运筹学单纯形法的例题ppt课件
合集下载
运筹学单纯形法PPT课件
![运筹学单纯形法PPT课件](https://img.taocdn.com/s3/m/d73fa32dd5bbfd0a785673e2.png)
由上式得 A 11
1 1
1 0
10 b 05
第30页/共95页
可能的基阵
A 11
1 1
1 0
10
1 1 B12 1 1
1 1 B13 1 0
1 0 B14 1 1
1 1
1 0
1 0
B23 1 0 B24 1 1 B34 0 1
C42
2!
4! 4
2
!
43 21 21 21
可令 y j x j l j 或者 y j l j x j
代入原问题
如果某个变量为自由变量,则可令
xxjj
xj , xj
0
xj
第12页/共95页
X1+X2 5 s.t -6 X1 10
X20
令 X1' = X1 +6 -6+6 X1+6 10+6 0 X1' 16
X1' +X2 11 s.t X1' 16
5
X 0 0 5 0T
为基本可行解,B13为可行基,为退化解
第32页/共95页
1 0 对于基阵 B14 1 1
则
x1 5
x1
x4
0
令 x2 0 x3 0
X 5 0 0 5T
1 1 对于基阵 B23 1 0 令 x1 0 x4 0
则
x2x2
x3 0
5
X 0 0 5 0T
s.t 3X1 +2X2 + X4 = 60
2X2
+ X5 = 24
X1 ,…, X5 0
第9页/共95页
当约束条件为 ai1 x1+ai2 x2+ … +ain xn ≥ bi
运筹学讲义-单纯形方法(ppt 78页)
![运筹学讲义-单纯形方法(ppt 78页)](https://img.taocdn.com/s3/m/8c977461ad51f01dc381f1af.png)
为变量xj关于基B的判别数,j=1,2, -------, n。
7 2020/11/2
五、 单纯形方法
2、判别向量与判别数: (的b)判λ别N=向CN量-C,BB其-1中N为任对一应分基量Bλ的j=c所j-C有BB非-1基Aj变量XN 为-非---基-, 变n。量xj关于基B的判别数,j=m+1,m+2, ----(c)所有基变量的判别向量是零向量,所有基变
(一)人工变量消除法——M法 2、M法的辅助线性规划问题:
原问题:
Max z=c1x1+c2x2+……+cnxn s.t. a11x1+a12x2+……+a1nxn=b1 a21 x1+ a22x2+…… +a2nxn =b2
……
am1x1+am2x2+……+amnxn=bm x1,x2, ……,xn ≥ 0
函数值Z/ >0,则原问题无解。 [证明](请同学们自己做一做)。 (3)辅助问题在最优基B下目标函数的值Z/=0,此时有 两种情况:第一种情况,若辅助问题的最优基B对应的 基变量中无人工变量,则该最优基也是原问题的可行 基,这时候只要在单纯形表中去掉人工变量所在的列 和最后一行,即可得到原问题的初始可行单纯形表。
9 2020/11/2
五、 单纯形方法
(三)单纯形方法:表上作业法
1、单纯形表的构造
方法1:C-CBB-1A=(CB,CN)-CBB-1(B,N) =(0,CN-CBB-1N)
两边同乘上X得:
(C-CBB-1A)X= (0,CN-CBB-1N)X,化简得: Z=CBB-1b+(CN-CBB-1N) XN
3 X2 1.5 0.5 1 0.25 0
7 2020/11/2
五、 单纯形方法
2、判别向量与判别数: (的b)判λ别N=向CN量-C,BB其-1中N为任对一应分基量Bλ的j=c所j-C有BB非-1基Aj变量XN 为-非---基-, 变n。量xj关于基B的判别数,j=m+1,m+2, ----(c)所有基变量的判别向量是零向量,所有基变
(一)人工变量消除法——M法 2、M法的辅助线性规划问题:
原问题:
Max z=c1x1+c2x2+……+cnxn s.t. a11x1+a12x2+……+a1nxn=b1 a21 x1+ a22x2+…… +a2nxn =b2
……
am1x1+am2x2+……+amnxn=bm x1,x2, ……,xn ≥ 0
函数值Z/ >0,则原问题无解。 [证明](请同学们自己做一做)。 (3)辅助问题在最优基B下目标函数的值Z/=0,此时有 两种情况:第一种情况,若辅助问题的最优基B对应的 基变量中无人工变量,则该最优基也是原问题的可行 基,这时候只要在单纯形表中去掉人工变量所在的列 和最后一行,即可得到原问题的初始可行单纯形表。
9 2020/11/2
五、 单纯形方法
(三)单纯形方法:表上作业法
1、单纯形表的构造
方法1:C-CBB-1A=(CB,CN)-CBB-1(B,N) =(0,CN-CBB-1N)
