超详细的磁盘阵列图文教程
Raid教程:全程图解手把手教你做RAID磁盘阵列

Raid教程:全程图解手把手教你做RAID磁盘阵列一、磁盘阵列实现方式磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。
软件阵列是指通过网络操作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。
如微软的Windows NT/2000Server/Server 2003和NetVoll的NetWare两种操作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/Server 2003可以提供RAID 0、RAID 1、RAID 5;NetWare操作系统可以实现RAID 1功能。
软件阵列可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降代还比较大,达30%左右。
硬件阵列是使用专门的磁盘阵列卡来实现的,这就是本文要介绍的对象。
现在的非入门级服务器几乎都提供磁盘阵列卡,不管是集成在主板上或非集成的都能轻松实现阵列功能。
硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。
它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。
磁盘阵列卡拥有一个专门的处理器,如Intel的I960芯片,HPT370A/372 、Silicon Image SIL3112A等,还拥有专门的存贮器,用于高速缓冲数据。
这样一来,服务器对磁盘的操作就直接通过磁盘阵列卡来进行处理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。
阵列卡专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并且更安全更稳定。
二、几种磁盘阵列技术RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。
目前对RAID 级别的定义可以获得业界广泛认同的有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。
RAID 0是无数据冗余的存储空间条带化,具有成本低、读写性能极高、存储空间利用率高等特点,适用于音、视频信号存储、临时文件的转储等对速度要求极其严格的特殊应用。
磁盘阵列RAID的建立和系统安装(图解)

磁盘阵列RAID的建立和系统安装(图解)SATA和RAID在提升硬盘性能方面,确实给用户带来新的性能。
目前Intel、VIA、NVIDIA在各自的芯片组里都加入了SATA和RAID 功能.所以这里偶转帖一个用NVIDIA的RAID做了图,供大家参考。
以后会陆续转帖INTEL和VIA的RAID图片供大家参考。
1、BIOS设置和RAID设置nForce系列芯片组的BIOS里有关SATA和RAID的设置选项有两处,都在Integrated Peripherals(整合周边)菜单内。
SATA的设置项:Serial-ATA,设定值有[Enabled], [Disabled]。
这项的用途是开启或关闭板载Serial-ATA控制器。
使用SATA硬盘必须把此项设置为[Enabled]。
如果不使用SATA硬盘可以将此项设置为[Disabled],可以减少占用的中断资源。
RAID的设置项在Integrated Peripherals/Onboard Device(板载设备)菜单内,光标移到Onboard Device,按<Enter>进入如子菜单:其中RAID Config就是RAID配置选项,光标移到RAID Config,按<Enter>就进入如RAID配置菜单:菜单的第一项IDE RAID是确定是否设置RAID,设定值有[Enabled], [Disabled]。
如果不做RAID,就保持缺省值[Disabled],此时下面的选项是不可设置的灰色。
如果做RAID就选择[Enabled],这时下面的选项才变成可以设置的黄色。
IDE RAID下面是4个IDE (PATA)通道,再下面是SATA通道。
nForce2芯片组是2个SATA 通道,nForce3/4芯片组是4个SATA通道。
可以根据你自己的意图设置,准备用哪个通道的硬盘做RAID,就把那个通道设置为[Enabled]。
下图是设置实例,设置主通道的主盘和副通道的副盘做RAID:设置完成就可退出保存BIOS设置,重新启动。
超详细的磁盘阵列图文教程

磁盘阵列(Disk Array)1.为什么需要磁盘阵列如何增加磁盘的存取(access)速度,如何防止数据因磁盘的故障而失落及如何有效的利用磁盘空间,一直是电脑专业人员和用户的困扰;而大容量磁盘的价格非常昂贵,对用户形成很大的负担。
