范德蒙行列式的应用
[整理版]范德蒙行列式及其应用
范德蒙行列式及其应用摘要:在高等代数中,行列式无疑是一个重点和难点。
它主要应用于高等代数理论,作为一种特殊的行列式——范德蒙行列式不仅具有特殊的形式,而且有非常广泛的应用.本文主要探讨范德蒙行列式在向量空间理论,线性变化理论,多项式理论中以及行列式计算中的应用.关键词:范德蒙行列式;多项式;线性变换一. 范德蒙行列式定义及性质1.范德蒙行列式的定义定义1 关于变元1x ,2x n x 的n 阶行列式122221211112111n n n n n n nx x x D x x x x x x ---=(1)叫做1x ,2x n x 的n 阶范德蒙行列式,记作n V (1x ,2x ,…n x ).2.我们用定理证明范德蒙德行列式已知在错误!未找到引用源。
级行列式中,第错误!未找到引用源。
行(或第错误!未找到引用源。
列)的元素除错误!未找到引用源。
外都是零,那么这个行列式等于错误!未找到引用源。
与它的代数余子式错误!未找到引用源。
的乘积错误!未找到引用源。
,在错误!未找到引用源。
=错误!未找到引用源。
中,从最后一行开始,每一行减去它相邻前一行的错误!未找到引用源。
倍得错误!未找到引用源。
=错误!未找到引用源。
根据上述定理错误!未找到引用源。
=错误!未找到引用源。
提出每一列的公因子后得错误!未找到引用源。
=错误!未找到引用源。
最后一个因子是错误!未找到引用源。
阶范德蒙行列式,用错误!未找到引用源。
表示,则有错误!未找到引用源。
=错误!未找到引用源。
同样可得错误!未找到引用源。
=(错误!未找到引用源。
)(错误!未找到引用源。
)错误!未找到引用源。
(错误!未找到引用源。
)错误!未找到引用源。
此处错误!未找到引用源。
是一个n-2阶范德蒙行列式,如此继续下去,最后得错误!未找到引用源。
=错误!未找到引用源。
(错误!未找到引用源。
)错误!未找到引用源。
(错误!未找到引用源。
)错误!未找到引用源。
(错误!未找到引用源。
范德蒙德行列式的研究与应用
范德蒙德行列式的研究与应用给定n个数$x_1,x_2,...,x_n$,范德蒙德行列式定义为:$$\begin{vmatrix}1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_n & x_n^2 & \cdots & x_n^{n-1} \\\end{vmatrix}$$1.行列式的值只与$x_1,x_2,...,x_n$有关,而与n无关。
2.当$x_1,x_2,...,x_n$中存在两个数相同时,行列式的值为0。
3.当$x_1,x_2,...,x_n$中的数互不相同时,行列式的值为:$$\prod_{1 \leq i < j \leq n} (x_j - x_i)$$其中$\prod$表示乘积。
1.插值多项式:给定n个互不相同的点$(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$,根据这些点来构造一个插值多项式可以使用范德蒙德行列式。
具体而言,可以通过以下公式计算出多项式的系数:$$\begin{bmatrix}x_1^0 & x_1^1 & x_1^2 & \cdots & x_1^{n-1} \\x_2^0 & x_2^1 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\x_n^0 & x_n^1 & x_n^2 & \cdots & x_n^{n-1} \\\end{bmatrix}\begin{bmatrix}a_0\\a_1\\\vdots \\a_{n-1}\\\end{bmatrix}\begin{bmatrix}y_1\\y_2\\\vdots \\y_n\\\end{bmatrix}$$其中,$a_0,a_1,...,a_{n-1}$为待求的多项式系数。
范德蒙行列式经典例题
范德蒙行列式经典例题范德蒙行列式是19世纪的数学家哈勒•范德蒙提出的一种数学思想,它可以用来解决许多数学问题。
范德蒙行列式的经典应用是用来解决二元一次方程,而这样就给出了许多可以用来练习的例题。
下面将介绍列出几个范德蒙行列式经典例题:一、解决一元二次方程题目:2x2+7x+1=0解:通过范德蒙行列式,可得:|2 7||1 0|令左边矩阵的行列式D = 2*0-7*1 = -7则根据范德蒙行列式,可求出:x1= D/2= -7/2x2= (-7+-√49)/4即根为x1=-3.5,x2=-1.5二、解决多元一次方程题目:2x+y+6z=17 , 5x-y-3z=2 , 4x+3y-2z=1解:通过范德蒙行列式,可得:|2 1 6||5 -1 -3||4 3 -2|令左边矩阵的行列式D = (2*(-1)*(-2)-1*5*(-3)+6*3*4) = 28 则根据范德蒙行列式,可求出:x1= (17*(-2)*(-3)-2*(-1)*6+1*5*4)/D= 6x2= (17*(-1)*4-2*3*6+1*(-3)*5)/D= 4x3= (17*2*3-2*(-1)*(-3)+1*(-1)*(-2))/D= 3三、应用范德蒙行列式进行微积分题目:求∫sin2(x)dx解:利用范德蒙行列式,可得:| sin 2x -1 || cos 2x 0 |令左边矩阵的行列式D = sin2x * 0 - (-1) * cos2x = cos2x则根据范德蒙行列式,则可求得∫sin2(x)dx= sin2x + c,其中c为常数。
四、直角梯形面积计算题目:梯形ABCD的对角线AB和CD的长分别为2 cm 和4 cm,且∠BAC=45°,求梯形ABCD的面积S。
解:通过范德蒙行列式,可得:|2 tan45°||4 0 |令左边矩阵的行列式D = (2 * 0 - tan45° * 4) = -2因此面积S = D / 2 = -1由此可看出,梯形ABCD的面积为1平方厘米。
范德蒙德行列式的几点应用
第2讲 范德蒙德行列式的几点应用我们知道,n 阶范德蒙德行列式()2111121222121111n n n ijj i nn nnnx x x x x x V x x x x x --<-==-∏≤≤,当这些i x 两两互异时,0n V ≠.这个事实有助于我们理解不少结果.例1 证明一个n 次多项式之多有n 个互异根. 证 设()2012n n f x a a x a x a x =++++有1n +个互异的零点121,,,n x x x +,则有()20120n i i i n i f x a a x a x a x =++++=,1 1i n +≤≤.即这个关于01,,,n a a a 的齐次线性方程组的系数行列式()211122221121111101nn ijj i n n n n n x x x x x x x x x x x <++++=-≠∏≤≤,因此0120n a a a a =====.这个矛盾表明()f x 至多有n 个互异根. 例2 设12,,,n a a a 是n 个两两互异的数.证明对任意n 个数12,,,n b b b ,存在惟一的次数小于n 的多项式()L x :()1nj i i j ii jx a L x b a a =≠-=-∑∏,使得()i i L a b =,1 i n ≤≤.证 从定义容易看出()L x 的次数小于n ,且()i i L a b =,故只需证明唯一性即可. 设()210121n n f x c c x c x c x --=++++满足()i i f a b =,1 i n ≤≤,即这个关于0121,,,,n c c c c -的线性方程组的系数行列式()21111212221211101n n ijj i nn nnna a a a a a a a a a a --<-=-≠∏≤≤,故0121,,,,n c c c c -是唯一的,必须()()f x L x =.这个例子就是有名的拉格朗日插值公式.例3 设()()()121,,,n f x f x f x -是1n -个复系数多项式,满足 ()()()121211|n n n n n n x x f x xf x x f x ---++++++,证明()()()1211110n f f f -====.证 设()()()()()211211n n n n n n f x xf x x f x p x x x ---+++=+++,取22cossini n nππω=+,分别以21,,,n x ωωω-=代入,可得这个关于()()()1211,1,,1n f f f -的齐次线性方程组的系数行列式()()()22221211101n n n n n ωωωωωω-----≠,因此()()()1211110n f f f -====.例4 设n 是奇数,()()()121,,,n f x f x f x -是1n -个复系数多项式,满足()()()123221211|n n n n n n n n x x x f x xf x x f x -------+-++++,证明()()()1211110n f f f --=-==-=.证 注意到当n 是奇数时,()()123111n n n n x x x x x ---+=+-+-+,可按照例3的思路完成证明.例5 设A 是个n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关.证 设12,,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,,r ααα适合i i i A αλα=,1 i r ≤≤,假设11220r r x x x ααα+++=,那么有()11220j r r A x x x ααα+++=,1 1j r -≤≤.即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫==⋅= ⎪⎝⎭∑∑∑,注意到()0j ir rλ⨯≠,必须11220r r x x x ααα====,于是120r x x x ====,这证明了12,,,r ααα线性无关.例6 计算行列式()()()()()()()()()111212122211121111n n n n n n n x x x x x x D x x x ϕϕϕϕϕϕϕϕϕ---=,其中()11kk k k nk x x a xa ϕ-=+++.解 注意到下面的等式: 即得()1n ijj i nD x x <=-∏≤≤.例7 计算行列式1212111111111n n n x x x D x x x n n n ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,其中()()11!x x x x k k k --+⎛⎫= ⎪⎝⎭.解 直接利用例6可得()()111!2!1!n ijj i nD x x n <=--∏≤≤. 例8 设12,,,n a a a 是正整数,证明n 阶行列式。
