﹣2B.0C.2D.37.已知不等式组的整数解有三个,则a的取值范围是()A.1<a≤2B.2≤a<3C.1<a<2D.1≤a<28.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.39.如图,等腰△ABC的底边BC长为4,腰长为6,EF垂直平分AB,点P为直线EF上一动点,则BP+CP的最小值()A.10B.6C.4D.210.已知A(2,4),B(﹣1,﹣3),C(﹣3,﹣2),那么△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.以上都不是11.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于()A.B.C.D.12.如图,在Rt△ABC中,AC=4,AB=5,∠C=90°,BD平分∠ABC交AC于点D,则BD的长是()A.B.C.D.13.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③B.①②④C.①③④D.①②③④14.下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角互补C.等角的补角相等D.垂线段最短二.填空题(共5小题)15.如图,在平面直角坐标系中,点A,B,C三点的坐标分别是A(﹣2,0),B(0,4),C(0,﹣1),过点C作CD∥AB,交第一象限的角平分线于点D,连接AD交y轴于点E.则点E的坐标为.16.已知点A在第二象限,点B的坐标为(3,2),AB∥x轴,并且AB=4,则A的坐标为.17.已知点A(4,y),B(x,﹣3),若AB∥x轴,且线段AB的长为5,x=,y=.18.平面直角坐标系中,点A(﹣3,2),B(4,5),C(x,y),若AC∥x轴,当线段BC取最小值时,点C的坐标为.19.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠O=30°,当∠A=时,△AOP为等腰三角形.三.解答题(共9小题)20.如图直线L与x轴、y轴分别交于点B、A两点,且A、B两点的坐标分别为A(0,3),B (﹣4,0).(1)请求出直线L的函数解析式;(2)点P在坐标轴上,且△ABP的面积为12,求点P的坐标;(3)点C为直线AB上一个动点,是否存在使点C到x轴的距离为1.5,若存在,请直接写出该点的坐标.21.如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,点A(8,0),B(10,6).(1)求直线AC的表达式;(2)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发.过点M,N作x轴的垂线分别交直线OC,AC于点P,Q,猜想四边形PMNQ的形状(点M,N重合时除外),并证明你的猜想;(3)在(2)的条件下,当点M运动秒时,四边形PMNQ是正方形(直接写出结论).22.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x(cm)…46810…双层部分的长度y(cm)…73727170…(1)求出y关于x的函数解析式,并求当x=150时y的值;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm,求l的取值范围.23.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.24.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m3时,水费按每立方米1.1元收费,超过6m3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm3,应缴水费为y元.(1)写出y与x之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?25.小王、小李二人骑车在平直的公路上分别从甲、乙两地相向而行,两人同时出发,匀速行驶.设行驶的时间为x(时),两人之间的距离为y(千米),小王到达乙地后立刻原路原速返回甲地,小李到达甲地后停止行驶.图中的折线表示从两人出发至小王回到甲地过程中y与x之间的函数关系.(1)根据图中信息,求甲乙两地之间的距离;(2)已知两人相遇时小王比小李多骑了4千米,若小王从甲地到达乙地所需时间为t时,求t的值;(3)直接写出点D的坐标,并解读点D坐标的实际意义.26.甲、乙两车先后从“深圳书城”出发,沿相同的路线到距书城240km的某市.因路况原因,甲车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为折线O﹣A﹣B,乙车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为线段CD.(1)求线段AB所在直线的函数表达式;(2)①乙车比甲车晚出发小时;②乙车出发多少小时后追上甲车?(3)乙车出发多少小时后甲、乙两车相距10千米?27.某工厂购进一条生产线.已知该生产线的三个操作平台分别排列在同一直线上,顺次是甲、乙、丙,其中甲乙平台之间的距离为40米,乙丙平台之间的距离为60米,操作甲、乙、丙平台分别需要20人、70人、60人.由于时间仓促无法做到完全自动化,需要在三个平台之间建立一个原材料供给站让工人自取,有如下两个方案:方案一:让甲、丙平台所有工人到供给站的距离之和等于乙平台所有工人到供给站的距离之和;方案二:让所有工人到供给站的距离总和最小.(1)若供给站建在乙、丙之间,按照方案一建站,供给站距离甲平台多少米?(2)若按照方案二建站,供给站距离甲平台多少米?(3)若按照方案一建站,甲平台的工人数增加a人(a≤22),那么随着a的增大,供给站将距离甲平台将越来越远,还是越来越近?请说明理由.28.如图,△ABC是等边三角形,AB=6.动点P从点A出发,以每秒2个单位的速度沿AB向终点B匀速运动;同时,动点Q从点C出发,以相同的速度沿CA向终点A匀速运动,连结CP,以CP为边向其左侧作等边三角形CDP,连结AD、DQ、BQ.设点P的运动时间为t (s).(1)求证:△ACP≌△CBQ.(2)求证:△ACD≌△ABQ.(3)求△ADQ的周长(用含t的代数式表示).(4)当CP的长最短时,连结PQ,直接写出此时t的值和四边形ADQP的周长.2020 -2021学年浙江省嘉兴市海盐县九年级(下)期末数学复习试卷参考答案与试题解析一.选择题(共14小题)1.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地的方位角是北偏东43°,那么从C地测B地的方位角是()A.南偏东47°B.南偏西43°C.北偏东43°D.北偏西47°【解答】解:∵AF∥DE,∴∠ABE=∠F AB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=47°,∵BD∥CG,∴∠BCG=47°,∴从C地测B地的方位角是南偏东47°.故选:A.2.如图,OA是北偏东30°方向的一条射线,若∠BOA=90°,则OB的方位角是()A.北偏西30°B.北偏西60°C.北偏东30°D.北偏东60°【解答】解:由方向角的意义可知,∠AON=30°,∵∠AOB=90°,∴∠NOB=∠AOB﹣∠AON=90°﹣30°=60°,∴OB的方向角为北偏西60°,故选:B.3.如图,表示A点的位置,正确的是()A.距O点3km的地方B.在O点的东北方向上C.在O点东偏北40°的方向D.在O点北偏东50°方向,距O点3km的地方【解答】解:根据方位角的概念,射线OA表示的方向是北偏东50°方向.又∵AO=3km,∴点A在O点北偏东50°方向,距O点3km的地方,故选:D.4.关于x的不等式组有解,则a的值不可能是()A.0B.1C.D.﹣1【解答】解:∵不等式组有解,∴a>﹣1,∵0>﹣1,1>﹣1,﹣>﹣1,﹣1=﹣1,a的值不可能是﹣1.故选:D.5.下列实数中,不是x+4≥2的解的是()A.﹣3B.﹣2C.0D.3.5【解答】解:∵x+4≥2,∴x≥﹣2.∴﹣2、0、3.5是不等式的解,﹣3不是不等式的解.故选:A.6.下列x的值中,是不等式x>2的解的是()A.﹣2B.0C.2D.3【解答】解:∵不等式x>2的解集是所有大于2的数,∴3是不等式的解.故选:D.7.已知不等式组的整数解有三个,则a的取值范围是()A.1<a≤2B.2≤a<3C.1<a<2D.1≤a<2【解答】解:∵不等式组的整数解有三个,∴1≤a<2,故选:D.8.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.3【解答】解:∵关于x的不等式组有解,∴a<3,∴a的取值可能是0、1或2,不可能是3.故选:D.9.如图,等腰△ABC的底边BC长为4,腰长为6,EF垂直平分AB,点P为直线EF上一动点,则BP+CP的最小值()A.10B.6C.4D.2【解答】解:∵EF垂直平分AB,∴A、B关于EF对称,设AC交EF于点D,∴当P和D重合时,BP+CP的值最小,最小值等于AC的长,∴BP+CP的最小值=6.故选:B.10.已知A(2,4),B(﹣1,﹣3),C(﹣3,﹣2),那么△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.以上都不是【解答】解:∵AB2=(2+1)2+(4+3)2=58,BC2=(﹣1+3)2+(﹣3+2)2=5,AC2=(2+3)2+(4+2)2=61,而58+5>61,∴AB2+BC2>AC2,∴△ABC的形状不是等腰三角形、也不是直角三角形.故选:D.11.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于()A.B.C.D.【解答】解:如图,作CD⊥AB于点D,作AE⊥BC于点E,由已知可得,AC==,AB=5,BC==5,CD=3,∵S△ABC=AB•CD=BC•AE,∴AE===3,∴CE===1,∴cos∠ACB===,方法2:由已知可得,AC==,∵AB=BC=5,∴∠C=∠A,∴cos∠ACB=cos∠A==,故选:B.12.如图,在Rt△ABC中,AC=4,AB=5,∠C=90°,BD平分∠ABC交AC于点D,则BD的长是()A.B.C.D.【解答】解:在Rt△ABC中,AC=4,AB=5,∠C=90°,∴BC==3,过D作DE⊥AB于E,∵BD平分∠ABC,∠C=90°,∴CD=DE,在Rt△BCD与Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=3,∴AE=2,∵AD2=DE2+AE2,∴DE2+22=(4﹣DE)2,∴DE=,∴BD===.故选:D.13.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③B.①②④C.①③④D.①②③④【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故选:C.14.下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角互补C.等角的补角相等D.垂线段最短【解答】解:A、两点之间,线段最短,是真命题;B、两直线平行,同旁内角互补,原命题是假命题;C、等角的补角相等,是真命题;D、垂线段最短,是真命题;故选:B.二.填空题(共5小题)15.如图,在平面直角坐标系中,点A,B,C三点的坐标分别是A(﹣2,0),B(0,4),C(0,﹣1),过点C作CD∥AB,交第一象限的角平分线于点D,连接AD交y轴于点E.则点E的坐标为(0,).【解答】解:设直线AB的解析式为y=kx+b,∵A(﹣2,0),B(0,4),∴,解得:,∴直线AB的解析式为y=2x+4,∵OD为第一象限的角平分线,∴直线OD的解析式为y=x,∵CD∥AB,C(0,﹣1),∴直线CD的解析式为y=2x﹣1,由题意,,解得:,∴D(1,1),设直线AD的解析式为y=k′x+b′,∵A(﹣2,0),D(1,1),∴,解得:,∴直线AD的解析式为y=x+,当x﹣0时,y=,∴点E的坐标为(0,),故答案为:(0,).16.已知点A在第二象限,点B的坐标为(3,2),AB∥x轴,并且AB=4,则A的坐标为(﹣1,2).【解答】解:∵AB∥x轴,∴A、B两点纵坐标都为2,又∵AB=4,∴当A点在B点左边时,A(﹣1,2),当A点在B点右边时,A(7,2);∵点A在第二象限,∴A(﹣1,2),故答案为:(﹣1,2).17.已知点A(4,y),B(x,﹣3),若AB∥x轴,且线段AB的长为5,x=9或﹣1,y=﹣3.【解答】解:若AB∥x轴,则A,B的纵坐标相同,因而y=﹣3;线段AB的长为5,即|x﹣4|=5,解得x=9或﹣1.故答案填:9或﹣1,﹣3.18.平面直角坐标系中,点A(﹣3,2),B(4,5),C(x,y),若AC∥x轴,当线段BC取最小值时,点C的坐标为(4,2).【解答】解:如图,当BC⊥AC,垂足为C时,BC的长最小,∵AC∥x轴,点A(﹣3,2),∴C点的纵坐标为2,∵BC⊥AC,即BC∥y轴,而B(4,5),∴C点的横坐标为4,∴C(4,2).故答案为(4,2).19.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠O=30°,当∠A=75°,120°,30°时,△AOP为等腰三角形.【解答】解:分三种情况:①OA=OP时,则∠A=∠OP A=(180°﹣∠O)=(180°﹣30°)=75°;②AO=AP时,则∠APO=∠O=30°,∴∠A=180°﹣∠O﹣∠APO=120°;③PO=P A时,则∠A=∠O=30°;综上所述,当∠A为75°或120°或30°时,△AOP为等腰三角形,故答案为:75°或120°或30°.三.解答题(共9小题)20.如图直线L与x轴、y轴分别交于点B、A两点,且A、B两点的坐标分别为A(0,3),B (﹣4,0).(1)请求出直线L的函数解析式;(2)点P在坐标轴上,且△ABP的面积为12,求点P的坐标;(3)点C为直线AB上一个动点,是否存在使点C到x轴的距离为1.5,若存在,请直接写出该点的坐标.【解答】解:(1)设y=kx+b(k≠0),则,解得,∴y=0.75x+3;(2)当点P在x轴上时,设点P(x,0),则△ABP的面积=×BP×OA=×|m+4|×3=12,解得m=4或﹣12;故点P的坐标为(4,0)或(﹣12,0);当点P在y轴上时,同理可得,点P的坐标为(0,9)或(0,﹣3),故点P的坐标为(4,0)或(﹣12,0)或(0,9)或(0,﹣3);(3)假设存在点C(x,±1.5)到x轴的距离为1.5,则点C(x,±1.5)满足方程y=0.75x+3,①当C(x,1.5)时,1.5=0.75x+3,解得x=﹣2,∴点C(﹣2,1.5)存在;②当C(x,﹣1.5)时,﹣1.5=0.75x+3,解得x=﹣6,所以C(﹣6,﹣1.5)存在.