磁盘阵列技术的产生一举解决了这些问题。
过去十年来,CPU的处理速度增加了五十倍有多,内存(memory)的存取速度亦大幅增加,而数据储存装置--主要是磁盘(hard disk)--的存取速度只增加了三、四倍,形成电脑系统的瓶颈,拉低了电脑系统的整体性能(throughput),若不能有效的提升磁盘的存取速度,CPU、内存及磁盘间的不平衡将使CPU及内存的改进形成浪费。
目前改进磁盘存取速度的的方式主要有两种。
一是磁盘快取控制(disk cache controller),它将从磁盘读取的数据存在快取内存(cache memory)中以减少磁盘存取的次数,数据的读写都在快取内存中进行,大幅增加存取的速度,如要读取的数据不在快取内存中,或要写数据到磁盘时,才做磁盘的存取动作。
这种方式在单工环境(single-tasking environment)如DOS之下,对大量数据的存取有很好的性能(量小且频繁的存取则不然),但在多工(multi-tasking)环境之下(因为要不停的作数据交换(swapping)的动作)或数据库(database)的存取(因为每一记录都很小)就不能显示其性能。
这种方式没有任何安全保障。
其二是使用磁盘阵列的技术。
磁盘阵列是把多个磁盘组成一个阵列,当作单一磁盘使用,它将数据以分段(striping)的方式储存在不同的磁盘中,存取数据时,阵列中的相关磁盘一起动作,大幅减低数据的存取时间,同时有更佳的空间利用率。
磁盘阵列所利用的不同的技术,称为RAID level,不同的level针对不同的系统及应用,以解决数据安全的问题。
一般高性能的磁盘阵列都是以硬件的形式来达成,进一步的把磁盘快取控制及磁盘阵列结合在一个控制器(RAID controller)•或控制卡上,针对不同的用户解决人们对磁盘输出入系统的四大要求:(1)增加存取速度,(2)容错(fault tolerance),即安全性(3)有效的利用磁盘空间;(4)尽量的平衡CPU,内存及磁盘的性能差异,提高电脑的整体工作性能。
磁盘阵列教程raid5和raid1(有图)

raid5及raid1磁盘阵列服务器也许一些刚刚玩服务器DIY的朋友一听到raid这个词就犯头晕,分不清楚到底说的是啥意思。
raid模式虽多,但以我的理解其实就是把2个以上的硬盘组合在一起,一块用,以达到更快的速度和更高的安全性,大家不需要了解太多raid模式,只要知道raid0、raid1和raid5就足够在服务器行业混饭了(其实什么也不知道照样混饭的人也很多),用唐华的大白话说,所谓raid0就是两块硬盘合成一块硬盘用,例如两个80G的硬盘,做成raid0模式,就变成一块160G的大硬盘,理论上硬盘传输速度也加倍,但是这种模式安全性很低,一旦一个硬盘坏了,两个硬盘里的所有数据都会报销,因此服务器上最好不用这种模式。
所谓raid1就是两块硬盘互相做同步备份(镜像),例如两块80G的硬盘,做成raid1模式,总容量还是80G没变化,硬盘传输速度也没变化,但是两个硬盘里的数据保持同步,完全一样,一旦其中一个硬盘坏了,靠另一个硬盘,服务器依然能正常运行,这种模式很安全,所以现在很多中低端服务器采取这种raid模式,这种模式简单实用,用不高的硬件成本即可实现,我很喜欢。
至于raid5,则过去一直是高档服务器的专利,即使是在今天,你翻翻许多名牌服务器的价目表,在1-2万元的产品里也很难觅到raid5的身影,采用raid5可以兼顾raid0的速度、容量和raid1的安全性,是个听起来很完美的磁盘阵列方案。
硬件raid5组建:最近又亲手给一个朋友组装了一台采用双核心P4 820D处理器的8硬盘的1U机架式存储型服务器,在组装过程中,分别组建了硬件Raid5和软件Raid5的磁盘阵列,过程很值得玩味,现在写出详细的设置过程,以期抛砖引玉,给大家带来更多一点启发。
首先将服务器组装好,然后给硬盘插上SATA的数据线,插入主板上的四个SATA接口,用并口线连接好我的LG刻录机当光驱用,这个主板只提供了1个并口IDE接口用来接光驱正好,连上显示器、键盘、鼠标,开机测试,启动顺利,按DEL键进入bios。
HP磁盘阵列的扩展和迁移图文教程

阵列的扩容和迁移实验步骤:将硬盘添加到硬盘槽位中,然后开机使用smartstart光盘进行引导进入ACU默认选择SmartStart 8.0,默认英语,然后继续。
然后选择Maintain Server。
然后点击configuration array这样就进入了阵列的配置界面,下面开始。
1.硬盘扩容这里做扩容的试验准备的是两块36.4G的硬盘,之前先通过ACU进行配置,如下图:先将第二个硬盘添加到这个阵列中,点击parallel SCSI Array A,然后点击右边Expand Array,如下图:然后选中36.4G Drives,再点击OK然后可以看到有36.4G的Unused Space然后开始对逻辑盘1进行扩容,点击Logical Drive 1,再点击右边的Extends Size,如下图:然后会出现下图,默认新添加的硬盘容量.在这个位置需要注意一下,不能默认这个容量点击OK,因为在位置1显示的是原来使用一个硬盘做的RAID 0的容量,位置2显示的是两个硬盘的总容量。