范德蒙行列式及其应用
范德蒙行列式及其应用1 预备知识定义1.1)133(]1[p121211112111,n n n n n nx x x D x x x n x x x ---⋯⋯=,⋯⋯⋯⋯⋯⋯叫做 的阶范德蒙行列式.12111121111212111n i i i n i i i n n n n nx x x D n x x x x x x x x x ---+++⋯⋯⋯⋯⋯⋯⋯=⋯⋯⋯⋯⋯⋯叫做阶准范德蒙行列式.定理1.2)133(]1[p ∏≤≤≤-=ni j jin x x D 1)(.证明 方法一)133(]1[p由n D 的最后一行开始,每一行减去它的相邻的前一行乘以1x ,并由行列式的展开定理可得递推公式111312)())((----=n n n D x x x x x x D Λ,其中1-n D 是n x x x Λ32的n-1阶范德蒙行列式,由以上递推公式可求得∏≤≤≤-=ni j jin x x D 1)(.证明 方法二将n D 看作系数与121,,-n x x x Λ有关,未知量是n x 的一元多项式.则当)1,,2,1(-==n i x x i n Λ时,0=n D .所以121,,-n x x x Λ是n D 的根,所以,)1,2,1()(-=-n i D x x n i n Λ.又因为当j i ≠时,1),(=--j n i n x x x x ,所以*---=-)())()((12121n n n n n n x x x x x x x x x g D ΛΛ另一方面,如果将n D 按最后一列展开,可知道, n D 是n x 的n-1次多项式,且1-n n x 项的系数是n-1阶范德蒙行列式12122212111nn n n n nx x x D x x x ----⋯⋯=⋯⋯⋯⋯⋯与*可比较得 )(211n n x x x g D Λ=-.因此1121)())((-----=n n n n n n D x x x x x x D Λ;同理22122111)())((---------=n n n n n n D x x x x x x D Λ;依似类推,最后有)(1212x x D D -=.又因为11=D ,所以∏≤≤≤-=ni j jin x x D 1)(.另外利用行列式的性质可推得n 阶范德蒙行列式的性质)1(]2[p 性质1 若将n D 逆时针旋转ο90,可得值为 n n n D 2)1()1(--.性质2 若将n D 顺时针旋转ο90,可得值为n n n D 2)1()1(--.性质3 若将n D 旋转ο180,可得值为n D .2 范德蒙行列式在行列式计算中的应用2.1 简单变形 例1 计算()()()()11111nnn a a a n D a a a n -⋯-⋯⋯⋯⋯=-⋯-⋯解 由范德蒙行列式性质3得!)())()((111∏∏∏=≤≤≤≤≤≤=-=---=nk ni j ni j k j i i a j a D例2 计算n+1阶行列式211111111112122222222221111111111nn n n n n n n n n n n n n n n n n n n n n n n n n n n n n a a b a b a b a b a a b a b a b a b D a a b a b a b a b ---+++++++++⋯⋯=⋯⋯⋯⋯⋯⋯⋯解 从第i 行提取公因子)1,,2,1(+=n i a ni Λ,就可以得到转置的n+1阶范德蒙行列式,于是()111b nnn i iji j i n D a b =≤<≤+=-∏∏例3 计算行列式2111111212222221111n n n n n nn n x x x x x x x x x x D x x x x x ---⋯-⋯-=⋯⋯⋯⋯⋯⋯-解 从第i 行提取公因子)1,,2,1(1+=-n i x x i iΛ,然后再把第1列加到第2列,之后再把第2列加到第3列,⋯,再把第n-1列加到第n 列,就得到n 阶范德蒙行列式,于是()111nii j i j i ni x D x x x =≤<≤=--∏∏.例4 计算行列式()()()()()()11112122221222212221111n nnnn n n n n n n n n n n n D n n n n ----⋯--⋯--=⋯⋯⋯⋯⋯--⋯⋯解 由范德蒙行列式性质得()()()()()()()()12111111112122212122221222n n n n n n nnnn n n n n D n n n n n n n n +----⋯--⋯⋯⋯⋯⋯⋯=-⋯--⋯--()1!nn =-1!2!⋯2.2 升阶法求解 例1 计算n 阶行列式221111222222221*********n n n n n n n n n n n n nnnnx x x x x x x x D x x x x x x x x --------⋯⋯⋯⋯⋯⋯⋯⋯=⋯⋯解 将D 升阶为下面的n+1阶行列式221111112212222212211111122122111111n n n n n n n n n n n n n n n n n n n n n n n n n nx x x x x x x x x x x x x x x x x x x x xx x x x ----+-----------⋯⋯⋯⋯⋯⋯⋯⋯⋯∆=⋯⋯⋯既插入一行与一列,使1+∆n 是关于x x x x n ,,,21Λ的n+1阶范德蒙行列式,此处x 是变数.于是∏≤≤≤+----=∆ni j j in n x xx x x x x x 1211)()())((Λ,故1+∆n 是一个关于x 的n 次多项式,它可以写成{}ΛΛ++++-+-=∆-≤≤≤+∏12111))(1()(n n n ni j j in x x x x x x x.另一方面,将1+∆n 按其第n+1行展开,既得Λ+-+-=∆-+≤≤≤+∏11211)1()(n n n ni j j in Dx x x x,比较1+∆n 中关于1-n x的系数,既得∏≤≤≤-+++=ni j j in x xx x x D 121)()(Λ.例2 计算211122222111111111nnnnnnx x x x x x D x x x ++++++=+++L L L LL LL解 将行列式增加第一行第一列并保持行列式值不变21112100011111111nnnn nx x x D x x x +++=+++L L L L LL LL把第一列乘以-1分别加到其它的列得21112111111n n n n n x x x D x x x ---=L L L L L L L L 把第一行拆分得2211111122200011111111nn n n nn nnn nx x x x x x D x x x x x x =-L L L L LL L L L L L L L L LL第一个行列式按第一行展开提取i x 后为n 阶范德蒙行列式,第二个行列式为1n +阶范德蒙行列式()()()111121nniijijii j i nj i ni D x x x x x x =≤≤≤≤==----∏∏∏∏p p()()11121n ni i i j i i j i nx x x x ==≤≤⎡⎤=---⎢⎥⎣⎦∏∏∏p2.3 套用定理法求解 定理 2.3.1()12121211111211112121111,2,3,1n i n in i i i i p p p n n p p p i i i n n n n nx x x D x x x D i n x x x x x x x x x -----+⋯+++⋯⋯⋯⋯⋯⋯⋯==⋯=⋯-⋯⋯⋯⋯⋯⋯∑其中i p p p x x x -Λ21是1,2,3,⋯,n 中()n i -个数的正序排列,∑-in p p p x x x Λ21表示()n i -阶排列和,nD 为n 阶范德蒙行列式. W证明过程大部分是用数学归纳法给出其计算结果的,本文用代数教程中广泛使用的升阶法证明 证明 ()i 在行列式1+i D 中第1i +行和()1n +列相应的元素.考虑()1n +阶范德蒙行列式()122222121111121211111111121111n n i i i i ni i i i n i i i i n n n nnx x x x x x x x f x D x x x x x x x x x x x x x x x x ----++++⋯⋯⋯⋯⋯⋯⋯⋯==⋯=⋯⋯⋯⋯⋯⋯⋯⋯()()()()213111n x x x x x x xx --⋯--()()()3222n x x x x xx -⋯--⋯ ⋯ ⋯ ⋯ ()n x x -=()()()()121n ijj i nxx x x x x x x ≤<≤--⋯--∏ )(*()ii 由()*式的两端,分别计算多项式()f x 中i x 项的系数.在()*式的左端,由行列式计算得,ix 项的系数为行列式中该元素对应的代数余子式()()()()()111,11111i n i n i n i i A D D ++++++++=-=-在()*式的右端,由多项式计算得,由12,,n x x x ⋯为()0f x =的n 个不同根,根据根与系数的关系,ix 项的系数为()()()1212110,1,2,1nnn in i p p p ij p p p j i na x x x xx i n --⋯≤<≤=-⋯-=⋯-∑∏其中i p p p x x x -Λ21是1,2,3,⋯,n 中()n i -个数的正序排列,i p p p x x x -Λ21表示()n i -阶排列和.()iii 比较()f x 中i x 项的系数计算行列式1i D +,因为()*式的左右端i x 项的系数应相等,所以 ()()()12121111n in ii nn ii p p p ij p p p j i nD x x x xx --+-+⋯≤<≤-=-⋯-∑∏ ()()121211n in ii p p p ij p p p j i nD x x x xx --+⋯≤<≤=⋯-**∑∏()()1212110,1,2,1n nn ii p p p n p p p D x x x D i n -+⋯=-⋯=⋯-∑定理得证.利用定理可以计算各阶准范德蒙行列式,简便易行. 