∴存在点C(x,±1.5)到x轴的距离为1.5,其坐标是(﹣2,1.5)或(﹣6,﹣1.5).21.如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,点A(8,0),B(10,6).(1)求直线AC的表达式;(2)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发.过点M,N作x轴的垂线分别交直线OC,AC于点P,Q,猜想四边形PMNQ的形状(点M,N重合时除外),并证明你的猜想;(3)在(2)的条件下,当点M运动或8秒时,四边形PMNQ是正方形(直接写出结论).【解答】解:(1)由点A、B的坐标知,OA=8=BC,故点C(2,6),设直线AC的表达式为:y=kx+b,则,解得,故直线CA的表达式为:y=﹣x+8;(2)设点M(x,0),则P(x,3x),则点N(8﹣3x,0),则点Q(8﹣3x,3x),则PQ=|8﹣3x﹣x|=|8﹣4x|,而MN=|8﹣3x﹣x|=|8﹣4x|=PQ,而PQ∥MN,故四边形PMNQ为平行四边形,∵∠PMN=90°,∴四边形PMNQ是矩形.(3)四边形PMNQ是正方形,则MN=QN,即8﹣4x=|3x|,解得:x=或8,故答案为或8.22.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x(cm)…46810…双层部分的长度y(cm)…73727170…(1)求出y关于x的函数解析式,并求当x=150时y的值;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm,求l的取值范围.【解答】解:(1)观察表格可知,y是x的一次函数,设y=kx+b,则有,解得,∴y=﹣x+75,当x=150时,y=0,答:y关于x的函数解析式为y=﹣x+75,当x=150时y的值为0;(2)由题意,解得,所以单层部分的长度为90cm;(3)由题意得l=x+y=x﹣x+75=x+75,因为0≤x≤150,所以75≤x+75≤150,即75≤l≤150.23.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.【解答】解:(1)由图象可得,货车的速度为300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(千米),即轿车到达乙地时,货车与甲地的距离是270千米;(2)设线段CD对应的函数表达式是y=kx+b,∵点C(2.5,80),点D(4.5,300),∴,解得,即线段CD对应的函数表达式是y=110x﹣195(2.5≤x≤4.5);(3)当x=2.5时,两车之间的距离为:60×2.5﹣80=70,∵70>15,∴在轿车行进过程,两车相距15千米时间是在2.5~4.5之间,由图象可得,线段OA对应的函数解析式为y=60x,则|60x﹣(110x﹣195)|=15,解得x1=3.6,x2=4.2,∵轿车比货车晚出发1.5小时,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),∴在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米,答:在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.24.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m3时,水费按每立方米1.1元收费,超过6m3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm3,应缴水费为y元.(1)写出y与x之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?【解答】解:(1)由题意可得,当0≤x≤6时,y=1.1x,当x>6时,y=1.1×6+(x﹣6)×1.6=1.6x﹣3,即y与x之间的函数表达式是y=;(2)∵5.5<1.1×6,∴缴纳水费为5.5元的用户用水量不超过6m3,将y=5.5代入y=1.1x,解得x=5;∵9.8>1.1×6,∴缴纳水费为9.8元的用户用水量超过6m3,将y=9.8代入y=1.6x﹣3,解得x=8;答:这两户家庭这个月的用水量分别是5m3,8m3.25.小王、小李二人骑车在平直的公路上分别从甲、乙两地相向而行,两人同时出发,匀速行驶.设行驶的时间为x(时),两人之间的距离为y(千米),小王到达乙地后立刻原路原速返回甲地,小李到达甲地后停止行驶.图中的折线表示从两人出发至小王回到甲地过程中y与x之间的函数关系.(1)根据图中信息,求甲乙两地之间的距离;(2)已知两人相遇时小王比小李多骑了4千米,若小王从甲地到达乙地所需时间为t时,求t的值;(3)直接写出点D的坐标,并解读点D坐标的实际意义.【解答】解:(1)由图象可得,小王和小李两人的速度之和为:10÷(1﹣0.75)=40(千米/小时),则甲乙两地的距离为:40×1=40(千米),即甲乙两地之间的距离为40千米;(2)由题意可得,小李的速度为:(40﹣4)÷2=18(千米/小时),则小王的速度为40﹣18=22(千米/小时),则t=40÷22=,即t的值为;(3)点D的横坐标为:40÷18=,纵坐标为:40﹣22×(﹣)=,∴点D的坐标为(,),则点D坐标的实际意义是当小李行驶的时间为小时时,此时小李到达甲地,小李和小王之间的距离为千米.26.甲、乙两车先后从“深圳书城”出发,沿相同的路线到距书城240km的某市.因路况原因,甲车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为折线O﹣A﹣B,乙车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为线段CD.(1)求线段AB所在直线的函数表达式;(2)①乙车比甲车晚出发1小时;②乙车出发多少小时后追上甲车?(3)乙车出发多少小时后甲、乙两车相距10千米?【解答】解:(1)设直线AB的函数表达式为:y=k1x+b1,将A(2,100),B(6,240)代入得解得∴线段AB所在直线的函数表达式为y=35x+30;(2)①乙车行驶的时间为240÷[(240﹣80)÷(4﹣2)]=3(小时),4﹣3=1(小时),∴乙车比甲车晚出发1小时,故答案为:1;②设直线CD的函数表达式为:y=k2x+b2,将(2,80),D(4,240)代入得解得,∴直线CD的函数表达式为y=80x﹣80;联立解得.∵(h),∴乙车出发h后追上甲车;(3)乙车追上甲车之前,35x+30﹣(80x﹣80)=10,,∴,乙车追上甲车之后,即(80x﹣80)﹣(35x+30)=10.解得.∴(h),当乙到达终点之后,即35x+30=240﹣10,解得,﹣1=(h);∴乙车出发或h或h后,甲、乙两车相距10km.27.某工厂购进一条生产线.已知该生产线的三个操作平台分别排列在同一直线上,顺次是甲、乙、丙,其中甲乙平台之间的距离为40米,乙丙平台之间的距离为60米,操作甲、乙、丙平台分别需要20人、70人、60人.由于时间仓促无法做到完全自动化,需要在三个平台之间建立一个原材料供给站让工人自取,有如下两个方案:方案一:让甲、丙平台所有工人到供给站的距离之和等于乙平台所有工人到供给站的距离之和;方案二:让所有工人到供给站的距离总和最小.(1)若供给站建在乙、丙之间,按照方案一建站,供给站距离甲平台多少米?(2)若按照方案二建站,供给站距离甲平台多少米?(3)若按照方案一建站,甲平台的工人数增加a人(a≤22),那么随着a的增大,供给站将距离甲平台将越来越远,还是越来越近?请说明理由.【解答】解:设供给站距离甲平台x米,(1)当40<x≤100时,20x+60(100﹣x)=70(x﹣40),解得x=80.答:按方案一建站,供给站应建在距离甲平台80米处;(2)设所有工人的距离之和为y米,①当供给站建在甲乙平台之间,即0≤x≤40时y=20x+70(40﹣x)+60(100﹣x)=﹣110x+8800,∴当x=40时,y取得最小值4400;②当供给站建在乙丙平台之间,即40<x≤100时y=20x+70(x﹣40)+60(100﹣x)=30x+3200,∵y随x增大而增大,并且当x=40时,y=4400,∴本阶段y的值均大于4400;答:按方案二建站,供给站应建在距离甲平台40米处;(3)供给站将离甲平台越来越远,理由如下:①当0≤x≤40时,(20+a)x+60(100﹣x)=70(40﹣x),解得:(不在三个平台之间,不合题意,舍去),②当40<x≤100时,(20+a)x+60(100﹣x)=70(x﹣40),解得,∴x随着a的增大而增大,答:随着a的增大供给站将离甲平台越来越远.28.如图,△ABC是等边三角形,AB=6.动点P从点A出发,以每秒2个单位的速度沿AB向终点B匀速运动;同时,动点Q从点C出发,以相同的速度沿CA向终点A匀速运动,连结CP,以CP为边向其左侧作等边三角形CDP,连结AD、DQ、BQ.设点P的运动时间为t (s).(1)求证:△ACP≌△CBQ.(2)求证:△ACD≌△ABQ.(3)求△ADQ的周长(用含t的代数式表示).(4)当CP的长最短时,连结PQ,直接写出此时t的值和四边形ADQP的周长.【解答】(1)证明:当运动时间为t(s)时,∵AP=2×t=2t,CQ=2×t=2t,∴AP=CQ,又∵△ABC是等边三角形,∴AC=CB,∠CAP=∠BCQ=60°,在△ACP与△CBQ中,,∴△ACP≌△CBQ(SAS);(2)证明:∵△DCP和△ABC都是等边三角形,∴DC=CP,CA=CB,∠DCP=∠ACB,∴∠DCA=∠BCP,∴△DCA≌△PCB(SAS),∴BP=AD,∠CAD=∠CBP=60°,∵AQ=BP,∴AQ=AD,∴△ADQ是等边三角形,同理可得:△ACD≌△ABQ(SAS);(3)解:由(2)知,△ADQ是等边三角形,∴C△ADQ=3AQ=3(6﹣2t)=18﹣6t;(4)解:如图,当CP最短时,CP⊥AB,此时CP=3,AP=3,∴t=,此时△APQ是等边三角形,∴AP=PQ=AQ,∵△ADQ是等边三角形,∴C四边形ADQP=AD+DQ+PQ+P A=3×4=12,∴当CP的长最短时,t的值是,C四边形ADQP=12.。
人教版数学九年级下学期第29章《投影与视图》测试题含答案
![人教版数学九年级下学期第29章《投影与视图》测试题含答案](https://img.taocdn.com/s3/m/2c0121e9d4bbfd0a79563c1ec5da50e2524dd1a3.png)
人教版数学九年级下学期第29章《投影与视图》测试题(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.如图所示几何体的主视图是().A. B. C. D.2.如图所示的几何体的俯视图是()A. B. C. D.3.如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变4.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A. B. C. D.5.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A. B. C. D.6.如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是().A. B. C. D.7.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( ) 8.如图,按照三视图确定该几何体的全面积为(图中尺寸单位:cm)()A.128πcm2 B.160πcm2 C.176πcm2 D.192πcm29.如图所示的几何体的左视图是()A. B. C. D.10.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED二、填空题(每小题3分,共30分)11.苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.12.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.13.图是一个几何体的主视图、左视图和俯视图,则这个几何体是________.(填序号)14.如图,②是①中图形的________视图.②15.下列投影:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是_______,属于中心投影的是_____.(填序号) 16.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是_________.17.有两根大小、形状完全相同的铁丝,甲铁丝与投影面的夹角是45°,乙铁丝与投影面的夹角是30°,那么两根铁丝在投影面的正投影的长度的大小关系是:甲____乙(填“>”“<”或“=”).18.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,那么线段AC在AB上的正投影是___,线段CD在AB上的正投影是___,线段BC在AB上的正投影是___.19.如图,是一个包装盒的三视图,则这个包装盒的表面积是(结果保留π)20.如图,小明同学在非洲旅游期间想自己测出金字塔的高度,首先小明在阳光下测量出了长1 m的木杆CD的影子CE长1.5m;其次测出金字塔中心O到影子的顶部A的距离为201m。
北师大版九年级数学下册第二章 二次函数 压轴题综合复习练习题
![北师大版九年级数学下册第二章 二次函数 压轴题综合复习练习题](https://img.taocdn.com/s3/m/545575ed3b3567ec102d8ad4.png)
(1)求抛物线L1的解析式;
(2)如图2,点P为x轴上一动点,连接AD,AC,CP,当∠PCA=∠ADB时,求点P的坐标;
(3)如图3,将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,点M( ,0),点N是L2上且位于第一象限内一动点,MN交L2于Q点,QR∥x轴分别交OF,ON于S,R,试说明:QS与SR存在一个确定的数量关系.