两边同乘上X得:
(C-CBB-1A)X= (0,CN-CBB-1N)X,化简得: Z=CBB-1b+(CN-CBB-1N) XN
3 X2 1.5 0.5 1 0.25 0
管理运筹学 第5章 单纯形法-PPT精品文档
![管理运筹学 第5章 单纯形法-PPT精品文档](https://img.taocdn.com/s3/m/6637a128a6c30c2259019e56.png)
**对于求目标函数最小值的情况,只需把 j ≤0改为 ≥j0
管理运筹学
9
§1 单纯形法的基本思路和原理
三、 基变换 通过检验,我们知道这个初始基本可行解不是最优解。下面介绍如何进
行基变换找到一个新的可行基,具体的做法是从可行基中换一个列向量,得 到一个新的可行基,使得求解得到的新的基本可行解,其目标函数值更优。 为了换基就要确定换入变量与换出变量。 1.
σ 1=50,σ 2=100,σ 3=0,σ 4=0,σ 5=0。
管理运筹学
8
§1 单纯形法的基本思路和原理
• 2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,
如果所有检验数 ≤0,j 则这个基本可行解是最优解。下面
我们用通俗的说法来解释最优解判别定理。设用非基变量 表示的目标函数为如下形式
管理运筹学
6
§1 单纯形法的基本思路和原理
在本例题中我们就找到了一个基是单位矩阵。
1 0 0 B2 0 1 0
0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的各 列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基本可行 解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作为初始可行 基,我们将构造初始可行基,具体做法在以后详细讲述。
管理运筹学
7
§1 单纯形法的基本思路和原理
二、 最优性检验
所谓最优性检验就是判断已求得的基本可行解是否是最优解。
1. 最优性检验的依据——检验数σ j 一般来说目标函数中既包括基变量,又包括非基变量。现在我们要求
只用非基变量来表示目标函数,这只要在约束等式中通过移项等处理就可
以用非基变量来表示基变量,然后用非基变量的表示式代替目标函数中基
管理运筹学
9
§1 单纯形法的基本思路和原理
三、 基变换 通过检验,我们知道这个初始基本可行解不是最优解。下面介绍如何进
行基变换找到一个新的可行基,具体的做法是从可行基中换一个列向量,得 到一个新的可行基,使得求解得到的新的基本可行解,其目标函数值更优。 为了换基就要确定换入变量与换出变量。 1.
σ 1=50,σ 2=100,σ 3=0,σ 4=0,σ 5=0。
管理运筹学
8
§1 单纯形法的基本思路和原理
• 2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,
如果所有检验数 ≤0,j 则这个基本可行解是最优解。下面
我们用通俗的说法来解释最优解判别定理。设用非基变量 表示的目标函数为如下形式
管理运筹学
6
§1 单纯形法的基本思路和原理
在本例题中我们就找到了一个基是单位矩阵。
1 0 0 B2 0 1 0
0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的各 列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基本可行 解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作为初始可行 基,我们将构造初始可行基,具体做法在以后详细讲述。
管理运筹学
7
§1 单纯形法的基本思路和原理
二、 最优性检验
所谓最优性检验就是判断已求得的基本可行解是否是最优解。
1. 最优性检验的依据——检验数σ j 一般来说目标函数中既包括基变量,又包括非基变量。现在我们要求
只用非基变量来表示目标函数,这只要在约束等式中通过移项等处理就可
以用非基变量来表示基变量,然后用非基变量的表示式代替目标函数中基
运筹学之单纯形法.ppt
![运筹学之单纯形法.ppt](https://img.taocdn.com/s3/m/9c9fda3ee45c3b3566ec8b61.png)
x1 ,x2 ,… ,xn ≥ 0
2.基本过程:
1)加入人工变量;
2)通过单纯形法的迭带,将虚拟的人 工变量从原来的基变量中替换出去, 变成非基变量,使每一个人工变量都 等于0.反之,如果不能都变为非基变 量,表明原问题无可行解.