现在新添加了一个硬盘做扩容,所以在位置1需要添入的是两个硬盘的总容量,然后点击OK,会出现一个警告提示,点击OK即可。
如下图所示的位置提示。
然后可以看到下图所示,Logical Drive 1 的容量是69452MB。
到这个位置,扩容结束,添加进来的unused space都划分到逻辑盘一里面。
2.阵列迁移在阵列迁移,这里一共使用了4个36.4G大小的硬盘,在ACU中可以看到如下图的显示:一.建立逻辑盘先使用一个硬盘建立一个逻辑盘,然后点击OK,如下图所示:建立完成之后,这个空间是unused space,如下图所示:需要对这个unused space进行创建逻辑盘,点击unused space然后选择右边的create logical drive,会出现下图所示:选择raid 0,然后点击OK。
出现警告信息,继续选择OK。
服务器磁盘阵列详细图解

服务器磁盘阵列详细图解RAID 0RAID 0又称为Stripe或Striping,它代表了所有RAID级别中最高的存储性能。
RAID 0提高存储性能的原理是把连续的数据分散到多个磁盘上存取,这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求。
这种数据上的并行操作可以充分利用总线的带宽,显著提高磁盘整体存取性能。
如图1所示:从理论上讲,三块硬盘的并行操作使同一时间内磁盘读写速度提升了3倍。
但由于总线带宽等多种因素的影响,实际的提升速率肯定会低于理论值,大量数据并行传输与串行传输比较,提速效果显著显然毋庸置疑。
RAID 0的缺点是不提供数据冗余,因此一旦用户数据损坏,损坏的数据将无法得到恢复。
RAID 0具有的特点,使其特别适用于对性能要求较高,而对数据安全不太在乎的领域,如图形工作站等。
对于个人用户,RAID 0也是提高硬盘存储性能的绝佳选择。
容错性:没有冗余类型:没有热备盘选项:没有读性能:高随机写性能:高连续写性能:高需要的磁盘数:一个或多个可用容量:总的磁盘的容量典型应用:无故障的迅速读写,要求安全性不高,如图形工作站等。
RAID 1RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。
RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。
当读取数据时,系统先从RAID 0的源盘读取数据,如果读取数据成功,则系统不去管备份盘上的数据;如果读取源盘数据失败,则系统自动转而读取备份盘上的数据,不会造成用户工作任务的中断。
当然,我们应当及时地更换损坏的硬盘并利用备份数据重新建立Mirror,避免备份盘在发生损坏时,造成不可挽回的数据损失。
由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。
同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror 的磁盘空间利用率低,存储成本高。
磁盘阵列使用说明

磁盘阵列正面图:磁盘阵列背面图:1,打开背面风扇的电源(2个),磁盘阵列启动,背面上面的的一个网口是控制口,设定和修改参数必须通过这个口访问,下面并排4个口是通道口,用来数据的交换和储存。
2,在前面板有个液晶微型控制键盘,用来配置磁盘阵列,按键操作说明:ENT长按——进入主菜单方向键——翻页ENT短按——选择对应的菜单3,查看后面控制口(lan)和通道口(ch0~3)的IP地址,以此进入下列菜单view and edit configuration parameters->conmunication parameters->internet protocol (tcp/ip)->然后选择需要查看的网口,我们现在查看控制口lan的IP,选择lan0->view and set ip address 查看当前的lan口IP或者更改IP,详细配置方法可看附录1《利用液晶面板设置IP地址.pdf》为方便叙述,现在假设lan口IP为192。
168.0.2,ch0口IP为192.168.0.3,ch1为192.168.0.4通过IE配置磁盘阵列4,通过IE输入LAN口地址,//192.168.0.2选择configuration,密码为空,进入配置界面。
5,选择logic Drive->create logical Drive(创建RAID),绿色的是可以使用的硬盘。