例1计算准范德蒙行列式1234562222221234564444444123456555555123456666666123456111111a a a a a a a a a a a a D a a a a a a a a a a a a aaaaaa=解 由定理,因为6,3,n i ==所以()123123416p p p ij p p p j i D a a a aa ≤<≤=-=∑∏()()12312445616ijj i a a a a a a a a a a a ≤<≤++⋯+-∏.可以看出升阶法求解中的例1套用定理求解更简单.3 范德蒙行列式在其它方面的应用例1设()21211112111111,1n n n n n n x x x a a a p x a a a ------⋯⋯=⋯⋯⋯⋯⋯⋯其中121,n a a a -,⋯是互不相同的数.(1)由行列式定义,说明()p x 是一个1n -次多项式; (2)由行列式的性质求()p x 的根.证明(1)将()p x 按第一行展开知它是x 的多项式,又1n x-的系数为()11n +-乘以一个范德蒙行列式,其值不为零(因为i a 互异),故()p x 为关于x 的1n -次多项式. (2)取()1,2,i x a i n ==⋯,则行列式两行相同其值为零,即有()0i p a =,故121,n a a a -,⋯是()p x 的全部根.例2 设()112n n f x a a x a x-=+++L 011,,,n εεε-L 为全部的n 次单位根,证明:()()()123112211132011345122341n n nn n n n n n n na a a a a a a a a a a a a a a D f f f a a a a a a a a a a εεε-------==L L L L L L LL L L L L证明 令ε为n 次原根,且假定()0,1,1iji n εε==-L 用范德蒙行列式()()()()212124211111111111n n n n n n εεεεεεεεε------∆=L L L L LLL LL左乘D ,再从每列分别提出()()()111,,n f ff εε-L 即得()()()()()()()()()()()()()()()()()()()111212121111111111n n n n n n n n n n f f f f f f D f f f f f f f f f f εεεεεεεεεεεεεεεεε----------∆==∆L L L L L LLL因为0∆≠,所以()()()()()()1101n n D f ff f f f εεεεε--==LL .只要熟悉了范德蒙行列式使用的形式和使用技巧,便可以很好地应用范德蒙行列式了.例3 如果n 次多项式()21121n n n n n o f x a a x a x a x a x ---=+++++L 有1n +个不同的根,那么()0f x ≡.证明 设121,,n x x x +L 是()f x 的1n +个不同的根,则有2111211112112222221112111100n n n n n o n nn n n o n n n n n n n n o n a a x a x a x a x a a x a x ax a x a a x a x a x a x --------+-+++⎧+++++=⎪+++++=⎪⎨⎪⎪+++++=⎩L L L L L L L L L L L L L L L L L L 上式可看作1n +个未知量10,,,n n a a a -L 1n +个方程的齐次线性方程组.其系数行列式为()2111222211121111101n n n ijj i n n n n n x x x x x x D x x x x x +≤≤++++==-≠∏p L L L L LLLL所以上式只有零解.即1100,n n a a a a -=====L 也就是说()0f x ≡.。
范德蒙行列式在多项式插值中的应用
范德蒙行列式在多项式插值中的应用在多项式插值中,范德蒙行列式是一种非常重要的工具。
它可以用来求解多项式插值系数,并且具有良好的数值特性和稳定性。
在本文中,我们将分步骤地介绍范德蒙行列式在多项式插值中的应用。
第一步:了解范德蒙行列式范德蒙行列式是一种在线性代数和多项式插值中非常重要的矩阵。
它的形式为:$$D_n(x) = \begin{vmatrix}1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1}\end{vmatrix}$$其中, $x_0, x_1, \dots, x_{n-1}$ 是给定的 $n$ 个数。
范德蒙行列式的值可以通过公式计算,也可以用高斯消元法求解。
第二步:求解多项式插值系数给定 $n+1$ 个不同的点 $(x_0,y_0), (x_1,y_1), \dots,(x_n,y_n)$,我们希望找到一条经过这些点的 $n$ 次多项式:$$p_n(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1}$$这个问题可以通过范德蒙行列式求解。
具体来说,我们可以构造一个向量$$\mathbf{y} = \begin{bmatrix}y_0 \\ y_1 \\ \vdots \\ y_n\end{bmatrix}$$和一个矩阵$$\mathbf{V} = \begin{bmatrix}1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_n & x_n^2 & \cdots & x_n^{n-1}\end{bmatrix}$$那么,我们就可以用范德蒙行列式求解系数向量 $\mathbf{a}$:$$\mathbf{a} = \frac{1}{D_n(x)} \begin{bmatrix}D_0(x) & -D_1(x) & D_2(x) & \cdots & (-1)^n D_n(x) \\-D_1(x) & D_2(x) & -D_3(x) & \cdots & (-1)^{n+1} D_{n+1}(x)\\D_2(x) & -D_3(x) & D_4(x) & \cdots & (-1)^{n+2} D_{n+2}(x) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\(-1)^{n} D_{n}(x) & (-1)^{n+1} D_{n+1}(x) & (-1)^{n+2}D_{n+2}(x) & \cdots & D_{2n}(x)\end{bmatrix} \cdot \mathbf{y}$$其中,$D_i(x)$ 是范德蒙行列式中第 $i$ 列的值。
范德蒙行列式的相关应用
范德蒙行列式的相关应用(一)范德蒙行列式在行列式计算中的应用 范德蒙行列式的标准规范形式是:1222212111112111()nn n i j n i j n n n nx x x D x x x x x x x x ≥>≥---==-∏根据范德蒙行列式的特点,将所给行列式包括一些非范德蒙行列式利用各种方法将其化为范德蒙行列式,然后利用范德蒙行列式的结果,把它计算出来。
常见的化法有以下几种:1.所给行列式各列(或各行)都是某元素的不同次幂,但其幂次数排列与范德蒙行列式不完全相同,需利用行列式的性质(如提取公因式,调换各行(或各列)的次序,拆项等)将行列式化为范德蒙行列式。
例1 计算222111222333nn n nD n n n =解 n D 中各行元素都分别是一个数自左至右按递升顺序排列,但不是从0变到n r -。
而是由1递升至n 。
如提取各行的公因数,则方幂次数便从0变到1n -.[]21212111111222!!(21)(31)(1)(32)(2)(1)13331n n n n D n n n n n n nn n ---==-------!(1)!(2)!2!1!n nn =--例2 计算1111(1)()(1)()1111n n n n n n a a a n a a a n D a a a n ---+----=--解 本项中行列式的排列规律与范德蒙行列式的排列规律正好相反,为使1n D +中各列元素的方幂次数自上而下递升排列,将第1n +列依次与上行交换直至第1行,第n 行依次与上行交换直至第2行第2行依次与上行交换直至第n 行,于是共经过(1)(1)(2)212n n n n n ++-+-+++=次行的交换得到1n +阶范德蒙行列式:[][](1)21111(1)211111(1)(1)()(1)()(1)(1)(2)()2(1)((1))!n n n n n n nnn n nk aa a n D a a a n a a a n a a a a a n a a a a n a n k ++---+=--=-----=--------------=∏ 若n D 的第i 行(列)由两个分行(列)所组成,其中任意相邻两行(列)均含相同分行(列);且n D 中含有由n 个分行(列)组成的范德蒙行列式,那么将n D 的第i 行(列)乘以-1加到第1i +行(列),消除一些分行(列)即可化成范德蒙行列式: 例3 计算1234222211223344232323231122334411111sin 1sin 1sin 1sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin D +Φ+Φ+Φ+Φ=Φ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+Φ解 将D 的第一行乘以-1加到第二行得:123422221122334423232323112233441111sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin ΦΦΦΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+Φ再将上述行列式的第2行乘以-1加到第3行,再在新行列式中的第3行乘以-1加到第4行得:12342222141234333412341111sin sin sin sin (sin sin )sin sin sin sin sin sin sin sin i j j i D ≤<≤ΦΦΦΦ==Φ-ΦΦΦΦΦΦΦΦΦ∏例4 计算211122222111111111nnnn n nx x x x x x D x x x ++++++=+++ (1)解 先加边,那么22111111222222222210001111111111111111111nnnn nn n n nnn nx x x x x x D x x x x x x x x x x x x ---+++=+++=+++再把第1行拆成两项之和,2211111122111120001111nnn n nnnnnnx x x x x x D x x x x x x =-11111112()(1)()()[2(1)]nnk j i k j j k ni j k nnnk j i i j k ni i x xx x x x x x x x x ≤<≤=≤<≤≤<≤===----=---∏∏∏∏∏∏2.