(一)、大M法:
2.4 单纯形法补遗
2.4.1 进基变量的相持及其突破
Y
结束
N
沿边界找新
的基本可行解
2.1 单纯形法的基本思想
单纯形法的三种形式:1)方程组形式; 2)表格形式;3)矩阵形式。
2.1.1 方程组形式的单纯形法
maxZ=3X1 +5X2
X1
+X3
=8
2X2 +X4 =12
3X1+4X2
+X5 =36
X1 … X5 0
解:(1)、确定初始可行解
B=(a3 a4 a5)=I Z -3X1-5X2 =0 X3 =8- X1 X4=12-2X2
此时可以确定X5为离基变量
Z
+1/2X4 +X5 =42
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4 =6
X1 -2/3X4+1/3X5=4
令X4 =X5 =0
X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2, 5=1, Z值不
再增大了,X值是最优基本解
即:X*=(4,6)T,Z*=42
X6
X7
CB XB -36 M -M -6 -M -4 0
0
M
0
0
0
X3 100
2
3
1
00
0
2.基本过程:
1)加入人工变量;
2)通过单纯形法的迭带,将虚拟的人 工变量从原来的基变量中替换出去, 变成非基变量,使每一个人工变量都 等于0.反之,如果不能都变为非基变 量,表明原问题无可行解.
(一)、大M法:
2.4 单纯形法补遗
2.4.1 进基变量的相持及其突破
Y
结束
N
沿边界找新
的基本可行解
2.1 单纯形法的基本思想
单纯形法的三种形式:1)方程组形式; 2)表格形式;3)矩阵形式。
2.1.1 方程组形式的单纯形法
maxZ=3X1 +5X2
X1
+X3
=8
2X2 +X4 =12
3X1+4X2
+X5 =36
X1 … X5 0
解:(1)、确定初始可行解
B=(a3 a4 a5)=I Z -3X1-5X2 =0 X3 =8- X1 X4=12-2X2
此时可以确定X5为离基变量
Z
+1/2X4 +X5 =42
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4 =6
X1 -2/3X4+1/3X5=4
令X4 =X5 =0
X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2, 5=1, Z值不
再增大了,X值是最优基本解
即:X*=(4,6)T,Z*=42
X6
X7
CB XB -36 M -M -6 -M -4 0
0
M
0
0
0
X3 100
2
3
1
00
0
运筹学1-4单纯形法计算步骤ppt课件
![运筹学1-4单纯形法计算步骤ppt课件](https://img.taocdn.com/s3/m/c338c0d783c4bb4cf6ecd17f.png)
x4
θ
0 x3 21 1 3 1 0 7
0 x4 4 -1 1 0 1 4
cj-zj
3900
0 x3 9 4 0 1 -3
9 x2 4 -1 1 0 1
cj-zj
12 0 0 -9
第19页
cj
3900
CB XB b
x1
x2
x3
x4
θ
0 x3 21 1 3 1 0 7
0 x4 4 -1 1 0 1 4
1 -1 0 1 -
1100
所以把x3换出为非基变量,x2为换入变量即新的基变量。
第29页
cj
CB XB b
0
x3 4
0
x4 2
cj-zj
1
x2 4
1100
x1
x2
x3
x4
θ
-2 1 1 0 4
1 -1 0 1 -
1100
-2 1 1 0
第30页
cj
CB XB b
0
x3 4
0
x4 2
cj-zj
1
θ
0
0 90/1
1
0 75/2
0
1 80/2
0
0
-1/2 0 21
1/2 0 75
-1
1
5
-3 0
2
-5/2
1
-1/2
-1
1
第12页
cj
6
5
0
CB
XB
b
x1
x2
x3
0
x3
90
1
3
1
0
x4
75
2
1
0
运筹学-单纯形法1课件
![运筹学-单纯形法1课件](https://img.taocdn.com/s3/m/df128e466ad97f192279168884868762caaebb28.png)
例2:
cj CB XB 0 x3 0 x4
σj 0 X3 1 x1
σj
maxZ x 1 x 2
s.t.
