浙江省义乌市初中数学竞赛试题含答案
2019年浙江省中考数学奥赛试题试卷附解析
![2019年浙江省中考数学奥赛试题试卷附解析](https://img.taocdn.com/s3/m/bf405527b6360b4c2e3f5727a5e9856a561226bf.png)
2019年浙江省中考数学奥赛试题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,EB 为半圆O 的直径,点A 在EB 的延长线上,AD 切半圆O 于点D ,BC ⊥AD 于点C ,AB =2,半圆O 的半径为2,则BC 的长为( )A .2B .1C .1.5D .0.52.把抛物线y=x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x 2-3x +5,则有( )A .b=3,c=7B .b=-9,c=-15C .b=3,c=3D .b=-9,c=213. 下列关于二次函数2132y x =-+与213()2y x =-- 的图象关系说法错误的是( ) A . 开口方向、大小相同 B .顶点相同C . 可以相互平移得到D . 对称轴不同4.下列图形中,是中心对称图形而不是轴对称图形的是( )A . 平行四边形B . 正方形C . 正三角形D . 线段AB 5.如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( )94x yO P D CA .10B .16C .18D .20 6.不等式组31413(3)024x x +<⎧⎪⎨+-<⎪⎩的最大整数解是( ) A .0 B .-1 C .-2 D .17.在一个暗箱里放有a 个除颜色外其他完全相同的球,这a 个球中只有3个红球. 每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱. 通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( )A . 12B . 9C . 4D . 38.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 9.已知a <0,若-3a n ·a 3的值大于零,则n 的值只能是( ) A .n 为奇数B .n 为偶数C .n 为正整数D .n 为整数 10.已知3a b -=-,2c d +=,则()()b c a d +--的值为( ) A .-1B .-5C . 5D . 1 11.一个数的立方根是它本身,则这个数是( )A .0B .1,0C .1,-1D .1,-1或0 二、填空题12.如图是一口直径AB 为4米,深BC 为2米的圆柱形养蛙池,小青蛙们晚上经常坐在池底中心O 观赏月亮,则它们看见月亮的最大视角∠COD= 度,(不考虑青蛙的身高). 13.我们在语文课《桃花源记》中学过“初极狭,才通人,复行数十步,豁然开朗”,是因为 .14.如图,PA 是⊙O 的切线,切点为A , PA=23,∠APO=30°,则⊙O 的半径长为 .15.一个钢筋三角架长分别为20cm 、50 cm 、60 cm ,现要再做一个与其相似的钢筋三角架,而只有长为30 cm 和50 cm 的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的载法有 种.解答题(19~22每题5分,23~24每题6分,25~26每题7分,共46分)16.在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,•另一条弦长为6厘米,则两弦之间的距离为________厘米.17.如图,AB 是半圆O 的直径,AC = AD ,OC =2,∠CAB= 30°,则点O 到CD 的距离OE= .18.如图,四边形ABCD 中,AB ∥CD ,要使四边形ABCD 为平行四边形,则应添加的条件是 . (添加一个条件即可)19.平行四边形的周长为30,两邻边的差为5,则其较长边是________.20.如图,飞机要从A 地飞往B 地, 因受大风影响, 一开始就偏离航线(AB)18°(即∠A=18°),飞到了C 地,已知∠ABC=10°,现在飞机要达到B 地需以 的角飞行(即∠BCD 的度数). 21.列车中途受阻,停车 10 min ,再启动后速度提高到原来的 1. 5 倍,这样行驶了 20 km , 正好将耽误的时间补上. 如果设列车原来的速度是 x(km/h),那么根据题意,可得方程 .22.若22(3)16x m x +-+是完全平方式,则m 的值等于 .23.164的立方根是 ,()29-的平方根是 ,-5是 的平方根. 24.计算:(1)22222(43)3(2)a b ab a b ab ---+= ; (2) 22(32)5(1)5m mn ---+- 三、解答题25.如图所示,一根 4m 的竹竿斜靠在墙上.(1)如果竹竿与地面 60°角,那么竹竿下湍离墙角有多远?(2)如果竹竿上端顺墙下滑到高度为2. 3 m 处停止,那么此时竹竿与地面所成的锐角的 大小是多少?26.如图,正方形网格中的每个小正方形边长都是1,•每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)在图甲中,画出一个平行四边形,使其面积为6;(2)在图乙中,画出一个梯形,使其面积为6.27.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上.28.计算:322(3)a a -÷= .29.如图所示,已知△ABC ≌△DCB ,其中AB=DC ,试说明∠ABD=∠ACD 的理由.30.一家奶制品厂现有鲜奶9 t ,若将这批鲜奶制成酸奶销售,则加工l t 鲜奶可获利1200元;若制成奶粉销售,则加工1 t 鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3 t ,若专门生产奶粉,则每天可能用去l t ,由于受人员和设备的限制,酸奶和奶粉两种产品不可能同时生产,为了保证产品的质量,这批鲜奶必须在不超过4天内加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.A5.A6.C7.A8.D9.B10.C11.D二、填空题12.9013.盲区减少14.215.216.7厘米或1厘米17.18.略19.1020.28°21.2020101.560x x -=22. 7 或一123.14,9±,5 24.(1)221112a b ab - (2)611mn m --+三、解答题25.(1)如图,AB= 4 , ∠B =60° ,∠ACB=90°,01cos602BC AB ==,∴BC=2 m (2)如图, 2.3A C '=,4A B ''=,∴ 2.3sin 4A B C ''∠=,∴35559o A B C '''''∠≈26.解:图形略,答案不惟一.27.(1)21y x =+ (2)点P(-1,1)不在这个一次函数的图象上28.49a 29.略30.用2.5天生产酸奶,用1.5天生产奶粉,即方案三可获最大利润为l2000元,且不浪费.。
浙江初一初中数学竞赛测试带答案解析
![浙江初一初中数学竞赛测试带答案解析](https://img.taocdn.com/s3/m/8cf88a50f524ccbff02184d2.png)
浙江初一初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、单选题1.计算:()A.3B.C.0.14D.2.下列各组数中互为倒数的是().A.与2B.与C.与D.与3.下列计算结果等于1的是()A.(-2)+(-3)B.(-3)-(-2)C.D.(-3)-(-2)4.对于,下列说法错误的是()A.>B.其结果一定是负数C.其结果与-3相同D.表示5个-3相乘5.下列说法正确的是()A.是六次多项式B.是单项式C.的系数是,次数是2次D.+1是多项式6.已知代数式的值是5,则代数式的值是()A.6B.-6C.11D.-97.有下列说法:①无限小数都是无理数;②数轴上的点和有理数一一对应;③在1和3之间的无理数有且只有,,,,,这6个;④;⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305;其中正确的是()A.⑤B.④⑤C.③④⑤D.①④⑤8.有理数a,b在数轴上对应的位置如图所示,那么代数式-+-的值是()A.-1B.0C.1D.29.洪峰到来前,120名战士奉命加固堤坝,已知5人运沙袋3人堆垒沙袋,正好运来的沙袋能及时用上且不窝工,为了合理安排,如果设x人运送沙袋,其余人堆垒沙袋,那么以下所列方程正确的是()A.B.C.D.10.完成下列填空: ,解:化简,得:2.5-( )=0.6. 括号内填入的应该是( ) A .B .C .D .二、填空题1.在数轴上,与表示的点距离为5的数是____________ .2.用科学记数法表示-5259000=_______________;用科学记数法表示5259000≈ ____________(精确到万位)3.“x 的平方与 的算术平方根的和”用代数式可以表示为 ____________。
4.一件商品的进价是a 元,提高30%后标价,然后打9折销售,利润为 __________元.5.你的“24点游戏”玩的怎么样?(所给的四个数必须都使用一次且不能使用四个数之外的其他数)请你将“3,-3,8,-8”这四个数用加、减、乘、除或括号进行运算,使其结果为24,你写出的算式是________;如果可以用乘方、开方运算,那么3,4,8,8的“24点”算式是_______________(可以分步列式,每个数字只能用一次,例如:)6.先阅读再计算:取整符号[a ]表示不超过实数a 的最大整数,例如:[ 3.14 ]=3;[0.618]=0;如果在一列数X 1、X 2、X 3、……X n 中,已知X 1="2" ,且当k≥2 时, 满足,则求X 2016的值等于_____________三、解答题1.解下列方程 (1) (2)2.计算 (1) (2)(3)3.在一组实数,,,, 1+,(1)将它们分类,填在相应的括号内: 有理数{ … }; 无理数{ …};(2)请你选出2个有理数和2个无理数, 再用 “+,-,×,÷” 中的3种不同的运算符号将选出的4个数进行运算(可以用括号), 使得运算的结果是一个正整数. 4.(1)已知是有理数且满足:是-27的立方根,,求的值; (2)已知5.若,则单项式和是同类项吗?如果是,请把它们进行加法运算;如果不是同类项,请从下列代数式中找出同类项进行加法运算:,6.为了节约用水,某市居民生活用水按级收费,下面是东东家收到的自来水公司水费专用发票。
2024届浙江省金华市义乌市中考数学猜题卷含解析
![2024届浙江省金华市义乌市中考数学猜题卷含解析](https://img.taocdn.com/s3/m/b1a40b4753d380eb6294dd88d0d233d4b04e3f72.png)
2024届浙江省金华市义乌市中考数学猜题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.估计112-的值在()A.0到l之间B.1到2之间C.2到3之间D.3到4之间2.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过()A.点M B.点N C.点P D.点Q3.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为()A.21021051.5x x-=B.21021051.5x x-=-C.21021051.5x x-=+D.2102101.55x=+4.下列图形中,既是中心对称图形又是轴对称图形的是( ) A.B.C.D.5.下列运算不正确的是A.B.C.D.6.下列运算正确的是()A .5ab ﹣ab=4B .a 6÷a 2=a 4C .112a b ab+= D .(a 2b )3=a 5b 3 7.将一把直尺和一块含30°和60°角的三角板ABC 按如图所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为( )A .10°B .15°C .20°D .25° 8.方程23x 1x =-的解是 A .3 B .2 C .1 D .09.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >410.下列命题中,真命题是( ) A .对角线互相垂直且相等的四边形是正方形B .等腰梯形既是轴对称图形又是中心对称图形C .圆的切线垂直于经过切点的半径D .垂直于同一直线的两条直线互相垂直二、填空题(本大题共6个小题,每小题3分,共18分)11.一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_____.12.方程3x(x-1)=2(x-1)的根是13.如图,已知直线y=x+4与双曲线y=k x(x <0)相交于A 、B 两点,与x 轴、y 轴分别相交于D 、C 两点,若2,则k=_____.14.若分式的值为0,则a 的值是 .15.21世纪纳米技术将被广泛应用.纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_______米.16.比较大小: .(填“>”,“<”或“=”)三、解答题(共8题,共72分)17.(8分)某种型号油电混合动力汽车,从A 地到B 地燃油行驶需纯燃油费用76元,从A 地到B 地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A 地到B 地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?18.(8分)对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点.(1)当直线m 的表达式为y =x 时,①在点()11,1P ,()20,2P ,322,22P ⎛⎫- ⎪ ⎪⎝⎭中,直线m 的平行点是______; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线3y x =的平行点,直接写出n 的取值范围.19.(8分)如图,一次函数y 1=kx+b 的图象与反比例函数y 2=m x的图象交于A (2,3),B (6,n )两点.分别求出一次函数与反比例函数的解析式;求△OAB 的面积.20.(8分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.(1)判断:一个内角为120°的菱形等距四边形.(填“是”或“不是”)(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为端点均为非等距点的对角线长为(3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结A D,AC,BC,若四边形ABCD 是以A为等距点的等距四边形,求∠BCD的度数.21.(8分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(-3,m+8),B(n,-6)两点.求一次函数与反比例函数的解析式;求△AOB的面积.22.(10分)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数myx=的图象经过点E,与AB交于点F.若点B坐标为(6,0)-,求m的值及图象经过A、E两点的一次函数的表达式;若2AF AE -=,求反比例函数的表达式.23.(12分)如图,直线y =﹣x+2与反比例函数k y x=(k≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D . 求a ,b 的值及反比例函数的解析式;若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.24.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O ,A ,B 均为网格线的交点.在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段11A B (点A ,B 的对应点分别为11A B 、).画出线段11A B ;将线段11A B 绕点1B 逆时针旋转90°得到线段21A B .画出线段21A B ;以112A A B A 、、、为顶点的四边形112AA B A 的面积是 个平方单位.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】∵9<11<16,∴3114<<,∴11122<-<故选B.2、C【解题分析】根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.【题目详解】解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转中心的距离与OA的长度应相等根据网格线和勾股定理可得:22+=,22+=,22345345345+=,22+=2425 OQ=5∵OA=OM=ON=OQ≠OP∴则点A不经过点P故选C.【题目点拨】此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.3、A【解题分析】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可.【题目详解】设原计划每天生产零件x 个,则实际每天生产零件为1.5x 个, 由题意得,21021051.5x x -= 故选:A .【题目点拨】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.4、C【解题分析】试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;B. 是轴对称图形,不是中心对称图形,故本选项错误;C. 既是中心对称图又是轴对称图形,故本选项正确;D. 是轴对称图形,不是中心对称图形,故本选项错误.故选C.5、B【解题分析】,B 是错的,A 、C 、D 运算是正确的,故选B6、B 【解题分析】由整数指数幂和分式的运算的法则计算可得答案.【题目详解】A 项, 根据单项式的减法法则可得:5ab-ab=4ab,故A 项错误;B 项, 根据“同底数幂相除,底数不变,指数相减”可得: a 6÷a 2=a 4,故B 项正确;C 项,根据分式的加法法则可得:11a b a b ab++=,故C 项错误; D 项, 根据 “积的乘方等于乘方的积” 可得:2363()a b a b =,故D 项错误;故本题正确答案为B.【题目点拨】幂的运算法则:(1) 同底数幂的乘法: ·m n m n a a a +=(m 、n 都是正整数)(2)幂的乘方:()m n mn a a =(m 、n 都是正整数)(3)积的乘方:()n n n ab a b = (n 是正整数)(4)同底数幂的除法:m n m n a a a -÷=(a≠0,m 、n 都是正整数,且m>n)(5)零次幂:01a =(a≠0)(6) 负整数次幂: 1p p aa-=(a≠0, p 是正整数). 7、A【解题分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE ∥AF ,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF 的大小.【题目详解】由图可得,∠CDE=40° ,∠C=90°,∴∠CED=50°,又∵DE ∥AF ,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°−50°=10°,故选A.【题目点拨】本题考查了平行线的性质,熟练掌握这一点是解题的关键.8、A【解题分析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解:去分母得:2x=3x ﹣3,解得:x=3,经检验x=3是分式方程的解.故选A .9、C【解题分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【题目详解】∵直线y 1=kx +b 与直线y 2=mx +n 分别交x 轴于点A (﹣1,0),B (4,0),∴不等式(kx +b )(mx +n )>0的解集为﹣1<x <4,故选C .【题目点拨】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.10、C【解题分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,等腰梯形是轴对称图形不是中心对称图形;C、正确,符合切线的性质;D、错误,垂直于同一直线的两条直线平行.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、2 5【解题分析】用黑球的个数除以总球的个数即可得出黑球的概率.【题目详解】解:∵袋子中共有5个球,有2个黑球,∴从袋子中随机摸出一个球,它是黑球的概率为25;故答案为25.【题目点拨】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.12、x1=1,x2=-.【解题分析】试题解析:3x(x-1)=2(x-1) 3x(x-1)-2 (x-1) =0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考点:解一元二次方程---因式分解法.13、-3【解题分析】设A(a,a+4),B(c,c+4),则4 y xkyx=+⎧⎪⎨=⎪⎩解得:x+4=kx,即x2+4x−k=0,∵直线y=x+4与双曲线y=kx相交于A、B两点,∴a+c=−4,ac=-k,∴(c−a)2=(c+a)2−4ac=16+4k,∵AB=2∴由勾股定理得:(c−a)2+[c+4−(a+4)]2=(222,2 (c−a)2=8,(c−a)2=4,∴16+4k =4,解得:k=−3,故答案为−3.点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.14、1.【解题分析】试题分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.试题解析:∵分式的值为0,∴,解得a=1.考点:分式的值为零的条件.15、1.2×10﹣1.【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:12纳米=12×0.000000001米=1.2×10−1米.故答案为1.2×10−1.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16、>【解题分析】试题分析:根据二次根式的性质可知,被开方数越大,所对应的二次根式就越大,因此可判断与=1的大小为>1.考点:二次根式的大小比较三、解答题(共8题,共72分)17、(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.