5.已知抛物线L:y=x2+bx+c经过点A(﹣1,0)和(1,﹣2)两点,抛物线L关于原点O的对称的为抛物线L′,点A的对应点为点A′.
(1)求抛物线L和L′的表达式;
(2)是否在抛物线L上存在一点P,抛物线L′上存在一点Q,使得以AA′为边,且以A、A′、P、Q为顶点的四边形是平行四边形?若存在,求出P点坐标;若不存在,请说明理由.
∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形,
则点C是RQ的中点,
在△BOC中,tan∠OBC= = =tan∠ROC= ,
则设RC=x=QB,则BC=2x,则RB= = x=BQ,
在△QRB中,S△RQB= ×QR•BC= BR•QK,即 2x•2x= KQ• x,解得:KQ= ,
11.如图,抛物线与x轴相交于点A(﹣3,0)、点B(1,0),与y轴交于点C(0,3),点D是第二象限内抛物线上一动点.F点坐标为(﹣4,0).
(1)求这条抛物线的解析式;并写出顶点坐标;
(2)当D为抛物线的顶点时,求△ACD的面积;
第二学期全册综合复习 学情评估2022-2023学年度北师大版数学九年级下册
![第二学期全册综合复习 学情评估2022-2023学年度北师大版数学九年级下册](https://img.taocdn.com/s3/m/6acfe4e4ba4cf7ec4afe04a1b0717fd5370cb24c.png)
第二学期全册综合复习 学情评估一、选择题(本大题共10小题,每小题3分,共30分)1.在Rt △ABC 中,∠C =90°,若AC =4,AB =5,则cos B 等于( )A.34B.35C.45D.432.如图,AB 是⊙O 的直径,∠D =40°,则∠AOC =( )A .80°B .100°C .120°D .140°(第2题) (第4题) (第5题)3.在平面直角坐标系中,将抛物线y =x 2先向右平移3个单位长度,再向上平移1个单位长度后,所得抛物线对应的函数表达式为( ) A .y =(x +3)2+1 B .y =(x -3)2-1 C .y =(x +3)2-1 D .y =(x -3)2+14.如图,小明在C 处看到西北方向的A 处有一只小猫,若小猫沿正东方向跑到B 处,测得B 在C 的北偏东α方向,且BC =a 米,则A 处与B 处之间的距离为( )A .a (cos α+sin α)米B .a (cos α-sin α)米C.⎝ ⎛⎭⎪⎫a cos α+a sin α米D.⎝ ⎛⎭⎪⎫acos α-a sin α米 5.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误的是( )A .当-1<x <2时,y <0B .a +c =bC .当x >12时,y 随x 的增大而增大D .若顶点坐标为⎝ ⎛⎭⎪⎫12,m ,则方程ax 2+bx +c =m -1有实数根6.如图,在Rt △ABC 中,∠C =90°,sin B =45,AC =5 cm ,若以点C 为圆心,2cm 长为半径作圆,则⊙C 与AB 的位置关系是( )A .相离B .相交C .相切D .相切或相交(第6题) (第7题) (第8题)7.如图,在⊙O 中,AO =3,∠C =60°,则AB ︵的长度为( )A .6πB .9πC .2πD .3π8.如图,在4×4的正方形网格中,△ABC 的顶点都在格点上,则∠BAC 的正弦值是( ) A.55B.12C.2 55D. 59.如图,半圆O 与等腰直角三角形两腰CA ,CB 分别切于D ,E 两点,直径FG在AB 上,若BG =2-1,则△ABC 的周长为( ) A .4+2 2B .6C .2+2 2D .4(第9题) (第10题)10.如图,有边长分别为1和2的两个等边三角形,开始时它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移至完全移出大三角形为止.设小三角形移动的距离为x ,两个三角形重叠部分的面积为y ,则y 关于x 的函数图象是( )二、填空题(本大题共5小题,每小题3分,共15分)11.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且c=3a,则tan A的值为________.12.如果将抛物线y=-2x2+8向下平移a个单位后恰好经过点(1,4),那么a的值为________.13.如图,⊙O的半径为9 cm,AB是弦,OC⊥AB于点C,将劣弧AB沿弦AB 折叠,交OC于点D,若D是OC的中点,则AB的长为________.(第13题)(第15题)14.已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴的一个交点为(-1,0),则关于x的一元二次方程ax2-2ax+c=0的根是________.15.如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处出发以每小时20 n mile的速度沿南偏西50°方向匀速航行,1 h后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离约是______n mile(结果精确到个位,参考数据:2≈1.4,3≈1.7,6≈2.4).三、解答题(一)(本大题共3小题,每小题8分,共24分)16.计算:3tan 30°-tan2 45°+2sin 60°.17.一抛物线以(-1,9)为顶点,且经过点(-4,0),求该抛物线的解析式及抛物线与y轴的交点坐标.318.如图,在小山的东侧A 处有一热气球,由于受风力影响,它以35 m/min 的速度沿着与水平线成75°角的方向飞行,40 min 后到达C 处,此时热气球上的人发现热气球与山顶P 及小山西侧的B 处在一条直线上,同时测得B 处的俯角为30°.在A 处测得山顶P 的仰角为45°,求A 与B 间的距离及山高(结果保留根号).(第18题)四、解答题(二)(本大题共3小题,每小题9分,共27分)19.△ABC 中,∠A 、∠B 都是锐角,且⎝ ⎛⎭⎪⎫cos A -122+|tan B -1|=0.(1)分别求出△ABC 三个内角的度数; (2)若AC =2,求AB 的长度.20.如图,四边形ABCD 内接于⊙O ,∠1=∠2,延长BC 到点E ,使得CE =AB ,连接ED . (1)求证:BD =ED ;(2)若AB =5,BC =7,∠ABC =60°,求tan ∠DCB 的值.(第20题)21.某商店购进一批额温枪,每个进价为30元.若每个售价定为42元,则每周可售出160个.经调查发现,每个售价每增加1元,每周的销售量将减少10个.设每个额温枪的售价为x元(x≥42),每周的销售利润为y元.(1)求y与x的函数关系式,并直接写出x的取值范围;(2)求每个售价为多少时,每周的销售利润最大;(3)若该商店在某周销售这种额温枪获利1 600元,求这周每个额温枪的售价.五、解答题(三)(本大题共2小题,每小题12分,共24分)22.如图,AB是⊙O的直径,AD、BC分别是⊙O的切线,连接OC、OD、CD,且CO平分∠BCD.(1)求证:CD是⊙O的切线;(2)求证:OC⊥OD;(3)若⊙O的半径是2,sin∠BCD=23,且AD<BC,求tan∠BOC的值.5(第22题)23.如图,在平面直角坐标系中,抛物线y=ax2+bx-6与x轴交于A,B两点,与y轴交于点C,AB=8,OA=3OB,点P是直线AC下方抛物线上的一个动点.过点P作PE∥x轴,交直线AC于点E.(1)求抛物线的解析式;(2)若点M是抛物线对称轴上的一个动点,则BM+CM的最小值是________;(3)求PE的最大值;(4)在抛物线的对称轴上找一点N,使△ACN是以AC为斜边的直角三角形,请直接写出点N的坐标.(第23题)答案一、1.B 2.B 3.D 4.A 5.D 6.A7.C8.A9.A 10.B二、11.2412.213.6 5 cm14.x1=-1,x2=315.24三、16.解:3tan 30°-tan2 45°+2sin 60°=3×33-12+2×32=3-1+ 3=2 3-1.17.解:由题意,可设抛物线的解析式为y=a(x+1)2+9,将(-4,0)代入y=a(x+1)2+9,得0=9a+9,解得a=-1,∴抛物线的解析式为y=-(x+1)2+9.令x=0,则y=8,∴抛物线与y轴的交点坐标为(0,8).18.解:过点A作AD⊥BC,垂足为D.由题意得,∠ACD=75°-30°=45°,AC=35×40=1 400(m).∴AD=AC·sin 45°=1 400×22=700 2(m).在Rt△ABD中,由题意可知,∠B=30°,∴AB=2AD=1 400 2 m.过点P作PE⊥AB,垂足为E,∴易得AE=PE,BE=3PE.∴AB=AE+BE=PE+3PE=1 400 2 m.∴PE=700(6-2)m.答:A与B间的距离是1 400 2 m,山高是700(6-2)m.7四、19.解:(1)∵⎝ ⎛⎭⎪⎫cos A -122+||tan B -1=0,∴cos A -12=0,tan B -1=0, ∴cos A =12,tan B =1, 又∵∠A 、∠B 都是锐角, ∴∠A =60°,∠B =45°, ∴∠C =180°-∠A -∠B =75°. (2)过点C 作CH ⊥AB 于H , 在Rt △ACH 中,AC =2,∠A =60°, ∴AH =AC ·cos A =2×12=1, CH =AC ·sin A =2×32= 3.在Rt △CHB 中,CH =3,tan B =1, ∴BH =CH tan B =31=3, ∴AB =AH +BH =1+ 3. 20.(1)证明:∵∠1=∠2,∴AD ︵=DC ︵,∴AD =DC . ∵四边形ABCD 内接于⊙O , ∴∠BAD +∠BCD =180°, ∵∠ECD +∠BCD =180°, ∴∠BAD =∠ECD . 在△ABD 和△CED 中,⎩⎨⎧AD =CD ,∠BAD =∠ECD ,AB =CE ,∴△ABD ≌△CED ,∴BD =ED . (2)解:过点D 作DM ⊥BE 于M ,如图.(第20题)∵BC=7,CE=AB=5,∴BE=BC+EC=12,∵BD=ED,DM⊥BE,∴BM=ME=12BE=6,∴CM=BC-BM=1.∵∠ABC=60°,∠1=∠2,∴∠2=30°,∴DM=BM·tan∠2=6×33=2 3,∴tan∠DCB=DMCM=2 3.21.解:(1)根据题意知y=(x-30)[160-10(x-42)]=-10x2+880x-17 400(42≤x<58).(2)y=-10x2+880x-17 400=-10(x-44)2+1 960.∵-10<0,42≤x<58,∴当x=44时,y取得最大值,最大值为1 960.答:当每个售价为44元时,每周的销售利润最大.(3)令y=1 600,则-10(x-44)2+1 960=1 600,解得x=50或x=38(不合题意,舍去).答:这周每个额温枪的售价为50元.五、22.(1)证明:过点O作OH⊥CD于点H,如图,则∠CHO=90°,∵BC是⊙O的切线,∴∠OBC=90°,∴∠CHO=∠CBO.∵CO平分∠BCD,∴∠HCO=∠BCO,9又∵OC=OC,∴△CHO≌△CBO,∴OH=OB,∴CD是⊙O的切线.(2)证明:∵AD是⊙O的切线,∴∠DAO=90°. 在Rt△DAO和Rt△DHO中,AO=HO,DO=DO,∴Rt△DAO≌Rt△DHO,∴∠AOD=∠HOD.∵△CHO≌△CBO,∴∠COH=∠COB.∵∠AOH+∠BOH=180°,∴∠DOH+∠COH=90°,∴∠DOC=90°,即OC⊥OD.(3)解:延长CD交BA的延长线于点F,如图.(第22题)∵∠OHC=∠OBC=90°,∴易得∠FOH=∠DCB,∵sin∠BCD=2 3,∴sin∠FOH=FHFO=2 3,∴可设FH=2m,FO=3m,∵OH=2,∴(3m)2-(2m)2=22,解得m=2 55(负值已舍去),∴FH=4 55,FO=6 55.11∵∠FHO =∠FBC =90°,∠F =∠F , ∴△FOH ∽△FCB ,∴OH ∶FO =BC ∶FC ,∴易得2 ∶6 55=BC ∶⎝⎛⎭⎪⎫BC +4 55, 解得BC =3+5,∴tan ∠BOC =BC OB =3+52.23.解:(1)∵AB =OA +OB =8,OA =3OB ,∴OB =2,OA =6,∴A (-6,0),B (2,0).将点A ,B 的坐标代入y =ax 2+bx -6,得⎩⎨⎧36a -6b -6=0,4a +2b -6=0,解得⎩⎪⎨⎪⎧a =12,b =2.∴y =12x 2+2x -6.(2)6 2(3)令x =0,则y =-6,∴C (0,-6).设直线AC 的解析式为y =kx +m ,将点A ,C 的坐标代入,得⎩⎨⎧-6k +m =0,m =-6, 解得⎩⎨⎧k =-1,m =-6.∴y =-x -6.设P ⎝ ⎛⎭⎪⎫t ,12t 2+2t -6,其中-6<t <0, 则E ⎝ ⎛⎭⎪⎫-12t 2-2t ,12t 2+2t -6, ∴PE =-12t 2-2t -t =-12t 2-3t =-12(t +3)2+92,∴当t =-3时,PE 取得最大值92.即PE的最大值为9 2.(4)点N的坐标为(-2,17-3)或(-2,-17-3).。
新人教版九年级下数学二次函数单元试题及答案
![新人教版九年级下数学二次函数单元试题及答案](https://img.taocdn.com/s3/m/f052452a14791711cc791778.png)
九年级数学(人教版)下学期单元试卷(一)内容:26.1 满分:100分一、选择题(本大题共10小题,每小题3分,共30分)1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 2 2. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( ) A .(2,1) B .(-2,1) C .(2,-1) D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=15.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( )A . 0或2B . 0C . 2D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮 圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( )A .a >0.B .b >0.C .c <0.D .abc >0.(第9题二、填空题(本大题共4小题,每小题3分,共1211.一个正方形的面积为16cm 2,当把边长增加x cm 的函数为 。
精品试卷沪教版(上海)九年级数学第二学期第二十八章统计初步专题测评试题(含答案解析)
![精品试卷沪教版(上海)九年级数学第二学期第二十八章统计初步专题测评试题(含答案解析)](https://img.taocdn.com/s3/m/704eefa6dc3383c4bb4cf7ec4afe04a1b071b064.png)