2x 1 x1
x2 x2
100 50
x1,x2 0
1
1
00
bi x1 x2 x3 x4
100 -2 1
1
0
50 [ 1 ] -1 0 1
11
0
0
200 0 -1 1 2
50 1 -1 0 1
唯一最优解;
• a4<0,a5<0, a6≥0
无穷多最优解;
• a6≥0,a4≤0, a5≤0, a4=0或a5=0
无界;
• a6≥0,a5>0,a2≤0, a3≤0
无可行解;
• a4≤0,a5≤0, x4或x2为人工变量, a6≥0 ;
非最优,继续换基: X3换入,x2换出
• x1为人工变量, a6>0 • a4>0,a4>a5;a6/a1>2→a1>0
0 -M -M
x5 x6 x7 θ
0 0 04 -1 1 0 1
0 0 13
-M 0 0 x2入, x6出
1 -1 0 1 -1 1 0 -
3 -3 1 1
3M -1/2
0 1/2
-4M 0 1/2 -1/2 0 1/3 -1/2 1/6
x1入, x7出 9 3/2
3/2 -M-3/2 -M+1/2 x3入, x1出
28.09.2024
11
练习: 列出初始单纯形表,并求解第2小题 的最优解
P55,2.2(1) 2.
28.09.2024
12
单纯形表
运筹学 单纯形法 应用举例33页PPT
![运筹学 单纯形法 应用举例33页PPT](https://img.taocdn.com/s3/m/45acb62e9e314332386893b3.png)
Than宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
运筹学 单纯形法 应用举例
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
运筹学 单纯形法 应用举例
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
《管理运筹学》课件02-单纯形法
![《管理运筹学》课件02-单纯形法](https://img.taocdn.com/s3/m/59ce0fc382d049649b6648d7c1c708a1294a0a77.png)
解决方案
使用单纯形法,找到最优解,即最大利润和对应的生产计 划。
整数规划问题
整数规划问题概述
整数规划是一种特殊的线性规划,其中部分或全部决策变量必须取整数值。整数规划在许多实际应用中非常重要,如 安排生产计划、分配任务等。
案例
某制造企业需要安排生产任务,每种产品需要不同的设备和人力,企业希望最大化利润,同时满足产品数量、交货期 和资源限制等约束,且所有设备必须全负荷运转。
反射法与对偶法
要点一
总结词
反射法与对偶法是两种将原问题转化为对偶问题进行求解 的方法,反射法是通过构造一个反射矩阵来转化问题,对 偶法则是通过对偶变换将原问题转化为对偶问题。
要点二
详细描述
反射法的核心思想是通过构造一个反射矩阵,将原问题中 的约束条件和目标函数进行转化,从而将原问题转化为一 个简单的子问题。对偶法则通过对偶变换将原问题中的变 量和约束条件进行重新排列和组合,从而将原问题转化为 一个对偶问题。这两种方法都可以在一定程度上简化问题 的求解过程,提高求解效率。
02
单纯形法的基本步骤
初始解的确定
确定初始基本可行解
根据问题条件,选择初始的变量值, 满足所有约束条件,构成初始的基本 可行解。
确定初始基
选择一组变量作为初始基,这些变量 对应的约束为紧约束。
迭代过程
迭代方向
在每次迭代中,通过计算目标函数的值和最优解的方向,确 定变量的调整方向。
迭代步骤
按照迭代方向,逐步调整变量的值,直到达到最优解或满足 终止条件。
证求解的精度和可靠性。
两阶段法
总结词
两阶段法是一种将原问题分解为两个阶段进行求解的方法,第一阶段是确定初始解,第二阶段是对初始解进行 优化和调整。
使用单纯形法,找到最优解,即最大利润和对应的生产计 划。
整数规划问题
整数规划问题概述
整数规划是一种特殊的线性规划,其中部分或全部决策变量必须取整数值。整数规划在许多实际应用中非常重要,如 安排生产计划、分配任务等。
案例
某制造企业需要安排生产任务,每种产品需要不同的设备和人力,企业希望最大化利润,同时满足产品数量、交货期 和资源限制等约束,且所有设备必须全负荷运转。