【解题分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【题目详解】(1)设每行驶1千米纯用电的费用为x元,根据题意得:760.5 x = 26 x解得:x=0.26经检验,x =0.26是原分式方程的解,答:每行驶1千米纯用电的费用为0.26元;(2)从A 地到B 地油电混合行驶,用电行驶y 千米,得:0.26y +(260.26﹣y )×(0.26+0.50)≤39 解得:y ≥74,即至少用电行驶74千米.18、(1)①2P ,3P ;②()2,22,()22,2--,()22,2,()2,22--;(2)434333n -≤≤. 【解题分析】(1)①根据平行点的定义即可判断;②分两种情形:如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1.如图2,当点B 在原点下方时,同法可求;(2)如图,直线OE 的解析式为3y x =,设直线BC//OE 交x 轴于C ,作CD ⊥OE 于D. 设⊙A 与直线BC 相切于点F ,想办法求出点A 的坐标,再根据对称性求出左侧点A 的坐标即可解决问题;【题目详解】解:(1)①因为P 2、P 3到直线y =x 的距离为1,所以根据平行点的定义可知,直线m 的平行点是2P ,3P ,故答案为2P ,3P .②解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线.设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH =1.由直线m 的表达式为y =x ,可知∠OAB =∠OBA =45°.所以2OB =.直线AB 与⊙O 的交点即为满足条件的点Q .连接1OQ ,作1Q N y ⊥轴于点N ,可知110OQ =. 在1Rt OHQ ∆中,可求13HQ =. 所以12BQ =.在1Rt BHQ ∆中,可求12NQ NB ==. 所以22ON =.所以点1Q 的坐标为()2,22. 同理可求点2Q 的坐标为()22,2--.如图2,当点B 在原点下方时,可求点3Q 的坐标为()22,2点4Q 的坐标为()2,22--,综上所述,点Q 的坐标为()2,22,()22,2--,()22,2,()2,22--. (2)如图,直线OE 的解析式为3y x =,设直线BC ∥OE 交x 轴于C ,作CD ⊥OE 于D .当CD =1时,在Rt △COD 中,∠COD =60°,∴3sin 603CD OC ==︒, 设⊙A 与直线BC 相切于点F ,在Rt△ACE中,同法可得AC=∴OA=∴3 n=根据对称性可知,当⊙A在y轴左侧时,3n=-,观察图象可知满足条件的N的值为:n≤≤.【题目点拨】此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.19、(1) 反比例函数的解析式为y=6x,一次函数的解析式为y=﹣12x+1.(2)2.【解题分析】(1)根据反比例函数y2=mx的图象过点A(2,3),利用待定系数法求出m,进而得出B点坐标,然后利用待定系数法求出一次函数解析式;(2)设直线y1=kx+b与x轴交于C,求出C点坐标,根据S△AOB=S△AOC﹣S△BOC,列式计算即可.【题目详解】(1)∵反比例函数y2=mx的图象过A(2,3),B(6,n)两点,∴m=2×3=6n,∴m=6,n=1,∴反比例函数的解析式为y=6x,B的坐标是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:2361k bk b+=⎧⎨+=⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为y=﹣12x+1.(2)如图,设直线y=﹣12x+1与x轴交于C,则C(2,0).S△AOB=S△AOC﹣S△BOC=12×2×3﹣12×2×1=12﹣1=2.【题目点拨】本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B点坐标以及得出S△AOB=S△AOC﹣S△BOC是解题的关键.20、(1)是;(2)见解析;(3)150°.【解题分析】(1)由菱形的性质和等边三角形的判定与性质即可得出结论;(2)根据题意画出图形,由勾股定理即可得出答案;(3)由SAS证明△AEC≌△BED,得出AC=BD,由等距四边形的定义得出AD=AB=AC,证出AD=AB=BD,△ABD 是等边三角形,得出∠DAB=60°,由SSS证明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB 和∠ACD的度数,即可得出答案.【题目详解】解:(1)一个内角为120°的菱形是等距四边形;故答案为是;(2)如图2,图3所示:在图2中,由勾股定理得:22CD=+=1310,在图3中,由勾股定理得:22CD=+=3332,10,3 2.(3)解:连接BD.如图1所示:∵△ABE与△CDE都是等腰直角三角形,∴DE=EC,AE=EB,∠DEC+∠BEC=∠AEB+∠BEC,即∠AEC=∠DEB,在△AEC 和△BED 中,,DE CE AEC BED AE BE =⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△BED (SAS ),∴AC=BD ,∵四边形ABCD 是以A 为等距点的等距四边形,∴AD=AB=AC ,∴AD=AB=BD ,∴△ABD 是等边三角形,∴∠DAB=60°,∴∠DAE=∠DAB ﹣∠EAB=60°﹣45°=15°,在△AED 和△AEC 中,,AD AC DE CE AE AE =⎧⎪=⎨⎪=⎩∴△AED ≌△AEC (SSS ),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE ﹣∠CAE=30°,∵AB=AC ,AC=AD , ∴180301803075,75,22ACB ACD --∠==∠== ∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【题目点拨】本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.21、(1)y=-6x,y=-2x-1(2)1【解题分析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.试题解析:(1)将A(﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣1;(2)设AB与x轴相交于点C,令﹣2x﹣1=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考点:反比例函数与一次函数的交点问题.22、(1)12=-m ,43y x =-;(2)4y x =-. 【解题分析】分析:(1)由已知求出A 、E 的坐标,即可得出m 的值和一次函数函数的解析式; (2)由34AD DE ==,,得到5AE =,由2AF AE -=,得到71AF BF ,==.设E 点坐标为()4a ,,则点F 坐标为()31a -,,代入反比例函数解析式即可得到结论.详解:(1)∵()6038B AD AB E -==,,,,为CD 的中点, ∴()()3468E A --,,,. ∵反比例函数图象过点()34E ,-, ∴3412m =-⨯=-.设图象经过A 、E 两点的一次函数表达式为:y kx b =+,∴6834k b k b -+=⎧⎨-+=⎩, 解得430k b ⎧=-⎪⎨⎪=⎩:, ∴43y x =-. (2)∵34AD DE ==,,∴5AE =.∵2AF AE -=,∴7AF =,∴1BF =.设E 点坐标为()4a ,,则点F 坐标为()31a -,.∵E F ,两点在m y x=图象上, ∴43a a =-,解得:1a =-,∴()14E -,, ∴4m =-, ∴4y x=-.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A 、E 、F 的坐标. 23、(1)y =3x -;(2)P (0,2)或(-3,5);(3)M (123-+,0)或(331+,0). 【解题分析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a ,b ,最后用待定系数法求出反比例函数解析式;(2)设出点P 坐标,用三角形的面积公式求出S △ACP =12×3×|n +1|,S △BDP =12×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M 坐标,表示出MA 2=(m +1)2+9,MB 2=(m−3)2+1,AB 2=32,再三种情况建立方程求解即可得出结论.【题目详解】(1)∵直线y =-x +2与反比例函数y =k x (k≠0)的图象交于A (a ,3),B (3,b )两点,∴-a +2=3,-3+2=b ,∴a =-1,b =-1,∴A (-1,3),B (3,-1),∵点A (-1,3)在反比例函数y =k x 上, ∴k =-1×3=-3,∴反比例函数解析式为y =3x-; (2)设点P (n ,-n +2),∵A (-1,3),∴C (-1,0),∵B (3,-1),∴D(3,0),∴S△ACP=12AC×|x P−x A|=12×3×|n+1|,S△BDP=12BD×|x B−x P|=12×1×|3−n|,∵S△ACP=S△BDP,∴12×3×|n+1|=12×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1m=,∴M(−10)③当MB=AB时,(m−3)2+1=32,∴m=3m=,∴M(30)即:满足条件的M(−10)或(30).【题目点拨】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.24、(1)画图见解析;(2)画图见解析;(3)20【解题分析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【题目详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=22+=,422525=20,所以四边形AA1 B1 A2的面积为:()2故答案为20.【题目点拨】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.。
2024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题与答案
![2024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题与答案](https://img.taocdn.com/s3/m/3dedaf4a11a6f524ccbff121dd36a32d7375c70b.png)
本卷共15道题目,12道填空题,3道解答题,所有答案填写在答题纸上,满分150分一、填空题(每小题8分,共计962024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题与答案分)1.设集合10,21x A x x−=≤ − 集合2{20}Bx x x m =++≤。
若A B ⊆,则实数m 的取值范围为 。
答案 3m ≤− 解 集合11,2A xx=<≤要使A B ⊆,则21210m +×+≤,解得3m ≤−。
2.设函数{}{}:1,2,32,3,4f → 满足 []()1()f f x f x −=,则这样的函数有_______个. 答案:10 解 令()1{1,2,3}yf x =−∈,则()1f y y =+。
对(1)2f =以下三种情况都满足条件(2)(3)2;(2)(3)3;(2)(3)4f f f f f f ======,共3种。
同理对(2)3,(1)(3)f f f ==有3种情况;(3)4,(1)(2)f f f ==也有3种情况。
又(1)2,(2)3,(3)4f f f ===显然满足条件。
所以满足已知条件的函数共有331×+= 10个。
(可以看出这种映射的限制仅在值域上,因此也可对值域大小分类讨论。
)3.函数22sin sin 1sin 1x x y x ++=+的最大值与最小值之积为 。
答案:34解 令sin ,11t x t =−≤≤ ,原式变形11,1y t t=++当0t ≠时13,22y ≤≤。
当0t =时,1y =。
所以y 的最大、最小值分别为3122,,其积为34。
4.已知数列{}n x满足:111n x x x n +=≥,则通项n x =__________。
答案解 将已知条件变形得22111111n n x x n n +−=−+,将上式从1到n 叠加得到 2211111n x x n−=−,即n x =。
5 .已知四面体A BCD −的外接球半径为1,若1,60BC BDC =∠= ,球心到平面BDC 的距离为______________。
2024年浙江义乌市初中毕业生学业水平考试数学试题
![2024年浙江义乌市初中毕业生学业水平考试数学试题](https://img.taocdn.com/s3/m/7a0079412379168884868762caaedd3382c4b560.png)
2024年浙江义乌市初中毕业生学业水平考试数学试题一、单选题1.2024-的绝对值是( ) A .2024B .12024-C .2024-D .120242.下列计算正确的是( ) A .()426a a =B .22(3)6a a =C .842a a a ÷=D .()2326ab a b -=3.如图,由相同的小正方体搭成的几何体的俯视图是( )A .B .C .D .4.据统计,目前我国每年直接浪费掉的粮食达到3500万吨,浪费掉的粮食就足够满足两亿人一年的口粮.将数据3500万用科学记数法表示为( ) A .73.510⨯B .80.3510⨯C .83.510⨯D .73510⨯5.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( )A .15B .25C .35D .456x 的取值范围是( ) A .3x ≥B .3x ≥-C .3x ≤-D .3x ≤7.如图,已知直线m n ∥,将一块含30︒角的直角三角板ABC 按如图方式放置()30B ∠=︒,其中点A 落在直线m 上,直线n 分别交边,AB BC 于点,D E .若140∠=︒,则2∠的度数为( )A .40︒B .50︒C .60︒D .70︒8.如图,Rt ABC △中,已知90,30,2BAC B AC ∠=︒∠=︒=.现以AC 为一边向外侧作等边三角形ACN ,分别取,BC CN 的中点记为,D E ,连接DE .则DE 的长为( )A .BC .D 9.已知1y 和2y 是关于x 的函数,当x a =时,函数值分别是1R 和2R ,若存在实数a ,使得122R R =+,则称函数1y 和2y 是“奇妙函数”.以下函数1y 和2y 不是“奇妙函数”的是( )A .212y x =+和22y x =B .1y x =和2221y x x =+-C .11y x=和22y x =+ D .12y x=-和25y x =-10.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式,后人借助此分割方法所得图形证明了勾股定理.如图所示,矩形ABCD 就是由两个这样的图形拼成(无重叠、无缝隙).下面给出的条件中,一定能求出矩形ABCD 面积的是( )A .BM 与DM 的积B .BE 与DE 的积C .BM 与DE 的积D .BE 与DM 的积二、填空题11.8-的立方根是.12.因式分解:23mn mn +=.13.已知某班一合作学习小组6名同学一周在家劳动的时间(单位:h )分别为:3,4,5,4,6,5,则这组数据的中位数是.14.一个圆锥的侧面展开图是半径为9cm ,圆心角为120︒的扇形,则此圆锥底面圆的半径为cm .15.如图,在Rt ABC △中,90ACB ∠=︒,6AC =,8BC =,OC 是AB 边上的中线,点E 在CB 上,连结AE ,将C A E V 沿着AE 向ABC V 内部翻折得到PAE △.若PE O C ∥,则CE =.16.如图,抛物线23y x bx =+-的图象与x 轴交于点A ,与y 轴交于点B ,且1OA =.(1)b =.(2)已知点P 为该抛物线上一点且设其横坐标为(0)t t <,记该抛物线在点B 与点P 之间(包含点B 和点P )这部分图象的最高点和最低点到x 轴的距离分别为12,d d .若121d d -=,则t 的取值范围为.三、解答题1701(2024)2sin30π--+-︒. 18.先化简,再求值:()2213363x y x y -+-.其中1,2x y =-=. 19.小汪解答解分式方程:“2312x x x+--=-”的过程如下:你认为他的解题过程正确吗?若正确,请检验;若不正确,请指出错误(从第几步开始错),并写出正确的解答过程.20.为了着力解决小眼镜、小胖墩和学生心理健康问题等建议,某校开设了以“小课间大运动大课间小比赛”的活动课程,学校要求每位学生在“丢沙包”“滚保龄球”“踢毽子”与“跳绳”四门课程中选且只能选其中一门并随机调查了本校部分学生的选课情况,绘制了两幅不完整的统计图,请根据图表信息回答下列问题:(1)这次活动一共调查了________名学生,并补全条形统计图. (2)求图2中“丢沙包”扇形圆心角的度数.(3)若该学校共有1500名学生,请估计该校有多少名学生喜欢“滚保龄球”. 21.如图,已知四边形ABCD 是菱形,延长AD 至点E ,使2AE BC =.(1)求证:90ACE ∠=︒.(2)若16,10AC BC ==,求四边形ABCE 的面积. 22.草莓种植大棚是一种具有保温性能的框架结构.如图示,一般使用钢结构作为骨架,上面覆上一层或多层塑料膜,这样就形成了一个温室空间.大棚的设计要保证通风性且利于采光.(1)如图1,已知某草莓园的种植大棚横截面可以看作抛物线OPN ,其中点P 为抛物线的顶点,大棚高4m PE =,宽12m ON =.现以点O 为坐标原点,ON 所在直线为x 轴,过点O 且垂直于ON 的直线为y 轴建立平面直角坐标系.求此抛物线的解析式.(2)如图2,为方便进出,在大棚横截面中间开了两扇正方形的门,其中AB BE EC CD===.求门高AB的值.(3)若在某一时刻,太阳光线(假设太阳光线为平行线)透过A点恰好照射到N点,此时大棚横截面在地面上的阴影为线段OQ,求此时OQ的长.23.【基础巩固】(1)如图1,在ABCV中,点D是AB上的一点,且ACD B∠=∠,求证:2AC AB AD=⋅.【尝试应用】(2)如图2,在(1)的条件下,过点D作DE AC∥,交CB于点E.若:1:3A D D B=,8BC=,求CD的长.【拓展提高】(3)如图3,在ABCDY中,点E是CD的中点,连结BE,AE交BD于点F,且DFA EBA∠=∠.若sin BDC∠=tan C的值.24.如图1,已知AB是Oe的直径,点C为»AB的中点,点D为Oe上一点(不与A B C,,重合).连结AC,CD,DB,过点A作AE CD∥,交直线BD于点E.(1)当点D 在»BC上时, ①求CDB ∠的度数.②若2BEBD=,CD AE 的值. (2)如图2,记CD a =,作点D 关于直径AB 的对称点F ,连结DF ,CF .若CDF V 为等腰三角形,请直接写出AE 的值(用含a 的代数式表示).。
2006年浙江省义乌市初中数学竞赛试题(含答案).doc
![2006年浙江省义乌市初中数学竞赛试题(含答案).doc](https://img.taocdn.com/s3/m/92247da17c1cfad6185fa721.png)
2006年义乌市初中数学竞赛试题班级_________姓名_________成绩_________一、选择题(6×6=36分)1.已知0221≠+=+b a b a ,则ba的值为( )(A )-1 (B )1 (C )2 (D )不能确定2.已知122432+--=--+x Bx A x x x ,其中A ,B 为常数,则4A-B 的值为( ) (A )7 (B )9 (C )13 (D )53.在一个多边形中,除了两个内角外,其内角之和为2002°,则这个多边形的边数为( )(A )12 (B )12或13 (C )14 (D )14或15 4.已知一次函数k kx y -= ,若y 随x 的减小而减小,则该函数的图象经过( ) (A )第一、二、三象限 (B )第一、二、四象限 (C ) 第一、三、四象限 (D )第二、三、四象限 5.5.如图,D 是△ABC 的边AB 上的点,F 为△ABC 外的点。
连DF 交AC 于E 点,连FC 。
现有三个断言:(1)DE=FE ;(2)AE=CE ;(3)FC ∥AB.以其中的两个断言为条件,其余一个断言为结论,如此可作出三个命题,这些命题中正确命题的个数为( )(A )0 (B )1 (C )2 (D )36.如图,在△ABC 中,∠ABC=90°,D 是AC 中点,BE ⊥BD 交CA 的延长线于E ,下列结论中正确的是( )(A )△BED ∽△BCA(B )△BEA ∽△BCD (C )△ABE ∽△BCE (D )△BEC ∽△DBC二、填空题(5×8=40分) 7.设-1≤x ≤2,则2212++--x x x 的最大值与最小值之差为 .8.若平面上4条直线两两相交且无三线共点,则共有同旁内角 对.9.方程210712122=+++-+x x x x 的解为 .10.HJ 牌小汽车的油箱可装汽油30升,原来装有汽油10升,现在再加汽油x 升.如果每升汽油2.95元,油箱内汽油的总价y (元)与x (升)之间的函数关系式为 .其图象为(请画在右边的坐标系中) 11.已知()()2002202200222=++++y y x x , 则58664322+----y x y xy x = .12.如图,直线AB 与⊙O 相交于A ,B 两点,点O 在AB上,点C 在⊙O 上,且∠AOC=40°,点E 是直线AB 上一个动点(与点O 不重合),直线EC 交⊙O 与另一点D ,则使DE=DO 的点E 共有 个. 13.有两道算式: 好+好=妙,妙×好好×真好=妙题题妙,其中每个汉字表示0-9中的一个数字,相同汉字表示相同数字,不同汉字表示不同数字,那么,“妙题题妙”所表示的四位数的所有因数的个数是 .14.已知实数a ,b ,c ,满足a+b+c=0,6222=++c b a ,则a 的最大值为 .三、解答题(16×4=64分)15.华鑫超市对顾客实行优惠购物,规定如下:(1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折优惠.小明两次去该超市购物,分别付款198元和554元.现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少?16.当m 为整数时,关于x 的方程()()0112122=++--x m x m 是否有有理根?如果有,求出m的值;如果没有,请说明理由.17.现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1(cm)的整数.如果其中任意三小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段.18.如图,⊙O为△ABC的外接圆,∠BAC=60°,H为边AC,AB上的高BD,CE的交点,在BD上取点M,使BM=CN.(1)求证:∠BOC=∠BHC ; (2)求证:△BOM ≌△COH ;(3)求OHMH的值.2006年义乌市初中数学竞赛试题答案5 6 D C 11 12情感语录1.爱情合适就好,不要委屈将就,只要随意,彼此之间不要太大压力2.时间会把最正确的人带到你身边,在此之前,你要做的,是好好的照顾自己3.女人的眼泪是最无用的液体,但你让女人流泪说明你很无用4.总有一天,你会遇上那个人,陪你看日出,直到你的人生落幕5.最美的感动是我以为人去楼空的时候你依然在6.我莫名其妙的地笑了,原来只因为想到了你7.会离开的都是废品,能抢走的都是垃圾8.其实你不知道,如果可以,我愿意把整颗心都刻满你的名字9.女人谁不愿意青春永驻,但我愿意用来换一个疼我的你10.我们和好吧,我想和你拌嘴吵架,想闹小脾气,想为了你哭鼻子,我想你了11.如此情深,却难以启齿。