选择要创建RAID的硬盘,这里选取5块硬盘来创建RAID5+space,在RAID Level里选择RAID5+space Drive,其他默认,点击APPL Y确认创建6,给创建的RAID分区,,点击图画的raid阵列,然后选择PARTITION进入分区列表7,在下图位置点加号新建分区,减号删除分区8,创建好分区,点击左边标题栏;host lan->Creat lan创建映射,点击下面的位置,可以看到分区列表;9,选中1个分区,根据所要用的CH通道口,将分区映射到通道,这里我们把分区全部映射到ch0,选中p0分区,将channel physical no选择0,点击apply确认。
联想服务器RD450-配置RAID5阵列图文方法

想服务器RD450-配置RAID5阵列图文方法联想服务器RD450 配置RAID5阵列图文方法【来源:小鸟云计算】小鸟云,免费12个月主机套餐,只为建站而生。
实验环境:1、服务器型号ThinkServer RD4502、四块1TB普通SATA硬盘实验目的:配置RAID 5 ,搭建公司文件共享服务器使用。
标注:本教程四块硬盘全做RAID 5,如果有一块硬盘损坏及时更换数据恢复是没问题,如果有两块或两块以上硬盘损坏就会发生灾难性数据损坏,建议有可靠的外置备份服务器可以全做RAID 5。
1、开机---- 按F1键进入BIOS ---- Boot Manager ---- Adapters and UEFI Drivers2、选择Lenovo THinkServer RAID 110i 进行配置3、选择Virtual Drive Management (虚拟驱动管理器)4、选择Create Configuration (创建配置)5、选择Select RAID Level (选择RAID 级别) ---- 选择RAID5进行确认选择6、选择Select Drivers (选择驱动程序)7、四块硬盘全选择Enabled ---- 选择Apply Changes (应用更改)8、选择OK9、选择Save Configuration (保存配置)10、选择Yes11、选择OK12、选择Virtual Drive Management (虚拟驱动管理器)13、选择Select Virtual Drive Operations (选择虚拟驱动器操作)14、选择Virtual Drive Operation (虚拟驱动器操作) ---- 选择Fast Initialization (快速初始化)15、选择Start Operation (开始操作)16、选择Yes17、选择OK18、按F10退出并保存。
磁盘阵列(RAID)图解教程

磁盘阵列可以在安装系统之前或之后产生,系统会视之为一个(大型)硬盘,而它具有容错及冗余的功能。
磁盘阵列不单只可以加入一个现成的系统,它更可以支持容量扩展,方法也很简单,只需要加入一个新的硬盘并执行一些简单的指令,系统便可以实时利用这新加的容量。
·RAID 的种类及应用IDE和SCSI是计算机的两种不同的接口,前者普遍用于PC机,后者一般用于服务器。
基于这两种接口,RAID分为两种类型:基于IDE接口的RAID应用,称为IDE RAID;而基于SCSI接口的RAID应用则相应称为SCSI RAID。
基于不同的架构,RAID 又可以分为:● 软件RAID (软件 RAID)● 硬件RAID (硬件 RAID)● 外置RAID (External RAID)·软件RAID很多情况下已经包含在系统之中,并成为其中一个功能,如Windows、Netware及Linux。
软件RAID中的所有操作皆由中央处理器负责,所以系统资源的利用率会很高,从而使系统性能降低。
软件RAID是不需要另外添加任何硬件设备,因为它是靠你的系统——主要是中央处理器的功能——提供所有现成的资源。
·硬件RAID通常是一张PCI卡,你会看到在这卡上会有处理器及内存。
因为这卡上的处理器已经可以提供一切RAID所需要的资源,所以不会占用系统资源,从而令系统的表现可以大大提升。
硬件RAID可以连接内置硬盘、热插拔背板或外置存储设备。
无论连接何种硬盘,控制权都是在RAID卡上,亦即是由系统所操控。
在系统里,硬件RAID PCI卡通常都需要安驱动程序,否则系统会拒绝支持。
·外置式RAID也是属于硬件RAID的一种,区别在于RAID卡不会安装在系统里,而是安装在外置的存储设备内。
而这个外置的储存设备则会连接到系统的SCSI卡上。
系统没有任何的RAID功能,因为它只有一张SCSI卡;所有的RAID功能将会移到这个外置存储里。
磁盘阵列安装终极图文教程

磁盘阵列安装终极图文教程一、准备工作:阵列必要:2个大小相同型号周期一致的硬盘(用于R0,R1,JOB模式)硬件工具:一个硬盘载体,用于母盘制作,主盘启动(可以用IDE/SATA硬盘,USB移动硬盘,大容量U盘)软件工具:HDTunePro,带WINPE的U盘启动盘,驱动精灵。
如果要新装系统,GHOST安装盘,硬装盘自选。
我本机已经有个WD 500G 的绿盘了,我目标是把500G 绿盘资料转到阵列R0 1TB上。