反射法与对偶法
要点一
总结词
反射法与对偶法是两种将原问题转化为对偶问题进行求解 的方法,反射法是通过构造一个反射矩阵来转化问题,对 偶法则是通过对偶变换将原问题转化为对偶问题。
要点二
详细描述
反射法的核心思想是通过构造一个反射矩阵,将原问题中 的约束条件和目标函数进行转化,从而将原问题转化为一 个简单的子问题。对偶法则通过对偶变换将原问题中的变 量和约束条件进行重新排列和组合,从而将原问题转化为 一个对偶问题。这两种方法都可以在一定程度上简化问题 的求解过程,提高求解效率。
02
单纯形法的基本步骤
初始解的确定
确定初始基本可行解
根据问题条件,选择初始的变量值, 满足所有约束条件,构成初始的基本 可行解。
确定初始基
选择一组变量作为初始基,这些变量 对应的约束为紧约束。
迭代过程
迭代方向
在每次迭代中,通过计算目标函数的值和最优解的方向,确 定变量的调整方向。
迭代步骤
按照迭代方向,逐步调整变量的值,直到达到最优解或满足 终止条件。
证求解的精度和可靠性。
两阶段法
总结词
两阶段法是一种将原问题分解为两个阶段进行求解的方法,第一阶段是确定初始解,第二阶段是对初始解进行 优化和调整。
运筹学Chapter线性规划及其单纯形法PPT课件
![运筹学Chapter线性规划及其单纯形法PPT课件](https://img.taocdn.com/s3/m/551fe616f61fb7360a4c65b9.png)
st.4x1x1 20x2x2816
0x1x,1x2
4x2 0
12
第4页/共61页
例2
捷运公司拟在下一年度的1~4月份的4个月内租用仓库堆放物资。已知各月份 所需仓库面积数。仓库租借费用随合同期而定,期限越长,折扣越大,具体数字如 表1-2所示。租借仓库的合同每月初都可办理,每份合同具体规定租用面积和期限。 因此,该厂可根据需要,在任何一个月初办理租借合同。每次办理可签一份,也可 签若干份租用面积和租借期限不同的合同,试确定该公司签定租借合同的最优决策, 目的是使所付租借费用最小。
D:每年初投资,每年末回收1.11。
求:5年末总资本最大
目标函数: 约束条件
组成线性规划模型的三个要素
max Z=2x1+x2 56xxxx11+,21≤+xx12225≤≥x052≤24
(3)约束条件: 指决策变量取值时受到的各种资源条件的 限制,通常用等式或不等式来表达。 其中,xij≥0叫做非负约束。
一是严格的比例性,即某种产品 对资源的消耗量和可获得的利润与其 生产数量严格成比例。
二是可迭加性。即生产多种产品
对某种资源的消耗量等于各产品对该
2021/6/1
项资源的消耗量之和。
7
第7页/共61页
二、线性规划模型的一般形式
假设线性规划问题中含有n个变量,m个约束方程。则
线性规划模型的一般形式为:
令非基变量xm+1=xm+2=…=xn=0,得
可解得m个基变量的唯一解为:
a11 a12
2021/6/1
3
第3页/共61页
24021/6/1
产品 资源
设备A(h) 设备B(h) 设备C(h) 设备D(h) 利润(元/件)
第3章 线性规划的单纯形法《管理运筹学》PPT课件
![第3章 线性规划的单纯形法《管理运筹学》PPT课件](https://img.taocdn.com/s3/m/4049ee0bcdbff121dd36a32d7375a417876fc14f.png)
当第一阶段求解结果表明问题有可行解时,第二阶段 是在原问题中去除人工变量,并从此可行解(第一阶段的 最优解)出发,继续寻找问题的最优解。
3.3 关于单纯形法的进一步讨论
根据以上思路,我们用二阶段法来求解下面例题: max z=3x1-x2-x3
x1-2x2+x3≤11 s.t. -4x1+x2+2x3≥3
,
C
CB CN
线性规划问题成为 max z=CBTXB+CNTXN+ CIT XI s.t. BXB+NXN+IXI=b XB,XN,XI≥0
3.2 单纯形法原理
这个线性规划问题可以用表3-1来表示:
表3-1称为初始单纯形表。可以看出,单纯形表中 直接包含了单纯形迭代所需要的一切信息。
3.2 单纯形法原理
3.1 线性规划的基本理论
1.可行区域的几何机构 考虑标准的线性规划问题:
min cT x
Ax b
s.t.