浙江省义乌市初中数学竞赛试题(含答案)
![浙江省义乌市初中数学竞赛试题(含答案)](https://img.taocdn.com/s3/m/5364b70fbd64783e09122be9.png)
20XX 年义乌市初中数学竞赛试题班级_________姓名_________成绩_________一、选择题(6×6=36分)1.已知0221≠+=+b a b a ,则ba的值为( )(A )-1 (B )1 (C )2 (D )不能确定2.已知122432+--=--+x Bx A x x x ,其中A ,B 为常数,则4A-B 的值为( )(A )7 (B )9 (C )13 (D )53.在一个多边形中,除了两个内角外,其内角之和为2002°,则这个多边形的边数为( )(A )12 (B )12或13 (C )14 (D )14或15 4.已知一次函数k kx y -= ,若y 随x 的减小而减小,则该函数的图象经过( ) (A )第一、二、三象限 (B )第一、二、四象限 (C ) 第一、三、四象限 (D )第二、三、四象限 5.5.如图,D 是△ABC 的边AB 上的点,F 为△ABC 外的点。
连DF 交AC 于E 点,连FC 。
现有三个断言:(1)DE=FE ;(2)AE=CE ;(3)FC ∥AB.以其中的两个断言为条件,其余一个断言为结论,如此可作出三个命题,这些命题中正确命题的个数为( )(A )0 (B )1 (C )2 (D )36.如图,在△ABC 中,∠ABC=90°,D 是AC 中点,BE ⊥BD 交CA 的延长线于E ,下列结论中正确的是( )(A )△BED ∽△BCA(B )△BEA ∽△BCD (C )△ABE ∽△BCE (D )△BEC ∽△DBC二、填空题(5×8=40分) 7.设-1≤x ≤2,则2212++--x x x 的最大值与最小值之差为.8.若平面上4条直线两两相交且无三线共点,则共有同旁内角对.9.方程210712122=+++-+x x x x 的解为 .10.HJ 牌小汽车的油箱可装汽油30升,原来装有汽油10升,现在再加汽油x 升.如果每升汽油2.95元,油箱内汽油的总价y (元)与x (升)之间的函数关系式为 .其图象为(请画在右边的坐标系中) 11.已知()()2002202200222=++++y y x x , 则58664322+----y x y xy x =.12.如图,直线AB 与⊙O 相交于A ,B 两点,点O 在AB 上,点C 在⊙O 上,且∠AOC=40°,点E 是直线AB 上一个动点(与点O 不重合),直线EC 交⊙O 与另一点D ,则使DE=DO 的点E 共有个. 13.有两道算式: 好+好=妙,妙×好好×真好=妙题题妙,其中每个汉字表示0-9中的一个数字,相同汉字表示相同数字,不同汉字表示不同数字,那么,“妙题题妙”所表示的四位数的所有因数的个数是.14.已知实数a ,b ,c ,满足a+b+c=0,6222=++c b a ,则a 的最大值为.三、解答题(16×4=64分)15.华鑫超市对顾客实行优惠购物,规定如下:(1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折优惠.小明两次去该超市购物,分别付款198元和554元.现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少?16.当m 为整数时,关于x 的方程()()0112122=++--x m x m 是否有有理根?如果有,求出m的值;如果没有,请说明理由.17.现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1(cm)的整数.如果其中任意三小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段.18.如图,⊙O为△ABC的外接圆,∠BAC=60°,H为边AC,AB上的高BD,CE的交点,在BD上取点M,使BM=CN.(1)求证:∠BOC=∠BHC ; (2)求证:△BOM ≌△COH ;(3)求OHMH的值.20XX 年义乌市初中数学竞赛试题答案5 6 D C 11 12。
2025届浙江省金华市义乌市宾王中学九年级数学第一学期期末学业水平测试模拟试题含解析
![2025届浙江省金华市义乌市宾王中学九年级数学第一学期期末学业水平测试模拟试题含解析](https://img.taocdn.com/s3/m/b01933fc294ac850ad02de80d4d8d15abf23006a.png)
2025届浙江省金华市义乌市宾王中学九年级数学第一学期期末学业水平测试模拟试题 考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ).A .513B .1213C .1013D .5122.A B 、两地相距90km ,甲、乙两人从两地出发相向而行,甲先出发.图中12,l l 表示两人离A 地的距离()S km 与时间()t h 的关系,结合图象,下列结论错误的是( )A .1l 是表示甲离A 地的距离与时间关系的图象B .乙的速度是30/km hC .两人相遇时间在 1.2t h =D .当甲到达终点时乙距离终点还有45km3.如图,已知点A 是双曲线y =2x在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n),则m ,n 满足的关系式为( )A .n =-2mB .n =-2mC .n =-4mD .n =-4m 4.把函数223y x x =-+的图像绕原点旋转180︒得到新函数的图像,则新函数的表达式是( )A .223y x x =++B .223y x x =-+-C .223y x x =--+D .223y x x -=--5.某班的同学想测量一教楼AB 的高度.如图,大楼前有一段斜坡,已知的长为16米,它的坡度.在离点45米的处,测得一教楼顶端的仰角为,则一教楼的高度约( )米(结果精确到0.1米)(参考数据:,,,)A .44.1B .39.8C .36.1D .25.96.二次函数()20y ax bx c a =++≠的图象如图所示,下列结论:0abc >①;240b ac -<②;42a c b ③+>;22()a c b +>④;()x ax b a b +≤-⑤,其中正确结论的是( )A .①③④B .②③④C .①③⑤D .③④⑤7.已知反比例函数的表达式为2k y x +=,它的图象在各自象限内具有 y 随x 的增大而增大的特点,则k 的取值范围是( ).A .k>-2B .2k ≥-C .2k <-D .2k ≤-8.已知⊙O 的半径为13,弦AB //CD ,AB =24,CD =10,则AB 、CD 之间的距离为A .17B .7C .12D .7或17 9.方程()211x -=的根为( )A .0B .2C .1或1-D .2或010.如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间作了猜测. 根据胡老师给出的方向坐标,猜测比较合理的是 ( )A .小明:“早上8点”B .小亮:“中午12点”C .小刚:“下午5点”D .小红:“什么时间都行”11.如图,重庆欢乐谷的摩天轮是西南地区最高的摩天轮,号称“重庆之限”.摩天轮是一个圆形,直径AB 垂直水平地面于点C ,最低点B 离地面的距离BC 为1.6米.某天,妈妈带着洋洋来坐摩天轮,当她站在点D 仰着头看见摩天轮的圆心时,仰角为37º,为了选择更佳角度为洋洋拍照,妈妈后退了49米到达点D’,当洋洋坐的桥厢F 与圆心O 在同一水平线时,他俯头看见妈妈的眼睛,此时俯角为42º,已知妈妈的眼睛到地面的距离为1.6米,妈妈两次所处的位置与摩天轮在同一平面上,则该摩天轮最高点A 离地面的距离AC 约是( )(参考数据:sin37º≈0.60,tan37º≈0.75,sin42º≈0.67,tan42º≈0.90)A .118.8米B .127.6米C .134.4米D .140.2米12.抛物线y =4x 2﹣3的顶点坐标是( )A .(0,3)B .(0,﹣3)C .(﹣3,0)D .(4,﹣3)二、填空题(每题4分,共24分)13.某物体对地面的压强P (Pa )与物体和地面的接触面积S (m 2)成反比例函数关系(如图),当该物体与地面的接触面积为0.25m 2时,该物体对地面的压强是______Pa .14.一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入3个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.7左右,则袋中红球约有_____个.15.如图,Rt ABC 绕着点A 顺时针旋转90︒得到'Rt AB C ',连接',BB CC ',延长CC '交'BB 于点E ,若4,3BC AC ==,则CE 的长为__________.16.庆“元旦”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,求这次有多少队参加比赛?若设这次有x 队参加比赛,则根据题意可列方程为_____.17.如图,在四边形ABCD 中,AD ∥BC ,AD =2,AB =22,以点A 为圆心,AD 为半径的圆与BC 相切于点E ,交AB 于点F ,则弧DF 的长为_________.18.已知m ,n 是方程2240x x --=的两实数根,则22m mn n ++=__.三、解答题(共78分)19.(8分)如图,在平面直角坐标系xOy 中,直线l 和抛物线W 交于A ,B 两点,其中点A 是抛物线W 的顶点.当点A 在直线l 上运动时,抛物线W 随点A 作平移运动.在抛物线平移的过程中,线段AB 的长度保持不变. 应用上面的结论,解决下列问题:在平面直角坐标系xOy 中,已知直线1:2l y x =-.点A 是直线1l 上的一个动点,且点A 的横坐标为t .以A 为顶点的抛物线21:C y x bx c =-++与直线1l 的另一个交点为点B .(1)当0t =时,求抛物线1C 的解析式和AB 的长;(2)当点B 到直线OA 的距离达到最大时,直接写出此时点A 的坐标;(3)过点A 作垂直于y 轴的直线交直线21:2l y x =于点C .以C 为顶点的抛物线22:C y x mx n =++与直线2l 的另一个交点为点D .①当AC ⊥BD 时,求t 的值; ②若以A ,B ,C ,D 为顶点构成的图形是凸四边形(各个内角度数都小于180°)时,直接写出满足条件的t 的取值范围.20.(8分)若二次函数y =ax 2+bx ﹣2的图象与x 轴交于点A (4,0),与y 轴交于点B ,且过点C (3,﹣2).(1)求二次函数表达式;(2)若点P 为抛物线上第一象限内的点,且S △PBA =5,求点P 的坐标;(3)在AB 下方的抛物线上是否存在点M ,使∠ABO =∠ABM ?若存在,求出点M 到y 轴的距离;若不存在,请说明理由.21.(8分)(1016内蒙古包头市)一幅长10cm 、宽11cm 的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:1.设竖彩条的宽度为xcm ,图案中三条彩条所占面积为ycm 1.(1)求y 与x 之间的函数关系式;(1)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.22.(10分)如图所示是某一蓄水池每小时的排水量V (m 3/h )与排完水池中的水所用的时间t (h )之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的总蓄水量;(2)写出此函数的解析式;(3)若要6 h 排完水池中的水,那么每小时的排水量应该是多少?23.(10分)(2015德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.24.(10分)如图,正方形ABCD中,E为BC上一点,EF⊥AE,交CD于点F,求证:AB:CE=BE:CF.25.(12分)我区某校组织了一次“诗词大会”,张老师为了选拔本班学生参加,对本班全体学生诗词的掌握情况进行了调查,并将调查结果分为了三类:A:好,B:中,C:差.请根据图中信息,解答下列问题:(1)全班学生共有人;(2)扇形统计图中,B类占的百分比为%,C类占的百分比为%;(3)将上面的条形统计图补充完整;(4)小明被选中参加了比赛.比赛中有一道必答题是:从下表所示的九宫格中选取七个字组成一句诗,其答案为“便引诗情到碧霄”.小明回答该问题时,对第四个字是选“情”还是选“青”,第七个字是选“霄”还是选“宵”,都难以抉择,若分别随机选择,请用列表或画树状图的方法求小明回答正确的概率.情到碧霄诗青引宵便26.已知关于x的一元二次方程x2-2x+m-1=1.(1)若此方程有两个不相等的实数根,求实数m的取值范围;(2)当Rt△ABC的斜边长c=3,且两直角边a和b恰好是这个方程的两个根时,求Rt△ABC的面积.参考答案一、选择题(每题4分,共48分)1、A【分析】过顶点A作底边BC的垂线AD,垂足是D点,构造直角三角形.根据等腰三角形的性质,运用三角函数的定义,则可以求得底角的余弦cosB的值.【详解】解:如图,作AD⊥BC于D点.则CD=5cm,AB=AC=13cm.∴底角的余弦=5 13.故选A.【点睛】本题考查的是解直角三角形,解答本题的关键是熟练掌握等腰三角形的三线合一的性质:等腰三角形顶角平分线、底边上的高,底边上的中线重合.2、C【分析】根据图像获取所需信息,再结合行程问题量间的关系进行解答即可. 【详解】解:A. 1l是表示甲离A地的距离与时间关系的图象是正确的;B. 乙用时3小时,乙的速度,90÷3=30/km h,故选项B正确;C.设甲对应的函数解析式为y=ax+b,则有:9020ba b=⎧⎨+=⎩解得:4590ab=-⎧⎨=⎩∴甲对应的函数解析式为y=-45x+90,设乙对应的函数解析式为y=cx+d,则有:3.5900.50c dc d+=⎧⎨+=⎩解得:3015cd=⎧⎨=-⎩即乙对应的函数解析式为y=30x-15则有:45903015y xy x=-+⎧⎨=-⎩解得:x=1.4h,故C选项错误;D. 当甲到达终点时乙距离终点还有90-40×1.4=45km,故选项D正确;故答案为C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意、从图像中获取问题需要的条件以及数形结合的思想的应用是解答本题的关键.3、B【解析】试题分析:首先根据点C的坐标为(m,n),分别求出点A为(2n,n),点B的坐标为(-2n,-n),根据图像知B、C的横坐标相同,可得-2n=m.故选B点睛:此题主要考查了反比例函数的图像上的点的坐标特点,解答此题的关键是要明确:①图像上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在坐标系的图像上任取一点,过这个点向x轴、y轴分别作垂线.与坐标轴围成的矩形的面积是一个定值|k|.4、D【分析】二次函数绕原点旋转,旋转后的抛物线顶点与原抛物线顶点关于原点中心对称,开口方向相反,将原解析式化为顶点式即可解答.【详解】()2223=12=-+-+y x x x把函数的图像绕原点旋转180︒得到新函数的图像,则新函数的表达式: ()221223y x x x =-+-=--- 故选:D【点睛】本题考查的是二次函数的旋转,关键是掌握旋转的规律,二次函数的旋转,平移等一般都要先化为顶点式. 5、C【解析】延长AB 交直线DC 于点F ,在Rt △BCF 中利用坡度的定义求得CF 的长,则DF 即可求得,然后在直角△ADF 中利用三角函数求得AF 的长,进而求得AB 的长.【详解】延长AB 交直线DC 于点F .∵在Rt △BCF 中,, ∴设BF=k ,则CF=k ,BC=2k .又∵BC=16,∴k=8,∴BF=8,CF=8. ∵DF=DC+CF ,∴DF=45+8. ∵在Rt △ADF 中,tan ∠ADF=,∴AF=tan37°×(45+8)≈44.13(米),∵AB=AF-BF ,∴AB=44.13-8≈36.1米.故选C .【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.6、C【分析】利用图象信息以及二次函数的性质一一判断即可;【详解】解:∵抛物线开口向下,∴a <0,∵对称轴x =﹣1=2b a -, ∴b <0,∵抛物线交y 轴于正半轴,∴c >0,∴abc >0,故①正确,∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,故②错误,∵x =﹣2时,y >0,∴4a ﹣2b +c >0,∴4a +c >2b ,故③正确,∵x =﹣1时,y >0,x =1时,y <0,∴a ﹣b +c >0,a +b +c <0,∴(a ﹣b +c) (a +b +c)<0∴22()0a c b +-<,∴22()a c b +<,故④错误,∵x =﹣1时,y 取得最大值a ﹣b +c ,∴ax 2+bx +c ≤a ﹣b +c ,∴x (ax +b )≤a ﹣b ,故⑤正确.故选C .【点睛】本题考查二次函数的图象与系数的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.7、C【分析】先根据反比例数2kyx+=的图象在每一象限内y随x的增大而增大得出关于k的不等式,求出k的取值范围即可.【详解】解:∵反比例数2kyx+=的图象在每一象限内y随x的增大而增大,∴2k+<0,解得k<-1.故选:C.【点睛】本题考查的是反比例函数的性质,熟知反比例函数kyx=(k≠0)中,当k<0时,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大是解答此题的关键8、D【解析】①当弦AB和CD在圆心同侧时,如图1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12﹣5=7cm;②当弦AB和CD在圆心异侧时,如图2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm,∴AB与CD之间的距离为7cm或17cm.故选D.点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.9、D【分析】用直接开平方法解方程即可.【详解】()211x-=x-1=±1x1=2,x2=0故选:D【点睛】本题考查的是用直接开平方法解一元二次方程,关键是要掌握开平方的方法,解题时要注意符号.10、C【解析】可根据平行投影的特点分析求解,或根据常识直接确定答案.解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西-西北-北-东北-东,可得应该是下午.故选C .本题考查了平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.11、B【分析】连接EB ,根据已知条件得到E ′,E ,B 在同一条直线上,且E ′B ⊥AC ,过F 做FH ⊥BE 于H ,则四边形BOFH 是正方形,求得BH=FH=OB ,设AO=OB=r ,解直角三角形即可得到结论.【详解】解:连接EB ,∵D′E′=DE=BC=1.6∴E′,E ,B 在同一条直线上,且E′B ⊥AC ,过F 做FH ⊥BE 于H ,则四边形BOFH 是正方形,∴BH=FH=OB ,设AO=OB=r ,∴FH=BH=r ,∵∠OEB=37°,∴tan37°=0.75OB BE, ∴BE=43r , ∴EH=BD-BH=13r ,∵EE′=DD′=49,∴E′H=49+13r ,∵∠FE′H=42°,∴tan42°=0.91493FH r E H r =='+, 解得r≈63,∴AC=2×63+1.6=127.6米, 故选:B .【点睛】本题考查了解直角三角形——仰角与俯角问题,正方形的判定和性质,正确的作出辅助线是解题的关键. 12、B【分析】根据抛物线2y ax b =+的顶点坐标为(0,b),可以直接写出该抛物线的顶点坐标, 【详解】解:抛物线243y x =-, ∴该抛物线的顶点坐标为()0,3-,故选:B .【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每题4分,共24分)13、1【分析】直接利用函数图象得出函数解析式,进而求出答案.【详解】设P =k s ,把(0.5,2000)代入得: k =1000,故P =1000s, 当S =0.25时,P =10000.25=1(Pa ). 故答案为:1.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析会死是解题关键.14、1【分析】根据口袋中有3个白球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:∵通过大量重复摸球试验后发现,摸到红球的频率是0.1,口袋中有3个白球,∵假设有x 个红球,∴7310x x =+ ,解得:x=1,经检验x=1是方程的根, ∴口袋中有红球约有1个.故答案为:1.【点睛】 此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键. 15、722【分析】根据题意延长''B C 交BC 于点F ,则'B F BC ⊥,延长AC '交'BB 于点M ,根据已知可以得到CC ´,B ´C ´,BF ,B ´F ; ''MC B BFB '求出4=7MC ',∵△MEC ´∽△BEC EC MC EC BC ''∴=´´ ´´EC MC CC EC BC =+,4´7432?EC EC =+ 得到22EC '= 求出CE 即可. 【详解】Rt △ABC 绕着点A 顺时针旋转90︒得到''Rt AB C ,',',AC AC AB AB ∴==''90CAC BAB ∠=∠=.又4,3BC AC ==,32, ''4CC B C '∴==.如图,延长''B C 交BC 于点F ,则'B F BC ⊥,延长AC '交'BB 于点M ,则'//,1MC BF BF =.''MC B BFB ',MC B C BF B F '''∴=',即4143MC '=+,解得4=7MC ', ∵△MEC ´∽△BECEC MC EC BC ''∴=,´´´´EC MC CC EC BC =+47432?EC =+,解得22EC '= ∴CE=CC ´+EC ´22? 2 2【点睛】此题主要考查了旋转变化的性质和特征,相似三角形的性质,熟记性质是解题的关键,注意相似三角形的选择.16、(1)2x x -=45 【分析】设这次有x 队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为:(1)2x x -场.