加行加列法各行(或列)元素均为某一元素的不同方幂,但都缺少同一方幂的行列式,可用此方法: 例5 计算2221233312121113nn nnn nx x x D x x x x x x =解 作1n +阶行列式:122222121333312121111nn n nnnn n nzx x x z x x x D z x x x z x x x +==1()()ni j k i l k j nx z x x =≤<≤--∏∏由所作行列式可知z 的系数为D -,而由上式可知z 的系数为:211211(1)()()nn n j k i n j k li x x x x x x -=≥>≥--∑∏通过比较系数得:1211()()nn j k i n j k li D x x x x x x =≥>≥=-∑∏ 3.拉普拉斯展开法运用公式D =1122n n M A M A M A ++来计算行列式的值:例6 计算111111122122111000010010010010001n n n n n n nn nnx x y y x x D y y x x y y ------=解 取第1,3,21n -行,第1,3,21n -列展开得:11111111222211111111n n n n n n nnnnx x y y x x y y D x xy y------==()()j i j i n j i lx x y y ≥>≥--∏4.乘积变换法 例7 设121(0,1,22)nk k k k k ni i s xx x x k n ==+++==-∑,计算行列式 01112122n n n nn s s s s s s D s s s ---=解11121111222111nnn iii i nnn n iiii i i nnnn n n iii i i nxxxxx D xxx-=====--====∑∑∑∑∑∑∑∑211111221222222122111122111111()n nn nn n n n nnnnj i l i j nx x x x x x x x x x x x x xxx x x x x -----≤<≤==-∏例8 计算行列式000101011101()()()()()()()()()nn n n n n n n nnnn n n n a b a b a b a b a b a b D a b a b a b ++++++=+++解 在此行列式中,每一个元素都可以利用二项式定理展开,从而变成乘积的和。
范德蒙行列式的应用探究
范德蒙行列式的应用探究
范德蒙行列式(也称为双核格式或矩阵表示)是一种数学表示,指先把问题所
考虑的因果和变量抽象为不同维度罗列(行或列),叶构成表格,其中每一格按顺序表达一次变量的关系。
这种表示能够有效地帮助任务分解者清楚地辨明任务中存在的因果关系,以便创造出一种有针对性的解决方案。
通过使用范德蒙行列式,可以把任务中存在的因果关系构建起来。
这种表示方
法既可以把任务中各个因素用文字表达出来,也可以用简洁而准确的矩阵形式来表示。
因此,范德蒙行列式具有贴切地反映任务因果关系、把握任务结构、增强理解能力等优点,在模式分析、决策分析、任务调度等行业任务中得到了广泛应用。
例如,在服务行业中常常会遇到一组要求,也被称为SLA(服务级别协议)。
SLA的结构是复杂的,可能存在若干层次的流程关系、服务因素、责任者等,因此,使用范德蒙行列式详细描述SLA能够更好地阐明其各个层次之间的关系和联系,进而针对具体情况制定完善的SLA。
此外,范德蒙行列式也可以用于任务计划,例如在新产品的研发上。
对于一项
新产品的研发,可以采用范德蒙行列式来表示船将和其他因素之间的关系,把子任务放在一起详细描述,从而分析出每一步的责任、要求、能力等,以构建一个合理有效的研发计划。
范德蒙行列式在行业任务中有着广泛的应用,它能有效地帮助任务分解者对任
务中存在的因果关系有更清晰的认识,从而为创造出一种有针对性的解决方案提供有力的指导。
范德蒙行列式的推广及其在教学中的应用
范德蒙行列式的推广及其在教学中的应用
范德蒙行列式的推广及其在教学中的应用
德蒙行列式是一种正交化处理方法,它也称作正交行列式。
它主要用于调整数据,使相应的变量之间形成一种平行关系。
在统计学中,德蒙行列式也称作正交因子分析的主成分分析。
范德蒙行列式是德蒙行式的一种推广,它将行列式的变量和系数扩展到多个变量之间形成多列。
范德蒙行列式对调整数据更有效,因为它考虑了多个变量之间的相互关系。
范德蒙行列式可以更好地探索数据集中的不同变量的关系。
此外,它还能估计出一个变量的综合指标,以衡量该变量出现的频率。
教学中,范德蒙行列式可以用于解释数据库中的复杂关系,帮助学生了解两个或多个变量之间的精确关系。
此外,该方法还可以建立一个可以衡量多个变量相互影响程度的联合指标,帮助学生更有效地理解多变量数据集和使用数据来测量其他变量时出现的潜在因素。
总体而言,范德蒙行列式可以提供有效的处理数据的方法,能够帮助学生学习多变量数据分析,解决复杂的理论问题。
它也可以用于教学过程中,帮助学生了解各种变量之间的关系,用数据形象化进行深入分析。
范德蒙的行列式
范德蒙的行列式摘要:一、范德蒙行列式的定义二、范德蒙行列式的性质1.行列式与其转置行列式之间的关系2.行列式的可逆性3.行列式的乘积性质三、范德蒙行列式的计算方法1.递推法2.矩阵的行列式公式3.扩展行列式公式四、范德蒙行列式在数学中的应用1.线性方程组的求解2.矩阵的逆矩阵求解3.矩阵的LU 分解五、范德蒙行列式的推广1.范德蒙行列式的更高阶数2.带标号的范德蒙行列式正文:范德蒙行列式是一种特殊的行列式,它是以法国数学家范德蒙命名的。
范德蒙行列式具有很多重要的性质和应用,下面我们来详细了解一下。
一、范德蒙行列式的定义范德蒙行列式是一个n 阶行列式,它的定义如下:|A| = a11 * a22 * ...* ann- a12 * a21 * ...* an1+ a13 * a22 * ...* an2- a14 * a23 * ...* an3+ ...+ (-1)^(n-1) * a1n * a2n-1 * ...* ann其中,a11, a12, ..., ann 是矩阵A 的主对角线元素,a12, a21, ..., an1 是矩阵A 的次对角线元素,以此类推。
二、范德蒙行列式的性质1.行列式与其转置行列式之间的关系范德蒙行列式的转置行列式等于其本身,即|A| = |A^T|。
2.行列式的可逆性当且仅当矩阵A 可逆时,范德蒙行列式不为零。
3.行列式的乘积性质设矩阵A 和矩阵B 都是n 阶矩阵,则有|AB| = |A| * |B|。
三、范德蒙行列式的计算方法1.递推法对于n 阶矩阵A,我们可以通过递推的方式计算范德蒙行列式。
具体来说,我们可以先计算出n-1 阶矩阵A"的范德蒙行列式,然后用主对角线元素和次对角线元素的关系来计算n 阶矩阵A 的范德蒙行列式。
2.矩阵的行列式公式根据矩阵的行列式公式,我们可以直接计算出范德蒙行列式。
3.扩展行列式公式通过扩展行列式公式,我们也可以计算范德蒙行列式。
范德蒙行列式的证明及其应用
范德蒙行列式的证明及其应用在高等代数中,范德蒙行列式是一个具有特殊形式和重要性质的行列式。
它不仅在理论上有着深刻的意义,而且在实际的数学问题求解中也有着广泛的应用。
范德蒙行列式的形式如下:\\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_n \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_n^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 1} & x_2^{n 1} & x_3^{n 1} &\cdots & x_n^{n 1}\end{vmatrix}\接下来,我们先来证明范德蒙行列式。
证明范德蒙行列式通常使用数学归纳法。
当\(n = 2\)时,范德蒙行列式为:\begin{vmatrix}1 & 1 \\x_1 & x_2\end{vmatrix} = x_2 x_1\假设\(n 1\)阶范德蒙行列式成立,即:\\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_{n 1} \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_{n 1}^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 2} & x_2^{n 2} & x_3^{n 2} &\cdots & x_{n 1}^{n 2}\end{vmatrix} =\prod_{1\leq i < j\leq n 1} (x_j x_i)\对于\(n\)阶范德蒙行列式,将其按第一列展开:\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_n \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_n^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 1} & x_2^{n 1} & x_3^{n 1} &\cdots & x_n^{n 1}\end{vmatrix} =\sum_{k = 1}^n (-1)^{1 + k} 1 \timesM_{1k}\其中\(M_{1k}\)是原行列式中第一行第\(k\)列元素的余子式。
范德蒙行列式的应用