x
0
用Rn表示n维的欧式空间,这里x Rn,c Rn ,b Rn
,A Rmn . 不妨设可行区域 D {x Rn | Ax b, x 0} ,因此线性方程组 Ax b 相容,总可以把多余方程去掉,
3.2 单纯形法原理
1. 单纯形表的结构 设线性规划问题为 max z=CTX+CIT XI s.t. AX+XI=b X,XI≥0 设B是线性规划的一个可行基,为了表达简便,不妨
设这个基B包含在矩阵A中,即 A=[B,N]
3.2 单纯形法原理
变量X和目标函数系数向量C也相应写成:
X
XB XN
3.2 单纯形法原理
第三步:在基变量用非基变量表出的表达式中,观 察进基变量增加时各基变量变化情况,在进基变量增加 过程中首先减少到0的基变量成为“离基变量”.当进基 变量的值增加到使离基变量的值降为0时,可行解移动到 相邻的极点。
3.3 关于单纯形法的进一步讨论
根据以上思路,我们用二阶段法来求解下面例题: max z=3x1-x2-x3
x1-2x2+x3≤11 s.t. -4x1+x2+2x3≥3
,
C
CB CN
线性规划问题成为 max z=CBTXB+CNTXN+ CIT XI s.t. BXB+NXN+IXI=b XB,XN,XI≥0
3.2 单纯形法原理
这个线性规划问题可以用表3-1来表示:
表3-1称为初始单纯形表。可以看出,单纯形表中 直接包含了单纯形迭代所需要的一切信息。
3.2 单纯形法原理
3.1 线性规划的基本理论
1.可行区域的几何机构 考虑标准的线性规划问题:
min cT x
Ax b
s.t.
x
0
用Rn表示n维的欧式空间,这里x Rn,c Rn ,b Rn
,A Rmn . 不妨设可行区域 D {x Rn | Ax b, x 0} ,因此线性方程组 Ax b 相容,总可以把多余方程去掉,
3.2 单纯形法原理
1. 单纯形表的结构 设线性规划问题为 max z=CTX+CIT XI s.t. AX+XI=b X,XI≥0 设B是线性规划的一个可行基,为了表达简便,不妨
设这个基B包含在矩阵A中,即 A=[B,N]
3.2 单纯形法原理
变量X和目标函数系数向量C也相应写成:
X
XB XN
3.2 单纯形法原理
第三步:在基变量用非基变量表出的表达式中,观 察进基变量增加时各基变量变化情况,在进基变量增加 过程中首先减少到0的基变量成为“离基变量”.当进基 变量的值增加到使离基变量的值降为0时,可行解移动到 相邻的极点。
运筹学单纯形法的例题ppt课件
![运筹学单纯形法的例题ppt课件](https://img.taocdn.com/s3/m/4c6b031b83d049649a66581c.png)
《运筹学》单纯形法
2
.
04.07.2020
练习㈠用图解法和单纯形法求如 下线性规划问题的最优解:
Max z =4 x1 + x2
x1 + 3x2 ≤ 7
s.t. 4x1 + 2x2 ≤ 9
x1 , x2 ≥ 0
x1+3x2=7经过点(_7_,0)与(1,_2_)
4x1+2x2=9经过点(2,_0_.5_)与(0,_4_.5_)
❖至少有一个非基变量的检验数为正,但它的系 数全为非正,则无有限最优解;
❖所有非基变量的检验数全为非正,已有最优解, 但若其中至少有一个的检验数为0,且它的系 数中有2正4 的,则可能有. 无穷多个最优0解4.07.。2020
0 00 0 0 4 10 0 最优吗?查什么?不是!谁进基? 检x1验的数系最7数大有的正x的1进吗. 基?求, 谁比出值基0?4.07.?2020
练习㈠. 单纯形表
4 10 0 x3 0 1 3 1 0 7 7 x4 0 4 2 0 1 9 9/4
0 00 0 0
4 10 0
基变量列中_x_4_换为_x_1_,
❖LP问题解的几种可能: s.t. Ax≤b x≥0
❖无需引入人工变量.一定有可行 解,从而一定有基可行解,但还有
可能有无穷最优解或无有限最
优解.
23
.
04.07.2020
解LP问题单纯形法
❖LP问题解的几种可能:
❖一般要引入人工变量. ❖人工变量不能全出基则无可行解,更 无最优解. ❖不需人工变量或人工变量可以全部出 基则必有可行解.分:
练习㈠. 单纯形表
4 10 0 x3 0 1 3 1 0 7 x4 0 4 2 0 1 9
2
.