根据题意可知:此次比赛的总场数=45场,依此等量关系列出方程.【详解】解:设这次有x 队参加比赛,则此次比赛的总场数为(1)2x x -场, 根据题意列出方程得:(1)2x x -=45, 故答案是:(1)452x x -=. 【点睛】 考查了由实际问题抽象出一元二次方程,本题的关键在于理解清楚题意,找出合适的等量关系,列出方程,再求解.需注意赛制是“单循环形式”,需使两两之间比赛的总场数除以1.17、32π 【解析】分析:连接AE ,根据圆的切线的性质可得AD ⊥BC ,解Rt △ABE 可求出∠ABE ,进而得到∠DAB ,然后运用弧长的计算公式即可得出答案.详解:连接AE ,∵BC 为圆A 的切线, ∴AE ⊥BC ,∴△ABE 为直角三角形,∵AD=2,AB=22, ∴AE=2, ∴△ABE 为等腰直角三角形, ∴∠BAE=45°,∵AD ∥BC , ∴∠DAE=∠AEB=90°, ∴∠BAD=45°+90°=135°,∴弧FED 的长=32π.点睛:本题主要考查的是圆的切线的性质以及弧长的计算公式,属于中等难度题型.得出∠BAD 的度数是解题的关键. 18、1【分析】先根据一元二次方程根的定义得到224m m =+,则22m mn n ++可变形为2()4m n mn +++,再根据根与系数的关系得到2m n +=,4mn =-,然后利用整体代入的方法计算代数式的值.【详解】m 是方程2240x x --=的实数根,2240m m ∴--=,224m m ∴=+,222422()4m mn n m mn n m n mn ∴++=+++=+++, m ,n 是方程2240x x --=的两实数根,2m n ∴+=,4mn =-,2222444m mn n ∴++=⨯-+=.故答案为1.【点睛】考查了根与系数的关系:若1x ,2x 是一元二次方程20(a 0)++=≠ax bx c 的两根时,12b x x a +=-,12c x x a=.三、解答题(共78分)19、(1)AB =(2)(1,1)A -;(3)①52t =;②t 的取值范围是154t <或5t >. 【分析】(1)根据t=3时,A 的坐标可以求得是(3,-2),利用待定系数法即可求得抛物线的解析式,则B 的坐标可以求得;(2)△OAB 的面积一定,当OA 最小时,B 到OA 的距离即△OAB 中OA 边上的高最大,此时OA ⊥AB ,据此即可求解;(3)①方法一:设AC ,BD 交于点E ,直线l 1:y=x-2,与x 轴、y 轴交于点P 和Q (如图1).由点D 在抛物线C 2:y=[x-(2t-4)]2+(t-2)上,可得12t - =[(t-1)-(2t-4)]2+(t-2),解方程即可得到t 的值; 方法二:设直线l 1:y=x-2与x 轴交于点P ,过点A 作y 轴的平行线,过点B 作x 轴的平行线,交于点N .(如图2),根据BD ⊥AC ,可得t-1=2t-72,解方程即可得到t 的值; ②设直线l 1与l 2交于点M .随着点A 从左向右运动,从点D 与点M 重合,到点B 与点M 重合的过程中,可得满足条件的t 的取值范围.【详解】解:(1)∵点A 在直线l 1:y=x-2上,且点A 的横坐标为3,∴点A 的坐标为(3,-2),∴抛物线C 1的解析式为y=-x 2-2,∵点B 在直线l 1:y=x-2上,设点B 的坐标为(x ,x-2).∵点B 在抛物线C 1:y=-x 2-2上,∴x-2=-x 2-2,解得x=3或x=-1.∵点A 与点B 不重合,∴点B 的坐标为(-1,-3),∴由勾股定理得AB=22(01)(23)2++-+=.(2)当OA ⊥AB 时,点B 到直线OA 的距离达到最大,则OA 的解析式是y=-x ,则2y x y x =-⎧⎨=-⎩,解得:11x y =⎧⎨=⎩, 则点A 的坐标为(1,-1).(3)①方法一:设AC ,BD 交于点E ,直线1:2l y x =-,与x 轴、y 轴交于点P 和Q (如图1).则点P 和点Q 的坐标分别为(2,0),(0,2)-.∴2OP OQ ==.∵45OPQ ∠=︒.∵AC y ⊥轴,∴AC x 轴.∴45EAB OPQ ∠=∠=︒.∵90DEA AEB ∠=∠=︒,2AB =, ∴1EA EB ==.∵点A 在直线1:2l y x =-上,且点A 的横坐标为t ,∴点A 的坐标为(,2)t t -.∴点B 的坐标为(1,3)t t --.∵AC x 轴,∴点C 的纵坐标为2t -.∵点C 在直线21:2l y x =上, ∴点C 的坐标为(24,2)t t --.∴抛物线2C 的解析式为2[(24)](2)y x t t =--+-.∵BD AC ⊥,∴点D 的横坐标为1t -,∵点D 在直线21:2l y x =上, ∴点D 的坐标为11,2t t -⎛⎫- ⎪⎝⎭.∵点D 在抛物线22:[(24)](2)y x t C t =--+-上,∴21[(1)(24)](2)2t t t t -=---+-. 解得52t =或3t =. ∵当3t =时,点C 与点D 重合,∴52t = 方法二:设直线l 1:y=x-2与x 轴交于点P ,过点A 作y 轴的平行线,过点B 作x 轴的平行线,交于点N .(如图2)则∠ANB=93°,∠ABN=∠OPB .在△ABN 中,BN=ABcos ∠ABN ,AN=ABsin ∠ABN .∵在抛物线C 1随顶点A 平移的过程中,AB 的长度不变,∠ABN 的大小不变,∴BN 和AN 的长度也不变,即点A 与点B 的横坐标的差以及纵坐标的差都保持不变.同理,点C 与点D 的横坐标的差以及纵坐标的差也保持不变.由(1)知当点A 的坐标为(3,-2)时,点B 的坐标为(-1,-3),∴当点A 的坐标为(t ,t-2)时,点B 的坐标为(t-1,t-3).∵AC ∥x 轴,∴点C 的纵坐标为t-2.∵点C 在直线l 2:y =12x 上, ∴点C 的坐标为(2t-4,t-2).令t=2,则点C 的坐标为(3,3).∴抛物线C 2的解析式为y=x 2.∵点D 在直线l 2:y =12x 上, ∴设点D 的坐标为(x ,2x ). ∵点D 在抛物线C 2:y=x 2上, ∴2x =x 2. 解得x =12或x=3. ∵点C 与点D 不重合,∴点D 的坐标为(12,14). ∴当点C 的坐标为(3,3)时,点D 的坐标为(12,14). ∴当点C 的坐标为(2t-4,t-2)时,点D 的坐标为(2t−72,t−74). ∵BD ⊥AC ,∴t−1=2t−72. ∴t =52. ②t 的取值范围是t <154或t >4. 设直线l 1与l 2交于点M .随着点A 从左向右运动,从点D 与点M 重合,到点B 与点M 重合的过程中,以A ,B ,C ,D 为顶点构成的图形不是凸四边形.【点睛】本题考查了二次函数综合题,掌握待定系数法求得函数的解析式,点到直线的距离,平行于坐标轴的点的特点,方程思想的运用是解题的关键.20、(1)213222y x x =--;(2)(5,3)P ;(3)存在,点M 到y 轴的距离为4116【分析】(1)由待定系数法可求解析式; (2)设直线BP 与x 轴交于点E ,过点P 作PD ⊥OA 于D ,设点P (a ,12a 2-32a -2),则PD =12a 2-32a -2,利用参数求出BP 解析式,可求点E 坐标,由三角形面积公式可求a ,即可得点P 坐标;(3)如图2,延长BM 到N ,使BN =BO ,连接ON 交AB 于H ,过点H 作HF ⊥AO 于F ,由全等三角形的性质和锐角三角函数求出点N 坐标,求出BN 解析式,可求点M 坐标,即可求解.【详解】(1)∵二次函数y =ax 2+bx -2的图象过点A (4,0),点C (3,-2),∴164209322a b a b +-=⎧⎨+-=-⎩, 解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数表达式为:213222y x x =-﹣; (2)设直线BP 与x 轴交于点E ,过点P 作PD ⊥OA 于D ,设点P (a ,12a 2-32a -2),则PD =12a 2-32a -2, ∵二次函数213222y x x =-﹣与y 轴交于点B ,∴点B (0,-2),设BP 解析式为:2y kx =-, ∴12a 2-32a -2=ka ﹣2, ∴1322k a =-, ∴BP 解析式为:y =(1322a -)x ﹣2, ∴y =0时,43x a =-, ∴点E (4a 3-,0), ∵S △PBA =5,∵S △PBA =()12P C AE y y ⨯-, ∴2141342252322a a a ⎛⎫⎛⎫⨯-⨯--+= ⎪ ⎪-⎝⎭⎝⎭, ∴a =-1(不合题意舍去),a =5,∴点P (5,3);(3)如图2,延长BM 到N ,使BN =BO ,连接ON 交AB 于H ,过点H 作HF ⊥AO 于F ,∵BN =BO ,∠ABO =∠ABM ,AB =AB ,∴△ABO ≌△ABN (SAS )∴AO =AN ,且BN =BO ,∴AB 垂直平分ON ,∴OH =HN ,AB ⊥ON ,∵AO =4,BO =2,∴AB 22224225AO BO +=+=,∵S △AOB =12×OA ×OB =12×AB ×OH ,∴OH=,∴AH=5==,∵cos∠BAO=AO AF AB AH=,=∴AF=165,∴HF=85 ==,OF=AO﹣AF=4﹣165=45,∴点H(45,-85),∵OH=HN,∴点N(85,﹣165)设直线BN解析式为:y=mx﹣2,∴﹣165=85m﹣2,∴m=﹣34,∴直线BN解析式为:y=﹣34x﹣2,∴12x2﹣32x﹣2=﹣34x﹣2,∴x=0(不合题意舍去),x=34,∴点M坐标(34,﹣4116),∴点M 到y 轴的距离为4116. 【点睛】 本题考查二次函数综合题、待定系数法、一次函数的应用、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是构建合适的辅助线,灵活运用所学知识解决问题,难度有点大.21、(1)2354y x x =-+;(1)横彩条的宽度为3cm ,竖彩条的宽度为1cm . 【分析】(1)由横、竖彩条的宽度比为3:1知横彩条的宽度为32xcm ,根据“三条彩条面积=横彩条面积+1条竖彩条面积﹣横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(1)根据“三条彩条所占面积是图案面积的25”,可列出关于x 的一元二次方程,整理后求解即可.【详解】(1)根据题意可知,横彩条的宽度为32xcm , ∴y=10×32x+1×11•x ﹣1×32x•x=﹣3x 1+54x ,即y 与x 之间的函数关系式为y=﹣3x 1+54x ;(1)根据题意,得:﹣3x 1+54x=25×10×11, 整理,得:x 1﹣18x+31=0,解得:x 1=1,x 1=16(舍), ∴32x=3, 答:横彩条的宽度为3cm ,竖彩条的宽度为1cm .考点:根据实际问题列二次函数关系式;一元二次方程的应用.22、(1)48000 m 3(2)V=4800t(3)8000 m 3 【解析】(1)此题根据函数图象为双曲线的一支,可设V=k t ,再把点(12,4000)代入即可求出答案; (2)此题根据点(12,4000)在此函数图象上,利用待定系数法求出函数的解析式;(3)此题须把t=6代入函数的解析式即可求出每小时的排水量;【详解】(1)设V=k t. ∵点(12,4000)在此函数图象上,∴蓄水量为12×4000=48000m 3; (2)∵点(12,4000)在此函数图象上,∴4000=12k ,k=48000,∴此函数的解析式V=4800t ; (3)∵当t=6时,V=48006=8000m 3; ∴每小时的排水量应该是8000m 3.【点睛】主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式.会用不等式解决实际问题.23、(1)面料的单价为3元/米,里料的单价为2元/米;(2)①5;②5%.【分析】(1)、设里料的单价为x 元/米,面料的单价为(2x+10)元/米,根据成本为1元列出一元一次方程,从而得出答案;(2)、设打折数为m ,根据利润不低于4元列出不等式,从而得出m 的值;(3)、设vip 客户享受的降价率为x ,根据题意列出分式方程,从而得出答案【详解】解:(1)、设里料的单价为x 元/米,面料的单价为(2x+10)元/米.根据题意得:0.5x+1.2(2x+10)=1.解得:x=2.2x+10=2×2+10=3. 答:面料的单价为3元/米,里料的单价为2元/米.(2)、设打折数为m .根据题意得:13×10m ﹣1﹣14≥4.解得:m≥5.∴m 的最小值为5. 答:m 的最小值为5.(3)、13×0.5=12元.设vip 客户享受的降价率为x . 根据题意得:912010080120(1)120(1)x x =-+,解得:x=0.05 经检验x=0.05是原方程的解.答;vip 客户享受的降价率为5%.【点睛】本题考查(1)、分式方程的应用;(2)、一元一次方程的应用;(3)、不等式的应用,正确理解题目中的等量关系是解题关键24、详见解析【分析】证明△AEB ∽△EFC ,根据相似三角形的对应边成比例即可得到结论.【详解】∵EF⊥AE,∠B=∠C=90°,∴∠AEB+∠FEC=∠FEC+∠EFC=90°,∴∠AEB=∠EFC,∴△AEB∽△EFC,∴AB BE CE CF,即AB:CE=BE:CF【点睛】本题考查了正方形的性质及相似三角形的判定与性质,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.25、(1)40;(2)60,15;(3)补全条形统计图见解析;(4)小明回答正确的概率是14.【分析】(1)根据统计图可知,10人占全班人数的25%,据此求解;(2)根据(1)中所求,容易得C类占的百分比,用1减去,B A两类的百分比即可求得C类百分比;(3)根据题意,画出树状图,根据概率公式即可求得.【详解】(1)全班学生总人数为10÷25%=40(人);故答案为:40;(2)B类占的百分比为:2440×100%=60%;C类占的百分比为1﹣25%﹣60%=15%;故答案为:60,15;(3)C类的人数40×15%=6(人),补全图形如下:(4)根据题意画图如下:由树状图可知共有4种可能结果,其中正确的有1种,所以小明回答正确的概率是14.【点睛】本题考查统计图表的中数据的计算,以及树状图的绘制,涉及利用概率公式求随机事件的概率,属综合基础题.26、(1)m<2;(2)1 4【分析】(1)根据方程有两个不相等的实数根即可得到判别式大于1,由此得到答案;(2)根据根与系数的关系式及完全平方公式变形求出ab,再利用三角形的面积公式即可得到答案. 【详解】(1)关于x的一元二次方程x2-2x+m-1=1有两个不相等的实数根,∴△>1,即△=4-4(m-1)>1,解得m<2;(2)∵Rt△ABC的斜边长3,且两直角边a和b恰好是这个方程的两个根,∴a+b=2,a2+b232=3 ,∴(a+b)2-2ab=3,∴4-2ab=3,∴ab=12,∴Rt△ABC的面积=12ab=14.【点睛】此题考查一元二次方程的根的判别式,根与系数的关系式,直角三角形的勾股定理,完全平方式的变形,直角三角形面积的求法.。
浙江初三初中数学竞赛测试带答案解析
![浙江初三初中数学竞赛测试带答案解析](https://img.taocdn.com/s3/m/af11b6fa844769eae109edbc.png)
浙江初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列等式一定成立的是()A.B.C.D.2.下列式子成立的是()A.a a=a B.(a b)= a bC.0.0081=8.1×10D.3.以下列各组数为边长,能构成直角三角形的是 ( )A.,,B.,,C.32,42,52D.1,2,34.使式子有意义的x的取值范围是()A.x≤1B.x≤1且x≠-2C.x≠-2D.x<1且x≠-25.解关于x的方程时产生增根,则m的值等于()A.-2B.-1C.1D.26.二次函数的图象可能是()7.如图几何体的俯视图是()8.已知:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.8B.10C.11D.129.如图,已知矩形ABCD,R、P分别是DC、BC上的点,E、F分别是AP,RP的中点,当P在BC上从B向C 移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大 B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定二、填空题1.⊙O的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是 .2.规定"*"为一种运算,它满足a*b=,那么1992*(1992*1992)=____。
3.已知直角三角形的两条边x、y的长满足,则第三边长为4.有五根木条,分别为12cm,10cm,8cm,6cm,4cm,则从中任取三根能组成三角形的概率为5.如图所示,二次函数的图象经过点,且与x轴交点的横坐标为、,其中、下列结论:①;②;③;④;正确的结论是 .三、解答题1.解方程:2.某商场将进价40元一个的某种商品按50元一个售出时,能卖出500个,已知这种商品每个涨价一元,销量减少10个,为赚得最大利润,售价定为多少?最大利润是多少?3.如图,在△ABC中,点O是AC边上的一动点,过点O作直线MN//BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F。
浙江省初中数学竞赛试题及答案
![浙江省初中数学竞赛试题及答案](https://img.taocdn.com/s3/m/e9120c30453610661ed9f44a.png)
BC(第2题)全国初中数学竞赛(浙江赛区)初赛试题一、选择题(共8小题,每小题5分,满分40分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)1.要使方程组⎩⎨⎧=+=+232,23y x a y x 的解是一对异号的数,则a 的取值范围是((A)34<a <3 (B) a <34 (C) a >3 (D) a <34,或a >3 2.一块含30°角的直角三角板(如图),它的斜边AB =8cm ,里面空心△DEF 的各边与△ABC 的对应边平行,且各对应边的距离都是1 cm ,那么△DEF 的周长是( )(A) 5 cm (B) 6 cm (C)(36-)cm (D)(33+)cm 3.将长为15 dm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有( )(A) 5种 (B) 6种 (C) 7种 (D) 8种 4.作抛物线A 关于x 轴对称的抛物线B ,再将抛物线B 向左平移2个单位,向上平移1个单位,得到的抛物线C 的函数解析式是1)1(22-+=x y ,则抛物线A 所对应的函数表达式是( )(A) 2)3(22-+-=x y (B) 2)3(22++-=x y (C) 2)1(22---=x y (D) 2)1(22+--=x y5.书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是( )(A)32 (B) 31 (C) 21 (D) 616.如图,一枚棋子放在七边形ABCDEFG 的顶点A 处,现顺时针方向移动这枚棋子10次,移动规则是:第k 次依次移动k 个顶点.如第一次移动1个顶点,棋子停在顶点B 处,第二次移动2个顶点,棋子停在顶点D 处.在这10次移动的过程中,棋子不可能停到的顶点是( (A) C ,E ,F (B) C ,E ,G (C) C ,E (D) E ,F(第8题)7.一元二次方程)0(02≠=++a c bx ax 中,若a ,b 都是偶数,c 是奇数,则这个方程( )(A) 有整数根 (B) 没有整数根 (C) 没有有理数根 (D) 没有实数根 8.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形,那么在由4×5个小方格组成的方格纸上可以画出不同位置的L 形图案个数是( )(A) 16 (B) 32 (C) 48 (D) 64二、填空题(共6小题,每小题5分,满分30分)9.已知直角三角形的两直角边长分别为3 cm 和4 cm ,那么以两直角边为直径的两圆公共弦的长为 cm .10.将一组数据按由小到大(或由大到小)的顺序排列,处于最中间位置的数(当数据的个数是奇数时),或最中间两个数据的平均数(当数据的个数是偶数时)叫做这组数据的中位数.现有一组数据共有100个数,其中有15个数在中位数和平均数之间,如果这组数据的中位数和平均数都不在这100个数中,那么这组数据中小于平均数的数据占这100个数据的百分比是 .11.△ABC 中,a ,b ,c 分别是∠A 、∠B 、∠C 的对边.已知a =10,b =23+,c =23-,则b sin B +c sin C 的值等于 .12.设直线1-+=k kx y 和直线k x k y ++=)1((k 是正整数)及x 轴围成的三角形面积为k S ,则1232006S S S S ++++的值是 .13.如图,正方形ABCD 和正方形CGEF 的边长分别是2和3,且点B ,C ,G 在同一直线上,M 是线段AE 的中点,连结MF ,则MF 的长为 . 14.边长为整数的等腰三角形一腰上的中线将其周长分为1∶2的两部分,那么所有这些等腰三角形中,面积最小的三角形的面积是 .EC(第13题)三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分)15.已知a ,b ,c 都是整数,且24a b -=,210ab c +-=,求a b c ++的值.16.做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A ,B 两种款式的服装合计30件,并且每售出一件A 款式和B 款式服装,甲店铺获毛利润分别为30元和40元,乙店铺获毛利润分别为27元和36元.某日王老板进货A 款式服装35件,B 款式服装25件.怎样分配给每个店铺各30件服装,使得在保证乙店铺获毛利润不小于950元的前提下,王老板获取的总毛利润最大?最大的总毛利润是多少?17.如图所示,⊙O 沿着凸n 边形A 1 A 2 A 3…A n -1A n 的外侧(圆和边相切)作无滑动的滚动一周回到原来的位置. (1) 当⊙O 和凸n 边形的周长相等时,证明⊙O 自身转动了两圈.(2) 当⊙O 的周长是a ,凸n 边形的周长是b 时,请写出此时⊙O 自身转动的圈数.18.已知二次函数1)1(22+-++=m x m x y .(1) 随着m 的变化,该二次函数图象的顶点P 是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.(2) 如果直线1+=x y 经过二次函数1)1(22+-++=m x m x y 图象的顶点P ,求此时m的值.A 3n -1(第17题)B C (第2题)2006年全国初中数学竞赛(浙江赛区)初赛试题参考答案一、选择题(共8小题,每小题5分,满分40分) 1.答案:D解:解方程组,得⎪⎩⎪⎨⎧-=-=.526,543a y a x 只需⎩⎨⎧>-<-;026,043a a 或⎩⎨⎧<->-.026,043a a 即a <34或a >3.2.答案:B解:连结BE ,分别过E ,F 作A C 的平行线交BC 于点M 和N ,则EM =1,BM =3,MN =33134-=--.