纳米材料在金属上的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米材料在金属上的应用

当今世界,高新技术产业在经济发展中的作用日益突出。我国将高新技术产业作为经济发展的重点,从各方面给予了扶持。如何界定与高技术产业相关的各类概念,客观反映我国高技术产业的发展状况,已成为统计部门面临的重要课题之一。而随着我国科技的进步,纳米材料作为新兴的高科技技术,在中国也渐渐发展起来了。它在各个领域都起着越来越重要的作用了。也让我们得到了许多好的材料。我所讲的是关于它在我所学的专业的应用。当纳米材料应用在金属上时,金属能得到很多我们得不到的优点。

中国墨是由烟炱这种超细微粒作为重要原料,再加上黏结剂和添加剂按适当比例制成的。虽然还算不上现代所说的纯纳米材料,但的确开创了纳米材料的先河。现代的纳米材料是近一二十年才发展起来的。它的起源来自一个科学家在国外旅游中产生的联想。

生产工艺

从此,由德国到美国,一大批科学家都着了迷似地研究起纳米材料来。比如,美国著名的阿贡国家实验室用纳米大小的超细粉末制成的金属材料,其硬度要比普通粗晶粒金属的硬度高2~4倍。在低温下,纳米金属竟然由导电体变成了绝缘体。一般的陶瓷很脆,但如果用只有纳米大小的陶土粉末烧结成陶瓷制品,却有良好的韧性。更有趣的是,纳米材料的熔点会随超细粉末的直径的减小而大大降低。例如,金的熔点本是1064℃,但制成10纳米左右的金粉末后,熔点降到940℃;而5纳米的金粉末熔点降至830℃;2纳米的金粉末熔点只有33℃,你说神不神?这一特点对人们大有用处。例如,许多高熔点陶瓷材料很难用一般的方法生产出用于发动机的零件,但只要事先制成纳米大小的陶土粉末,就可以在较低的温度下烧结成高温发动机的耐热零件。1纳米只有1米的1/109,人们要问,像纳米那么微小的粉末是怎样制造出来的呢?德国的材料科学家在90年代初发明了一种生产金属超细粉末的方法。即在一个封闭室内放进金属,然后充满惰性气体氦,再将金属加热变成蒸气,于是金属原子在氦气中冷却成金属烟雾,并使金属烟雾粘附在一个冷却棒上,再把棒上像碳黑一样的纳米大小的粉末刮到一个容器内。如果要用这些粉末做成零件,就可以将它们模压成零件形状,通过一道烧结工序,即可制成纳米材料零件。

应用领域

纳米材料的用处多得很。如高密度磁性记录带就是用纳米大的粉末制成的;有些新药物制成纳米颗粒,可以注射到血管内顺利进入微血管;纳米大的催化剂分散在汽油中可提高内燃机的效率,把纳米大的铅粉末加入到固体燃料中,可使固体火箭的速度增加,这是因为越细的粉末,表面积越大,能使表面活性增强,加大了燃烧的力度。总之,纳米材料前途无量,

用途会越来越广。

磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等。吸波材料。金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。

金属和非金属的表面导电涂层处理。纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。高效催化剂。铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。导电浆料。用纳米铜粉替代贵金属粉末制备性能优越的电子浆料,可大大降低成本。此技术可促进微电子工艺的进一步优化。超塑延展性。纳米铜在室温下可拉长50多倍而不出现裂纹。

高性能磁记录材料。利用纳米铁粉的矫顽力高、饱和磁化强度大(可达1477km2/kg)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等领域。吸波材料。金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。导磁浆料。利用纳米铁粉的高饱和磁化强度和高磁导率的特性,可制成导磁浆料,用于精细磁头的粘结结构等。纳米导向剂。一些纳米颗粒具有磁性,以其为载体制成导向剂,可使药物在外磁场的作用下聚集于体内的局部,从而对病理位置进行高浓度的药物治疗,特别适于癌症、结核等有固定病灶的疾病。

流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,广泛应用于密封减震、医疗器械、声音调节、光显示等。高效催化剂。由于比表面巨大和高活性,纳米镍粉具有极强的催化效果,可用于有机物氢化反应、汽车尾气处理等。高效助燃剂。将纳米镍粉添加到火箭的固体燃料推进剂中可大幅度提高燃料的燃烧热、燃烧效率,改善燃烧的稳定性。导电浆料。电子浆料广泛应用于微电子工业中的布线、封装、连接等,对微电子器件的小型化起着重要作用。用镍、铜、铝纳米粉体制成的电子浆料性能优越,有利于线路进一步微细化。高性能电极材料。用纳米镍粉辅加适当工艺,能制造出具有巨大表面积的电极,可大幅度提高放电效率。活化烧结添加剂。纳米粉末由于表面积和表面原子所占比例都很大,所以具有高的能量状态,在较低温度下便有强的烧结能力,是一种有效的烧结添加剂,可大幅度降低粉末冶金产品和高温陶瓷产品的烧结温度。金属和非金属的表面导电涂层处理。由于纳米铝、铜、镍有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。