04.07.2020
练习㈠用图解法和单纯形法求如 下线性规划问题的最优解:
Max z =4 x1 + x2
x1 + 3x2 ≤ 7
s.t. 4x1 + 2x2 ≤ 9
x1 , x2 ≥ 0
x1+3x2=7经过点(_7_,0)与(1,_2_)
4x1+2x2=9经过点(2,_0_.5_)与(0,_4_.5_)
❖至少有一个非基变量的检验数为正,但它的系 数全为非正,则无有限最优解;
❖所有非基变量的检验数全为非正,已有最优解, 但若其中至少有一个的检验数为0,且它的系 数中有2正4 的,则可能有. 无穷多个最优0解4.07.。2020
0 00 0 0 4 10 0 最优吗?查什么?不是!谁进基? 检x1验的数系最7数大有的正x的1进吗. 基?求, 谁比出值基0?4.07.?2020
练习㈠. 单纯形表
4 10 0 x3 0 1 3 1 0 7 7 x4 0 4 2 0 1 9 9/4
0 00 0 0
4 10 0
基变量列中_x_4_换为_x_1_,
❖LP问题解的几种可能: s.t. Ax≤b x≥0
❖无需引入人工变量.一定有可行 解,从而一定有基可行解,但还有
可能有无穷最优解或无有限最
优解.
23
.
04.07.2020
解LP问题单纯形法
❖LP问题解的几种可能:
❖一般要引入人工变量. ❖人工变量不能全出基则无可行解,更 无最优解. ❖不需人工变量或人工变量可以全部出 基则必有可行解.分:
练习㈠. 单纯形表
4 10 0 x3 0 1 3 1 0 7 x4 0 4 2 0 1 9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可行域在直线 x1+3x2=7之下__
可行域在直线4x1+2x2=9之上__
10
.
07.06.2020
练习㈡用图解法
5 最优解是x1=7,x2=0,此时Max z=28
4 4x1+x2=28
3
2
(7,0) 1
0
1
2
3
4
5
6
7
11
.
07.06.2020
练习㈡.用单纯形法 (大M法)
标准化为: M是一个大的正数
Max z =4 x1+x2+0x3+0x4-Mx5
x1 + 3x2 + x3
=7
s.t. 4x1 + 2x2 -x4+x5=9
基再是引谁进?一这 理x个1个?, “x“2 人,-”x如工3 ,何变x4处, x5≥ 0
量”1x2 5
.
07.06.2020
练习㈡.用单纯形法
Max z =4x1+x2+0x3+0x4-Mx5
x3 0 0 2.5 1 -0.25 4.75
1
x1 4 1 0.5 0 0.25 2.25
zj
42 019
σj=Cj- zj 0 -1
9
.
0 -1 07.06.2020
练习㈡用图解法和单纯形法求
如下线性规划问题的最优解:
Max s.t.
4zxxx1=11+4+, x321xxx2+22≤≥≥x2790
❖LP问题解的几种可能: s.t. Ax≤b x≥0
❖无需引入人工变量.一定有可行 解,从而一定有基可行解,但还有 可能有无穷最优解或无有限最
优解.
23
.
07.06.2020
解LP问题单纯形法
❖LP问题解的几种可能:
❖一般要引入人工变量. ❖人工变量不能全出基则无可行解,更
无最优解. ❖不需人工变量或人工变量可以全部出 基则必有可行解.分:
练习㈠. 单纯形表
4 10 0 x3 0 1 3 1 0 7 x4 0 4 2 0 1 9
0 00 0 0
4 1 0 0 基?
填目标函数系数,填基变量列,
填CB列,计算Zj,计算检验数σj,
6
.
07.06.2020
练习㈠. 单纯形表
4 10 0 x3 0 1 3 1 0 7 7 x4 0 4 2 0 1 9 9/4
可行域在x1+3x2=7与4x1+2x2=9之下__
3
.
07.06.2020
练习㈠用图解法
5
4 4x1+x2=9
3
2
1 (2.25,0)
0
1
2
3
4
5
6
7
4
.
07.06.2020
练习㈠. 单纯形表
1 31 0 7 4 20 1 9
填入第一个约束的数据.