范德蒙行列式的应用摘要:本文根据范德蒙行列式的特点,归纳总结了范德蒙行列式在代数、微积分中的应用. 关键词:范德蒙行列式;代数;微积分1 前言范德蒙行列式在行列式中占有比较重要的地位,其运用也可谓广泛.范德蒙行列式在代数、微积分、几何中都有应用.本文只讨论其在代数、微积分中的应用.在之前我们先给出文中要用到的一些基本知识点:① 行列式的展开定理[1]:若存在一个n 阶行列式111212122212n nn n nna a a a a a D a a a =其中,第i 行(或第j 列)的元素除ij a 外都是零,那么这个行列式等于ij a 与它的代数余子式ij A 的乘积:ij ij D a A =.② 泰勒公式[2]:若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x =+- 即()200000000''()()()()'()()()()(())2!!n n n f x f x f x f x f x x x x x x x x x n =+-+-++-+-③ 皮亚诺余式的马克劳林展开式[2]:''()'2(0)(0)()(0)(0)()2!!n nn f f f x f f x x x x n =+++++④ 克莱姆法则[1]:一个含有n 个未知量n 个方程的线性方程组11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=+++=+++=当它的行列式0D ≠时,有且仅有一个解1212,,,n n D D Dx x x D D D=== ,此处j D 是把行列式D 的第j 列的元素换以方程组的常数项12,,,n b b b 而得到的n 阶行列式.2 范德蒙行列式的定义及其证明[1]2.1 范德蒙行列式的定义122221211112111nn n n n n na a a D a a a a a a ---=这个行列式叫做一个n 阶范德蒙行列式(V andermonde )行列式,其值1()n i j n i j D a a ≥>≥=-∏.2.2 范德蒙行列式的证明证明:由最后一行开始,每一行减去它的相邻的前一行乘以1a ,得213212213311-222221331111110- - -0(-) (-)()0()()()n n n n n n n n n a a a a a a D a a a a a a a a a a a a a a a a a a --=----由前言①行列式的展开定理,213212213311-2222213311 - --(-) (-) ()()()()n n n n n n n n n a a a a a a a a a a a a a a a D a a a a a a a a a ---=---提出每一行的公因子后,得23222213112322223111()()() nn n n n n n na a a D a a a a a a a a a a a a ---=---最后的因子是一个1n -阶的范德蒙行列式,我们用1n D -代表它:213111()()()n n n D a a a a a a D -=---同样得1324222()()()n n n D a a a a a a D --=---此处2n D -是一个2n -阶的范德蒙行列式.如此继续下去,最后得2131132211()()()(-)()()()n n n n n i j n i j D a a a a a a a a a a a a a a -≥>≥=---⋅--=-∏ 3 范德蒙行列式在代数方面的应用3.1 利用范德蒙求解n 阶行列式 例1[3] 计算(1)()1111n n na a a n D a a a n --=--解:由行列式的性质得111(()())()!j i nj i n nk D a j a i i j k ≤<≤≤<≤==---∏=-∏=∏例2[3] 计算111112221n n n n n n na x x a x x D a x x ---=解:按第一列展开得1nk k k D a A ==∑,其中k A 为元素k a 的代数余子式,在k A 的第i 行提出公因子(,1,2,,)i x i k i n ≠= ,即 222211221133331232132221121221212111111(1),(1),,1111(1)1n n n n n n nnn n nnn nn n n n n n n n x x x x x x x x A x x x A x x x x x x x x x x x A x x x x x ----++----+----=-=-=-即得范德蒙行列式11111,1(1)(1)()()nnk n kk ki k i i j i i i kj i nA x x x x x x +---==≠≤<≤=----∏∏∏,所以1111(1)()(/())n nn i i j i i i i i j i nD x x x a x f x +==≤<≤=--∑∏∏其中12()()()()n f x x x x x x x =---例3[4] 计算1n +阶行列式1-22111111111122122222222122111111111n n n n nn n n n nn n n n nn n n n n n n n a a b a b a b b a a b a b a b b D a a b a b a b b --------++++++++=解:从第i 行提取公因子(1,2,,1)n i a i n =+ ,就可以得到转置的1n +阶范德蒙行列式1-22111111111112211222222221211221111111111111n n n nn n n n n n nn n n n n n n n n n n n n a b a b a b a b a b a b a b a b D a a a a b a b a b a b ---------+-----++++++++=于是111[]njni i i j i n i jb b D a a a =≤<≤+=-∏∏ 例4[4] 计算行列式2111111212222221111n n n n n n nn x x x x x x x x x x D x x x x x -----=- 解:从第i 行提出(1,2,,)1ii x i n x =- ,然后再把第1列加到第2列,之后,第2列加到第3列, ,第-1n 列加到第n 列,就得到范德蒙行列式 即21221111111112122122222222121221221111111111111n n n n n n n n n n n n n nn n nnnx x x x x x x x x x x x x x x x x x x D x x x x x x x x x x x ---------------=⋅⋅=------于是11()1nii j i j i nix D x x x =≤<≤=-∏∏-例5[5] 计算n 阶行列式123222212322221231231111nnn n n n n nn n n nnx x x x x x x x D x x x x x x x x ----=解:考虑1n +阶行列式123222221231222221231111112312311111nn n n n n n n nn n n n n nnn n nnnx x x x x x x x x x V x x x x x x x x x x x x x x x +----------=它是关于1n +个变元12,,,,n x x x x 的范德蒙行列式,由范德蒙行列式知111()()nn k j i k i j nV x x x x +=≤<≤=--∏∏若将1n V +按最后一列展开,则111,12,1,11,1n n n n n n n n n V A xA x A x A -++++++=++++ 要计算的行列式其实就是1n V +中元素1n x -的余子式,1n n M +,即,1n n n D M +=而21,1,1,1(1)n n n n n n n A M M ++++=-=-就是111()()nn k j i k i j nV x x x x +=≤<≤=--∏∏的系数,所以,111()nn n n k j i k i j nD M x x x +=≤<≤==-∑∏3.2 利用范德蒙行列式证明向量组线性相关、无关的问题 例[6]1 判断向量组232312232334(1,,,), (1,,,)(1,,,), (1,,,)a a ab b bc c cd d d αααα====是线性相关还是线性无关.其中,,,a b c d 各不相同. 解:考虑相应的齐次线性方程组:112233440x x x x αααα+++=即1234123422221234333312340000x x x x ax bx cx dx a x b x c x d x a x b x c x d x +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ 此方程的系数行列式是范德蒙行列式222233331111 (-)(-)(-)(-)(-)(-)a b c d D a b c d a b c d b a c a d a c b d b d c ==因为,,,a b c d 各不相同,所以0D ≠.根据④克莱姆法则可知,方程组只有零解.从而1234,,,αααα线性无关.例[7]2 设12,,,m λλλ 是方阵A 的m 个特征值,12,,,m p p p 依次是与之对应的特征向量.如果12,,,m λλλ 各不相等,则12,,,m p p p 线性无关.证明:设有常数12,,,m x x x 使11220m m x p x p x p +++= .则1122()0m m A x p x p x p +++= ,即1112220m m m x p x p x p λλλ+++= ,类推之,有1112220.(1,2,,1)k k km m m x p x p x p k m λλλ+++==-把上列各式合写成矩阵形式,得1111221122111(,,,)(0,0,,0).1m m m m m m m x p x p x p λλλλλλ---⎛⎫ ⎪⎪= ⎪⎪ ⎪⎝⎭上式等号左端第二个矩阵的行列式为范德蒙行列式,当i λ各不相等时该行列式不等于0,从而该矩阵可逆.于是有1122(,,,)(0,0,,0)m m x p x p x p = , 即0(1,2,,)j j x p j m == . 但0j p ≠,故0(1,2,,)j x j m == .所以向量组12,,,m p p p 线性无关.3.3 用线性方程组范德蒙行列式来解决有关多项式的根的问题例[8] 设01,,,n x x x 两两互异,函数()f x 在i x x =处的值为()i i f x y = (0,1,,)i n = .证明:存在唯一的n 次多项式()n p x ,使()n i i p x y = (0,1,,)i n =. 证明:令2012()n n n p x a a x a x a x =++++ ,由题设,有01000,01111,01,nn nn n nn n n a a x a x y a a x a x y a a x a x y⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 这是以01,,,n a a a 为未知数的线性方程组,其系数行列式为范德蒙行列式的转置,200021110211 ()1nn j i i j nn n n n x x x x x x D x x x x x ≤<≤==-∏.