高效催化剂。锌及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。

1、纳米材料在重金属水处理方面的应用

水资源污染现状人类对水资源的需求正在以惊人的速度扩大,同时日益严重的水污染蚕

食了大量可供消费的水资源。全世界每天约有200吨垃圾倒进河流、湖泊和小溪;所有流经亚洲城市的河流均被污染;美国40%的水资源流域被加工食品废料、金属、肥料和杀虫剂污染。2007年底,美国科学家在为包括首都华盛顿等地区提供饮用水的波托马克河发现奇怪现象,河中一些黑鲈兼具雄性和雌性生理特征,成为双性“阴阳鱼”,而水污染就是最大元凶。过去十年,水污染中的激素成分已在不同国家导致鳄鱼、青蛙、北极熊和其他动物发生畸形变异,给全世界敲响了警钟。我国目前也已经进入水污染密集爆发阶段,江河湖库及近海海域普遍受到不同程度的污染,总体上呈加重趋势。不适合作饮用水源的河段已接近40%;工业较发达城镇河段污染突出,城市河段中90%的河段不适合作饮用水源;城市地下水50%受到污染,水污染加剧了我国水资源短缺的矛盾,对工农业生产和人民生活造成危害。中国环境监测总站2008年一至四月对全国地表水水质监测结果表明,长江安徽段的巢湖全湖平均为V类;黄河支流渭河的渭南市、淮河支流沙颍河的周口市的国控断面全部为劣V类。

2、过渡金属系列纳米材料的应用基础研究

以新型化学法合成纳米材料及其应用为目标,研究了系列过渡金属纳米材料的制备方法、性能和应用,本成果主要包括两部分内容:一、系列过渡金属纳米材料的新型化学法合成与表征研究利用新型化学法合成钛、锰、铁、钴、镍、铜、锌等系列过渡金属纳米氧化物和超细非晶态合金,借用现代分析技术对其进行了表征,并研究了合成机理,改善了传统化学技术制备纳米材料的过程中存在粒径不均匀和易团聚的问题,取得以下主要成果: 1. 深入研究了溶胶-凝胶技术在系列过渡金属纳米氧化物化学合成中的应用,首次合成出在功能陶瓷材料领域有广阔应用前景的BaTiO3系PTCR(正温度系数热敏陶瓷)纳米晶粉体,优化了工艺路线,探讨了掺杂机理和晶粒尺寸效应。该技术已在陕西安康和贵州等地投资试产。围绕该技术的源头原料合成,自制了高纯羧酸钡,并获得授权专利。该成果对纳米陶瓷粉料的研发具有重要理论价值和实际意义。 2. 研究了超声辐射、半化学法和绿色化学合成等技术在上述系列过渡金属纳米氧化物、非晶态合金的合成中的规律和特点,获得了最佳工艺,并深入研究了纳米氧化物的谱学特征,为纳米材料的合成和应用拓宽了新的视野。二、系列过渡金属纳米材料的应用探索研究纳米材料的实际应用是研究该类材料的终极目的。以溶胶-凝胶一步法制备的BaTiO3系PTCR纳米晶粉体为原料制备出达到国内领先水平的低阻PTCR陶瓷材料,正与贵州红星发展股份有限公司合作进行后期开发。半化学法、超声辐射沉淀法、溶胶-凝胶和绿色化学合成等方法制备的钛、钴、镍和铜基纳米材料在光催化降解、分解H2O2、油脂催化加氢、高介电材料等方面展现了良好的应用前景,这些成果也是对基础研究成果的验证,为纳米材料的应用提供了重要科学依据。

3、用真空温压技术制备纳米金属铜块体材料

纳米金属块体材料是指由纳米粒子或晶粒构成的三维固体材料,与普通粗晶材料相比,其晶粒细小(<100 nm),大量原子处在高度无序的晶界中,材料呈现出一种亚稳结构,导致纳米块体材料在力学、电学、光学、磁学等方面具有优于常规材料的性能。近年来,国内外学者也对纳米金属块体材料进行了大量的理论和实验研究[1-8]。纳米金属块体材料的制备技术,是当今纳米金属材料的研究热点。该问题的解决不仅能促进纳米金属块体材料的制备、物性和微结构等基础研究的发展,而且还可以为三维纳米金属块材的工业化生产和应用打下基础。自悬浮-冷压法[9-11]采用自悬浮-定向流法制备纳米金属粉体和压制成型工艺,制备出了相对密度为97%的纳米金属Cu块体,但由于压制过程是在室温及常压下进行的,样品中不可避免会含有一定数量的吸附气体,导致样品的密度低于其理论密度。通过真空温压技术可以提高样品的密度[12-13]。为此,本文作者采用自悬浮-真空温压工艺制备纳米Cu块体材料,使其平均晶粒尺寸控制在纳米级,考察工艺参数对纳米金属块体样品密度和显微硬度的影响。

相关文档
最新文档