我购买了2个全新同型号的WD 500G 蓝盘来做这次演示!这个是我的绿盘2个全新硬盘二、安装组建篇1.硬件阵列的组建:阵列我以前就说过是主板带的硬盘模式而已。
组建硬件阵列第一步:接上2个全新的WD 500G 蓝盘。
第2步:进入主板BIOS设置界面,找到硬盘模式相关设置,设置完成保存退出重启!看到没有Storage Configuration,点击进入由于主板支持单独定义2组SATA硬盘1-4 5-6两组本次使用的主启动盘是SATA的原因在这里有些主板不能这样单独设置的话请使用其他介质!正确的设置BIOS 1-4 阵列模式5-6 IDE模式对应硬盘也要在主板相应的编号接口上插好哦搜集整理:电脑实用技巧&实用绿色破解软件电脑100 第3步:进入阵列参数设置阵列类型保存BIOS退出重启后将出现下面的画面记住按CRTL+F 这2个键进入设置!阵列功能主界面有4个选项:1.查看阵列。
2.组建功能。
3。
删除类 4.控制设置我们这里需要用到的是第2个:LD VIEW/LD DEFINE MENU 点进入出现如下界面如何创建阵列呢同学需要注意下面这里的提示:< CTRL+C > Define LD 这个就是创建阵列的操作界面了!!进入阵列创建模式的菜单操作指令最下面都有《上下》选择《空格》修改。
2个硬盘可以创建阵列0 、1、JBOD 这三个模式,通常我们选择RO R1 这2个JOB那个无视了,这个JBOD 模式等于2个硬盘“无缝焊接” 第一个装满了装第2个!!正确的RO 设置注意128K Y Y 2个下图搜集整理:电脑实用技巧&实用绿色破解软件电脑100 设置完成保存弹出一个界面这个界面说的是:要给这个阵列命名就再按Ctrl+Y 不需要名字的话就任意键下一步按照提示保存退出组建完成重启后提示是这样的(我取了个名字1TB )第4步安装系统首先说明这里安装如果使用常规手段必然导致的结果是系统不能识别阵列蓝屏!所以我们换个角度让系统识别阵列(就是如何在系统启动的时候就有驱动可用)接上原来的WD 绿盘插在SATA 5-6 这组上进BIOS 设置硬盘启动优先启动WD 绿盘搜集整理:电脑实用技巧&实用绿色破解软件电脑100 以上操作后进入绿盘上原来的WIN7 系统嘿嘿就会提示这个东西啦有同学以前装过完整驱动的话当然这个时候是可以加载到的,有同学没有装过会提示安装不成功怎么办呢!!看吧感谢驱动精灵驱动人生这2款超好用的软件驱动完整后阵列就可以看到了这里可以不用分区什么的,如何系统到阵列我们下面讲.(注意这里必须保证能在系统下看到阵列。
磁盘阵列图文教程,看如何玩转SSD+双HDD

磁盘阵列图文教程,看如何玩转SSD+双HDD随着SSD的逐步普及,个人电脑的性能有了非常显著的提速,但是与此同时,人们对存储数据的容量还有安全性方面的要求也越来越高,SSD尽管性能非常出众,但是在价格和容量上,毕竟还是相比传统硬盘有比较大的劣势,那如何组建一套性能和容量比较平衡的系统呢?SSD+HDD磁盘阵列就是一个比较可靠的选择。
下面我们给大家做一个这方面的实例,怎么样去组建这样的存储系统。
当然了,SSD的性能比较出色,理所当然打头阵,担负起安装和运行系统的重任,而机械硬盘阵列主要负责数据的存储,毕竟现在一个2T的硬盘,价格比64G的SSD还便宜。
SSD虽说只是安装系统,但是目前系统占用的容量可不小,40G左右的SSD也是不够用的,所以选择的是128G的金士顿V100系列。
搭配原来系统已有的两块硬盘再来一张在安装系统之前,先介绍设置Raid的方法,首先在BIOS里把磁盘模式更改为RAID然后保存重启,按Ctrl+I我们就会进入阵列设置界面,选择光标里面的第一项,创建RAID(Create RAID Volume)选择RAID模式,这里我们用的是RAID0,容量是两个硬盘相加,速度翻倍。
设置完成后确认,系统便会自动帮你组建好磁盘阵列,这里要特别注意的是,如果硬盘上有数据,记得做备份,一旦设置了RAID模式,那么硬盘会进行一次格式化,数据会全部清空!RAID系统的建立是不是非常简单呢??接下来安装系统对大部分人来说就更简单了,过一下。
装入SSD后,由于我们是用来引导和运行系统的,因此这里一定要先把金士顿的这个SSD设置在优先启动的位置上,然后根据你使用来安装系统的介质,开机按F12进行选择并进行引导和安装,当然了,也可以在BIOS里设置好,大家可以灵活安排安装的流程。
Windows的安装管理器,并不会对硬盘的名称进行显示,因此要根据容量来识别。
这块V100硬盘容量是128G,实际可用是119G左右,因此选定它进行系统安装。
全程图解手把手教你做RAID磁盘阵列3

全程图解手把手教你做RAID磁盘阵列3 全程图解手把手教你做RAID磁盘阵列 32. 在AIM/LSI磁盘阵列控制器上创建Logical Drive(逻辑磁盘)注意:请预先备份您服务器上的数据,配置磁盘阵列的过程将会删除您的硬盘上的所有数据!整个磁盘阵列配置过程与上面介绍的在Adaptec磁盘阵列控制器上创建容器的方法类似。