∴ 小三角形的周长是632=++MN MN MN cm . 3.答案:C解:能组成三角形的只有(1,7,7)、(2,6,7)、(3,5,7)、(3,6,6)、 (4,4,7)、(4,5,6)、(5,5,5)七种.4.答案:D解:将抛物线C 再变回到抛物线A :即将抛物线1)1(22-+=x y 向下平移1个单位,再向右平移2个单位,得到抛物线2)1(22--=x y ,而抛物线2)1(22--=x y 关于x 轴对称的抛物线是2)1(22+--=x y .5.答案:A解:四册教材任取两册共有6种不同的取法,取出的两册是一套教材的共有4种不同的取法,故所求概率是3264=.6.答案:A解: 经实验或按下述方法可求得顶点C ,E 和F 棋子不可能停到.设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是()121321+=++++k k k ,应停在第()p k k 7121-+格,这里p 是整数,且使0≤()p k k 7121-+≤6,分别取k =1,2,3,4,5,6,7,时,()p k k 7121-+=1,3,6,3,1,0,0,发现第2,4,5格没有停棋.若7<k ≤10,设t k +=7(t =1,2,3)代入可得,()p k k 7121-+=()1217++t t m ,由此可知,停棋的情形与tk =时相同.故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到.7.答案:B解:假设有整数根,不妨设它的根是2k 或2k +1(k 为整数),分别代入原方程得方程两边的奇偶性不同的矛盾结果,所以排除A ;若a ,b ,c 分别取4,8,3则排除C ,D .8.答案:C解:每个2×2小方格图形有4种不同的画法,而位置不同的2×2 小方格图形共有12个,故画出不同位置的L 形图案个数是12×4=48.二、填空题(共6小题,每小题5分,满分30分)9.答案:512解:不难证明其公共弦就是直角三角形斜边上的高(设为h ),则5h =3×4,h =512.10.答案:35%或65%(答对一个给3分)解:如果平均数小于中位数,那么小于平均数的数据有35个;如果平均数大于中位数,那么小于平均数的数据有65个,所以这组数据中小于平均数的数据占这100个数据的百分比是35%或65%. 11.答案:10解:不难验证,a 2=b 2+c 2.所以△ABC 是直角三角形,其中a 是斜边.b sin B +c sin C =a b b ⋅+ac c ⋅=a b c 22+=a a 2=a =10.12.答案:00720031解:方程组()⎩⎨⎧++=-+=k x k y k kx y 1,1的解为⎩⎨⎧-=-=.1,1y x 直线的交点是()1,1--.直线1y kx k =+-,1y k x k =++()与x 轴的交点分别是(kk-1,0)、(1+-k k,0).11121+---⨯-⨯=k k k k S k =11121+-k k .所以1232006S S S S ++++=⎪⎪⎭⎫⎝⎛-++-+-+-00721006214131312121121 =0072003100721121=⎪⎭⎫ ⎝⎛-⨯. 13.答案:22解:连结DM 并延长交EF 于N ,则△ADM ≌△ENM ,∴FN =1,则FM 是等腰直角△DFN 的底边上的高,所以FM =22.EC(第13题)(第8题)14.答案:463 解:设这个等腰三角形的腰为x ,底为y ,分为的两部分边长分别为n 和2n ,得⎪⎩⎪⎨⎧=+=+;22,2n y x n x x 或⎪⎩⎪⎨⎧=+=+.2,22n y x n x x 解得⎪⎩⎪⎨⎧==;35,32n y n x 或⎪⎩⎪⎨⎧==.3,34n y n x ∵ 35322n n <⨯(此时不能构成三角形,舍去),∴ 取⎪⎩⎪⎨⎧==,3,34n y n x 其中n 是3的倍数. 三角形的面积2223663)6()34(321n n n n S =-⨯⨯=∆.对于23663n S =∆, 当n ≥0时,∆S 随着n 的增大而增大,故当n =3时,463=∆S 取最小. 三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15.(12分)解:将b a 24+=代入210ab c +-=,得2b 2+4b +c 21-=0, ……………2分∴ 22622c b -±-=. …………………………………2分∵ b ,c 都是整数,∴ 只能取⎩⎨⎧==;1,011c b ⎩⎨⎧-==;1,022c b ⎩⎨⎧=-=;1,233c b ⎩⎨⎧-=-=1,244c b ,…4分相对应a 1=4,a 2=4,a 3=0,a 4=0.故所求a b c ++的值有4个:5,3,1-,3-. ……………………………4分16.(12分)解:设分配给甲店铺A 款式服装x 件(x 取整数,且5≤x ≤30),则分配给甲店铺B 款式服装(30x -)件,分配给乙店铺A 款式服装(35-x )件,分配给乙店铺B 款式服装[25-(30x -)]= (x 5-)件,总毛利润(设为y 总)为:y 总=30x +40(30x -)+27(35x -)+36(x 5-)= x -+1 965.………………………4分 乙店铺的毛利润(设为y 乙)应满足:y 乙=27(35x -)+36(x 5-)≥950,得x ≥9520.…………………………………3分对于y 总=x -+1 965,y 总随着x 的增大而减小,要使y 总最大,x 必须取最小值,又x ≥9520,故取x =21.即分配给甲店铺A ,B 两种款式服装分别为21件和9件,分配给乙店铺A ,B 两种款式服装分别为14件和16件,此时既保证了乙店铺获毛利润不小于950元,又保证了在此前提下王老板获取的总毛利润最大, ………………………………………3分 其最大的总毛利润为:y 总最大=21-+1 965=1 944(元).…………………………2分17.(12分)解:(1) 一个圆沿着线段的一个端点无滑动地滚动到另一个端点,圆自身转动的圈数n -1(第17题)=(线段的长度÷圆的周长)圈.因此若不考虑⊙O 滚动经过n 个顶点的情况,则⊙O 自身恰好转动了一圈. ……………………………………………3分现证明,当⊙O 在某边的一端,滚动经过该端点(即顶点)时,⊙O 自身转动的角度恰好等于n 边形在这个顶点的一个外角.如图所示,设∠A 2 A 1 A n 为钝角,已知A n A 1是⊙O 的切线,⊙O 滚动经过端点A 1后到⊙O '的位置,此时A 1A 2是⊙O '的切线,因此OA 1⊥A n A 1,O 'A 1⊥A 1 A 2. 当⊙O 转动至⊙O '时,则∠γ 就是⊙O 自身转动的角度.∵∠γ +∠β =90º,∠α+∠β =90º,∴∠γ =∠α . 即⊙O 滚动经过顶点A 1自身转动的角度恰好等于顶点A 1的一个外角. ………………………3分对于顶点是锐角或直角的情况,类似可证.(注:只证明直角的情况,只给2分) ∵ 凸n 边形的外角和为360º,∴ ⊙O 滚动经过n 个顶点自身又转动了一圈.………………………………3分∴ ⊙O 自身转动了两圈.(2) ⊙O 自身转动的圈数是)1(+ab圈. …………………………………………3分18.(14分)解:(1) 该二次函数图象的顶点P 是在某条抛物线上. ……………………2分求该抛物线的函数表达式如下:利用配方,得y =(x +m +1)2m m 32--,顶点坐标是P (1--m ,m m 32--).……………………2分方法一:分别取m =0,1-,1,得到三个顶点坐标是P 1(1-,0)、P 2(0,2)、 P 3(2-,4-),过这三个顶点的二次函数的表达式是y =2x -+x +2. …………3分 将顶点坐标P (1--m ,m m 32--)代入y =-x 2+x +2的左右两边,左边=m m 32--, 右边=(-1--m )2+(1--m )+2=m m 32--,∴ 左边=右边.即无论m 取何值,顶点P 都在抛物线y =2x -+x +2上.即所求抛物线的函数表达式是y =2x -+x +2.…3分 (注:如果没有“左边=右边”的证明,那么解法一最多只能得4分) 方法二:令1--m =x ,将m =1--x 代入m m 32--,得(-1--x )2-3(1--x )=2x -+x +2.………………………………………………3分 即所求抛物线的函数表达式是y =2x -+x +2上. ………………………………3分 (2) 如果顶点P (1--m ,m m 32--)在直线y =x +1上,则m m 32--=1--m +1, …………………………………2分即m m 22-=. ∴ m =0或 m =2-.∴当直线y =x +1经过二次函数y =x 2+2(m +1)x m -+1图象的顶点P 时,m 的值是2-或0. ………………2分2006年全国初中数学竞赛(浙江赛区)复赛试题(2006年4月2日下午1:00—3:00)一、选择题(共6小题,每小题5分,满分30分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)1. 5个相异自然数的平均数为12,中位数为17,这5个自然数中最大一个的可能值的最大值是( )(A )21 (B )22 (C )23 (D )24 2. 如图,长方形ABCD 恰好可分成7个形状大小相同的小长方形,如果小长方形的面积是3,则长方形ABCD 的周长是( )(A )17 (B )18 (C )19 (D )317 3.设0<k <1,关于x 的一次函数)1(1x kkx y -+=,当1≤x ≤2时的最大值是( ) (A )k (B )k k 12- (C )k 1 (D )kk 1+4.钟面上的1~12这12个数字把圆周12等分,以其中任意4个等分点为顶点作四边形,其中矩形的个数是( )(A )10个 (B )14个 (C )15个 (D )30个5.平面直角坐标系中,如果把横坐标、纵坐标都是整数的点叫做整点,那么函数1212-+=x x y 的图象上整点的个数是 ( )(A )2个 (B )4个 (C )6个 (D )8个6.用标有1克,2克,6克,26克的法码各一个,在一架无刻度的天平上称量重物,如果天平两端均可放置法码,那么可以称出的不同克数(正整数的重物)的种数共有( ) (A )15种 (B )23种 (C )28种 (D )33种二、填空题(共6小题,每小题6分,满分36分)7.三个实数按从小到大排列为1x ,2x ,3x ,把其中每两个数作和得到三个数分别是14,PADBC(第2题)17,33,则2x = .8.如图,AB 为半⊙O 的直径,C 为半圆弧的三等分点,过B ,C 两点的半⊙O 的切线交于点P ,若AB 的长是2a ,则P A 的长是 .9.函数1422-+=x x y 的最小值是 .10.在正方形ABCD 中,点E 是BC 上的一定点,且BE =10,EC =14,点P 是BD 上的一动点,则PE +PC 的最小值是 .11.某商店出售A 、B 、C 三种生日贺卡,已知A 种贺卡每张0.5元,B 种贺卡每张1元,C 种贺卡每张2.5元.营业员统计3月份的经营情况如下:三种贺卡共售出150张,营业收入合计180元.则该商店3月份售出的C 种贺卡至少有 张.12.有一个英文单词由5个字母组成,如果将26个英文字母a ,b ,c ,…,y ,z 按顺序依次对应0到25这26个整数,那么这个单词中的5个字母对应的整数按从左到右的顺序分别为x 1,x 2,x 3,x 4,x 5.已知x 1+3x 2,4x 2,x 3+2x 4,,5x 4,6x 4+x 5 除以26所得的余数分别为15,6,20,9,9.则该英文单词是 .DE(第10题)三、解答题(共4小题,满分54分)13.(本题满分12分)某列从上海到温州的火车,包括起始和终点在内共有6个停靠站,将这6个站按火车到达的先后次序,依次记为A ,B ,C ,D ,E ,F .小张乘坐这趟列车从上海出发去温州,火车驶离上海时,小张发现他乘坐的车厢里连他自己在内共19名旅客,这些旅客小张都认识,其中有些是浙江人,其他的都是上海人.一路上小张观测到下列情况:①除了终点站,在每一站,当火车到达时这节车厢里浙江人的人数与下车旅客的人数相同,且这次行程中没有新的旅客进入这节车厢;②当火车离开车站B 时,车厢里有12名旅客;当火车离开车站D 时,还有7名旅客在这一车厢里;在F 站下车的旅客包括小张在内共5人.(1)火车驶离上海时,小张乘坐的这节车厢里共有多少浙江人?多少上海人? (2)在B 到C 、C 到D 、D 到E 的旅途中,分别有多少浙江人?多少上海人?14.(本题满分12分)如图,M 、N 、P 分别为△ABC 三边AB 、BC 、CA 的中点,BP 与MN 、AN 分别交于E 、F , (1)求证:BF =2FP ;(2)设△ABC 的面积为S ,求△NEF 的面积.15.(本题满分15分)设,,,321x x x ...2006,x 是整数,且满足下列条件: ① -1≤n x ≤2,n =1,2,3,...,2006; ②+++321x x x ...2002006=+x ; ③+++232221x x x (20062)2006=+x .求 +++333231x x x (3)2006x + 的最小值和最大值. 16.(本题满分15分)BACMPEF一只青蛙在平面直角坐标系上从点(1,1)开始,可以按照如下两种方式跳跃: ①能从任意一点(a ,b ),跳到点(2a ,b )或(a ,2b );②对于点(a ,b ),如果a >b ,则能从(a ,b )跳到(a -b ,b );如果a <b ,则能从(a ,b )跳到(a ,b -a ).例如,按照上述跳跃方式,这只青蛙能够到达点(3,1),跳跃的一种路径为:(1,1)→(2,1)→(4,1)→(3,1).请你思考:这只青蛙按照规定的两种方式跳跃,能到达下列各点吗?如果能,请分别给出从点(1,1)出发到指定点的路径;如果不能,请说明理由.(1)(3, 5); (2)(12,60); (3)(200,5); (4)(200,6).2006年全国初中数学竞赛(浙江赛区)复赛试题参考答案一、选择题(共6小题,每小题5分,满分30分) 1.答案:D解:设这5个自然数从小到大排列依次为x 1,x 2,x 3,x 4,x 5,则x 3=17.当这5个自然数中最大一个x 5的可能值最大时,其他3个自然数必取最小的可能值,x 1=0,x 2=1,x 4=18,此时x 5=24. 2.答案:C解:设小长方形的长、宽分别为x ,y ,则3 x = 4 y ,y x 34=. ∴334=⋅y y .23=y ,x =2.∴ 长方形ABCD 的周长为19. 3.答案:A 解:k x k k y 1)1(+-=,∵ 0<k <1,∴ kk k k k )1)(1(1-+=-<0,该一次函数的值随x 的增大而减小,当1≤x ≤2时,最大值为k kk k =+-11.4.答案:C解:连结圆周上12个等分点,得6条直径,以其中任意两条为对角线的四边形即为矩形,共15个矩形. 5.答案:C解:将函数表达式变形,得122+=-x y xy ,24224=--x y xy ,25)12)(12(=--x y .∵ x ,y 都是整数,∴ )12(),12(--x y 也是整数.∴ ⎩⎨⎧=-=-2512,112x y 或⎩⎨⎧-=--=-2512,112x y 或 ⎩⎨⎧=-=-112,2512x y 或 ⎩⎨⎧-=--=-112,2512x y 或 ⎩⎨⎧=-=-512,512x y 或⎩⎨⎧-=--=-.512,512x y 解得整点为(13,1),(-12,0),(1,13),(0,-12),(3,3),(-2,-2). 6.答案:C解:(1)当天平的一端放1个砝码,另一端不放砝码时,可以称量重物的克数有1克,2克,6克,26克;(2)当天平的一端放2个砝码,另一端不放砝码时,可以称量重物的克数有3克,7克,8克,27克, 28克,32克;(3)当天平的一端放3个砝码,另一端不放砝码时,可以称量重物的克数有9克,29克,33克,34克;(4)当天平的一端放4个砝码时,可以称量重物的克数有35克.(5)当天平的一端放1个砝码,另一端也放1个砝码时,可以称量重物的克数有1克,4克,5克,20克,24克,25克;(6)当天平的一端放1个砝码,另一端放2个砝码时,可以称量重物的克数有3克,5克,7克,18克,19克,21克,22克,23克,25克,27克,30克,31克; (7)当天平的一端放1个砝码,另一端放3个砝码时,可以称量重物的克数有17 克,23克,31克,33克;(8)当天平的一端放2个砝码,另一端也放2个砝码时,可以称量重物的克数有19克,21克,29克.去掉重复的克数后,共有28种.二、填空题(共6小题,每小题6分,满分36分) 7.答案:15解: 1421=+x x ,1731=+x x ,3332=+x x , ∴ 32321=++x x x ,152=x .8.答案:a 7解:连结OC ,OP ,则∠OCP =90°,∠COP =60°,OC = a∴ PC =a 3,PB =PC =a 3,P A =a 7. 9.答案:1-解:y =3)1(22-+x =⎪⎩⎪⎨⎧≤--≥-+.0,3)1(2,0,3)1(222x x x x 其图象如图,由图象可知,当x = 0时,y 最小为 -1.10.答案:26(第9题)解:连结AP ,则PE +PC =PE +P A ,当点P 在AE 上时,其值最小,最小值为26102422=+.11.答案:20解:设A 、B 、C 三种贺卡售出的张数分别为x ,y ,z ,则 ⎩⎨⎧=++=++.1805.25.0,150z y x z y x消去y 得,305.15.0-=z x .由0305.1≥-z ,得20≥z .12.答案:right ,evght解:由题意得,⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=+=++=+=+.9266,9265,20262,6264,152635544434322121k x x k x k x x k x k x x (54321,,,,k k k k k 为非负整数).由0≤54321,,,,x x x x x ≤25,可分析得出,123454,17,8,216,7,19.x x x x x =⎧⎪=⎪⎪=⎨⎪=⎪⎪=⎩或或,三、解答题(共4题,满分54分) 13.(12分)解:(1)由条件得,在B 站有7人下车,∴ 19名旅客中有7位浙江人,即火车驶离上海时,车厢里有7个浙江人,12个上海人. ……………2分 (2)在E 站有2人下车,即在D —E 途中有2个浙江人,5个上海人, ……………2分 从而C —D 途中至少有2位浙江人,在D 站至少有2人下车, ……………2分 ∴ C 站后车厢里至少有9个人. ∵ 火车离开B 站时车厢里有12人,离开D 站时有7人, ∴ 在C 站至少有3人下车,即经过C 站后车厢里至多9人,故经过C 站后车厢里有9人,即在C 站有3人下车. ……………2分 ∴ B —C 途中车厢里还有3个浙江人,9个上海人. ……………2分 在D 站有2人下车,C —D 途中车厢里还有2个浙江人,7个上海人.……………2分14.(12分)解:(1)如图1,连结PN ,则PN ∥AB ,且 AB PN 21=. ……………………2分∴ △ABF ∽△NPF ,2===PNABFN AF FP BF . ∴ BF =2FP . ……………………2分 (2)如图2,取AF 的中点G ,连结MG ,则 MG ∥EF ,AG =GF =FN . ……………………2分∴ S △NEF =41S △MNG ……………………2分 =41×32S △AMN ……………………2分 =41×32×41S △ABC =241S . ……………2分15.(15分)解:设,,,321x x x …2006,x 中有r 个-1、s 个1、t 个2,则⎩⎨⎧=++=++-.20064,2002t s r t s r ………………5分 两式相加,得s +3t =1103,故0367t ≤≤. ………………2分∵ +++333231x x x …t s r x 832006++-=+ ………………2分=2006+t . ………………2分∴ 200≤+++333231x x x (32006)x +≤6×367+200=2402. 当0,1103,903t s r ===时,+++333231x x x ...32006x +取最小值200,.........2分 当367,2,536t s r ===时,+++333231x x x (32006)x +取最大值2402.………2分16.(15分)解:(1)能到达点(3,5)和点(200,6). ………………2分从(1,1)出发到(3,5)的路径为:(1,1)→(2,1)→(4,1)→(3,1)→(3,2)→(3,4)→(3,8)→(3,5). ………………3分 从(1,1)出发到(200,6)的路径为:(1,1)→(1,2)→(1,4)→(1,3)→(1,6)→(2,6)→(4,6) →(8,6)→(16,6)→(10,6)→(20,6)→(40,6)→(80,6) →(160,6)→(320,6)→(前面的数反复减20次6)→(200,6).……3分BACM N PE F(图1) BA CM N PE F(图2)G(2)不能到达点(12,60)和(200,5).………………2分理由如下:∵a和b的公共奇约数=a和2b的公共奇约数=2a和b的公共奇约数,∴由规则①知,跳跃不改变前后两数的公共奇约数.∵如果a>b,a和b的最大公约数=(a-b)和b的最大公约数,如果a<b,a和b的最大公约数=(b-a)和b的最大公约数,∴由规则②知,跳跃不改变前后两数的最大公约数.从而按规则①和规则②跳跃,均不改变坐标前后两数的公共奇约数.…………3分∵1和1的公共奇约数为1,12和60的公共奇约数为3,200和5的公共奇约数为5.………………2分∴从(1,1)出发不可能到达给定点(12,60)和(200,5).。
2023年浙江省金华市中考数学竞赛试题附解析
![2023年浙江省金华市中考数学竞赛试题附解析](https://img.taocdn.com/s3/m/863dc15cae1ffc4ffe4733687e21af45b307fe6c.png)
2023年浙江省金华市中考数学竞赛试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.王英同学从A 地沿北偏西60方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,这时王英同学离A 地的距离是( )A .150mB .503mC .100mD .1003m2.在ABC △中,90C AC BC ∠=,,的长分别是方程27120x x -+=的两个根,ABC△内一点P 到三边的距离都相等.则PC 为( )A .1B .2C .322D .223.如图,梯形ABCD 中,AD ∥BC ,E 、F 分别是两腰的中点,且AD=5,BC=7,则EF 的长为( )A .6B .7C .8D .94.下列结论:①平行四边形内角和为360°;②平行四边形对角线相等; ③平行四边形对角线互相平分;④平行四边形邻角互补.其中正确的个数是( ) A .1 B .2 C .3 D .45.把方程)2(5)2(-=+x x x 化成一般式,则a 、b 、c 的值分别是( ) A .10,3,1- B .10,7,1- C .12,5,1- D .2,3,16.已知点P 在x 轴下方,在y 轴右侧.且点P 到x 轴的距离是3,到y 轴的距离是2.则点P 的坐标是( )A . (2,-3)B .(3,-2)C .(-2,3)D .(-3,2) 7.如图,直线AE ∥CD,∠EBF=135°,∠BFD=60°,则∠D 等于( )A .75°B .45°C .30°D .15°8.十位学生的鞋号由小到大分别是20、21、22、22、22、22、23、23、24、24。