九年级数学第二学期第二十八章统计初步专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、九年级(1)班学生在引体向上测试中,第一小组6名同学的测试成绩如下(单位:个):4,5,6,7,7,8,这组数据的中位数与众数分别是()A.7,7 B.6,7 C.6.5,7 D.5,62、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是()A.平均数是89 B.众数是93C.中位数是89 D.方差是2.83、已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是()A.90 B.90.3 C.91 D.924、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为()A.11 B.10 C.9 D.85、下列调查中,调查方式选择合理的是()A.为了了解澧水河流域饮用水矿物质含量的情况,采用抽样调查方式B.为了保证长征运载火箭的成功发射,对其所有的零部件采用抽样调查方式C.为了了解天门山景区的每天的游客客流量,选择全面调查方式D.为了调查湖南卫视《快乐大本营》节目的收视率,采用全面调查方式6、在某次比赛中,有10位同学参加了“10进5”的淘汰赛,他们的比赛成绩各不相同.其中一位同学要知道自己能否晋级,不仅要了解自己的成绩,还需要了解10位参赛同学成绩的()A.平均数B.加权平均数C.众数D.中位数7、下列调查中,其中适合采用抽样调查的是()A.调查某班50名同学的视力情况B.为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况C.为保证“神舟9号”成功发射,对其零部件进行检查D.检测中卫市的空气质量8、一个班有40名学生,在一次身体素质测试中,将全班学生的测试结果分为优秀、合格、不合格.测试结果达到优秀的有18人,合格的有17人,则在这次测试中,测试结果不合格的频率是()A.0.125 B.0.30 C.0.45 D.1.259、12名射击运动员一轮射击成绩绘制如图所示的条形统计图,则下列错误的是()A.中位数是8环B.平均数是8环C.众数是8环D.极差是4环10、八(3)班七个兴趣小组人数分别为4、4、5、x、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是()A.6 B.5 C.4 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小玲家的鱼塘里养了2 500条鲢鱼,按经验,鲢鱼的成活率约为80%.现准备打捞出售,为了估计鱼塘中鲢鱼的总质量,从鱼塘中捕捞了3次进行统计,得到的数据如下表:那么,鱼塘中鲢鱼的总质量约是________kg.2、一组数据6、8、10、10,数据的众数是 ___,中位数是 ___.3、某单位拟招聘一个管理员,其中某位考生笔试、试讲、面试三轮测试得分分别为92分,85分,90分,若依次按40%,40%,20%的比例确定综合成绩,则该名考生的综合成绩为______分.4、某市今年共有12万名考生参加中考,为了了解这12万名考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析.在这次调查中,被抽取的1500名考生的数学成绩是______.(填“总体”,“样本”或“个体”)5、为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:16,9,14,11,12,10,16,8,17,19,则这组数据的极差是____.三、解答题(5小题,每小题10分,共计50分)1、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?(2)请通过计算补全条形统计图;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?2、为弘扬中华传统文化,某校开展“戏剧进课堂”活动.该校随机抽取部分学生,四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对戏剧的喜爱情况,将结果绘制成如图两幅不完整的统计图根据图中提供的信息,解决下列问题:(1)此次共调查了名学生;(2)请补全D类条形统计图;(3)扇形统计图中.B类所对应的扇形圆心角的大小为度;(4)该校共有1560名学生,估计该校表示“很喜欢”的A类的学生有多少人?3、张老师将4个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),如表是活动进行中的一组部分统计数据.(1)根据上表数据计算a=_________;估计从袋中摸出一个球是黑球的概率是_________.(精确到0.01)(2)估算袋中白球的个数.4、西安市某中学为了搞好“创建全国文明城市”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,X表示测试成绩)通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)将条形统计图补充完整;(2)本次调查测试成绩中的中位数落在______组内;(3)若测试成绩在80分以上(含80分)为优秀,有学生3600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.5、甲、乙两校参加区举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,统计学生成绩分别为7分、8分9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图和统计表:甲校成绩统计表(1)甲校参赛人数是______人,x ______;(2)请你将如图②所示的统计图补充完整;(3)请分别求出甲校和乙校学生成绩的平均数和中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?-参考答案-一、单选题1、C【分析】根据中位数和众数的概念可得答案,中位数是把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.【详解】解:在这一组数据中7是出现次数最多的,故众数是7,将这组数据从小到大的顺序排列4、5、6、7、7、8处于中间位置的那个数是6和7,则这组数据的中位数是6.5.故选:C .【点睛】本题考查了中位数和众数的概念,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.2、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93, ∴平均数为8889909093905++++=,众数为90,中位数为90, 故选项A 、B 、C 错误; 方差为222221[(8890)(8990)(9090)(9090)(9390)] 2.85⨯-+-+-+-+-=, 故选项D 正确.故选:D .【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.3、D【分析】根据加权平均数计算.【详解】解:小明的平均成绩为87395689192361⨯+⨯+⨯=++分,故选:D.【点睛】此题考查了加权平均数,正确掌握各权重的意义及计算公式是解题的关键.4、B【分析】极差除以组距,大于或等于该值的最小整数即为组数.【详解】解:105238219999-==,∴分10组.故选:B.【点睛】本题考查了组距的划分,一般分为5~12组最科学.5、A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查所费人力、物力和时间较少,但只能得出近似的结果判断即可.【详解】A. 为了了解澧水河流域饮用水矿物质含量的情况,适合采用抽样调查方式,符合题意;B. 为了保证长征运载火箭的成功发射,对其所有的零部件适合采用全面调查方式,该选项不符合题意;C. 为了了解天门山景区的每天的游客客流量,适合选择抽样调查方式,该选项不符合题意;D. 为了调查湖南卫视《快乐大本营》节目的收视率,适合选择抽样调查方式,该选项不符合题意.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、D【分析】根据中位数的特点,参赛选手要想知道自己是否能晋级,只需要了解自己的成绩以及全部成绩的中位数即可.【详解】解:根据题意,由于总共有10个人,且他们的成绩各不相同,第5名和第6名同学的成绩的平均数是中位数,要判断是否能晋级,故应知道中位数是多少.故选:D.【点睛】本题考查中位数,理解中位数的特点,熟知中位数是一组数据从小到大的顺序依次排列,处在最中间位置的的数(或最中间两个数据的平均数)是解答的关键.7、D【分析】抽样调查是通过对样本调查来估计总体特征,其调查结果是近似的;而全面调查得到的结果比较准确;根据对调查结果的要求对选项进行判断.【详解】A调查某班50名同学的视力情况,人数较少,应采用全面调查,故不符合要求;B为了解新型冠状病毒确诊病人同一架飞机乘客的健康状况,意义重大,应采用全面调查,故不符合要求;C为保证“神州9号”成功发射,对零部件进行检查,意义重大,应采用全面调查,故不符合要求;D检查中卫市的空气质量,应采用抽样调查,故符合要求;故选D.【点睛】本题考察了抽样调查与全面调查.解题的关键与难点在于理清对调查结果的要求.8、A【分析】先求得不合格人数,再根据频率的计算公式求得不合格人数的频率即可.【详解】解:不合格人数为4018175--=(人),∴不合格人数的频率是50.125 40=,故选:A.【点睛】本题主要考查了频率与概率,解题的关键是掌握频率是指每个对象出现的次数与总次数的比值(或者百分比).9、C【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;对于众数可由条形统计图中出现频数最大或条形最高的数据写出;极差=最大值-最小值.【详解】解:A.由于共有12个数据,排在第6和第7的数均为8,所以中位数为8环,故本选项不合题意;B.平均数为:(6+7×4+8×2+9×4+10)÷12=8(环),故本选项不合题意;C.众数是7环和9环,故本选项符合题意;D.极差为:10-6=4(环),故本选项不合题意;故选:C.【点睛】本题主要考查了确定一组数据的中位数,极差,众数以及平均数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10、B【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7−4−4−5−6−6−7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选:B.【点睛】本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.二、填空题1、3600【分析】首先计算样本平均数,然后计算成活的鱼的数量,最后两个值相乘即可.【详解】解:每条鱼的平均重量为:20 1.610 2.210 1.81.8201010⨯+⨯+⨯=++千克,⨯=条,成活的鱼的总数为:25000.82000则总质量约是2000 1.83600⨯=千克.故答案为:3600.【点睛】本题考查了利用样本估计总体,解题的关键是注意样本平均数的计算方法:总质量÷总条数,能够根据样本估算总体.2、10 9【分析】先把数据按由小到大的顺序排列,然后根据中位数和众数的定义求解;【详解】解:由题意可把数据按由小到大的顺序排列为6、8、10、10,所以该组数据的中位数为9,众数为10;故答案为10,9【点睛】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、88.8【分析】根据加权平均数的求解方法求解即可.【详解】解:根据题意,该名考生的综合成绩为92×40%+85×40%+90×20%=88,8(分),故答案为:88.8.本题考查加权平均数,熟知加权平均数的求解方法是解答的关键.4、样本【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,根据概念分析即可得到答案.【详解】解:1500名考生的数学成绩是总体的一个样本,故答案为:样本【点睛】本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考查的事物.5、11【分析】根据极差=最大值-最小值求解可得.【详解】解:这组数据的最大值为19,最小值为8,所以这组数据的极差为19-8=11,故答案为:11.【点睛】本题主要考查极差,极差是指一组数据中最大数据与最小数据的差.三、解答题1、(1)40;(2)见解析;(3)360(1)由艺术类书籍的数量及其所占百分比可得抽取的总数量;(2)用样本容量乘以其它类书籍对应的百分比求出具体数量,从而补全图形;(3)用总数量乘以样本中科普类书籍数量所占比例可得.【详解】(1)本次抽样调查的书有8÷20%=40(本);(2)其它类的书的数量为40×15%=6(本),补全图形如下:(3)估计科普类书籍的本数为1200×1240=360(本).【点睛】本题考查的是条形统计图和扇形统计图,解决问题的关键是读懂统计图,从不同的统计图中得到必要的信息.2、(1)60;(2)补全统计图见详解;(3)150;(4)估计该校表示“很喜欢”的A类的学生有260人.【分析】(1)C类学生占比25%,根据条形统计图的数据可得C类学生有15人,由此计算总人数即可;(2)计算得出D类学生人数,根据D类学生人数补全条形统计图即可;(3)根据前面的结论,计算出B 类人数占总调查人数的比值,将计算结果乘360︒即可得出扇形圆心角的度数;(4)利用调查样本所占的百分比估计总体学生数即可.【详解】解:(1)此次调查学生总数:1525%60÷=(人),故答案为:60;(2)D 类人数为:6010251510=---(人),补全条形统计图,如图所示,(3)扇形统计图中,B 类所对应的扇形圆心角的大小为:2536015060⨯︒=︒, 故答案为:150;(4)101560=26060⨯(人). ∴估计该校表示“很喜欢”的A 类的学生有260人.【点睛】本题考查了条形统计图和扇形统计图的信息关联,求扇形统计图的圆心角,画条形统计图,由样本百分比估计总体的数量,从不同的统计图中获取需要的信息是解题关键.3、(1)0.251;0.25;(2)12个【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;故答案为:0.251;0.25.(2)设袋中白球为x 个,4 0.254x=+, x =12,经检验x =12是方程的解,答:估计袋中有2个白球.【点睛】此题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.4、(1)见解析;(2)B ;(3)1620人.【分析】(1)先由A 组人数及其所占百分比求出总人数,总人数乘以B 组对应百分比即可求出其人数,从而补全图形;(2)根据中位数的定义求解;(3)总人数乘以样本A 、B 组对应百分比之和即可.【详解】解:(1)因为被调查的总人数为40÷10%=400(人)所以B组人数为400×35%=140(人),补全图形如下,(2)因为一共有400个数据,其中位数是第200,201个数据的平均数,而这两个数据均落在B组,即本次调查测试成绩中的中位数落在B组,故答案为:B;(3)估计全校学生测试成绩为优秀的总人数为3600×(10%+35%)=1620(人)答:估计全校学生测试成绩为优秀的总人数为1620人.【点睛】本题考查条形统计图与扇形统计图的综合应用、样本估计总体,难度一般,掌握相关知识是解题关键.5、(1)20;1;(2)作图见详解;(3)两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.【分析】(1)由乙校打10分的学生人数和扇形统计图中的角度可得总人数,然后用总人数减去甲校各组人数即可得;(2)先求出乙校打8分的人数,然后补全统计图即可得;(3)根据平均数及中位数的计算方法得出结果即可知哪个学校成绩好.【详解】解:(1)由乙校打10分的学生人数和扇形统计图中的角度可得:总人数为:90520360︒÷=︒人,∵两校参赛人数相等,∴甲校参赛人数为20人,∴2011081x=---=人,故答案为:20;1;(2)乙校打8分的人数为:208453---=人,作图如下:(3)甲校得分平均数为:11708198108.320⨯+⨯+⨯+⨯=,甲校得分中位数为排序后第10、11位的平均数:7772+=分;乙校得分平均数为:8738495108.320⨯+⨯+⨯+⨯=,甲校得分中位数为排序后第10、11位的平均数:787.52+=分;两校得分的平均分数一样,中位数分数乙校大于甲校,∴两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.【点睛】题目主要考查条形统计图和扇形统计图,计算平均数、中位数,从两个统计图获取相关信息是解题关键.。