具体如下: 第1步,在开机自检过程中,出现如(图11)所示提示时,按下“Control+M”组合键,进入如(图12)所示的RAID的配置界面。
图11(点击看大图)图12(点击看大图)第2步,按任意键继续,继续进入如(图13)所示管理主菜单(Management Menu)配置界面。
选中“Configure”选项,然后按回车键,即弹出下级子菜单,如(图14)所示。
图13(点击看大图)图14(点击看大图)第3步,如果需要重新配置一个RAID,请选中“New Configuration”;如果已经存在一个可以使用的逻辑磁盘,请选中“View/Add Configuration”,并按回车键。
在此,我们以新建磁盘阵列为例进行介绍。
选择“New Configuration”选项。
按回车键后,弹出一个小对话框,如(图15)所示。
图15(点击看大图)第4步,选择“YES”项,并按回车键,进入如(图16)所示配置界面。
使用空格键选中准备要创建逻辑磁盘的硬盘,当该逻辑磁盘里最后的一个硬盘被选中后,按回车键。
图16(点击看大图)第5步,如果您的服务器中的阵列卡类型是PERC4 DI/DC,此时在回车后,将显示如(图17)所示配置界面,否则请直接赶往第7步。
图17(点击看大图)第6步,按空格键选择阵列跨接信息,例如Span-1(跨接-1),出现在阵列框内。
可以创建多个阵列,然后选择将其跨接。
第7步,按“F10”键配置逻辑磁盘。
选择合适的RAID类型,其余接受默认值。
选中“Accept”,并按回车键确认,即弹出如(图18)所示的最终配置信息提示框。
超详细的磁盘阵列图文教程

磁盘阵列(Disk Array)1.为什么需要磁盘阵列如何增加磁盘的存取(access)速度,如何防止数据因磁盘的故障而失落及如何有效的利用磁盘空间,一直是电脑专业人员和用户的困扰;而大容量磁盘的价格非常昂贵,对用户形成很大的负担。
磁盘阵列技术的产生一举解决了这些问题。
过去十年来,CPU的处理速度增加了五十倍有多,内存(memory)的存取速度亦大幅增加,而数据储存装置--主要是磁盘(hard disk)--的存取速度只增加了三、四倍,形成电脑系统的瓶颈,拉低了电脑系统的整体性能(throughput),若不能有效的提升磁盘的存取速度,CPU、内存及磁盘间的不平衡将使CPU及内存的改进形成浪费。
目前改进磁盘存取速度的的方式主要有两种。
一是磁盘快取控制(disk cache controller),它将从磁盘读取的数据存在快取内存(cache memory)中以减少磁盘存取的次数,数据的读写都在快取内存中进行,大幅增加存取的速度,如要读取的数据不在快取内存中,或要写数据到磁盘时,才做磁盘的存取动作。
这种方式在单工环境(single-tasking environment)如DOS之下,对大量数据的存取有很好的性能(量小且频繁的存取则不然),但在多工(multi-tasking)环境之下(因为要不停的作数据交换(swapping)的动作)或数据库(database)的存取(因为每一记录都很小)就不能显示其性能。
这种方式没有任何安全保障。
其二是使用磁盘阵列的技术。
磁盘阵列是把多个磁盘组成一个阵列,当作单一磁盘使用,它将数据以分段(striping)的方式储存在不同的磁盘中,存取数据时,阵列中的相关磁盘一起动作,大幅减低数据的存取时间,同时有更佳的空间利用率。
磁盘阵列所利用的不同的技术,称为RAID level,不同的level针对不同的系统及应用,以解决数据安全的问题。
一般高性能的磁盘阵列都是以硬件的形式来达成,进一步的把磁盘快取控制及磁盘阵列结合在一个控制器(RAID controller)•或控制卡上,针对不同的用户解决人们对磁盘输出入系统的四大要求:(1)增加存取速度,(2)容错(fault tolerance),即安全性(3)有效的利用磁盘空间;(4)尽量的平衡CPU,内存及磁盘的性能差异,提高电脑的整体工作性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁盘阵列(Disk Array)1.为什么需要磁盘阵列如何增加磁盘的存取(access)速度,如何防止数据因磁盘的故障而失落及如何有效的利用磁盘空间,一直是电脑专业人员和用户的困扰;而大容量磁盘的价格非常昂贵,对用户形成很大的负担。
磁盘阵列技术的产生一举解决了这些问题。
过去十年来,CPU的处理速度增加了五十倍有多,内存(memory)的存取速度亦大幅增加,而数据储存装置--主要是磁盘(hard disk)--的存取速度只增加了三、四倍,形成电脑系统的瓶颈,拉低了电脑系统的整体性能(throughput),若不能有效的提升磁盘的存取速度,CPU、内存及磁盘间的不平衡将使CPU及内存的改进形成浪费。
目前改进磁盘存取速度的的方式主要有两种。