这组数据的平均数、中位数、众数中鞋厂最感兴趣的是( )A .平均数B .众数C .中位数D .平均数和中位数9.某牛奶厂家接到 170万箱牛奶的订购单,预计每天加工完 10万箱,正好能按时完成,后因客户要求提前3天交货,设每天应多加工x 万箱,则可列方程( )A .17017031010x +=+B .17017031010x -=+ F E D CB AC .17017031010x -=+D .17017031010x+=+ 10.如图是某公司近三年的资金投放总额与利润统计示意图,根据图中的信息判断:①2001年的利润率比2000年的高2%;②2002年的利润率比2001年的利润率高8%;③这三年的平均利润率为14%;④这三年中2002年的利润率最高.以上判断正确的结论有( )A .1个B .2个C .3个D .4个 11.若25x a b 与30.2y a b -是同类项,则 x 、y 的值分别是( )A .3x =±,2y =±B .3x =,2y =C .3x =-,2y =-D .3x =,2y =- 12.下列判断中错误..的有( ) ①每一个正数都有两个立方根②零的平方根等于零的算术平方根③没有平方根的数也没有立方根④有理数中绝对值最小的数是零A .1 个B .2 个C .3 个D .4 个 13.9416 ) A .34 B .324± C .223 D 173414. 下列说法不正确的是( )A .8 和-8 互为相反数B .8 是-8 的相反数C .-8 是8 的相反数D .-8 是相反数15.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b.例如,明文1、2对应的密文是0、4.当接收方收到密文是1、7时,解密得到的明文是( )A .-1,1B .2,3C . 3,1D .1,l二、填空题16.若tanx=0.2378, 则x= (精确到l ′).17.如图所示,点D 、E 分别在线段AB 、AC 上,BE 、CD 相交于点O ,要使△ABE ∽△ACD ,需添加一个条件是 (只要写一个条件) .18.(1)x 的3 倍不小于 9,用不等式表示为 ,它的解集为 ; (2)x 与 2 的和不大于 4,用不等式表示为 ,它的解集为 ; 的相反数的 2倍与13的差小于23,用不等式表示为 ,它的解(3)x 集为 .19.等腰三角形的周长是l0,腰比底边长2,则腰长为 . 20.01(1)2π--⨯= ;32(63)(3)a a a -÷= .21.当3=x 或5-=x 时,代数式c bx x ++2的值都等于1,则bc 的值为 。
义乌九年级试卷数学【含答案】
![义乌九年级试卷数学【含答案】](https://img.taocdn.com/s3/m/d43702dcd1d233d4b14e852458fb770bf78a3ba9.png)
义乌九年级试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长是()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是二次函数?()A. y = 2x² 3x + 1B. y = x² + 4C. y = 3x + 2D. y = 5x² 6x + 93. 在直角坐标系中,点(3, -4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 一个等差数列的前三项分别是2,5,8,则它的公差是()A. 1B. 3C. 6D. 85. 若一个圆的半径为r,则它的周长是()A. 2πrB. πr²C. 2rD. r²二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 在三角形中,若两边之和等于第三边,则该三角形为直角三角形。
()3. 二次方程ax² + bx + c = 0的解一定是实数。
()4. 函数y = kx (k为常数) 的图像是一条直线。
()5. 若两个角的和为180度,则这两个角互为补角。
()三、填空题(每题1分,共5分)1. 若一个数的平方是81,则这个数是______。
2. 二次方程x² 5x + 6 = 0的解分别是______和______。
3. 在直角坐标系中,点(2, 3)关于y轴的对称点是______。
4. 一个等差数列的第5项是15,公差为3,则它的首项是______。
5. 若一个圆的直径为10cm,则它的面积是______cm²。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 什么是直角坐标系?请给出一个点的坐标示例。
3. 什么是二次函数?请给出一个二次函数的例子。
4. 简述勾股定理的内容。
5. 请解释一次函数的图像特点。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。
2022年浙江省中考数学奥赛试题试卷附解析
![2022年浙江省中考数学奥赛试题试卷附解析](https://img.taocdn.com/s3/m/92045402590216fc700abb68a98271fe910eafef.png)
2022年浙江省中考数学奥赛试题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数()10y x x=>的图象上,则点E 的坐标是( ) A .5151,22⎛⎫+- ⎪⎪⎝⎭B .3535,22⎛⎫+- ⎪ ⎪⎝⎭C .5151,22⎛⎫-+ ⎪⎪⎝⎭D .3535,22⎛⎫-+ ⎪ ⎪⎝⎭2. 如图,1l 反映了某公司的销售收入与销售量的关系,2l 反映了该公司的产品成本与销售量的关系,当该公司赢利(收人大于成本)时,销售量( ) A . 小于 3tB . 大于3tC .小于4tD . 大于4t3.下列说法错误的是( )A .三个角都相等的三角形是等边三角形B .有两个角是60°的三角形是等边三角形C .有一个角是60°的等腰三角形是等边三角形D .有两个角相等的等腰三角形是等边三角形 4.下列现象中,属于平移变换的是( ) A .前进中的汽车轮子 B .沿直线飞行的飞机 C .翻动的书D .正在走动中的钟表指针5..如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( ) A .甲和乙B .乙和丙C .只有乙D .只有丙6.下列各式是完全平方式的是( ) A .412+-x x B .21x +C .1++xy xD .122-+x x7.下列说法:①任何一个二元一次方程组都可以用代入消元法求解;②21xy=⎧⎨=-⎩是方程23x y+=的解,也是方程37x y-=的解;③方程组73x yx y+=⎧⎨-=⎩的解是3423x y+=的解,反之,方程3423x y+=的解也是方程组73x yx y+=⎧⎨-=⎩的解.其中正确的个数是()A.0 个B.1 个C.2 个D.3 个8.如图所示扇形统计图中,有问题的是()A.B. C. D.二、填空题9.“五一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有2条公路,乙地到丙地有3条公路.每一条公路的长度如下图所示(单位:km).梁先生任选..一条从甲地到丙地的路线,这条路线正好是最短路线的概率是.10.如图,已知∠1 =∠2,请补充条件 (写出一个即可),使△ADE∽△ABC.11.如图中ABC△外接圆的圆心坐标是.12.观察下列各式:32-1=2×4,42-1=3×5,52-1=4× 6 ……,则第n个等式为:_______________________________________.13.如图,折叠直角梯形纸片的上底AD,点D落在底边BC上点F处,已知DC=8㎝,FC = 4㎝,则EC长㎝.14.若12-=+b a ,1-=ab ,则22b ab a ++= .15.已知摄式温度(℃)与华式温度(℉)之间的转换关系是:华式温度=59×(华式温度-32).若华式温度是68℉,则摄式温度是 ℃. 16.若a b >,则2ac 2b c .17.在某市2007年的一次中学生运动会上,参加男子跳高比赛的有l7名运动员,通讯员在将成绩表送组委会时,不慎被墨水污染掉一部分(如下表),但他记得这组运动员的成绩的众数是1.75 m ,表中每个成绩都至少有一名运动员,根据这些信息,可以计算出l7名运动员的平均跳高成绩是x = m(精确到0.Ol m).成绩(单位:m) 1.50 1.60 1.65 1.70 1.751.801.85 1.90 人数23231118.下图的几何体由若干个棱长为数1的正方体堆放而成,则这个几何体的体积为__________.19.如果=+=+-==+2222,7,0y x xy y x xy y x ,则.20.在△ABC 中AB =3,BC =7则AC 的取值范围是 . 4 <AC<10 21.若12x y =⎧⎨=⎩是关于 x ,y 方程312mx y -=的一个解,则m= . 22.已知某个一元一次方程的解为 2,请写出这个一元一次方程 . 23.下列各数-4,17,π,3. 14,050.333…中,无理数有 .三、解答题24.如图,已知△ABC 、△DEF 均为正三角形,D 、E 分别在AB 、•BC 上,请找出所有与△DBE 相似的三角形,并找一对进行证明.25.△ABC 在平面直角坐标系中的位置如图.(1)请画出△ABC 关于y 轴对称的111A B C ∆;(2)将△ABC 向下平移 3 个单位长度,画出平移后的222A B C ∆.26.某中学开展“八荣八耻”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示. (1)根据左图填写下表(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好?(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,说明理由.平均分(分) 中位数(分) 众数(分) 九(1)班 8585九(2班858027.已知235x x200739--的值.+-的值为 7,求2x x28.请通过平移如图所示的图形,设计两种图案.29.如图,在小正方形组成的“L”形图中,请你用三种方法分别在图中添画一个小正方形使它成为轴对称图形.30.2008年西宁市中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有50名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A,B,C,D四等,并绘制成下面的频数分布表(注:6~7的意义为大于等于6分且小于7分,其余类似)和扇形统计图(如图1). 频数分布表(1(2)在抽取的这个样本中,请说明哪个分数段的学生最多?请你帮助老师计算这次1分钟跳绳测试的及格率(6分以上含6分为及格).图1扇形统计图【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.D4.B5.C6.A7.C8.A二、填空题9.110.6∠E=∠C或∠D=∠B11.(52),12.-=nn(n≥1,n为正整数)++n13⨯1)2(2+13.314.24-15.22016.≥17.1.6918.619.0,1420.21.522.3-=答案不唯一,如2x3123.π三、解答题24.△ADG, △GFH, △HEC.25.略26.(1)85;100.(2)解:∵两班的平均数相同,初三(1)班的中位数高,初三(1)班的复赛成绩好些.(3)解:∵初三(1)班、初三(2)班前两名选手的平均分分别为92.5,100分,∴在每班参加复赛的选手中分别选出2人参加决赛,初三(2)班的实力更强一些.27.197128.略29.图略30.解:(1)根据题意,得50(412171)16m n +=-+++=;171006450m+⨯=%%. 则161732m n m +=⎧⎨+=⎩①②,解之,得151m n =⎧⎨=⎩.(2)7~8分数段的学生最多.及格人数412171548=+++=(人),及格率481009650=⨯=%%.答:这次1分钟跳绳测试的及格率为96%.。
义乌市2018年初中数学竞赛试题(含答案)
![义乌市2018年初中数学竞赛试题(含答案)](https://img.taocdn.com/s3/m/cc8eada8680203d8ce2f248f.png)
义乌市2018年初中理科综合竞赛数学试题答题时注意:1、用圆珠笔或钢笔作答.2、草稿纸与试题不上交,只交答卷纸.一、选择题:(本大题分6小题,其中第1-5小题每题4分,第6题5分,共25分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里。
不填、多填或错填均得零分)1,则x-y 的值为…………………………………( )(A )2 (B )6 (C )2或-2 (D )6或-62.若太阳光线与地面成α角,30°<α<45°.一棵高为10米的树的影子长为h 米,则h 的取值范围是(结果保留到0.01)……………………………………………( )(A )h <10 (B )10<h <17.32 (C )h >17.32 (D )5.77<h <103. 若关于x 的方程a (x-a )+b (x+b )=0有无穷多个解,则…………………( )(A )a+b=0 (B )a-b=0 (C )ab=0 ( D )0=b a4.图中的矩形被分成四部分,其中三部分面积分别为2,3,4,那么,阴影三角形的面积为 …………( )(A )5 (B )6 (C )7 (D )85.一个人把四根绳子紧握在手中,仅在两端露出它们的头和尾,•然后随机地把一端的四个头中的某两个相接,另两个相接;把另一端的四个尾中的某两个相接,•另两个相接,则放开手后四根绳子恰好连成一个圈的概率是………………………( )(A )61 (B )31 (C )21 (D )32 6. 一群人开舞会,每人头上都戴着一顶帽子.帽子只有黑白两种,黑的至少有一顶.每个人都能看到其它人帽子的颜色,却看不到自己的.主持人先让大家看看别人头上戴的是什么帽子,然后关灯,如果有人认为自己戴的是黑帽子,就拍一下掌.第一次关灯,没有声音.于是再开灯,大家再看一遍,关灯时仍然鸦雀无声.一直到第三次关灯,才有一些拍掌的声音响起.假设每个人的判断都是正确的,则舞会上戴着黑帽子的人数是( )(A )4 (B )3 (C )2 (D )1二、填空题:(本大题分6小题,其中第7-11小题每题4分,第12题5分,共25分。
2023年浙江省金华市中考数学竞赛试卷附解析
![2023年浙江省金华市中考数学竞赛试卷附解析](https://img.taocdn.com/s3/m/7bca63c5c9d376eeaeaad1f34693daef5ff71366.png)
2023年浙江省金华市中考数学竞赛试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.用弧长为8π的扇形做成一个圆锥的侧面,那么这个圆锥的底面的半径是( ). A .4πB .8πC .4D .82.二次函数28y x x c =-+的最小值是( ) A .4B .8C .-4D .16 3.下列函数是反比例函数的是( ) D .A .y kx =-B .(0)x y kk=≠C .y =D .y =4.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( ) A .x (x +1)=1035 B .x (x -1)=1035×2 C .x (x -1)=1035D .2x (x +1)=10355.下列函数中,是二次函数的有( )(1)25y x =-;(2)23y x =--;(3)(1)(3)y x x =-+;(4)2y x =-;(5)22(1)y x x =--;(6)2y x π= A .5 个B .4 个C .3 个D .2 个6.在△ABC 中,分析下列条件:①有一个角等于60°的等腰三角形;②有两个角等于60°的三角形;③有3条对称钠的三角形;④有两边相的三角形. 其中能说明△ABC 是等边三角形的有( ) A . ① B . ①② C . ①②③ D . ①②③④ 7.在下列长度的四根木棒中,能与4 cm ,9 cm 长的两根木棒钉成一个三角形的是( ) A .4 cmB .5 cmC .9cmD .13 cm8.下列多项式:①16x 5-x ;②(x-1)2-4(x-1)+4;③(x+1)4-4x (x+1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( ) A .①④ B .②④C .③④D .②③ 9.38.33°可化为 ( )A .38°30′3″B .38°33′C .38°30′30″D .38°19′48″二、填空题10.若a= 3 cm ,2b= 1 cm ,则a :b= .11.如图,已知矩形ABCD 中()AD AB >,EF 经过对角线的交点O ,且分别交AD BC ,于E F ,,请你添加一个条件: ,使四边形EBFD 是菱形.12.如图,已知∠1=∠2=∠3,∠GFA=36°,∠ACB=60°,AQ 平分∠FAC ,则∠HAQ= .13.关于x 的一元二次方程()423=-x x 的一般形式是_____ _____.14.已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是 .15.为了了解某种新药的治疗效果,研究人员从使用该药的患者中抽取了50名进行调查, 在这个问题中,总体是 ,样本是 ,个体是 . 16.如图,已知 AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C = .17.如图所示,△ABC 中,BC=16 cm ,AB ,AC 边上的中垂线分别交BC 于E ,F ,则△AEF 的周长是 cm .18.在下列横线上填写正确的理由.(1)若∠A+∠B=90°,∠A+∠C=90°,则∠B=∠C ,理由是 .(2)若∠A+∠B=180°,∠C+∠D=180°,且∠A=∠C ,则∠B=∠D ,理由是 . (3)若∠l+∠2=180°,∠2+∠3=180°,∠1+∠4=90°,∠3+∠5=90°,则 ①∠l=∠3,理由是 ; ②∠4=∠5,理由是 .(4)如图,已知∠AOC 和∠B0D 都是直角,则∠AOD=∠BOC ,理由是 .19.已知23x -和14x +互为相反数,则x = . 20.如图,已知圆的半径为 R ,正方形的边长为 a . (1)表示出阴影部分的面积S= ;(2)当R=20 cm,a=8 cm,阴影部分面积S= cm2.21.大于-3 且小于 4 的整数有,并将它们表示在数轴上.三、解答题22.如图,已知 AB 是⊙O的直径,BC⊙O于点B,AC 交⊙O于点 D,AC=10,BC=6,求AB 与 CD 的长.23.已知:如图所示,某商场设立了一个可以自由转动的转盘,并规定顾客购物10元以上就能获得一次转动转盘的机会. 转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345564701落在“铅笔”的频率m n(2)请估计,当 n很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角大约是多少(精确到 1°)?24.下列各题中,哪些变量之间的关系是反比例函数关系?哪些是正比例函数关系?哪些既不是正比例函数又不是反比例函数?(1)当速度v一定时,路程 s 与时间t之间的关系;(2)当路程s一定时,速度 v 与时间 t 之间的关系;(3)当被减数 a一定时,减数b与差c 之间的关系(4)圆面积S与半径r 之间的关系.25.在10个试验田中对甲、乙两个早稻品种作了对比试验,两个品种在试验田的亩产量如下(单位:kg):甲802808802800795801798797798799乙810814804788785801795800769799(1)用计算器分别计算两种早稻的平均亩产量;(2)哪种早稻的产量较为稳定?(3)在高产、稳产方面,哪种早稻品种较为优良?26.画出如图所示几何体的主视图、左视图和俯视图.27.如图所示,历史上最有名的军师诸葛孔明,率精兵与司马仲对阵,孑L明一挥羽扇.军阵瞬时由图①变为图②.其实只移动了其中3“骑”而已,请问如何移动?28.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.04L/km,则这次养护共耗油多少升?29.第一次从外面向仓库运进化肥 48. 5 t,第二次从仓库里运出化肥 54 t,结果怎样?试列出有理教运算的算式,通过计算作答.30.计算:(1)105-++;(2)1 62 -÷.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.D4.C5.B6.C7.C8.A9.D二、填空题10.6. 111.EF⊥BD(答案不惟一)12.12°13.-x14.32=-x64y=6x-215.该种新药的治疗效果,50名使用该药的患者的治疗效果,每名使用该药的患者的治疗效果16.120°17.1618.(4)同角的余角相等(1)同角的余角相等 (2)等角的补角相等 (3)①同角的补角相等②等角的余角相等19.120.3π-(1)22- (2)40064nR a21.-2,-1,0,1,2,3,图略三、解答题22.连结 BD.∵BC是⊙O的切线,∴∠ABC= 90°.在 Rt△ABC 中,AC=10,BC=6由勾股定理可得AB=8,又∵AB 是直径,∠ADB= 90°,由AC BD AB BC⋅=⋅得BD=4.8,在 Rt△BDC 中,222=-,∴CD=3.6.CD BC BD23.(1)见表格:转动转盘的次数n1001502005008001000(2)随看频数的增大,频率接近于 0.70;(3)当频数很大时,频率约等于事件的概率,即获得铅笔的概率约0.70; (4)圆心角应是003600.7252⨯≈.24.(1) s vt =,当v 一定时,s 与t 成正比例函数关系; (2)sv t=, 当s 一定时,v 与 t 成反比例函数关系; (3 )b=a-c , 当a 一定时,b 与 c 既不是正比例函数关系也不是反此例函数关系; (4)2s r π=,S 与r 既不是正比例函数关系也不是反比例函数关系.25.(1)800x =甲kg ,796.5x =乙kg ;(2)甲的产量较为稳定;(3)甲种早稻较为优良26.27.略28.(1)在出发点的向东方向,距出发点15千米;(2)3.88升29.运出5. 5 t30.(1)15;(2)12落在“铅笔”的次数m 68 111 136 345 564 701 落在“铅笔”的频率mn0.68 0.740.680.690.7050.701。
浙江省初中数学竞赛试题(配答案)
![浙江省初中数学竞赛试题(配答案)](https://img.taocdn.com/s3/m/0bf181d5f90f76c661371a4f.png)
3.如图,AB是半圆的直径,弦AD,BC相交于P,已知∠DPB=60°,D是弧BC的中点,则tan∠ADC等于( )
A.B.2C. D.
4.抛物线 的图象与x轴一个交点的横坐标是P,那么该抛物线的顶点坐标是( )
A.(0,-2)B. C. D.