填入第二个约束的数据.
5
.
07.06.2020
基变量列中_x_5_换为_x_1_,
改CB列,_-_M__换为_4__.
Excel
17
.
07.06.2020
练习㈢用图解法和单纯形法求 如下线性规划问题的最优解:
Max z =4 x1 + x2 x1 + 3x2 ≥ 7
s.t. 4x1 + 2x2 ≥ 9 x1 , x2 ≥ 0
可行域在直线 x1+3x2=7之上__
《运筹学》单纯形法
2
.
07.06.2020
练习㈠用图解法和单纯形法求如
下线性规划问题的最优解:
Max z =4 x1 + x2 x1 + 3x2 ≤ 7
s.t. 4x1 + 2x2 ≤ 9
x1 , x2 ≥ 0
x1+3x2=7经过点(_7_,0)与(1,_2_)
4x1+2x2=9经过点(2,_0_.5_)与(0,_4_.5_)
练习㈡. 单纯形表Biblioteka 填入第二个约束的数据. 基?
填目标函数系数,填基变量列,
填C 列,计算Z ,计算检验数σ , B 15
j.
07.06.2020
j
练习㈡. 单纯形表
7 9/4
最优吗?查什么?不是!谁进基?
检x1验的数系最数大有的正x的1进吗基? ,求谁比出值基??
16
.
07.06.2020
练习㈡. 单纯形表:迭代
0 00 0 0
4 10 0
最优吗?查什么?不是!谁进基?
检x1验的数系最数大有的正x的1进吗基?求, 谁比出值基??
7
.
07.06.2020
练习㈠. 单纯形表
4 10 0 x3 0 1 3 1 0 7 7 x4 0 4 2 0 1 9 9/4
0 00 0 0
4 10 0
基变量列中_x_4_换为_x_1_,
x1 + 3x2 + x3
=7
s.t. 4x1 + 2x2 -x4+x5 =9
x1, x2 , x3 , x4 , x5 ≥0
基是谁? x3,x5 x5的检验数为0
请它出基,逼它取值为0.
13
.
07.06.2020
练习㈡. 单纯形表
两行,几列? 少一列?
填入第一个约束的数据.
14
.
07.06.2020
改CB列,__0_换为_4__.
8
.
Excel
07.06.2020
练习㈠用单纯形法
迭代
基
CB
次数 变量
x1
4
x2
1
x3
0
x4
0
bi
比
x3 0 1 3 1 0 7 7
0
x4 0 4 2
zj
00
0 1 9 9/4 000
σj=Cj- zj 4 1 0 0
迭代
基
CB
次数 变量
x1
x2
x3
x4
bi
比
41 00
x1,x2,x3,x4 ,x5,x6 ≥0
基是谁? x5,x6 它们的检验数为0 请它们出基,逼它们取值为0. 不能全出基,就无可行解. Excel
21
.
07.06.2020
解LP问题单纯形法
❖LP问题解的几种可能:
唯一解 有解
无穷多解
无解
22
无有限最优解
无可行解
.
07.06.2020
解LP问题单纯形法
s.t. 4x1 + 2x2 -x4+x6=9
基引是进谁两?个这 理x“1里?,x人“2 ,工x-”3 如变,x4何量,x5处”,x6≥0
x5 ,x620
.
07.06.2020
练习㈢.用单纯形法
Max z=4x1+x2+0x3+0x4 -Mx5 –Mx6
x1+3x2-x3 +x5 =7 s.t. 4x1+2x2 -x4 +x6=9
❖至少有一个非基变量的检验数为正,但它的系 数全为非正,则无有限最优解;
❖所有非基变量的检验数全为非正,已有最优解, 但若其中至少有一个的检验数为0,且它的系
数中有2正4 的,则可能有. 无穷多个最优0解7.06.。2020
作业
❖第五章(P.99-100):
可行域在直线4x1+2x2=9之上__
18
.
07.06.2020
练习㈢用图解法
5
有可行解,但无有限的最优解,z→+∞.
4
3
2
1
0
1
2
3
4
5
6
7
19
.
07.06.2020
练习㈢.用单纯形法(大M法)
标准化为: M是一个大的正数
Max z=4x1+x2+0x3+0x-4Mx5 -Mx6 x1 + 3x2 - x3 +x5 =7