一是磁盘快取控制(disk cache controller),它将从磁盘读取的数据存在快取内存(cache memory)中以减少磁盘存取的次数,数据的读写都在快取内存中进行,大幅增加存取的速度,如要读取的数据不在快取内存中,或要写数据到磁盘时,才做磁盘的存取动作。
这种方式在单工环境(single-tasking environment)如DOS之下,对大量数据的存取有很好的性能(量小且频繁的存取则不然),但在多工(multi-tasking)环境之下(因为要不停的作数据交换(swapping)的动作)或数据库(database)的存取(因为每一记录都很小)就不能显示其性能。
这种方式没有任何安全保障。
其二是使用磁盘阵列的技术。
磁盘阵列是把多个磁盘组成一个阵列,当作单一磁盘使用,它将数据以分段(striping)的方式储存在不同的磁盘中,存取数据时,阵列中的相关磁盘一起动作,大幅减低数据的存取时间,同时有更佳的空间利用率。
磁盘阵列所利用的不同的技术,称为RAID level,不同的level针对不同的系统及应用,以解决数据安全的问题。
一般高性能的磁盘阵列都是以硬件的形式来达成,进一步的把磁盘快取控制及磁盘阵列结合在一个控制器(RAID controller)•或控制卡上,针对不同的用户解决人们对磁盘输出入系统的四大要求:(1)增加存取速度,(2)容错(fault tolerance),即安全性(3)有效的利用磁盘空间;(4)尽量的平衡CPU,内存及磁盘的性能差异,提高电脑的整体工作性能。
2.磁盘阵列原理磁盘阵列中针对不同的应用使用的不同技术,称为RAID level, RAID是Redundant Array of Inexpensive Disks的缩写,而每一level代表一种技术,目前业界公认的标准是RAID 0~RAID 5。
这个level并不代表技术的高低,level 5并不高于level 3,level 1也不低过level 4,至于要选择那一种RAID level 的产品,纯视用户的操作环境(operating environment)及应用(application)而定,与level的高低没有必然的关系。
RAID 0及RAID 1适用于PC及PC相关的系统如小型的网络服务器(network server)及需要高磁盘容量与快速磁盘存取的工作站等,因为比较便宜,但因一般人对磁盘阵列不了解,没有看到磁盘阵列对他们价值,市场尚未打开;RAID 2及RAID 3适用于大型电脑及影像、CAD/CAM等处理;RAID 5多用于OLTP,因有金融机构及大型数据处理中心的迫切需要,故使用较多而较有名气,但也因此形成很多人对磁盘阵列的误解,以为磁盘阵列非要RAID 5不可;RAID 4较少使用,因为两者有其共同之处,而RAID 4有其先天的限制。
其他如RAID 6,RAID 7,乃至RAID 10等,都是厂商各做各的,并无一致的标准,在此不作说明。
介绍各个RAID level之前,先看看形成磁盘阵列的两个基本技术:译为磁盘延伸,能确切的表示disk spanning这种技术的含义。
如下图所示,DFTraid 磁盘阵列控制器,联接了四个磁盘:这四个磁盘形成一个阵列(array),而磁盘阵列的控制器(RAID controller)是将此四个磁盘视为单一的磁盘,如DOS环境下的C:盘。
这是disk spanning的意义,因为把小容量的磁盘延伸为大容量的单一磁盘,用户不必规划数据在各磁盘的分布,而且提高了磁盘空间的使用率。
DFTraid的SCSI磁盘阵列更可连接几十个磁盘,形成数十GB到数百GB的阵列,使磁盘容量几乎可作无限的延伸;而各个磁盘一起作取存的动作,比单一磁盘更为快捷。
很明显的,有此阵列的形成而产生RAID的各种技术。
我们也可从上图看出inexpensive(便宜)的意义,因为四个250MBbytes的磁盘比一个1GBytes的磁盘要便宜,尤其以前大磁盘的价格非常昴贵,但在磁盘越来越便宜的今天,inexpensive已非磁盘阵列的重点,虽然对于需要大磁盘容量的系统,仍是考虑的要点。
因为磁盘阵列是将同一阵列的多个磁盘视为单一的虚拟磁盘(virtual disk),所以其数据是以分段(block or segment)的方式顺序存放在磁盘阵列中,如下图:数据按需要分段,从第一个磁盘开始放,放到最後一个磁盘再回到第一个磁盘放起,直到数据分布完毕。
至于分段的大小视系统而定,有的系统或以1KB最有效率,或以4KB,或以6KB,甚至是4MB或8MB的,但除非数据小于一个扇区(sector,即521bytes),否则其分段应是512byte的倍数。
因为磁盘的读写是以一个扇区为单位,若数据小于512bytes,系统读取该扇区后,还要做组合或分组(视读或写而定)的动作,浪费时间。
从上图我们可以看出,数据以分段于在不同的磁盘,整个阵列的各个磁盘可同时作读写,故数据分段使数据的存取有最好的效率,理论上本来读一个包含四个分段的数据所需要的时间约=(磁盘的access time +数据的transfer time)X4次,现在只要一次就可以完成。