九年级数学下圆综合复习计算
![九年级数学下圆综合复习计算](https://img.taocdn.com/s3/m/cdd00525a76e58fafab00366.png)
切线的判定与性质【知识要点】1.直线与圆的三种位置关系在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?2.切线的判定定理:切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.对定理的理解:①经过半径外端;②垂直于这条半径.注意:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.(如图)3.切线的判定方法判定一条直线是圆的切线的三种方法:(1)定义:与圆有唯一公共点的直线是圆的切线。
(2)数量关系:即与圆心的距离等于圆的半径的直线是圆的切线.(3)图形位置关系(判定定理):.经过半径外端并且垂直于这条半径的直线是圆的切线.其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一。
4.切线的性质定理:圆的切线垂直于经过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点。
推论2:经过切点且垂直于切线的直线必经过圆心。
注意:对于切线性质定理的两个推论:①垂直于切线;②经过切点;③经过圆心,知道任意二个就可以推出第三个【典型例题】例1.下列说法正确的是()(1)与直径垂直的直线是圆的切线;(2)到圆心距离等于半径的直线是圆的切线;(3)经过半径外端点的直线是圆的切线; (4)与圆有唯一公共点的直线是圆的切线;(5)经过半径的外端点且垂直于半径的直线是圆的切线.A 、(1)(2)(3)B 、(2)(3)(5)C 、(2)(4)(5)D 、(3)(4)(5)例2.如图所示,PBC 是⊙O 的割线,A 点是⊙O 上一点,且PC PB PA ⋅=2. 求证:PA 是⊙O 的切线.例3.如图所示,已知:梯形ABCD 中AB ∥CD ,∠A=︒90,腰BC 是⊙O 的直径,且BC=CD+AB .求证:AD 和⊙O 相切.例4.如图所示,已知:两个同心圆O 中,大圆的弦AB 、CD 相等,且AB 与小圆相切于点E .求证:CD 是小圆O 的切线.·OPABC·ACBDO ABD C例5.如图所示,AB 是⊙O 的直径,BC 为弦,C 为弧AD 的中点,过C 作BD 的垂线交BD 的延长线于E 点.求证:CE 与⊙O 相切.例6. 如图所示,在梯形ABCD 中,AD ∥BC ,DC ⊥BC ,AB=8,BC=5,若以AB 为直径为⊙O 与DC 相切于点E ,则DC= 。
(必考题)初中数学九年级下期中经典复习题(含答案解析)
![(必考题)初中数学九年级下期中经典复习题(含答案解析)](https://img.taocdn.com/s3/m/79fe4b45fd0a79563d1e7239.png)
一、选择题1.(0分)[ID :11129]如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是( )A .①和②B .②和③C .①和③D .①和④2.(0分)[ID :11126]已知一次函数y 1=x -1和反比例函数y 2=2x 的图象在平面直角坐标系中交于A 、B 两点,当y 1>y 2时,x 的取值范围是( )A .x >2B .-1<x <0C .x >2,-1<x <0D .x <2,x >03.(0分)[ID :11119]如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对 4.(0分)[ID :11110]如图,已知直线a ∥b ∥c ,直线m 、n 与直线a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC=4,CE=6,BD=3,则BF=( )A .7B .7.5C .8D .8.55.(0分)[ID :11107]如图,平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x轴,分别交y=3x (x >0)、y=k x(x <0)的图象于B 、C 两点,若△ABC 的面积为2,则k 值为( )A .﹣1B .1C .12-D .126.(0分)[ID :11106]如图,河坝横断面迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高3m BC =,则坡面AB 的长度是( ).A .9mB .6mC .63mD .33m7.(0分)[ID :11072]下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:98.(0分)[ID :11070]河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1:3,则AC 的长是( )A .10米B .53米C .15米D .103米9.(0分)[ID :11060]在平面直角坐标系中,将点(2,l )向右平移3个单位长度,则所得的点的坐标是( )A .(0,5)B .(5,1)C .(2,4)D .(4,2)10.(0分)[ID :11054]如图,在平行四边形ABCD 中,点E 在边CD 上, AC 与BE 相交于点F ,且DE:CE =1:2,则△CEF 与△ABF 的周长之比为( )A .1 : 2B .1 : 3C .2 : 3D .4 : 911.(0分)[ID :11049]如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为( )A.6B.7C.8D.912.(0分)[ID:11045]如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.13.(0分)[ID:11043]如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m14.(0分)[ID:11039]在反比例函数4yx=的图象中,阴影部分的面积不等于4的是()A.B. C.D.15.(0分)[ID:11038]下列变形中:①由方程125x-=2去分母,得x﹣12=10;②由方程29x=92两边同除以29,得x=1;③由方程6x﹣4=x+4移项,得7x=0;④由方程2﹣5362x x-+=两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是()个.A.4B.3C.2D.1二、填空题16.(0分)[ID:11153]如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.17.(0分)[ID:11140]如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为_____.18.(0分)[ID:11137]已知AB∥CD,AD与BC相交于点O.若BOOC=23,AD=10,则AO=____.19.(0分)[ID:11221]如图,已知两个反比例函数C1:y=1x和C2:y=13x在第一象限内的图象,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为_____.20.(0分)[ID:11211]《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.21.(0分)[ID:11209]已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.22.(0分)[ID:11198]把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.23.(0分)[ID:11180]若函数y=(k-2)2k5x-是反比例函数,则k=______.24.(0分)[ID:11176]已知CD是Rt△ABC斜边上的高线,且AB=10,若BC=8,则cos∠ACD= ______.25.(0分)[ID:11188]小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶的高度为________m.三、解答题26.(0分)[ID:11318]已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF 交于点G.(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证:DE AD CF CD=;(2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得DE ADCF CD=成立?并证明你的结论.27.(0分)[ID :11306]如图,在平面直角坐标系中,每个小方格都是边长为1个单位的小正方形,点A 、B 、C 都是格点(每个小方格的顶点叫格点),其中()A 1,8,()B 3,8,()C 4,7.()1ABC 外接圆的圆心坐标是______;()2ABC 外接圆的半径是______;()3已知ABC 与DEF(点D 、E 、F 都是格点)成位似图形,则位似中心M 的坐标是______;()4请在网格图中的空白处画一个格点111A B C ,使111A B C ∽ABC ,且相似比为2:1.28.(0分)[ID :11299]如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .(1)求证:EF 是⊙O 的切线;(2)若,且,求⊙O的半径与线段的长.29.(0分)[ID:11294]如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;30.(0分)[ID:11257]如图:已知▱ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G.(1)若AB=3,BC=4,CE=2,求CG的长;(2)证明:AF2=FG×FE.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.D4.B5.A6.B7.B8.B9.B10.C11.C12.C13.A14.B15.B二、填空题16.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b图中阴影部分的面积等于9可求出b17.2+3【解析】【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC=OA2-AC2=3BC=OB﹣OC=2﹣3在Rt△ABC中根据tan∠ABO=ACBC可得答案【详解18.【解析】∵AB∥CD解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键19.【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=S矩形PCOD=1然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积【详解】∵PC⊥x轴PD⊥y轴∴S△20.【解析】【分析】如图根据正方形的性质得:DE∥BC则△ADE∽△ACB列比例式可得结论【详解】如图∵四边形CDEF是正方形∴CD=EDDE∥CF设ED=x则CD=xAD=12-x∵DE∥CF∴∠AD21.m>2【解析】分析:根据反比例函数y=当x>0时y随x增大而减小可得出m﹣2>0解之即可得出m的取值范围详解:∵反比例函数y=当x>0时y随x增大而减小∴m﹣2>0解得:m>2故答案为m>2点睛:本22.【解析】【分析】由正方形的性质易证△ABC∽△FEC可设BC=x只需求出BC即可求出图中阴影部分的面积【详解】如图所示:设BC=x则CE=1﹣x∵AB∥EF∴△ABC∽△FEC∴=∴=解得x=∴阴影23.-2【解析】【分析】根据反比例函数的定义列出方程解出k的值即可【详解】解:若函数y=(k-2)是反比例函数则解得k=﹣2故答案为﹣224.【解析】试题分析:根据同角的余角相等得:∠ACD=∠B利用同角的余弦得结论解:∵CD是Rt△ABC斜边上的高线∴CD⊥AB∴∠A+∠ACD=90°∵∠ACB=90°∴∠B+∠A=90°∴∠ACD=∠25.5【解析】【分析】根据同一时刻身长和影长成比例求出举起手臂之后的身高与身高做差即可解题【详解】解:设举起手臂之后的身高为x由题可得:17:085=x:11解得x=22则小刚举起的手臂超出头顶的高度为三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】设小长方形的长为2a,宽为a.利用勾股定理求出三角形的三边长即可判断.【详解】由题意可知:小长方形的长是宽的2倍,设小长方形的宽为a ,则长为2a ,∴图①中的三角形三边长分别为2a ==;图②中的三角形三边长分别为5a ==;图③中的三角形三边长分别为==;==、5a =,∴①和②图中三角形不相似;∵22a a ≠≠ ∴②和③图中三角形不相似;∵22a a ≠≠ ∴①和③图中三角形不相似;=== ∴①和④图中三角形相似.故选D【点睛】本题考查相似三角形的判定,勾股定理等知识,解题的关键是熟练掌握熟练掌握基本知识.2.C解析:C【解析】【分析】因为一次函数和反比例函数交于A 、B 两点,可知x-1=2x,解得x=-1或x=2,进而可得A 、B 两点的坐标,据此,再结合函数解析式画图,据图可知当x>2时,以及当-1<x<0时,y 1>y 2.【详解】解方程x −1=2x,得 x =−1或x =2,那么A 点坐标是(−1,−2),B 点坐标是(2,1),如右图,当x >2时, 12y y >,以及当−1<x <0时, 12y y >.故选C.