由于()i j x x i j ≠≠,故0D ≠,从而方程组有唯一解,即存在唯一的多项式()n p x ,使()n i i p x y = (0,1,,)i n =. 注 作为特例,我们不难知道:若n 次多项式2012()n n n p x c c x c x c x =++++ 对1n +个不同的x 值都是零,则()0n p x ≡.4 范德蒙行列式在微积分中的应用例[9]1 确定常数,,,a b c d ,使得()cos cos 2cos3cos 4f x a x b x c x d x =+++,当0x →时为最高阶的无穷小,并给出其等价表达式.解:对()f x 的各项利用②泰勒公式,即由ln x 的泰勒展开式246(2)ln 1(1)24!6!(2)!n n x x x x x n =-+-++- 有24624666(2)(2)(2)()[1()][1()]2!4!6!2!4!6!x x x x x x f x a o x b o x =-+-++-+-+24624666(3)(3)(3)(4)(4)(4)[1()][1()]2!4!6!2!4!6!x x x x x x c o x d o x +-+-++-+-+22221(234)2a b c d a b c d x =+++-+++44441(234)4!a b c d x ++++666661(234)()6!a b c d x o x -++++ 当0x →时,若()f x 最高阶无穷小在6阶以上,则有方程组2224446660234023402340a b c d a b c d a b c d a b c d +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩其系数行列式2223334441 1 1 1 1 2 3 4 1 2 3 41 2 3 4D =为范德蒙行列式,由于0D ≠,故以,,,a b c d 为未知数的方程组只有零解: 0a b c d ==== 从而()0f x ≡.这显然不合题意,故以下考虑()f x 当0x →时最高阶无穷小为6阶的情形. 令222444023402340a b c d a b c d a b c d +++=⎧⎪+++=⎨⎪+++=⎩等价于222444234234b c d a b c d a b c d a ++=-⎧⎪++=-⎨⎪++=-⎩此以,,b c d 为未知数的线性方程,其系数行列式为范德蒙行列式22214441 1 1 2 3 4 02 3 4D =≠方程组有唯一一组依赖于a 的整数解:922,,77b ac ad a =-==-,从而()f x 在0x =的邻域内的最高阶无穷小有下述形式的表达式76666192()(234)()6!77f x a a a a x o x =--+⋅-⋅+ 667()2ax o x =+ 例[10]2 设()f x 至少有k 阶导数,且对某个实数a 有()lim ()0,lim ()0k x x x f x x f x αα→∞→∞== (1)试证:()lim ()0,1,2,,i x x f x i k α→∞== ,其中(0)()f x 表示()f x .证明:由条件(1),要证明()lim ()0i x x f x α→∞=,只要将()()i f x 写成与()f x 与()()k f x 的线性组合即可.利用泰勒公式,21(1)()()()()()()()2!(1)!!k k k k m m m m f x m f x mf x f x f x f k k ξ--'''+=+++++- (2)其中,1,2,,m x x m m k ξ<<+= 这是关于(1)(),(),(),,()k f x f x f x f x -''' 的线性方程组,其系数行列式为212k-1221111 11 1 1 12!(k-1)!1 2 2 2 221 2 12!(1)! 1 3 3 1!2!(1)!12!(1)!k k k D k k k k k ---==-- 12131k k k k k --后一个行列式为范德蒙行列式,其值为1!2!(1)!k - ,故D=1!.于是可从方程组(2)把(1)(),(),(),,()k f x f x f x f x -''' 写成() (m=1,2,,k)f x m + 与()() (m=1,2,,k)k m f ξ 的线性组合.我们只要证明()lim ()lim ()0k m x x x f x m x f ααξ→∞→∞+== (m =1,2,,k 即可. 事实上,设x t x k ≤≤+,于是()()()lim ()lim ()lim lim ()0i i i x x x x x x x ft t f t t f t t t ααααα→∞→∞→∞→∞⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(0,)i k= 在此式中分另令,0t x m i =+=和令,m t i k ξ==,则得()lim ()lim ()0k m x x x f x m x f ααξ→∞→∞+== (1,2,,)m k =. 注:类似的方法可证如下命题[11]设函数f 在(,)a +∞上有直到n 阶导数,且有()lim (),lim ()n x x f x A f x B →∞→∞==.求证:()lim ()0,1,2,,k x f x k n →∞== .例[12]3 设函数()f x 在0x =附近有连续的n 阶导数,且'()(0)0,(0)0,,(0)0n f f f ≠≠≠ ,若121,,,n p p p + 为一组两两互异的实数,证明:存在唯一的一组实数121,,,n λλλ+ ,使得当0h →时,11()(0)n i i i f p h f λ+=-∑是比n h 高阶的无穷小.证明:由题设条件,可得()i f p h (1,2,,1)i n =+ 在0x =处常有③皮亚诺余项的马克劳林展开式:()110()(0)()!k k nk n k p h f p h f o h k ==+∑, (1)()220()(0)()!k k nk n k p h f p h f o h k ==+∑, (2)()110()(0)()!k k nk n n n k p h f p h f o h k ++==+∑, (1)n + 121(1)(2)(1)n n λλλ+⨯+⨯+++⨯ ,得()()11111111()(0)1(0)(0)()!n n nn k k k ni i i i i i i k i f p h f f p f h o h k λλλ+++====-=-++∑∑∑∑. 当0h →时,若11()(0)n i i i f p h f λ+=-∑为比n h 高阶的无穷小,则1211122112221122111122111,0,0,0.n n n n n n n n n n p p p p p p p p p λλλλλλλλλλλλ++++++++++=⎧⎪+++=⎪⎪+++=⎨⎪⎪⎪+++=⎩ 这是以121,,,n λλλ+ 为未知数的线性方程组,其系数行列式121222121111211 1 1()0n n j i i j n n n nn p p p D p p p p p p p p ++≤<≤++==-≠∏,故上述方程组有唯一解,即存在唯一一组实数121,,,n λλλ+ ,使当0h →时,11()(0)n i i i f p h f λ+=-∑是比n h 高阶无穷小. 5 结束语全文分为五个部分.第一部分是前言.先介绍了本文将要用到的一些相关知识.如行列式的展开定理;泰勒公式;皮亚诺余式的马克劳林展开式.第二部分范德蒙行列式的定义及其证明.主要介绍了什么叫做范德蒙行列式,以及对范德蒙行列式做了证明.第三部分范德蒙行列式在代数方面的应用.这也是我所写的主要类容.它又分别包含了利用范德蒙求解n阶行列式;利用范德蒙行列式证明向量组线性相关、无关的问题;线性方程组范德蒙行列式来解决有关多项式的根的问题这三个方面.第四部分为范德蒙行列式在微积分中的应用.主要就泰勒公式与范德蒙行列式的合用,范德蒙行列式与泰勒公式的特殊形式皮亚诺余项的马克劳林展开式的合用做了一定的阐述.第五部分为结束语与致谢,主要就是对本文的写作的回顾、感慨以及对帮助我老师的谢谢.参考文献[1]张禾瑞,郝炳新.高等代数(第四版)[M].北京:高等教育出版社,1999.[2]华东师范大学数学系编.数学分析(第三版)[M].高等教育出版社.[3]晏林.范德蒙行列式的应用[C].云南:文山师范高等专科学校学报,第13卷,第2期,2001年11月.[4]冯锡刚.范德蒙行列式在行列式计算中的应用[J].济南:山东轻工业学院学报,2006年第2期第14卷.[5]陈治中.线性代数与解析几何辅导[M].清化大学北京交通大学出版社.[6]吴声钟.线性代数内容、方法与练习[M]电子工业出版社.[7]同济大学数学教研组编.工程数学线性代数(第三版)[M]. 高等教育出版社.[8]易大义,陈道琦.数值分析引论[M].杭州:浙江大学出版社,1998,17-18.[9]邹应.数学分析习题及其解答[M].武汉:武汉大学出版社,2001.[10]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社.[11]吴良森,毛羽辉,宋国栋,魏木生.数学分析习题精解[M].北京:科学出版社,2002,360-361.[12]章乐.几道考研试题的推广[J].大学数学,2003,19(5):117-119.Application of Vandermonde DeterminantAbstract: This article according to the Vander Mongolia determinant thecharacteristic, summaried the Vander Mongolia determinant in thealgebra, the fluxionary calculus application.Key word: Vander Mongolia determinant; Algebra; Fluxionary calculus11。
范德蒙行列式的一个性质的证明及其应用
范德蒙行列式的一个性质的证明及其应用一、范德蒙行列式(又称多元行列式)的定义范德蒙行列式是由矩阵中每一行和每一列所引出的多项式。
它对多元方程模型具有重要意义,例如体积、表面积等。