若以N表示磁盘的数目,R表示读取,W表示写入,S表示可使用空间,则数据分段的性能为:R:N(可同时读取所有磁盘)W:N(可同时写入所有磁盘)S:N(可利用所有的磁盘,并有最佳的使用率)Disk striping也称为RAID 0,很多人以为RAID 0没有甚么,其实这是非常错误的观念,因为RAID 0使磁盘的输出入有最高的效率。
而磁盘阵列有更好效率的原因除数据分段外,它可以同时执行多个输出入的要求,因为阵列中的每一个磁盘都能独立动作,分段放在不同的磁盘,不同的磁盘可同时作读写,而且能在快取内存及磁盘作并行存取(parallel access)的动作,但只有硬件的磁盘阵列才有此性能表现。
从上面两点我们可以看出,disk spanning定义了RAID的基本形式,提供了一个便宜、灵活、高性能的系统结构,而disk striping解决了数据的存取效率和磁盘的利用率问题,RAID 1至RAID 5是在此基础上提供磁盘安全的方案。
RAID 1RAID 1是使用磁盘镜像(disk mirroring)的技术。
磁盘镜像应用在RAID 1之前就在很多系统中使用,它的方式是在工作磁盘(working disk)之外再加一额外的备份磁盘(backup disk),两个磁盘所储存的数据完全一样,数据写入工作磁盘的同时亦写入备份磁盘。
磁盘镜像不见得就是RAID 1,如Novell NetWare亦有提供磁盘镜像的功能,但并不表示NetWare有了RAID 1的功能。
一般磁盘镜像和RAID 1有二点最大的不同:RAID 1无工作磁盘和备份磁盘之分,多个磁盘可同时动作而有重叠(overlapping)读取的功能,甚至不同的镜像磁盘可同时作写入的动作,这是一种最佳化的方式,称为负载平衡(load-balance)。
例如有多个用户在同一时间要读取数据,系统能同时驱动互相镜像的磁盘,同时读取数据,以减轻系统的负载,增加I/O的性能。
RAID 1的磁盘是以磁盘延伸的方式形成阵列,而数据是以数据分段的方式作储存,因而在读取时,它几乎和RAID 0有同样的性能。
从RAID的结构就可以很清楚的看出RAID 1和一般磁盘镜像的不同。
下图为RAID 1,每一笔数据都储存两份从上图可以看出:R:N(可同时读取所有磁盘)W:N/2(同时写入磁盘数)S:N/2(利用率)读取数据时可用到所有的磁盘,充分发挥数据分段的优点;写入数据时,因为有备份,所以要写入两个磁盘,其效率是N/2,磁盘空间的使用率也只有全部磁盘的一半。
很多人以为RAID 1要加一个额外的磁盘,形成浪费而不看好RAID 1,事实上磁盘越来越便宜,并不见得造成负担,况且RAID 1有最好的容错(fault tolerance)能力,其效率也是除RAID 0之外最好的。
我们可视应用的不同,在同一磁盘阵列中使用不同的RAID level,如华艺科技公司的DFTraid系列都可同一磁盘阵列中定义八个逻辑磁盘(logic disk),分别使用不同的RAID level,分为C:,D:及E:三个逻辑磁盘(或LUN0,LUN1,LUN2).RAID 1完全做到了容错包括不停机(non-stop),当某一磁盘发生故障,可将此磁盘拆下来而不影向其他磁盘的操作;待新的磁盘换上去之后,系统即时做镜像,将数据重新复上去,RAID 1在容错及存取的性能上是所有RAID level之冠。
在磁盘阵列的技术上,从RAID 1到RAID 5,不停机的意思表示在工作时如发生磁盘故障,系统能持续工作而不停顿,仍然可作磁盘的存取,正常的读写数据;而容错则表示即使磁盘故障,数据仍能保持完整,可让系统存取到正确的数据,而SCSI的磁盘阵列更可在工作中抽换磁盘,并可自动重建故障磁盘的数据。
磁盘阵列之所以能做到容错及不停机,是因为它有冗余的磁盘空间可资利用,这也就是Redundant的意义。
RAID 2RAID 2是把数据分散为位元(bit)或块(block),加入海明码Hamming Code,在磁盘阵列中作间隔写入(interleaving)到每个磁盘中,而且地址(address)都一样,也就是在各个磁盘中,其数据都在相同的磁道(cylinder or track)及扇区中。
RAID 2的设计是使用共轴同步(spindle synchronize)的技术,存取数据时,整个磁盘阵列一起动作,在各作磁盘的相同位置作平行存取,所以有最好的存取时间(access time),其总线(bus)是特别的设计,以大带宽(band wide)并行传输所存取的数据,所以有最好的传输时间(transfer time)。
在大型档案的存取应用,RAID 2有最好的性能,但如果档案太小,会将其性能拉下来,因为磁盘的存取是以扇区为单位,而RAID 2的存取是所有磁盘平行动作,而且是作单位元的存取,故小于一个扇区的数据量会使其性能大打折扣。