A. B. C. D.
二、填空题(共6小题,每小题5分,满分30分)
9.若a是一个完全平方数,则比a大的最小完全平方数是。
10.按如图所示,把一张边长超过10的正方形纸片剪成5个部分,则中间小正方形(阴影部分)的周长为。
11.在锐角三角形ABC中,∠A=50°,AB>BC,则∠B的取值范围是。
12.设正△ABC的边长为a,将△ABC绕它的中心(正三三角形外接圆的圆心)旋转60°得到对应的△A′B′C′,则A,B′两点间的距离等于。
浙江省初中数学竞赛试题
一、选择题(共8小题,每小题5分,满分40分。以下每小题均给出了代号为A、B、C、C的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填在题后的括号里,不填、多填或错填均得零分)
1.函数y= 图象的大致形状是( )
A B C D
2.老王家到单位的路程是3500米,老王每天早上7:30离家步行去上班,在8:10(含8:10)到8:20(含8:20)之间到达单位。如果设老王步行的速度为x米/分,则老王步行的速度范围是( )
18.已知抛物线 的顶点为A,抛物线 的顶点B在y轴上,且抛物线 关于P(1,3)成中心对称。
⑴当a=1时,求 的解析式和m的值;
⑵设 与x轴正半轴的交点是C,当△ABC为等腰三角形时,求a的值。
三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分)
2020年浙江省中考数学奥赛试题试卷附解析
![2020年浙江省中考数学奥赛试题试卷附解析](https://img.taocdn.com/s3/m/d1c06be927fff705cc1755270722192e4436584b.png)
2020年浙江省中考数学奥赛试题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列说法中,不正确的是( )A .两圆有且只有两个公共点,这两圆相交B .两圆有唯一公共点,这两圆相切C .两圆有无数公共点,这两圆重合D .两圆没有公共点,这两圆外离2.下列命题中正确的是 ( )A .垂直于直径的直线是圆的切线B .经过切点的直线是圆的切线C .经过直径的一端的直线是圆的切线D .圆心到直线的距离等于半径,则该直线与圆相切3.如图,PA 、PB 是⊙O 的两条切线,切点是A 、B. 如果 OP =4,23PA =,那么∠AOB 等于( )A .90°B .100°C .110°D .120°4.已知α是等腰直角三角形的一个锐角,则sin α的值为( )A .12B .22C .32D .15.小李沿着倾斜角为β的山坡从A 点前进a 米到达B 点,如图所示,则山坡 AB 的水平距离 AC 等于 ( )A .asln β米B .acos β米C .tan a β米D .tan a β米6.如图,∠APD =90°,AP =PB =BC =CD ,则下列结论成立的是( )A .ΔPAB ∽ΔPCA B .ΔPAB ∽ΔPDAC .ΔABC ∽ΔDBAD .ΔABC ∽ΔDCA 7.如图,为了绿化环境,在矩形空地的四个角划出四个半径为1•的扇形空地进行绿化,则绿化的总面积是( )A .2πB .πC .2πD .4π8.下列结论:①平行四边形内角和为360°;②平行四边形对角线相等; ③平行四边形对角线互相平分;④平行四边形邻角互补.其中正确的个数是( )A .1B .2C .3D .4 9.为了要了解一批数据在各个范围内所占比例的大小,将这批数据分组,落在各个小组里的数据个数叫做( )A .频数B .频率C .样本容量D .频数累计10.如图直线 c 与直线a 、b 相交且 a ∥b ,则下列结论:①∠1 = ∠2 ;∠1 = ∠3 ;∠2= ∠3 ,其中正确的个数是( )A .0 个B .1 个C .2 个D .3 个11.下面四张扑克牌中,以牌的对角线交点为旋转中心,旋转 180°后能与原图形重合的有( )A .B .C .D .12.下列等式一定成立的是( )A .-a-b= -(a-b )B .-a+b= -(a-b )C .2-3x=-(2+3x )D .30-x= 5(6-x )13.阅读下列命题:①圆是轴对称图形,每一条直径都是它的对称轴;②垂直于弦的直线 平分这条弦,并且平分弦所对的两条弧;③平分弦的直径垂直于弦,并且平分弦所对的两条弧;④垂直于弦且平分这条弦的直线是这个圆的对称轴.判断其中不正确的命题个数是( )A .1 个B .2 个C .3 个D .4 个二、填空题14. 某商场举行“庆元旦,送惊喜” 抽奖活动,10000个奖券中设有中奖奖券200个.(1)小红第一个参与抽奖且抽取一张奖券,她中奖的概率有多大?(2)元旦当天在商场购物的人中,估计有2000人次参与抽奖,商场当天准备多少个奖品较合适?15.sin28°= ;cos36°42′= ;tan46°24′= . 16.如图所示,Rt △ABC 中,∠B=15°,若 AC=2,则BC= .17.已知点P 是线段 AB 的黄金分割点,AP>PB .若 AB=2,则AP= .18.已知P 是线段 AB 上一点,且 AP :AB =2 : 5 ,则AB :BP= .19.平行四边形ABCD 的两条对角线AC 与BD 相交于点0,已知AB=8 cm ,BC=6 cm ,△AOB 的周长是l8 cm ,那么△AOD 的周长是 .20.如图所示,AE ∥BC ,∠B=50°,AE 平分∠DAC ,则∠DAC= ,∠C= .21.图中的几何体是 面体.22.若)3)(5(-+x x 是二次三项式152--kx x 的因式,那么k = .23.(23a 4b 7-19a 2b 6)÷(-13ab 3)2=_ . 24.某校对七年级500名学生数学考试成绩作了一次统计,各个分数段的情况如图所示,则:分数段的人数最多; 分数段的人数最少; 分数段的人数接近整体的13;在96~108分之间的有 人.25.星期天,小慧约了小红替居委会打一份资料,小慧单独打需6小时完成,小红单独打需4小时完成,小慧、小红一起干,小红中途有事离开1小时,则打完这份资料需小时.三、解答题26.如图,已知AC∥DE,AC=DE,AD,CE交于点B,AF,DG分别是△ABC,△BDE的中线,•求证:四边形AGDF是平行四边形.27.如图所示,在四边形ABCD中,∠A:∠B:∠C:∠D=3:2:3:2,那么四边形ABCD 是平行四边形吗?请证明你的判断.28.某校九年级(1)、(2)班联合举行毕业晚会. 组织者为了使晚会气氛热烈、有趣,策划时计划整场晚会以转盘游戏的方式进行:每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负者表演一个节目.(1)班的文娱委员利用分别标有数字 1,2,3 和 4,5,6,7 的两个转盘(如图)设计了一种游戏方案:两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时,(1)班代表胜,否则(2)班代表胜. 你认为该方案对双方是否公平?为什么?29.(1)计算21(3)62 --+⨯;(2)给出三个多项式212 2x x-+、231 2x x+-、21 2x x+,请你选择其中的两个多项式进行加法或减法运算.30.以给定的图形“○○、△△、二二”(两个圆、两个三角形、两条平行线段)为构件,尽可能多地构思出独特且有意义的图形,并写上一两句贴切诙谐的解说词.如图左框中是符合要求的一个图形,请在右框中画出与之不同的图形,比一比,看谁想得多.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.D4.B5.B6.C7.B8.C9.A10.D11.B12.B13.A二、填空题14.因此商场当天准备奖品40个比较合适. (2)1200050⨯=40,解:(1)小红中奖的概率2001 1000050 ==;15.0. 4695,0. 8018,1. 050116.7.4617.118.5 : 319.16cm20.100°,50°21.五22.-223.162-ba24.72~96;108~120;96~108;150 25.3三、解答题26.∵AC ∥ED ,∴∠C=∠E ,∠CAB=∠EDB .∵AC=DE ,∴△ABC ≌△DBE ,∴AB=DB ,CB=EB . ∵AF ,DG 分别是△ABC ,•△BDE 的中线, ∴BG=BF ,∴四边形AGDF 是平行四边形 27.略28.公平, (1)班胜的概率是1612P =;(2)班胜的概率是2612P =,所以公平 29.(1) 12;(2)答案不唯一. 如22213(2)(1)2122x x x x x x -+++-=++; 2213(2)(1)2322x x x x x -+-+-=-+; 22211(2)()2222x x x x x -+++=+; 2211(2)()222x x x x x -+-+=-+; 22231(1)()22122x x x x x x +-++=+-; 2231(1)()122x x x x x +--+=-30.。
浙江省义乌市2024届中考数学全真模拟试题含解析
![浙江省义乌市2024届中考数学全真模拟试题含解析](https://img.taocdn.com/s3/m/508851bbafaad1f34693daef5ef7ba0d4a736de1.png)
浙江省义乌市2024届中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知△ABC,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接C D.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.105°D.110°2.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米3.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是()A.BC=CD B.AD∥BCC.AD=BC D.点A与点C关于BD对称4.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为40km .他们前进的路程为s (km),甲出发后的时间为t (h ),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )A .甲的速度是10km/hB .乙的速度是20km/hC .乙出发13h 后与甲相遇 D .甲比乙晚到B 地2h5.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4π B .324π- C .2-8π D .324π- 6.在平面直角坐标系中,有两条抛物线关于x 轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=2x +6x+m ,则m 的值是 ( ) A .-4或-14B .-4或14C .4或-14D .4或147.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( ) A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)8.如图,二次函数y =ax 2+bx +c(a≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC .则下列结论:①abc <0;②2404b ac a->;③ac -b +1=0;④OA·OB =c a -.其中正确结论的个数是( )A .4B .3C .2D .19.下列说法错误的是( ) A .必然事件的概率为1B .数据1、2、2、3的平均数是2C .数据5、2、﹣3、0的极差是8D .如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖 10.下列计算正确的是( ) A .(a -3)2=a 2-6a -9 B .(a +3)(a -3)=a 2-9 C .(a -b)2=a 2-b 2D .(a +b)2=a 2+a 211.如图,在直角坐标系中,等腰直角△ABO 的O 点是坐标原点,A 的坐标是(﹣4,0),直角顶点B 在第二象限,等腰直角△BCD 的C 点在y 轴上移动,我们发现直角顶点D 点随之在一条直线上移动,这条直线的解析式是( )A .y=﹣2x+1B .y=﹣12x+2 C .y=﹣3x ﹣2 D .y=﹣x+212.函数y kx 1=+与ky x=-在同一坐标系中的大致图象是( ) A 、 B 、 C 、 D 、二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,点A 在双曲线y =kx的第一象限的那一支上,AB 垂直于y 轴与点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为_____.14.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x (单位:分)及方差S 2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.甲乙丙丁x7 8 8 7 s 2 11.20.91.815.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .16.计算:()()5353+-=_________ .17.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB=2, AD=1,点E 的坐标为(0,2).点F (x ,0)在边AB 上运动,若过点E 、F 的直线将矩形ABCD 的周长分成2:1两部分,则x 的值为__.18.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图①,在正方形ABCD 中,点E 与点F 分别在线段AC 、BC 上,且四边形DEFG 是正方形.(1)试探究线段AE 与CG 的关系,并说明理由.(2)如图②若将条件中的四边形ABCD 与四边形DEFG 由正方形改为矩形,AB=3,BC=1.①线段AE 、CG 在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.②当△CDE为等腰三角形时,求CG的长.20.(6分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p=14t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?21.(6分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?22.(8分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:组别身高A x<160B 160≤x<165C 165≤x<170D 170≤x<175E x≥175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的有人,E组所在扇形的圆心角度数为;(3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?23.(8分)在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是3 8;如果往盒中再放进10 颗黑色棋子,则取得黑色棋子的概率变为12.求x 和y 的值.24.(10分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为532D⎛⎫--⎪⎝⎭,.(1)求抛物线C1的表达式;(2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;(3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.25.(10分)如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.判断直线DE与⊙O的位置关系,并说明理由.若⊙O的半径R=5,tanA=34,求线段CD的长.26.(12分)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=10t﹣5t1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?27.(12分)解不等式组:()()3x1x382x11x132⎧-+--<⎪⎨+--≤⎪⎩并求它的整数解的和.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【题目详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【题目点拨】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.2、D【解题分析】根据图中信息以及路程、速度、时间之间的关系一一判断即可.【题目详解】甲的速度=4206=70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D.【题目点拨】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.3、A【解题分析】由BD是∠ABC的角平分线,根据角平分线定义得到一对角∠ABD与∠CBD相等,然后由DC∥AB,根据两直线平行,得到一对内错角∠ABD与∠CDB相等,利用等量代换得到∠DBC=∠CDB,再根据等角对等边得到BC=CD,从而得到正确的选项.【题目详解】∵BD是∠ABC的角平分线,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故选A.【题目点拨】此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力.4、B【解题分析】由图可知,甲用4小时走完全程40km,可得速度为10km/h;乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.故选B5、B【解题分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S ABCD矩形-S ABE-S EBF扇形,求出答案.【题目详解】∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=2,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD矩形−S ABE−S EBF扇形=1×2−12×1×1−245360(2)3=-24π⨯π故选B.【题目点拨】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式6、D【解题分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.【题目详解】∵一条抛物线的函数表达式为y=x2+6x+m,∴这条抛物线的顶点为(-3,m-9),∴关于x轴对称的抛物线的顶点(-3,9-m),∵它们的顶点相距10个单位长度.∴|m-9-(9-m)|=10,∴2m-18=±10,当2m-18=10时,m=1,当2m-18=-10时,m=4,∴m的值是4或1.故选D.【题目点拨】本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系.7、C【解题分析】试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.考点:二次函数的性质.【解题分析】试题分析:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选B.考点:二次函数图象与系数的关系.【解题分析】试题分析:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B.数据1、2、2、3的平均数是=2,本项正确;C.这些数据的极差为5﹣(﹣3)=8,故本项正确;D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选D.考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件10、B【解题分析】利用完全平方公式及平方差公式计算即可.【题目详解】解:A、原式=a2-6a+9,本选项错误;B、原式=a2-9,本选项正确;C、原式=a2-2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项错误,故选:B.【题目点拨】本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键.11、D【解题分析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.【题目详解】当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=12OA=1,OF=DG=BG=CG=12BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:32k bb-+=⎧⎨=⎩,解得:12kb=-⎧⎨=⎩.则这条直线解析式为y=﹣x+1.故选D.【题目点拨】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.12、D.【解题分析】试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.故选D.考点:一次函数和反比例函数的图象.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、16 3.【解题分析】由AE=3EC,△ADE的面积为3,可知△ADC的面积为4,再根据点D为OB的中点,得到△ADC的面积为梯形BOCA面积的一半,即梯形BOCA的面积为8,设A (x,kx),从而表示出梯形BOCA的面积关于k的等式,求解即可. 【题目详解】如图,连接DC,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1. ∴△ADC的面积为4.∵点A在双曲线y=kx的第一象限的那一支上,∴设A点坐标为(x,kx ).∵OC=2AB,∴OC=2x.∵点D为OB的中点,∴△ADC的面积为梯形BOCA面积的一半,∴梯形BOCA的面积为8.∴梯形BOCA的面积=11(2)3822k kx x xx x+⋅=⋅⋅=,解得16k3=.【题目点拨】反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质.14、丙【解题分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【题目详解】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故答案为丙.【题目点拨】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.15、2【解题分析】如图,过A 点作AE ⊥y 轴,垂足为E ,∵点A 在双曲线1y=x 上,∴四边形AEOD 的面积为1 ∵点B 在双曲线3y=x上,且AB ∥x 轴,∴四边形BEOC 的面积为3 ∴四边形ABCD 为矩形,则它的面积为3-1=216、2【解题分析】利用平方差公式求解,即可求得答案.【题目详解】5353=52-32=5-3=2. 故答案为2.【题目点拨】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.17、23或﹣23. 【解题分析】试题分析:当点F 在OB 上时,设EF 交CD 于点P ,可求点P 的坐标为(2x ,1). 则AF+AD+DP=3+32x , CP+BC+BF=3﹣32x , 由题意可得:3+32x=2(3﹣32x ), 解得:x=23. 由对称性可求当点F 在OA 上时,x=﹣23, 故满足题意的x 的值为23或﹣23. 故答案是23或﹣23. 【题目点拨】考点:动点问题.18、10%【解题分析】设平均每次上调的百分率是x ,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解.【题目详解】设平均每次上调的百分率是x ,依题意得()2100001x 12100+=,解得:1x 10%=,2x 210%=-(不合题意,舍去).答:平均每次上调的百分率为10%.故答案是:10%.【题目点拨】此题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)AE=CG ,AE ⊥CG ,理由见解析;(2)①位置关系保持不变,数量关系变为34CG AE =; 理由见解析;②当△CDE 为等腰三角形时,CG 的长为32或2120或158. 【解题分析】 试题分析:()1AE CG AE CG =⊥,,证明ADE ≌CDG ,即可得出结论.()2①位置关系保持不变,数量关系变为3.4CG AE =证明ADE CDG ∽,根据相似的性质即可得出. ()3分成三种情况讨论即可.试题解析:(1)AE CG AE CG =⊥,, 理由是:如图1,∵四边形EFGD 是正方形,∴90DE DG EDC CDG =∠+∠=︒,,∵四边形ABCD 是正方形,∴90AB CD ADE EDC ,,=∠+∠=︒∴ADE CDG ∠=∠,∴ADE ≌CDG ,∴45AE CG DCG DAE =∠=∠=︒,,∵45ACD ∠=︒,∴90ACG ,∠=︒∴CG AC ,⊥ 即AE CG ⊥;(2)①位置关系保持不变,数量关系变为3.4CG AE = 理由是:如图2,连接EG 、DF 交于点O ,连接OC ,∵四边形EFGD 是矩形,∴OE OF OG OD ===,Rt DGF △中,OG=OF ,Rt DCF 中,OC OF ,=∴OE OF OG OD OC ====,∴D 、E 、F 、C 、G 在以点O 为圆心的圆上,∵90DGF ∠=︒,∴DF 为O 的直径,∵DF EG =,∴EG 也是O 的直径,∴∠ECG =90°,即AE CG ⊥,∴90DCG ECD ,∠+∠=︒∵90DAC ECD ∠+∠=︒,∴DAC DCG ∠=∠,∵ADE CDG ∠=∠,∴ADE CDG ∽, ∴3.4CG DC AE AD == ②由①知:3.4CG AE = ∴设34CG x AE x ==,,分三种情况:(i )当ED EC =时,如图3,过E 作EH CD ⊥于H ,则EH ∥AD ,∴DH CH =,∴4AE EC x ,== 由勾股定理得:5AC =,∴85x =,5.8x = 1538CG x ∴==; (ii )当3DE DC ==时,如图1,过D 作DH AC ⊥于H ,EH CH ∴=,∵90CDH CAD CHD CDA ∠=∠∠=∠=︒,,∴CDH CAD ∽,∴,CD CH CA CD= 3,53CH ∴=∴95CH =, ∴97425255AE x AC CH ==-=-⨯=, 720x =, ∴21320CG x ,==(iii )当3CD CE ==时,如图5,∴4532AE x ==-=,12x =, ∴332CG x ==, 综上所述,当CDE △为等腰三角形时,CG 的长为32或2120或158. 点睛:两组角对应,两三角形相似.20、 (1)y=﹣2t+200(1≤t≤80,t 为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件.【解题分析】(1)根据函数图象,设解析式为y=kt+b ,将(1,198)、(80,40)代入,利用待定系数法求解可得;(2)设日销售利润为w ,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)求出w=2400时t 的值,结合函数图象即可得出答案;【题目详解】(1)设解析式为y=kt+b ,将(1,198)、(80,40)代入,得:1988040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y=﹣2t+200(1≤t≤80,t 为整数); (2)设日销售利润为w ,则w=(p ﹣6)y ,当1≤t≤80时,w=(14t+16﹣6)(﹣2t+200)=﹣12(t ﹣30)2+2450,∴当t=30时,w最大=2450;∴第30天的日销售利润最大,最大利润为2450元.(3)由(2)得:当1≤t≤80时,w=﹣12(t﹣30)2+2450,令w=2400,即﹣12(t﹣30)2+2450=2400,解得:t1=20、t2=40,∴t的取值范围是20≤t≤40,∴共有21天符合条件.【题目点拨】本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键.21、(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.