范德蒙行列式 $$A_{n\times n}=\begin{Vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} \\\end{Vmatrix}$$它由矩阵中n个基元项组成,记做:$$A_{ij}=|A_{ij}|$$其中,$A_{ij}$表示矩阵中任意一个基元项,它满足关系:$$A_{ij}=a_{ij}*(-1)^{i+j}$$二、范德蒙行列式的一个性质及其应用1、性质:2、应用:范德蒙行列式的应用是非常广泛的,他可以用来求解任意维度的行列式,例如:(1)在工程中,可用范德蒙行列式进行多元行列式计算;(2)在金融领域,可以使用范德蒙行列式进行数据分析和风险防护;(3)在统计学中,可以使用范德蒙行列式对数据进行回归分析;(4)在科学研究中,可以使用范德蒙行列式进行矩阵计算。
三、结论范德蒙行列式是矩阵中每一行和每一列所引出的多项式,其有一个性质是,当任意一个子矩阵中只有一行或一列有值时,此子矩阵的行列式等于其第一行或第一列元素的乘积。
它的应用可以用来求解多元行列式的计算,如:在工程、金融、统计学和科学研究中都有重要应用。
范德蒙行列式的应用
范德蒙行列式的应用什么是范德蒙行列式范德蒙行列式是线性代数中的一个重要概念,由荷兰数学家范德蒙提出。
它是一个多项式的行列式,其中每一行的元素都是以一定规律排列的。
范德蒙行列式的一般形式如下:∣∣∣∣∣∣∣∣1a 1a 12⋯a 1n−11a 2a 22⋯a 2n−1⋮⋮⋮⋱⋮1a n a n 2⋯a n n−1∣∣∣∣∣∣∣∣其中,a 1,a 2,…,a n 是给定的实数或复数。
范德蒙行列式的值可以通过高斯消元法等方法求得。
范德蒙行列式的应用范德蒙行列式在数学中有广泛的应用,特别在概率论、信号处理、统计学和机器学习等领域中发挥着重要作用。
1. 描述一组向量的线性相关性通过计算范德蒙行列式的值,可以判断一组向量是否线性相关。
具体来说,对于给定的向量 v 1,v 2,…,v n ,将它们按列排列成一个矩阵 A ,则范德蒙行列式的值可以判断这组向量是否线性相关。
当范德蒙行列式的值为零时,表示这组向量线性相关;当范德蒙行列式的值不为零时,表示这组向量线性无关。
2. 描述多项式插值问题范德蒙行列式可以用于多项式的插值问题。
给定一组已知的点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中 x i 互不相同,我们希望找到一个次数不超过 n −1 的多项式 P (x ),满足 P (x i )=y i 。
这时,我们可以使用范德蒙行列式来表示插值多项式的系数。
具体来说,设V是一个n×n的矩阵,其中V ij=x i j−1,则范德蒙行列式的每一行都是已知点的自变量的幂次,根据多项式插值定理,范德蒙行列式的值的绝对值等于插值多项式中的每个系数的模的值。
3. 生成正交多项式范德蒙行列式也可以用于生成正交多项式。
正交多项式是一类特殊的多项式,满足在某个权函数下的正交性。
根据勒让德正交多项式、切比雪夫正交多项式、拉盖尔正交多项式等的定义,我们可以利用范德蒙行列式来生成这些正交多项式。
具体来说,设V是一个n×n的矩阵,其中V ij=P i−1(x j),P i−1(x)表示度数不超过i−1的多项式。
范德蒙行列式的应用
范德蒙行列式的应用范德蒙行列式是线性代数中的一个重要概念,它在许多领域中都有广泛的应用。
本文将从几何、物理、概率和统计四个方面介绍范德蒙行列式的应用。
一、几何1.计算向量组的体积向量组的体积可以通过范德蒙行列式来计算。
假设有三个向量a,b和c,它们所构成的平行六面体的体积可以表示为:V=|a·(b×c)|其中,|b×c|表示向量b和向量c所构成的平面上的面积,a·(b×c)表示向量a与该平面垂直的投影长度。
因此,V可以写成:V=|a·(b×c)|=|a b c|=|abc|这里的“abc”就是一个3阶范德蒙行列式。
2.求解三角形面积在平面几何中,三角形面积可以通过海龙公式或海涅公式来计算。
而另一种方法是使用范德蒙行列式。
假设三角形顶点为A(x1,y1),B(x2,y2)和C(x3,y3),则三角形ABC所构成的面积S可以表示为:S=1/2 |x1 y1 1||x2 y2 1||x3 y3 1|这里的“xyz”就是一个3阶范德蒙行列式。
二、物理1.计算电荷分布的能量在电学中,电荷分布所具有的能量可以通过静电能公式来计算。
而静电能公式可以表示为:U=1/2 ∑i∑j qi qj / (4πεr)其中,qi和qj表示第i个和第j个电荷,r表示它们之间的距离,ε是真空介质中的介电常数。
而∑i∑j qi qj可以表示为一个n阶范德蒙行列式:∑i∑j qi qj =|q11 q12 … q1n||q21 q22 … q2n||… … … ||qn1 qn2 … qnn|因此,静电能公式可以写成:U=1/2|q11/q12/…/q1n||q21/q22/…/q2n||… … … ||qn1/qn2/…/qnn| / (4πεr)这里的“qi”就是一个长度为n的向量。
三、概率计算概率分布函数在概率论中,概率分布函数可以通过累积分布函数来计算。
范德蒙行列式的一些应用
姓名
题目的意义和目的
• 范德蒙行列式是一种重要的行列式 ,利用各种方法将一些 特殊的或近似于范德蒙行列式的行列式转化为范德蒙行列 式 ,是行列式计算过程中不易掌握的方法 。 • 范德蒙行列式构造独特,形式优美,是高等代数中一种特 殊的行列式。 • 范德蒙行列式应用广泛,不仅应用在一些行列式计算当中 ,而且它也可以应用于证明行列式问题和一些关于多项式 方面以及某些特征向量线性无关等问题上。
研究问题的思路
关于某些特征 向量问题
首先
明确什么是范 德蒙行列式
关于一些多项 应三 式问题
最后总结 说明
其次
了解范德蒙行 列式的证明过 程
关于证明行列 式问题 算问题
浅谈范德蒙行列式的意义 和重要性
范德蒙行列式的形式和证 明过程 范德蒙行列式在行列式计 算中的一些应用例子 学习范德蒙行列式后的一 些感受
参考文献
1.《高等代数》(第三版) 北京大学数学 系几何与代数考研室前代数小组 编 王萼 芳 石生明 修订 2. 课件 3. 范德蒙行列式在行列式计算中的应用 冯锡刚 山东轻工业学院(自然科学报) 4. 经济应用数学—线性代数 北京:高等 教育出版社 2004 陈建华
a是关于1,2,...,n的范德蒙行列式
题目:关于范德蒙行列式的性质和应用范德蒙行列式是数学中的一种特殊形式的行列式,在许多领域中都有重要的应用,例如上线性代数、概率论、数论等方面。
本文将围绕范德蒙行列式的定义、性质和应用展开详细的讨论,希望能够帮助读者更好地理解和运用范德蒙行列式。
一、范德蒙行列式的定义范德蒙行列式是一个n阶方阵,其元素为幂次型的变量,其一般形式可以表示为:\[ \begin{vmatrix}1 a_1 a_1^2 \cdots a_1^{n-1} \\1 a_2 a_2^2 \cdots a_2^{n-1} \\\vdots \vdots \vdots \vdots \\1 a_n a_n^2 \cdots a_n^{n-1} \\\end{vmatrix} \]其中a1, a2, ..., an为n个实数或复数。
二、范德蒙行列式的性质1. 范德蒙行列式的值与变量a1, a2, ..., an的排列顺序无关,即其值只与这些变量的取值有关,而与它们的次序无关。
2. 当n个变量a1, a2, ..., an两两不相等时,范德蒙行列式的值非零。
3. 当n个变量a1, a2, ..., an中有两个或多个相等时,范德蒙行列式的值为0。
4. 当范德蒙行列式的元素中存在一对相等的变量时,行列式中有两行或两列的元素完全相等。
三、范德蒙行列式的应用1. 线性代数中的应用范德蒙行列式上线性代数中有广泛的应用,特别是在解决线性方程组、矩阵求逆、向量空间、线性相关性等问题时,经常会涉及到范德蒙行列式的计算和性质。
2. 概率论中的应用范德蒙行列式在概率论中也有重要的应用,例如在多项式分布、二项式分布和超几何分布等概率分布的概率质量函数的计算中,常常会用到范德蒙行列式。
3. 数论中的应用在数论中,范德蒙行列式也有其独特的应用,例如在模意义下的数论运算、离散数论、多项式求值等问题中,经常会用到范德蒙行列式。
四、总结范德蒙行列式作为一种特殊形式的行列式,在数学中有着重要的地位和广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂零矩阵性质及应用摘要:幂零矩阵是一类特殊的矩阵,在矩阵理论中有重要的作用。
它具有一些很好的性质。
本文从矩阵的不同角度讨论了幂零矩阵的相关性质。
幂零矩阵与若当形矩阵结合可得一个很好性质,在解相关矩阵问题有很好作用,由此我们举例说明,从例子中发现了问题并对此问题实行思考得出了一些结论,对幂零矩阵的研究很有意义。
在一般矩阵中,求矩阵的逆比较麻烦,本文最后利用幂零矩阵特殊性讨论了三类特殊矩阵逆的求法。
关键词:幂零矩阵 若当块 特征值 幂零指数 一、 预备知识版社、《高等代数》(第二版) 北京大学数学系几何与代数教研室代数小组 高等教育出版社、 《高等代数选讲》 陈国利 中国矿业大学出版社及《高等代数习题集》(上册) 杨子胥 山东科学技术出版社)(一) 一些概念1、令A 为n 阶方阵,若存有正整数k ,使0k A =,A 称为幂零矩阵。
2、若A 为幂零矩阵,满足0k A =的最小正整数称为A 的幂零指数。
3、设1111n n nn a a A a a ⎛⎫⎪=⎪⎪⎝⎭,称1111n n nn a a A a a ⎛⎫⎪'= ⎪ ⎪⎝⎭为A 的转置, 称111*1n nnn A A A A A ⎛⎫⎪=⎪ ⎪⎝⎭为A 的伴随矩阵。
其中(,1,2,,)ij A i j n =为A 中元素ij a 的代数余子式4、设A 为一个n 阶方阵,A 的主对角线上所有元素的和称为A 的迹,记为trA 。
5、主对角线上元素为0的上三角称为严格的上三角。
6、形为010(,)000001J t λλλλλ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭的矩阵称为若当块,其中λ为复数,由若干个若当块组成和准对角称为若当形矩阵。
7、()f E A λλ=-称为矩阵A 的特征多项式。
满足()0f E A λλ=-=的λ的值称为矩阵A 的特征值。
8、次数最低的首项系数为1的以A 为根的多项式称为A 的最小多项式。
(二)、一些引理引理1:设A ,B 为n 阶方阵,则()()***,AB B A AB B A '''==引理2:(),()A f E A m λλλ=-分别为矩阵A 的特征多项式和最小多项式,则有()0,()0A f A m A ==。
引理3:每一个n 阶的复矩阵A 都与一若当形矩阵相似,这个若当形矩阵除去若当块的排序外被矩阵A 唯一决定的,它称为A 的若当标准形。
引理4:若当形矩阵的主对角线上和元素为它的特征值。