【点睛】本题考查了反比例函数与一次函数交点问题,解题的关键是能根据解析式画出函数的图象,并能根据图象解決问题3.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C =∠C ,∴△ACE ∽△ECD ,∵∠2=∠3,∴DE ∥AB ,∴△BCA ∽△ECD ,∵△ACE ∽△ECD ,△BCA ∽△ECD ,∴△ACE ∽△BCA ,∵DE ∥AB ,∴∠AED =∠BAE ,∵∠1=∠2,∴△AED ∽△BAE ,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.4.B解析:B【解析】【分析】由直线a ∥b ∥c ,根据平行线分线段成比例定理,即可得AC BD CE DF =,又由AC=4,CE=6,BD=3,即可求得DF 的长,则可求得答案.【详解】解:∵a ∥b ∥c , ∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.5.A解析:A【解析】【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k的几何意义得到12×|3|+12•|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.【详解】连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=12×|3|+12•|k|,∴12×|3|+12•|k|=2,而k<0,∴k=﹣1,故选A.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.6.B【解析】由图可知,:BC AC =tan BAC ∠=, ∴30BAC ∠=︒, ∴36m 1sin 302BC AB ===︒. 故选B . 7.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A 、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B 、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C 、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D 、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B .【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.8.B解析:B【解析】【分析】Rt △ABC 中,已知了坡比是坡面的铅直高度BC 与水平宽度AC 之比,通过解直角三角形即可求出水平宽度AC 的长.【详解】Rt △ABC 中,BC=5米,tanA=1;∴AC=BC÷故选:B .【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.解析:B【解析】【分析】在平面直角坐标系中,将点(2,l )向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l )向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.10.C解析:C【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的周长比等于相似比就可得到答案.【详解】∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD=AB .∴△DFE ∽△BFA ,∵DE :EC=1:2,∴EC :DC=CE :AB=2:3,∴C △CEF :C △ABF =2:3.故选C .11.C解析:C【解析】【分析】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC , ∴AD AE DB EC =,即932AE =, ∴6AE =,∴628AC AE EC =+=+=.故选:C .【点睛】此题考查平行线分线段成比例,解题关键在于求出AE 12.C解析:C【解析】【分析】【详解】利用如图所示的计算器计算2cos55°,按键顺序正确的是.故答案选C.13.A解析:A【解析】∵BE∥AD,∴△BCE∽△ACD,∴CB CEAC CD=,即CB CEAB BC DE EC=++,∵BC=1,DE=1.8,EC=1.2∴1 1.21 1.8 1.2 AB=++∴1.2AB=1.8,∴AB=1.5m.故选A.14.B解析:B【解析】【分析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=4;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=4.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.15.B解析:B【解析】【分析】根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.【详解】①方程125x-=2去分母,两边同时乘以5,得x﹣12=10,故①正确.②方程29x=92,两边同除以29,得x=814;要注意除以一个数等于乘以这个数的倒数,故②错误.③方程6x﹣4=x+4移项,得5x=8;要注意移项要变号,故③错误.④方程2﹣5362x x-+=两边同乘以6,得12﹣(x﹣5)=3(x+3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故④错误.故②③④变形错误.故选B.【点睛】在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.二、填空题16.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b图中阴影部分的面积等于9可求出b解析:3yx =.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.17.2+3【解析】【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC=OA2-AC2=3BC=OB﹣OC=2﹣3在Rt△ABC中根据tan∠ABO=ACBC可得答案【详解解析:2+√3.【解析】【分析】连接OA,过点A作AC⊥OB于点C,由题意知AC=1、OA=OB=2,从而得出OC=√OA2−AC2=√3、BC=OB﹣OC=2﹣√3,在Rt△ABC中,根据tan∠ABO=ACBC可得答案.【详解】如图,连接OA,过点A作AC⊥OB于点C,则AC=1,OA=OB=2,∵在Rt△AOC中,OC=√OA2−AC2=√22−12=√3,∴BC=OB﹣OC=2﹣√3,∴在Rt△ABC中,tan∠ABO=ACBC=2−√3=2+√3.故答案是:2+√3.【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO为内角的直角三角形是解题的关键.18.【解析】∵AB∥CD解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键解析:【解析】∵AB ∥CD ,223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.19.【解析】【分析】根据反比函数比例系数k 的几何意义得到S△AOC=S△BOD=S 矩形PCOD=1然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB 的面积【详解】∵PC⊥x 轴PD⊥y 轴∴S△ 解析:23【解析】【分析】根据反比函数比例系数k 的几何意义得到S △AOC =S △BOD =111236⨯=,S 矩形PCOD =1,然后利用矩形面积分别减去两个三角形的面积即可得到四边形P AOB 的面积.【详解】∵PC ⊥x 轴,PD ⊥y 轴,∴S △AOC =S △BOD =11||23⋅=111236⨯=,S 矩形PCOD =1,∴四边形P AOB 的面积=1﹣2×16=23. 故答案为:23. 【点睛】本题考查了反比函数比例系数k 的几何意义.掌握反比函数比例系数k 的几何意义是解答本题的关键.反比函数比例系数k 的几何意义:在反比例函数k y x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |. 20.【解析】【分析】如图根据正方形的性质得:DE∥BC 则△ADE∽△ACB 列比例式可得结论【详解】如图∵四边形CDEF 是正方形∴CD=EDDE∥CF 设ED=x 则CD=xAD=12-x∵DE∥CF∴∠AD 解析:6017. 【解析】【分析】 如图,根据正方形的性质得:DE ∥BC ,则△ADE ∽△ACB ,列比例式可得结论.【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC=ADAC,∴x5=12-x12,∴x=60 17,故答案为60 17.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.21.m>2【解析】分析:根据反比例函数y=当x>0时y随x增大而减小可得出m﹣2>0解之即可得出m的取值范围详解:∵反比例函数y=当x>0时y随x 增大而减小∴m﹣2>0解得:m>2故答案为m>2点睛:本解析:m>2.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣2>0,解之即可得出m的取值范围.详解:∵反比例函数y=2mx-,当x>0时,y随x增大而减小,∴m﹣2>0,解得:m>2.故答案为m>2.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.22.【解析】【分析】由正方形的性质易证△ABC∽△FEC可设BC=x只需求出BC即可求出图中阴影部分的面积【详解】如图所示:设BC=x则CE=1﹣x∵AB∥EF∴△ABC∽△FEC∴=∴=解得x=∴阴影解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.23.-2【解析】【分析】根据反比例函数的定义列出方程解出k的值即可【详解】解:若函数y=(k-2)是反比例函数则解得k=﹣2故答案为﹣2解析:-2【解析】【分析】根据反比例函数的定义列出方程2k-5=-1k-20⎧⎨≠⎩,解出k的值即可.【详解】解:若函数y=(k-2)2k5x-是反比例函数,则2k-5=-1 k-20⎧⎨≠⎩解得k=﹣2,故答案为﹣2.24.【解析】试题分析:根据同角的余角相等得:∠ACD=∠B利用同角的余弦得结论解:∵CD是Rt△ABC斜边上的高线∴CD⊥AB∴∠A+∠ACD=90°∵∠ACB=90°∴∠B+∠A=90°∴∠ACD=∠解析:4 5【解析】试题分析:根据同角的余角相等得:∠ACD=∠B,利用同角的余弦得结论.解:∵CD是Rt△ABC斜边上的高线,∴CD⊥AB,∴∠A+∠ACD=90°,∵∠ACB=90°,∴∠B+∠A=90°,∴∠ACD=∠B,∴cos∠ACD=cos∠B=BCAB=810=45,故答案为:4 5 .25.5【解析】【分析】根据同一时刻身长和影长成比例求出举起手臂之后的身高与身高做差即可解题【详解】解:设举起手臂之后的身高为x由题可得:17:0 85=x:11解得x=22则小刚举起的手臂超出头顶的高度为解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.三、解答题26.(1)详见解析;(2)当∠B+∠EGC=180°时,DE ADCF DC=成立,理由详见解析.【解析】【分析】(1)根据矩形的性质可得∠A=∠ADC=90°,由DE⊥CF可得∠ADE=∠DCF,即可证得△ADE∽△DCF,从而证得结论;(2)在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM.根据平行线的性质可得∠A=∠CDM,再结合∠B+∠EGC=180°,可得∠AED=∠FCB,进而得出∠CMF=∠AED即可证得△ADE∽△DCM,从而证得结论;【详解】解:(1)∵四边形ABCD是矩形,∴∠A=∠ADC=90°,∵DE⊥CF,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴DE AD CF DC=(2)当∠B+∠EGC=180°时,DE ADCF DC=成立,证明如下:在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM.∵AB∥CD.∴∠A=∠CDM.∵AD∥BC,∴∠CFM=∠FCB.∵∠B+∠EGC=180°,∴∠AED=∠FCB,∴∠CMF=∠AED,∴△ADE∽△DCM,∴DE ADCM DC=,即DE ADCF DC=.【点睛】本题是相似形综合题目,考查了相似三角形的判定与性质、等腰三角形的性质以及平行线的性质,熟练掌握等腰三角形的性质,证明三角形相似是解决问题的关键.27.(1)(2,6);(25(3)(3,6) ;(4)见解析.【解析】【分析】(1)根据作图,结合网格特点解答;(2)根据线段垂直平分线的性质和三角形的外接圆的概念解答;(3)根据位似变换和位似中心的概念解答;(4)根据相似三角形的对应边的比相等,都等于相似比解答.【详解】解:(1)如图1,由作图可知△ABC外接圆的圆心坐标是(2,6),故答案为(2,6);(2)作AB、BC的垂直平分线交于G,连接AG,根据网格特点可知,点G的坐标为(2,6),则AG=2212=5,则△ABC外接圆的半径是5,故答案为5;(3)如图2,连接BE、FC,根据网格特点,BE与FC交于点M,点M的坐标为(3,6),根据位似中心的概念可知,位似中心M的坐标是(3,6),故答案为(3,6);(4)由网格特点可知,AB=2,2,10,∵△A 1B 1C 1∽△ABC ,且相似比为2:1,∴A 1B 1=22,B 1C 1=2,A 1C 1=25,所求的△A 1B 1C 1如图3.【点睛】本题考查的是格点正方形、锐角三角函数的定义、位似变换与位似中心与相似三角形的性质,掌握如果两个图形不仅是相似图形,且对应点连线相交于一点,对应线段互相平行,这两个图形是位似图形是解题的关键.28.(1)证明参见解析;(2)半径长为154,AE =6. 【解析】【分析】 (1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出OD EF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358AF x x x =+=,362AE x =-,由363285x x -=,解得x 值,进而求出圆的半径及AE 长.【详解】解:(1)已知点D 在圆上,要连半径证垂直,如图2所示,连结OD ,∵AB AC =,∴B ACD ∠=∠.∵OC OD =,∴ODC OCD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .∵DE AB ⊥,∴OD EF ⊥.∴EF 是⊙O 的切线;(2)在Rt ODF ∆和Rt AEF ∆中,∵35OD AE OF AF ==,∴35OD AE OF AF ==. 