【解题分析】根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.【题目详解】(1).(2)根据题意,得:∵∴当时,随x的增大而增大∵∴当时,取得最大值,最大值是144答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【题目点拨】熟悉掌握图中所给信息以及列方程组是解决本题的关键.22、(1)B ,C ;(2)2;(3)该校身高在165≤x <175之间的学生约有462人.【解题分析】根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解.【题目详解】解:(1)∵直方图中,B 组的人数为12,最多,∴男生的身高的众数在B 组,男生总人数为:4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C 组,∴男生的身高的中位数在C 组,故答案为B ,C ;(2)女生身高在E 组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E 组的人数有:40×5%=2(人),故答案为2;(3)600×10840++480×(25%+15%)=270+192=462(人). 答:该校身高在165≤x <175之间的学生约有462人.【题目点拨】考查频数(率)分布直方图, 频数(率)分布表, 扇形统计图, 中位数, 众数,比较基础,掌握计算方法是解题的关键. 23、x=15,y=1【解题分析】根据概率的求法:在围棋盒中有x 颗黑色棋子和y 颗白色棋子,共x+y 颗棋子,如果它是黑色棋子的概率是38,有38x x y +=成立.化简可得y 与x 的函数关系式; (2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y 颗棋子,则取得黑色棋子的概率变为12,结合(1)的条件,可得38101102x x y x x y ⎧⎪+⎪⎨+⎪⎪++⎩==,解可得x=15,y=1. 【题目详解】依题意得,38101102x x y x x y ⎧=⎪+⎪⎨+⎪=⎪++⎩, 化简得,53010x y x y -=⎧⎨-=-⎩, 解得,1525x y =⎧⎨=⎩ ., 检验当x=15,y=1时,0x y +≠,100x y ++≠,∴x=15,y=1是原方程的解,经检验,符合题意.答:x=15,y=1.【题目点拨】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 24、(1)y 242016333x x =++;(2)2448333y x x =-++;(3)E (12,0). 【解题分析】(1)根据抛物线C 1的顶点坐标可设顶点式将点B 坐标代入求解即可;(2)由抛物线C 1绕点B 旋转180°得到抛物线C 2知抛物线C 2的顶点坐标,可设抛物线C 2的顶点式,根据旋转后抛物线C 2开口朝下,且形状不变即可确定其表达式;(3)作GK ⊥x 轴于G ,DH ⊥AB 于H ,由题意GK =DH =3,AH =HB =EK =KF 32=,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK ∽△GFK ,由其对应线段成比例的性质可知AK 长,结合A 、B 点坐标可知BK 、BE 、OE 长,可得点E 坐标.【题目详解】解:(1)∵抛物线C 1的顶点为532D ⎛⎫-- ⎪⎝⎭,, ∴可设抛物线C 1的表达式为y 25()32a x =+-,将B (﹣1,0)代入抛物线解析式得:250(1)32a =-+-, ∴9304a -=,解得:a 43=, ∴抛物线C 1的表达式为y 245()332x =+-,即y 242016333x x =++. (2)设抛物线C 2的顶点坐标为(,)m n∵抛物线C 1绕点B 旋转180°,得到抛物线C 2,即点(,)m n 与点532D ⎛⎫-- ⎪⎝⎭,关于点B (﹣1,0)对称 5321,022m n --∴=-= 1,32m n ∴== ∴抛物线C 2的顶点坐标为(132,) 可设抛物线C 2的表达式为y 21()32k x =-+∵抛物线C 2开口朝下,且形状不变 43k ∴=- ∴抛物线C 2的表达式为y 241()332x =--+,即2448333y x x =-++. (3)如图,作GK ⊥x 轴于G ,DH ⊥AB 于H .由题意GK =DH =3,AH =HB =EK =KF 32=, ∵四边形AGFD 是矩形,∴∠AGF =∠GKF =90°, ∴∠AGK +∠KGF =90°,∠KGF +∠GFK =90°,∴∠AGK =∠GFK .∵∠AKG=∠FKG=90°,∴△AGK∽△GFK,∴AK GK GK KF=,∴3332 AK=,∴AK=6,633 BK AK AB=∴=--=,∴BE=BK﹣EK=333 22 -=,∴OE31122 BE OB=-=-=,∴E(12,0).【题目点拨】本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.25、(1)DE与⊙O相切;理由见解析;(2)92.【解题分析】(1)连接OD,利用圆周角定理以及等腰三角形的性质得出OD⊥DE,进而得出答案;(2)得出△BCD∽△ACB,进而利用相似三角形的性质得出CD的长.【题目详解】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵OA=OD∴∠ODA=∠A又∵∠BDE=∠A∴∠ODA=∠BDE∵AB是⊙O直径∴∠ADB=90°即∠ODA+∠ODB=90°∴∠BDE+∠ODB=90°∴∠ODE=90°∴OD⊥DE∴DE与⊙O相切;(2)∵R=5,∴AB=10,在Rt△ABC中∵tanA=34 BCAB=∴BC=AB•tanA=10×315 42 =,∴252==,∵∠BDC=∠ABC=90°,∠BCD=∠ACB ∴△BCD∽△ACB∴CD CB CB CA=∴CD=2215()922522CBCA==.【题目点拨】本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键.26、(1)小球飞行时间是1s时,小球最高为10m;(1) 1≤t≤3.【解题分析】(1)将函数解析式配方成顶点式可得最值;(1)画图象可得t的取值.【题目详解】(1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,∴当t=1时,h取得最大值10米;答:小球飞行时间是1s时,小球最高为10m;(1)如图,由题意得:15=10t﹣5t1,解得:t1=1,t1=3,由图象得:当1≤t≤3时,h≥15,则小球飞行时间1≤t≤3时,飞行高度不低于15m.【题目点拨】本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.27、0【解题分析】分析:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可求出不等式组的解集.详解:,由①去括号得:﹣3x﹣3﹣x+3<8,解得:x>﹣2,由②去分母得:4x+2﹣3+3x≤6,解得:x≤1,则不等式组的解集为﹣2<x≤1.点睛:本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.。
初中数学浙江省初中毕业生学业考试(义乌市卷).docx
![初中数学浙江省初中毕业生学业考试(义乌市卷).docx](https://img.taocdn.com/s3/m/e81334a959eef8c75ebfb320.png)
xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:-3的绝对值是A.3 B.-3 C.- D.试题2:如图,DE是△ABC的中位线,若BC的长是3cm,则DE的长是A.2cm B.1.5cm C.1.2cm D.1cm试题3:下列计算正确的是A. B. C. D.试题4:如图,下列水平放置的几何体中,主视图不是长方形的是试题5:我市市场交易持续繁荣,市场成交额连续20年居全国各大专业市场榜首. 2010年中国小商品城成交额首次突破450亿元关口.请将数据450亿元用科学记数法表示为(单位:元)A.4.50×102B.0.45×103C.4.50×1010 D.0.45×1011试题6:下列图形中,中心对称图形有A.4个 B.3个C.2个 D.1个试题7:不等式组的解在数轴上表示为试题8:如图,已知AB∥CD,∠A=60°,∠C =25°,则∠E等于A. 60°B. 25°C. 35°D. 45°试题9:某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为A. B. C.D.试题10:如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°四边形ACDE是平行四边形,连结CE交AD于点F,连结BD 交CE于点G,连结BE. 下列结论中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD·AE=EF·CG;一定正确的结论有A.1个 B.2个 C.3个 D.4个试题11:一次函数y=2x-1的图象经过点(a,3),则a= .试题12:如果x1与x2的平均数是4,那么x1+1与x2+5的平均数是.试题13:已知⊙O1与⊙O2的半径分别为3和5,且⊙O1与⊙O2相切,则O1O2等于.试题14:某校为了选拔学生参加我市2011年无线电测向比赛中的装机比赛,教练对甲、乙两选手平时五次训练成绩进行统计,两选手五次训练的平均成绩均为30分钟,方差分别是、. 则甲、乙两选手成绩比较稳定的是 . 试题15:右图是市民广场到解百地下通道的手扶电梯示意图.其中AB、CD分别表示地下通道、市民广场电梯口处地面的水平线,∠ABC=135°,BC的长约是m,则乘电梯从点B到点C上升的高度h是 m.试题16:如图,一次函数y=-2x的图象与二次函数y=-x2+3x图象的对称轴交于点B. (1)写出点B的坐标;(2)已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于C、D两点. 若以CD为直角边的△PCD与△OCD相似,则点P的坐标为.试题17:计算:;试题18:解分式方程: .试题19:如图,已知E、F是□ABCD对角线AC上的两点且BE⊥AC,DF⊥AC.(1)求证:△ABE≌△CDF;(2)请写出图中除△ABE≌△CDF外其余两对全等三角形(不再添加辅助线).试题20:商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加▲件,每件商品盈利▲元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?试题21:为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :50分;B:49-45分;C:44-40分;D:39-30分;E:29-0分)统计如下:分数段人数(人)A48B aC84D36E12根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为,b的值为,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?(填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?试题22:如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E. ⊙O的切线BF与弦AD的延长线相交于点F,且AD=3,cos∠BCD= .(1)求证:CD∥BF;(2)求⊙O的半径;(3)求弦CD的长.学业考试体育成绩(分数段)统计表试题23:如图,在直角坐标系中,O为坐标原点. 已知反比例函数y= (k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且△AOB的面积为 .(1)求k和m的值;(2)点C(x,y)在反比例函数y= 的图象上,求当1≤x≤3时函数值y的取值范围;(3)过原点O的直线l与反比例函数y= 的图象交于PQ两点,试根据图象直接写出线段PQ长度的最小值.试题24:如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连结BP.△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连结AA1,射线AA1分别交射线PB、射线B1B于点E、F.(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在▲关系(填“相似”或“全等”),并说明理由;(2)如图2,设∠ABP=β . 当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;已知AB=4,设DP=x,△A1BB1的面积为S,求S关于x的函数关系式.(3)如图3,当α=60°时,点E、F与点B重合.试题25:已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x=4. 设顶点为点P,与x轴的另一交点为点B.(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线 y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O 运动,过点M 作直线MN∥x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN. 在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒. 求S关于t的函数关系式.试题1答案:A试题2答案:B试题3答案:D试题4答案:B试题5答案:C试题6答案:B试题7答案:C试题8答案:C试题9答案:A试题10答案:D试题11答案:2试题12答案:7试题13答案:2或8(对一个得2分)试题14答案:乙试题15答案:5试题16答案:(1) (2分)(2)(2,2)、、、试题17答案:原式=1+-=1+试题18答案:2(x+3)=3 (x-2)解得:x=12经检验:x=12是原方程的根试题19答案:解:(1)∵四边形ABCD是平行四边形∴AB=CD AB∥CD∴∠BAE=∠FCD又∵BE⊥AC DF⊥AC∴∠AEB=∠CFD=90°∴△ABE≌△CDF (AAS)(2)①△ABC≌△CDA②△BCE≌△DAF试题20答案:解:(1) 2x50-x(2)由题意得:(50-x)(30+2x)=2100化简得:x2-35x+300=0解得:x1=15,x2=20∵该商场为了尽快减少库存,则x=15不合题意,舍去. ∴x=20答:每件商品降价20元,商场日盈利可达2100元.试题21答案:解:(1) 60 , 0.15(2) C(3)0.8×10440=8352(名)答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.试题22答案:解:(1)∵BF是⊙O的切线∴AB⊥BF∵AB⊥CD∴CD∥BF(2)连结BD∵AB是直径∴∠ADB=90°∵∠BCD=∠BAD cos∠BCD=∴cos∠BAD=又∵AD=3∴AB=4∴⊙O的半径为2(3)∵cos∠DAE=AD=3∴AE=∴ED=∴CD=2ED=试题23答案:解:(1)∵A(2,m)∴OB=2 AB=m∴S△AOB=•OB•AB=×2×m=∴m=∴点A的坐标为(2,)把A(2,)代入y=,得=∴k=1(2)∵当x=1时,y=1;当x=3时,y=又∵反比例函数y=在x>0时,y随x的增大而减小∴当1≤x≤3时,y的取值范围为≤y≤1(3)由图象可得,线段PQ长度的最小值为2试题24答案:解: (1)相似由题意得:∠APA1=∠BPB1=α AP= A1P BP=B1P则∠PAA1 =∠PBB1 =∵∠PBB1 =∠EBF∴∠PAE=∠EBF 又∵∠BEF=∠AEP∴△BEF ∽△AEP(2)存在,理由如下:易得:△BEF ∽△AEP若要使得△BEF≌△AEP,只需要满足BE=AE即可∴∠BAE=∠ABE∵∠BAC=60°∴∠BAE=∵∠ABE=β∠BAE=∠ABE∴即α=2β+60°(3)连结BD,交A1B1于点G,过点A1作A1H⊥AC于点H.∵∠B1 A1P=∠A1PA=60°∴A1B1∥AC由题意得:AP= A1 P∠A=60°∴△PAA1是等边三角形∴A1H=在Rt△ABD中,BD=∴BG=∴(0≤x<2)试题25答案:解:(1)设二次函数的解析式为y=ax2+bx+c由题意得解得∴二次函数的解析式为y= x2-8x+12点P的坐标为(4,-4)(2)存在点D,使四边形OPBD为等腰梯形. 理由如下:当y=0时,x2-8x+12=0 ∴x1=2 ,x2=6∴点B的坐标为(6,0)设直线BP的解析式为y=kx+m则解得∴直线BP的解析式为y=2x-12∴直线OD∥BP∵顶点坐标P(4,-4)∴OP=4设D(x,2x) 则BD2=(2x)2+(6-x)2当BD=OP时,(2x)2+(6-x)2=32解得:x1=,x 2=2当x2=2时,OD=BP=,四边形OPBD为平行四边形,舍去∴当x=时四边形OPBD为等腰梯形∴当D(,)时,四边形OPBD为等腰梯形(3)①当0<t≤2时,∵运动速度为每秒个单位长度,运动时间为t秒,则MP=t∴PH=t,MH=t,HN=t∴MN=t∴S=t·t·=t2②当2<t<4时,P1G=2t-4,P1H=t∵MN∥OB ∴∽∴∴∴=3t2-12t+12∴S=t2-(3t2-12t+12)= -t2+12t-12∴当0<t≤2时,S=t2当2<t<4时,S=-t2+12t-12。
最新浙江省中考数学联赛试卷附解析
![最新浙江省中考数学联赛试卷附解析](https://img.taocdn.com/s3/m/9d3295eb81eb6294dd88d0d233d4b14e85243e08.png)
浙江省中考数学联赛试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.使皮影戏形成影子的光线是()A.灯光B.太阳光C.平行光D.以上都不是2. 400 米比赛有 4 条跑道,其中两条是对比赛成绩起积极影响的好跑道,其余两条是普通跑道,4 名运动员抽签决定跑道,则小明第一个抽抽到好跑道的概率是()A.12B.13C.14D.343.圆锥的轴截面一定是()A.扇形B.矩形C.等腰三角形D.直角三角形4.如图,直角坐标系中,△ABC的三个顶点都在小正方形的顶点上,则△ABC的面积为()A.3 5 B.3 5 +5 C. 5 D.55.利用反证法证明“三角形中至少有1个内角不小于60°”应先假设()A.三角形每个内角都大于60°B.三角形有一个内角大于60°C.三角形每个内角都小于60°D.三角形有一个内角小于60°6.下列各式中,正确的是()A.16 =±4 B.±16 =4 C.(-5 )2=-5 D.-(-5)2=-5 7.计算(2)(3)x x-+的结果是()A.26x-B.26x+C.26x x+-D.26x x--8.将叶片图案旋转l80°后,得到的图形是()9.如图,为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备的水管的长为()A.17.5m B.35m C.335m D.70m二、填空题10.已知等腰直角三角形的外接圆半径为 5,则其内切圆的半径为.11.如图,在矩形ABCD中,AB=5,BC=12,⊙O1和⊙02分别是△ABC和△ADC的内切圆,则O 1O 2=__________.12.数形结合是重要的数学思想.一次数学活动中,小明为了求12 +122 +123 +……+12n 的值,设计了如图2所示的几何图形.请你利用这个几何图形求12 +122 +123 +……+12n 的值为(结果用n 表示).13.某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC= cm.14.2002年上海市二月下旬每日最高气温分别为(单位:℃):13,13,12,9,11,16,12,10.则二月下旬气温的极差为 ℃.15. 已知∠AOB 是由∠DEF 经过平移变换得到的,且∠AOB+∠DEF=120°,则∠AOB= .解答题16.方程125m n m x y +++=是二元一次方程,则m = ,n = . 17.若x +x 1=3,则x 2+21x=___________. 18.如图,在△ABC 中,BI 、CI 分别平分∠ABC 与∠ACB ,若∠BIC=1100,∠A= . 19. 的平方根是7±;若7x =,则x= .三、解答题20.在△ABC 中,∠A =105°,∠B = 45°,AB = 2,求 AC 的长.21.如图,在一个长40m 、宽30m 的长方形小操场上,王刚从A 点出发,沿着A →B →C 的路线以3m/s 的速度跑向C 地.当他出发4s 后,张华有东西需要交给他,就从A 地出发沿王刚走的路线追赶,当张华跑到距B 地223m 的D 处时,他和王刚在阳光下的影子恰好重叠在同一条直线上,此时,A 处一根电线杆在阳光下的影子也恰好落在对角线AC 上.(1)求他们的影子重叠时,两人相距多少米(DE的长)?(2)求张华追赶王刚的速度是多少(精确到0.1m/s)?22.师傅做铝合金窗框,分下面三个步骤进行:(1)如图,先裁出两对符合规格的铝合金窗料(如图①),使AB=CD, EF=GH;(2)摆放成如图②的四边形,则这时窗框的形状是,根据的数学道理是;(3)将直角尺靠紧窗框的一个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④)说明窗框合格,这时窗框是 ,根据的数学道理是 .23.在如图所示的平面直角坐标系中,等腰三角形ABC的位置如图所示,请写出顶点A、B、C的坐标.24.在种植西红柿的实验田中,随机抽取10株,有关统计数据如下表:株序号12345678910成熟西红柿的个数2528625794(1)这组数据的平均数为_________个,众数为_________个,中位数为_________个;(2)若实验田中西红柿的总株数为200,则可以估计成熟西红柿的个数为_________.25.如图是一个物体的三视图,试画出该物体的形状.26.代数式1324x xx x++÷++有意义,求x的取值范围.27.把下图中左圈里的每一个整式都除以-2ab,再把商式填在右边的圆圈内:28.如图,可以看成是什么“基本图案”经过怎样的旋转得到的?29.在下列图形中,分别画出△ABC的三条高.30.计算:(1)13() 420÷-;(2) -600 ÷15;(3)1444--;(4)(-6.5)÷(0.013) ;(5)377 ()() 488-÷-;(6)11 18(0.75)14 -÷-⨯【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.C4.D5.C6.D7.C8.D9.D二、填空题10.511.65 12.1-12n 13.2014.715.60°16.0,1217.718.40°19.7、49三、解答题 20.如图,过A 作 AH ⊥BC 于H ,∵∠B= 45°, AB= 2,AH=BH=2,∠HAC=60°, ∠C=30°,∴222AC AH ==21.(1)310(2)7.3. 22.(2)平行四边形,两组对边分别相等的四边形是平行四边形 (3)矩形,有一个角是直角的平行四边形是矩形23.由图知,点A 的横坐标为2,设x 轴上的1、2两点处分别用点D 、M 表示,则MD=OD,∠AMD=∠COD ,∠ADM=∠CD0.∴△ADM ≌△GD0.∴AM=C0=1,∴点A(2,1).∵点B 与点A 关于y 轴对称,∴点B(-2,1),由图知.点C(0,-1) .24.(1)5,2,5. (2)1000.25.26.2x ≠-,3x ≠-且4x ≠-27.a -,24ab ,2212a b ,14bc - 28.略29.略30.(1)53- (2)-40 (3)36 (4)-500 (5)17(6)1327。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年义乌市初中数学竞赛试题
班级_________姓名_________成绩_________
一、选择题(6×6=36分)
1.已知0221≠+=+b a b a ,则b
a
的值为( )
(A )-1 (B )1 (C )2 (D )不能确定
2.已知1
22432+-
-=--+x B
x A x x x ,其中A ,B 为常数,则4A-B 的值为( ) (A )7 (B )9 (C )13 (D )5
3.在一个多边形中,除了两个内角外,其内角之和为2002°,则这个多边形的边数为( ) (A )12 (B )12或13 (C )14 (D )14或15
4.已知一次函数k kx y -= ,若y 随x 的减小而减小,则该函数的图象经过( )
(A )第一、二、三象限 (B )第一、二、四象限 (C ) 第一、三、四象限 (D )第二、三、四象限 5.
5.如图,D 是△ABC 的边AB 上的点,F 为△ABC 外的点。
连DF 交AC 于E 点,连FC 。
现有三个断言:
(1)DE=FE ;(2)AE=CE ;(3)FC ∥AB.
以其中的两个断言为条件,其余一个断言为结论,如此可作出三个命题,这些命题中正确命题的个数为( )
(A )0 (B )1 (C )2 (D )3
6.如图,在△ABC 中,∠ABC=90°,D 是AC 中点,BE ⊥BD 交CA 的延长线于E ,下列结论中正确的是( )
(A )△BED ∽△BCA (B )△BEA ∽△BCD (C )△ABE ∽△BCE (D )△BEC ∽△DBC
二、填空题(5×8=40分) 7.设-1≤x ≤2,则
22
1
2++--x x x 的最大值与最小值之差为 .
8.若平面上4条直线两两相交且无三线共点,则共有同旁内角 对.
9.方程
210
71
2122=+++-+x x x x 的解为 .
10.HJ 牌小汽车的油箱可装汽油30升,原来装有汽油10升,
现在再加汽油x 升.如果每升汽油2.95元,油箱内汽油的总价y (元)与x (升)之间的函数关系式
为 .其图象为(请画在右边的坐标系中) 11.已知()()
2002202200222=++++y y x x , 则58664322+----y x y xy x = .
12.如图,直线AB 与⊙O 相交于A ,B 两点,点O 在AB 上,点C 在⊙O 上,且∠AOC=40°,点E 是直线AB 上一个动点(与点O 不重合),直线EC 交⊙O 与另一点D ,则使DE=DO 的点E 共有 个.
13.有两道算式:
好+好=妙,
妙×好好×真好=妙题题妙,
其中每个汉字表示0-9中的一个数字,相同汉字表示相同数字,不同汉字表示不同数字,那么,“妙题题妙”所表示的四位数的所有因数的个数是 .
14.已知实数a ,b ,c ,满足a+b+c=0,
6222=++c b a ,则a 的最大值为 .
三、解答题(16×4=64分)
15.华鑫超市对顾客实行优惠购物,规定如下:
(1)若一次购物少于200元,则不予优惠;
(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;
(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折优惠.
小明两次去该超市购物,分别付款198元和554元.现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少?
16.当m 为整数时,关于x 的方程()()0112122=++--x m x m 是否有有理根?如果有,求出m 的值;如果没有,请说明理由.
17.现有长为150cm 的铁丝,要截成n (n >2)小段,每段的长为不小于1(cm )的整数.如果其中任意三小段都不能拼成三角形,试求n 的最大值,此时有几种方法将该铁丝截成满足条件的n 段.
18.如图,⊙O 为△ABC 的外接圆,∠BAC=60°,H 为边AC ,AB 上的高BD ,CE 的交点,在BD 上取点M ,使BM=CN.
(1)求证:∠BOC=∠BHC ; (2)求证:△BOM ≌△COH ;
(3)求OH
MH
的值.
2006年义乌市初中数学竞赛试题
答案
1 2 3 4 5 6 C C D C D C 7 8 9
10
11 12 1 24 102±-
95.295.2+=x y
58 3 13 14 16 2
15 712.40元或730元
16 无有理根
17
有7种方式:
1,1,2,3,5,8,13,21,34,62; 1,1,2,3,5,8,13,21,35,61; 1,1,2,3,5,8,13,21,36,60; 1,1,2,3,5,8,13,21,37,59; 1,1,2,3,5,8,13,22,35,60; 1,1,2,3,5,8,13,22,36,59; 1,1,2,3,5,8,14,22,36,58. 18
(1)、(2)略;(3)3。