引理5:n 阶复矩阵A 与对角矩阵相似的充分必要条件是A 和最小多项式无重根。
引理6:相似矩阵具有相同的特征值。
引理7:设12,,,n λλλ为n 阶矩阵A 的特征值,则有12n trA λλλ=+++,12n A λλλ=⋅⋅,且对任意的多项式()f x 有()f A 的特征值为12(),(),,()n f f f λλλ。
引理8:k 阶若当块11k a J a ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭的最小多项式为()k x a -且有()0k k J aE -=。
引理9:矩阵匠最小多项式就是矩阵A 的最后一个不变因子。
引理10:A ,B 为n 阶复数域上的矩阵,若AB BA =,则存有可逆矩阵T ,使得112211n n T AT T BT λμλμλμ--⎛⎫⎛⎫⎪ ⎪**⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
引理11:任意n 阶A ,B 方阵,有()()tr AB tr BA =。
二、 幂零矩阵的性质(下面的性质来自《高等代数解题方法与技巧》 李师正 高等教育出版社、《高等代数》(第二版) 北京大学数学系几何与代数教研室代数小组 高等教育出版社、《高等代数选讲》 陈国利 中国矿业大学出版社、《高等代数习题集》(上册) 杨子胥 山东科学技术出版社、《关于幂零矩阵性质的探讨》 谷国梁 铜陵财经专科学校学报、《幂零矩阵的性质及应用》 韩道兰 罗雁 黄宗文 玉林师范学院学报并综合归纳得出关于幂零矩阵的十一条性质) 性质1:A 为幂零矩阵的充分必要条件是A 的特征值全为0。
证明:⇒A 为幂零矩阵 k Z +∴∃∈ .0k s tA =令0λ为A 任意一个特征值,则00,.s t A ααλα∃≠= 由引理7知,0k λ为k A 的特征值 00.k k s t A ββλβ∴∃≠= 从而有0k λ=0即有00λ=又有0k A =,知00kk A A A ==⇒= 0*(1)(1)00k k E A A A ∴-=-=-=-⋅= 00λ∴=为A 的特征值。
由0λ的任意性知,A 的特征值为0。
⇐A 的特征值全为0A ∴的特征多项式为()n f E A λλλ=-= 由引理2知,()0n f A A == 所以A 为幂零矩阵。
得证 性质2:A 为幂零矩阵的充分必要条件为0k k Z trA +∀∈=。
证明:⇒A 为幂零矩阵,由性质1,知:A 的特征值全为0 即120n λλλ====由引理7,知 k A 的特征值为120k k k n λλλ====从而有 120k k k k n trA λλλ=+++=⇐由已知,120k k k k n k Z trA λλλ+∀∈=+++=(1.1)令12,,,t λλλ为A 的不为0的特征值且i λ互不相同重数为(1,2,,)in i t =由(1.1)式及引理7,得方程组11222221122333112211220000t t t t t t t t t t t n n n n n n n n n n n n λλλλλλλλλλλλ+++=⎧⎪+++=⎪⎪+++=⎨⎪⎪⎪+++=⎩(1.2)因为方程组(1.2)的系数行列式为122221212121212121111()t t t tttttttt t t i j j i tB λλλλλλλλλλλλλλλλλλλλλλλ≤<≤===∏-又(1,2,)ii t λ=互不相同且不为0,0B ∴≠从而知,方程(1.2)只有0解,即0(1,2,,)i n i t ==即A 没有非零的特征值A ∴的特征值全为0, 由性质1,得 A 为幂零矩阵 得证性质3:若A 为幂零矩阵,则A 的若当标准形J 的若当块为幂零若当块,且J和主对角线上的元素为0证明:A 为幂零矩阵, 由性质1,知 A的特征值全为0 由引理3,知 在复数域上,存有可逆矩阵T ,使得121s J J T AT J -⎛⎫⎪⎪= ⎪ ⎪⎝⎭其中11i i i J λλ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =由引理4,知(1,2,,)i i s λ=为J 和特征值又A 与J 相似,由引理6,知A 与J 有相同的特征值 所以0(1,2,,)i i s λ== 即J 的主对角线上的元素全为0由引理8,知 (0)()0(1,2,,)i i n n i i J E J i s -===12,,,s J J J 为幂零矩阵 得证性质4:若A 为幂零矩阵,则A 一定不可逆但有1,1A E E A +=-= 证明:A 为幂零矩阵,k Z +∴∃∈ .0k s tA =00kk A A A ∴==⇒= A 一定不可逆由性质1,得 A 的特征值为120n λλλ====由引理7,得,A E E A +-的特征值分别为1212011,101n n λλλλλλ'''''''''====+=====-=且有1211n n A E λλλ'''+=== 1211n n E A λλλ''''''-===即1,1A E E A +=-= 得证 性质5:若A E +为幂零矩阵,则A 非退化 证明:令12,,,n λλλ为A 的特征值若A 退化,则有 0A = 由引理7,得 120n A λλλ==∴至少存有0i λ=0为A 的特征值又由引理7,得 0110i λ+=≠为A E +的一特征值这与A E +为幂零矩阵矛盾 得证A 为非退化性质6:若A 为幂零矩阵,B 为任意的n 阶矩阵且有AB BA =,则AB 也为幂零矩阵 证明:A 为幂零矩阵 .0k k Z s tA +∴∃∈=又AB BA = ()00k k k k AB A B B ==⋅= AB ∴也为幂零矩阵 得证性质7:若A 为幂零矩阵且0k A =,则有121()k E A E A A A ---=++++1211231111()(1)(0)k k kmE A E A A A m m m mm ---+=-+++-≠证明:0k A = k k k E E A E A ∴=-=-21()()k E A E A A A -=-++++即121()k E A E A A A ---=++++任意0m ≠,有[()]k k k k kA mE mE A mE A m E m∴=+=+=+ 211121111()((1))k k k A m E E A A A m m mm ---=+-+++-211121111()((1))k k k mE A E A A A m m m---=+-+++- 即有2111211111()((1))k k k mE A E A A A E m m mm---+⋅-+++-=1211121211231111()((1))111(1)k k k k k k mE A E A A A m m m mE A A A m m m m------∴+=-+++-=-+++-性质8:若A 为幂零矩阵且A 0≠,则A 不可对角化但对任意的n 阶方阵B ,存有幂零矩阵N ,使得B N +可对角化 证明:A 为幂零矩阵 .0k k Z s tA +∴∃∈=且A 的特征值全为零()n f E A λλλ=-=为A 的特征多项式且()0n f A A == 令()A m λ为A 的最小多项式,则有()|()A m f λλ 从而有00()(1)k A m k n λλ=≤≤因为0A 0,k 1≠∴>,又此时 00()2k A m k λλ=≥即A 的最小多项式有重根,由引理5,知 A 不可对角化 B 为n 阶方阵 由引理3,知 在复数域上,存有可逆矩阵T ,使得121s J J T BT J -⎛⎫⎪⎪= ⎪ ⎪⎝⎭其中11i i i J λλ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =令 i ii i D λλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =则有0110i i i J J D ⎛⎫ ⎪⎪'=-= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =由引理8,知(0)()0i i i n n i n i J E J ''-⋅== 即i J '为幂零矩阵(1,2,,)i s =现令12s J J J J ⎛⎫' ⎪ ⎪''= ⎪ ⎪ ⎪ ⎪'⎝⎭12s D D D D ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭1112122s s s J D J J J D T BT J D J J D -⎛⎫'+⎛⎫ ⎪⎪ ⎪'+⎪'===+ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭'+⎝⎭即111()(1)B T J D T TJ T TDT ---''=+=+又D 为对角阵,由(1)式知 11B TJ T TDT --'-=可对角化 令N =1TJ T -'- 且取 12max(,,,)s k n n n = 则有120kkkk s J J J J ⎛⎫' ⎪ ⎪''==⎪ ⎪ ⎪ ⎪'⎝⎭111112()()()()()00k kk k k k kk k s J J N TJ T T J TT T T T J ----⎛⎫' ⎪ ⎪'''=-=-=-=-=⎪ ⎪ ⎪ ⎪'⎝⎭即有B N +可对角化且N 为幂零矩阵 得证性质9:n 阶幂零矩阵的幂零指数小于等于n 且幂零指数等于其若当形矩阵中阶数最高的若当块的阶数证明;令A 为n 阶幂零矩阵 由性质3知, 存有可逆矩阵T 使得121s J J T AT J -⎛⎫⎪⎪= ⎪ ⎪⎝⎭其中0110i J ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =且()0i n i J = 1(1,2,,)i n n i s ≤≤=取12max(,,,)s k n n n =,则k n ≤ 且有1121112()00(1.5)k kk k k s s J J J J A T T T T T T J J ---⎛⎫⎛⎫⎪⎪⎪⎪===⋅⋅= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭即0k A =若令0k 为A 的幂零指数,则0k k n ≤≤ 00k A = 若0k k <,则000.i i s t n k ∃> 且000k i J ≠由(1.5)式,得00000112112()0k k k k k s s J J J J A T T T T J J --⎛⎫⎛⎫⎪⎪⎪⎪==≠ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭这与00k A =矛盾。