设3OD x =,则5OF x =.∴26AB AC OD x ===,358AF x x x =+=.∵32EB =,∴362AE x =-.∴363285x x -=,解得x =54,则3x=154,AE=6×54-32=6,∴⊙O 的半径长为154,AE =6. 29.(1)36°;(2)证明见解析【解析】【分析】(1)求出∠ABC 、∠ABD 、∠CBD 的度数,求出∠D 度数,根据三角形内角和定理求出∠BAF 和∠BAD 度数,即可求出答案;(2)求出△AEF ∽△DEA ,根据相似三角形的性质得出即可.【详解】(1)∵AD ∥BC ,∴∠D=∠CBD ,∵AB=AC ,∠BAC=36°,∴∠ABC=∠ACB=12×(180°﹣∠BAC )=72°, ∴∠AFB=∠ACB=72°,∵BD 平分∠ABC , ∴∠ABD=∠CBD=12∠ABC=12×72°=36°, ∴∠D=∠CBD=36°, ∴∠BAD=180°﹣∠D ﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF ﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB ﹣∠FAB=108°﹣72°=36°;(2)∵∠CBD=36°,∠FAC=∠CBD ,∴∠FAC=36°=∠D , ∵∠AED=∠AEF ,∴△AEF ∽△DEA ,∴AE ED EF AE=,∴AE2=EF×ED.【点睛】本题考查了圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.30.(1)1;(2)证明见解析【解析】【分析】(1)根据平行四边形的性质得到AB∥CD,证明△EGC∽△EAB,根据相似三角形的性质列出比例式,代入计算即可;(2)分别证明△DFG∽△BFA,△AFD∽△EFB,根据相似三角形的性质证明.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴△EGC∽△EAB,∴CG ECAB EB=,即2324CG=+,解得,CG=1;(2)∵AB∥CD,∴△DFG∽△BFA,∴FG DF FA FB=,∴AD∥CB,∴△AFD∽△EFB,∴AF DF FE FB=,∴FG AFFA FE=,即AF2=FG×FE.【点睛】本题考查的是平行四边形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.。
(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)
![(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)](https://img.taocdn.com/s3/m/bb0e8147a88271fe910ef12d2af90242a895ab65.png)
(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)(满分150分 时间:120分钟)一.单选题。
(共40分) 1.16的算术平方根是( )A.±2B.2C.4D.±4 2.下面四个几何体中,左视图为圆的是( )A. B. C. D.3.据5月17日消息,全国各地约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为( )A.0.426×105B.4.26×105C.42.6×104D.4.26×1044.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A.50°B.70°C.80°D.110°(第4题图) (第9题图) (第10题图) 5.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.6.化简a 2a -1-1-2a 1-a的结果为( )A.a+1a -1B.a ﹣1C.aD.17.从甲、乙、丙、丁四人中抽调两人参加“寸草心”志愿服务队,恰好抽到甲和乙的概率是( )A.112 B.18 C.16 D.128.在同一直角坐标系中,函数y=kx 和y=kx ﹣3的图象大致是( )A. B. C. D.9.在直角坐标系中,等腰直角三角形AOB 在如图所示的位置,点B 的横坐标为2,将△AOB 绕点O 按逆时针方向旋转90°,得到△A’OB’,则点A’的坐标为( ) A.(1,1) B.(√2,√2) C.(﹣1,1) D.(﹣√2,√2)10.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线y =12x+12上,若抛物线y =ax 2﹣x+1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( ) A.a ≤﹣2 B.a <98 C.1≤a <98或a ≤﹣2 D.﹣2≤a <98 二.填空题。
九年级数学人教版下册28.2解直角三角形及其应用同步测试题
![九年级数学人教版下册28.2解直角三角形及其应用同步测试题](https://img.taocdn.com/s3/m/8001648cd0f34693daef5ef7ba0d4a7303766c47.png)
九年级数学人教版下册28.2解直角三角形及其应用同步测试题28.2解直角三角形及其应用同步测试题(满分120分;时间:90分钟)一、选择题(本题共计小题,每题分,共计27分,)1.在Rt△ACB中,∠C=90∘,AB=10,sinA=35,cosA=45,tanA=34,则BC的长为()A.6B.7.5C.8D.12.52.兰州是古丝绸之路上的重镇,以下准确表示兰州市的地理位置的是()A.北纬34∘03'B.在中国的西北方向C.甘肃省中部D.北纬34∘03',东经103∘49'3.某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价为a元,则购买这种草皮至少需要()A.450a元B.300a元C.225a元D.150a元4.如图,在坡度为1:2的山坡上种树,要求相邻两棵树的水平距离是6m,则斜坡上相邻两棵树的坡面距离是()A.3mB.35mC.12mD.6m5.如图,梯形ABCD中,AD // BC,∠B=45∘,∠D=120∘,AB =8cm,则DC的长为()A.863cmB.463cmC.46cmD.8cm6.一束阳光射在窗子AB上,此时光与水平线夹角为30∘,若窗高AB=1.8米,要想将光线全部遮挡住,不能射到窗子AB上,则挡板AC (垂直于AB)的长最少应为()A.1.83米B.0.63米C.3.6米D.1.8米7.在河岸边一点A测得与对岸河边一棵树C的视线与河岸的夹角为30∘,沿河岸前行100米到点B,测得与C的视线与河岸的夹角为45∘,则河的宽度为()A.200米B.1003米C.1003-1米D.1003+1米8.如图,小黄站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角是∠FDC=30∘,若小黄的眼睛与地面的距离DG是1.6米,BG=0.7米,BG平行于AC所在的直线,迎水坡AB的坡度为i=4:3,坡长AB=10.5米,则此时小船C 到岸边的距离CA的长为()米.(3≈1.7,结果保留两位有效数字)A.11B.8.5C.7.2D.109.某班的同学想测量一教楼AB的高度,如图,大楼前有一段斜坡BC,已知BC的长为16米,它的坡度i=1:3,在离C点45米的D处,测得以教楼顶端A的仰角为37∘,则一教楼AB的高度约为()米.(结果精确到0.1米)(参考数据:sin37∘≈0.60,cos37∘≈0.80,tan37∘≈0.75,3≈1.73)A.44.1B.39.8C.36.1D.25.9二、填空题(本题共计7小题,每题分,共计21分,)10.在△ABC中,AC=6,BC=5,sinA=23,∠B为锐角,则tanB=________.11.如图,一艘轮船以20海里/小时速度从南向北航行,当航行至A处时,测得小岛C在轮船的北偏东45度的方向处,航行一段时间后到达B处,此时测得小岛C在轮船的南偏东60度的方向处.若CB=40海里,则轮船航行的时间为________.12.在Rt△ABC中,∠C=90∘,a=2,b=3,则cosA=________.如果港口A的南偏东52∘方向有一座小岛B,那么从小岛B观察港口A的方向是________.14.若一个等腰三角形的两边长分别为2cm和6cm,则底边上的高为________cm,底角的余弦值为________.如图,长为4m的梯子搭在墙上与地面成60∘角,则梯子的顶端离地面的高度为________m(结果保留根号).如图,A,B之间是一座山,一条高速公路要通过A,B两点,在A地测得公路走向是北偏西111∘32'.如果A,B两地同时开工,那么在B地按________方向施工,才能使公路在山腹中准确接通.三、解答题(本题共计小题,共计70分,)17.如图是大型超市扶梯的平面示意图.为了提高扶梯的安全性,超市欲减小扶梯与地面的夹角,使其由45∘改为30∘.已知原扶梯AB 长为42米.(1)求新扶梯AC的长度;(2)求BC的长.18.某校数学兴趣小组的同学为了利用所学知识,测量校园内一棵树DE的高度(如图所示),当这棵树顶点D的影子刚好落在旗台的台阶下点C处时,他们测得此时树顶点D的仰角为60∘;当点D的影子刚好落在台阶上点A时,树顶点D的仰角为30∘,台阶坡度为3:3,台阶高度AB=2米,点B、C、E在同一水平线上,求树高DE(测角仪高度忽略不计).19.某小区举行放风筝比赛,一选手的风筝C距离地面的垂直高度CD为226米,小明在火车站广场A处观测风筝C的仰角为21.8∘,同时小花在某楼顶B处观测风筝C的仰角为30∘,其中小花观测处距水平地面的垂直高度BE为100米,点A,E,D在一条直线上.试求小明与楼BE间的水平距离AE.(结果保留整数)(3≈1.73,sin21.8∘≈0.37,cos21.8∘≈0.93,tan21.8∘≈0.40)20.如图,我市某中学在创建“特色校园”的活动中,将奉校的办学理念做成宣传牌(CD),放置在教学楼的顶部(如图所示)该中学数学活动小组在山坡的坡脚A处测得宣传牌底部D的仰角为60∘,沿坡面AB向上走到B处测得宣传牌顶部C的仰角为45∘.已知山坡AB的坡度为i=1:3,AB=10米,AE=15米.(i=1:3是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求宣传牌CD的高度.(结果精确到0.1米.参考数据:2≈1.414,3≈1.732)21.如图,要环绕A、B、C、D四地修筑一条高等级公路ABCDA.已知A、B、C三地在同一直线上,D地在A地的北偏东45∘方向,在B地的正北方向,在C地北偏西60∘方向,C地在A地的北偏东75∘方向,B、D两地相距10km.如果该公路每公里造价为2000万元,求该公路全长的造价是多少万元?(用根号表示)在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF // MN,小聪在河岸MN上点A处测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30∘方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度.(结果保留根号)23.有一款如图(1)所示的健身器材,可通过调节AB的长度来调节椅子的高度,其平面示意图如图(2)所示,经测量,AD与DE的夹角为75∘,AC与AD的夹角为45∘,且DE // AB.现调整AB的长度,当∠BCA为75∘时测得点C到地面的距离为25cm.请求出此时AB的长度(结果保留根号).。
九年级最新数学中考二轮复习测试题初三数学下册复习检测题带图文答案解析100篇二轮复习17期图表信息问
![九年级最新数学中考二轮复习测试题初三数学下册复习检测题带图文答案解析100篇二轮复习17期图表信息问](https://img.taocdn.com/s3/m/c72bd139f011f18583d049649b6648d7c1c708f0.png)
中考二轮复习:图表信息问题同步练习(答题时间:45分钟)1. 已知一次函数y =kx +b 的图象如图所示,当x <1时,y 的取值范围是( )A. -2<y <0B. -4<y <0C. y <-2D. y <-42. 超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如图所示的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其他类同)。
这个时间段内顾客等待时间不少于6分钟的人数为( )A. 5人B. 7人C. 6人D. 33人3. 甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20千米,他们前进的路程为s (单位:千米),甲出发后的时间为t (单位:小时),甲、乙前进的路程与时间的函数图象如图所示。
根据图象信息,下列说法正确的是( )A. 甲的速度是4千米/小时B. 乙的速度是10千米/小时C. 乙比甲晚出发1小时D. 甲比乙晚到B 地3小时 4. (枣庄)已知二次函数y =ax 2+bx +c 的x 、y 的部分对应值如下表: x -1 0 12 3 y 5 1-1 -1 1 则该二次函数图象的对称轴为( )A. y 轴B. 直线x =25C. 直线x =2D. 直线x =235.(潍坊)如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是( )A.31B. 52C.21D. 43 *6. 如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。
你认为其中错误..的有( ) A. 2个 B. 3个 C. 4个 D. 1个*7. 如图,边长都是1的正方形和正三角形,其一边在同一水平线上,三角形沿该水平线自左向右匀速穿过正方形。
全国通用版九年级下学期数学 圆的综合题(含阴影面积)试题(无答案)
![全国通用版九年级下学期数学 圆的综合题(含阴影面积)试题(无答案)](https://img.taocdn.com/s3/m/6f2e284cba1aa8114531d93e.png)
初三数学专题训练——圆的综合题(含求阴影面积)一.填空题(共14小题)1.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是.第1题图第2题图第3题图第4题图第5题图2.如图,已知直角三角形的两条直角边分别为a、b,以a为直径画一个半圆.若甲、乙两阴影部分的面积相等,则用a的代数式表示b=.3.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为.4.在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是.5.如图,在矩形ABCD中,CD=2,以点C为圆心,CD长为半径画弧,交AB边于点E,且E为AB中点,则图中阴影部分的面积为.̂交于点D,以O为圆心,OC的长6.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与AB̂交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为.(结为半径作CE果保留π)第6题图第7题图第8题图第9题图第10题图7.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2√2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰好在弧EF上,则图中阴影部分的面积为(结果保留π).8.如图,在Rt△ABC中,∠ACB=90°,AC=2√3,以点C为圆心,CB的长为半径画弧,与AB ̂绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为.边交于点D,将BD̂的中点,D、E分别是OA、OB 9.如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为AB的中点,则图中阴影部分的面积为cm2.10.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为.11.将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为cm2.第11题图第12题图第13题图第14题图12.如图所示,⊙O是以坐标原点O为圆心,4为半径的圆,点P的坐标为(√2,√2),弦AB经过点P,则图中阴影部分面积的最小值=.13.如图,以直角三角形的两条直角边AC、AB为直径,向三角形内作半圆,两半圆交于点D,CD =1,BD=3,则图中阴影部分的面积为(平方单位).14.如图,两个半径为1的14圆扇形A′OB′与AO′B叠放在一起,POQO'是正方形,则整个阴影图形的面积是.二.解答题(共14小题)15.如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.16.如图,△ABC中,∠C=90°,AC=3,AB=5,点O在BC边的中线AD上,⊙O与BC相切于点E,且∠OBA=∠OBC.(1)求证:AB为⊙O的切线;(2)求⊙O的半径;(3)求tan∠BAD.17.如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2.在(2)条件下,求AE的长.18.已知:如图,⊙O是△ABC的外接圆,AB为⊙O直径,BC=6,AC=8,OE⊥AE,垂足为E,交⊙O于点P,连结BP交AC于D.(1)求PE的长;(2)求△BOP的面积.19.如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,过点D作DE⊥CA交CA的延长线于点E.(1)连接AD,则∠OAD=°;(2)求证:DE与⊙O相切;̂上,∠CDF=45°,DF交AB于点N.若DE=3,求FN的长.(3)点F在BC雅博学校初三数学专题训练——圆的综合题1.如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.2.如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D 作DE⊥AC交BA延长线于点E,垂足为点F.(1)求tan∠ADF的值;(2)证明:DE是⊙O的切线;(3)若⊙O的半径R=5,求EF的长.3.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;̂的长.(2)若∠C=60°,AC=12,求BD(3)若tan C=2,AE=8,求BF的长.4.已知:如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,∠BAC=60°,求DE的长.5.已知:如图,在△ABC中,AC=BC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)求证:DE是⊙O的切线;(3)若⊙O的直径为18,cos B=13,求DE的长.6.已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.6.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD2=CA•CB;(2)求证:CD是⊙O的切线;(3)过点B作⊙O的切线BE交CD的延长线于点E,若BC=12,CA=4,求BE的长.7.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.。
九年级数学章末专题复习小专题(四)二次函数图象信息题归类习题新人教版
![九年级数学章末专题复习小专题(四)二次函数图象信息题归类习题新人教版](https://img.taocdn.com/s3/m/c0bd0c58b307e87101f696bf.png)
小专题(四)二次函数图象信息题归类抛物线y=ax2+bx+c的图象与字母系数a,b,c之间的关系:(1)当a>0时,开口向上;当a<0时,开口向下.(2)若对称轴在y轴的左侧,则a,b同号;若对称轴在y轴的右侧,则a,b异号.(3)若抛物线与y轴的正半轴相交,则c>0;若抛物线与y轴的负半轴相交,则c<0;若抛物线经过原点,则c=0.(4)当x=1时,y=ax2+bx+c=a+b+c;当x=-1时,y=ax2+bx+c=a-b+c;当x=2时,y=ax2+bx+c=4a+2b+c;当x=-2时,y=ax2+bx+c=4a-2b+c,…(5)当对称轴x=1时,2a+b=0;当对称轴x=-1时,2a-b=0;判断2a+b大于或者等于0,看对称轴与1的大小关系;判断2a-b大于或者等于0,看对称轴与-1的大小关系.(6)当b2-4ac>0时,抛物线与横轴有两个交点;当b2-4ac=0时,抛物线与横轴有一个交点;当b2-4ac<0时,抛物线与横轴没有交点.类型1根据一种函数的图象确定另一函数的图象1.(遵义中考)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是(D)2.(安徽中考)如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是(A)类型2由抛物线的位置确定代数式的值或取值范围3.(阜新中考)二次函数y=ax2+bx+c的图象如图所示,下列选项中正确的是(B)A.a>0B.b>0C.c<0D.关于x的一元二次方程ax2+bx+c=0没有实数根4.以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是(A)A.b≥B.b≥1或b≤-1C.b≥2D.1≤b≤25.二次函数y=ax2+bx+c的图象如图所示,则下列解析式不正确的是(C)A.a<0B.abc>0C.a+b+c>0D.b2-4ac>06.如图,二次函数y=ax2+bx+c=0(a≠0)的图象与x轴正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③-1<c<0;④关于x的方程ax2+bx+c=0(a≠0)有一个根为-.其中正确的结论有(C)A.1个B.2个C.3个D.4个7.(恩施中考)抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc<0;②a+b+c>0;③5a-c=0;④当x<或x>6时,y1>y2,其中正确的个数为(C)A.1B.2C.3D.4类型3利用二次函数图象求二次函数解析式8.如图,一个二次函数的图象经过A,B,C三点,点A的坐标是(-1,0),点C的坐标是(0,5),且OA∶OB=1∶4,则这个二次函数的解析式是y=-x2+x+5.类型4利用二次函数图象求一元二次方程的根9.(苏州中考)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x 的一元二次方程x2-3x+m=0的两实数根是(B)A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=310.若二次函数y=ax2+bx+c(a<0)的图象如图所示,且关于x的方程ax2+bx+c=k有两个不相等的实根,则常数k的取值范围是(D)A.0<k<4B.-3<k<1C.k<-3或k>1D.k<4类型5利用二次函数图象解不等式11.二次函数y=x2-x-2的图象如图所示,则不等式x2-x-2<0的解集是(C)A.x<-1B.x>2C.-1<x<2D.x<-1或x>212.如图,二次函数y1=ax2+bx+c与一次函数y2=kx的图象交于点A和原点O,点A的横坐标为-4,点A和点B关于抛物线的对称轴对称,点B的横坐标为1,则满足0<y1<y2的x的取值范围是(A)A. -4<x<-3B.-4<x<0C.-3<x<0D.-4<x<113.如图是二次函数y=-x2+2x+4的图象,使y≤1成立的x的取值范围是x≤-1或x≥3.14.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(-1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.解:(1)二次函数的解析式为y=(x+2)2-1=x2+4x+3,一次函数的解析式为y=-x-1.(2)x≤-4或x≥-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下学期数学复习试题
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 如图,AB是半圆O的直径,C、D两点在半圆上,CE⊥AB于E,DF⊥AB于F,点P是AB上的一个动点,已知AB=10,CE=4,DF=3,则PC+PD的最小值是()
A.7B.7C.10D.8
2 . 如图,三内角皆小于120°的三角形,分别以 AB,BC,CA为边,向三角形外侧做正三角形ABD,ACE,BCF,然
后连结AF,BE,CD,这三线交于一点O,那么下列结论中①△ADC≌△ABE;②△AMD∽△OMB;③cos∠COE=;
④∠AOB=∠AOC=∠BOC=120°正确的个数是
A.1B.2C.3D.4
3 . 如下图是哪一个物体的三视图()
A.B.C.D.
4 . 对于抛物线的说法错误的是()
A.抛物线的开口向下
B.抛物线的顶点坐标是(1,2)
C.抛物线的对称轴是直线x=1
D.当x<1时,y随x的增大而减小
5 . 反比例函数,经过(-3,-5)则下列各点在这个反比例函数图象上的有()(1,15)(-3,5)(3,-5)(1,-15)(-1,-15)
A.5个B.4个C.3个 .D.2个
6 . 下列运算正确的是()
C.D.
A.
B.
7 . 如图所示,一架投影机插入胶片后图像可投到屏幕上. 已知胶片与屏幕平行,A点为光源,与胶片BC的距离为0.1米,胶片的高BC为0.038米,若需要投影后的图像DE高1.9米,则投影机光源离屏幕大约为()
A.6米B.5米C.4米D.3米
8 . 下列几种图案是车的标志,问其中是轴对称图形的有()
A.2个B.3个C.4个D.1个
9 . 下列各数,最小的是()
A.B.C.D.
10 . 为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是()
A.B.
C.D.
二、填空题
11 . 关于的不等式组无解,则的取值范围为______.
12 . 如果反比例函数y=的图象经过点(1,1),那么它还经过(-2,).
13 . 如图,若从一块半径是6cm的圆形纸片圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),再
将剪下的扇形围成一个圆锥,则该圆锥的底面圆半径是__________cm.
14 . 据统计,2018年国家公务员考试报名最终共有1 659 745人通过了招聘单位的资格审查,这个数据用科学记数法可表示为_____(精确到万位)
15 . 一种游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,无奖金,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是____.
16 . 计算:__________.
17 . 国家实施优惠政策后,某镇农民人均收入经过两年提高21%,这两年该镇农民人均收入平均年增长率是_______.
18 . 如图,已知等边△ABC的边长为4,P是AB边上的一个动点,连接CP,过点P作∠EPC=60°,交AC于点E,以PE为边作等边△EPD,顶点D在线段PC上,O是△EPD的外心,当点P从点A运动到点B的过程中,点O
也随之运动,则点O经过的路径长为_____.
19 . 如图,BD为⊙O的直径,∠A=30°,BC=1.5cm,则⊙O的半径是_____cm.
20 . 分解因式:3x3﹣27x=_____.
三、解答题
21 . 如图,一次函数的图像分别与x轴、y轴交于点A、B,以线段AB为腰在第二象限内作等腰Rt△ABC,∠BAC=90°.
(1)直接写出A、B两点的坐标,并求线段AB的长;
(2)求过B、C两点的直线的函数表达式.
22 . 小明学习了特殊的四边形---平行四边形后,对特殊四边形的探究产生了兴趣,发现另外一类特殊四边形,如图1,我们把两条对角线互相垂直的四边形叫做垂美四边形.
(1)概念理在平行四边形、矩形、菱形、正方形中,一定是垂美四边形的是.
(2)性质探究:如图1,四边形ABCD是垂美四边形,试探究两组对边AB、CD与BC、AD之间的数量关系.
(3)问题解决:如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5.
①求证:四边形BCGE为垂美四边形;
②直接写出四边形BCGE的面积.
23 . 计算:2cos230°+﹣sin60°.
24 . 如图所示,在矩形中,为对角线,于点,,,求矩形
的面积.
25 . 某服装店用960元购进一批服装,并以每件46元的价格全部售完由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.
该服装店第一次购买了此种服装多少件?
两次出售服装共盈利多少元?
26 . 如图是一块含(即)角的直角三角板和一个量角器拼在一起,三角板斜边与量角器所在半圆的直径重合,量角器最外缘的读数从点开始(即点的读数为),现有射线绕着点从顺时针以每秒的速度旋转到与的外接圆相切为止.在旋转过程中,射线与量角器的半圆弧交于点.
(1)当射线与的外接圆相切时,求射线旋转的角度是多少?
(2)当射线分别经过的外心、内心时,点处的读数分别是多少?
(3)当旋转秒时,连接,求证:.
27 . 养成良好的早锻炼习惯,对学生的学习和生活非常有益某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间分钟进行了调查现把调查结果分为A,B,C,D四组,如下表所示;同时,将调查结果绘制成下面两幅不完整的统计图.
组别早锻炼时间
A
B
C
D
请根据以上提供的信息,解答下列问题:
扇形统计图中D所在扇形的圆心角度数为______;
补全频数分布直方图;
已知该校七年级共有1200名学生,请你估计这个年级学生中有多少人一天早锻炼的时间不少于20分钟.
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
三、解答题1、
2、
3、
4、
5、
6、
7、。