水箱液位控制系统
水箱液位自动控制系统设计
第一章水箱液位自动控制系统原理液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。
在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。
液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。
根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。
结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。
应用范围在制浆造纸过程中涉及的所有池、罐、槽体液位自动控制。
图1.1中,是控制器的传递函数,是执行机构的传递函数,是测量变送器的传递函数,是被控对象的传递函数。
图5.1中,控制器,执行机构、测量变送器都属于自动化仪表,他们都是围绕被控对象工作的。
也就是说,一个过程控制的控制系统,是围绕被控现象而组成的,被控对象是控制系统的主体。
因此,对被控对象的动态特性进行深入了解是过程控制的一个重要任务。
只有深入了解被控对象的动态特性,了解他的内在规律,了解被控辩量在各种扰动下变化的情况,才能根据生产工艺的要求,为控制系统制定一个合理的动态性能指标,为控制系统的设计提供一个标准。
性能指标顶的偏低,可能会对产品的质量、产量造成影响。
性能指标顶的过高,可能会成不必要的投资和运行费用,甚至会影响到设备的寿命。
性能指标确定后,设计出合理的控制方案,也离不开对被控动态特性的了解。
不顾被控对象的特点,盲目进行设计,往往会导致设计的失败。
尤其是一些复杂控制方案的设计,不清楚被控对象的特点根本就无法进行设计。
有了正确的控制方案,控制系统中控制器,测量变送器、执行器等仪表的选择,必须已被控对象的特性为依据。
在控制系统组成后,合适的控制参数的确定及控制系统的调整,也完全依赖与对被控对象动态特性的了解。
由此可见,在控制工程中,了解被控制的对象是必须首先做好的一项工作。
单容水箱液位定值控制系统
单容水箱液位定值控制系统一、实验目的1.理解单容水箱液位定值控制的基本方法及原理;2.了解压力传感器的使用方法;3.学习PID控制参数的配置。
二、实验设备1.控制理论实验平台2.数据采集卡一块3.PC机1台4.THBDY-1单容水箱液位控制系统三、实验原理单容水箱液位定值控制系统的控制对象为一阶单容水箱,主要的实验项目为单容水箱液位定值控制。
其执行机构为微型直流水泵,正常工作电压为24V。
直流微型水泵控制方式主要有调压控制以及PWM控制,在本实验中采用PWM控制直流微型水泵的转速来实现对单容水箱液位的定值控制。
PWM调制与晶体管功率放大器的工作原理参考实验十三的相关部分。
控制器采用了工业过程控制中所采用的最广泛的控制器——PID控制器。
通过计算机模拟PID控制规律直接变换得到的数字PID控制器,它是按偏差的比例(P)、积分(I)、微分(D)组合而成的控制规律。
水箱液位定值控制系统一般有由电流传感器构成大电流反馈环。
在高精度液位控制系统中,电流反馈是必不可少的重要环节。
这里为了方便测量与观察反馈信号,通常把电流反馈信号转化为电压信号:反馈端输出端串接一个250Ω的高精度电阻。
本实验电压与液位的关系为:H液位=(V反馈-1)×12.5 单位:mm 水箱液位控制系统方框图为:四、实验步骤1.实验接线1.1 将水箱面板上的“LT –”与实验台的“GND”相连接;水箱面板上的“LT +”与实验台的“AD1”相连接。
1.2将水箱面板上的“输入–”与实验台的“GND”相连接;水箱面板上的“输入+”与实验台的“DA1”相连接。
1.3将水箱面板上的“输出–”与“水泵电源–”连接;水箱面板上的“输出+”与“水泵电源+”连接。
1.4打开实验平台的电源总开关。
2.压力变送器调零本实验在开始实验前必须对压力变送器调零操作。
具体方法为:2.1 将水箱中打满水,然后再全部放到储水箱中;2.2 旋开压力变送器的后盖,用小一字螺丝刀调节压力变送器中电路板上有“Z”标识的调零电位器,让压力变送器的输出电压为1V;2.3 再次向水箱中打水,并观察水箱液位与压力变送器输出电压的对应情况,其对应关系为:H液位=(V反馈-1)×12.5(当液位为10cm时,输出电压应为1.8V左右),如不对应,再重复步骤2.1、2.2直到对应为至;2.4 如果步骤1)、2)、3)还不能调好水箱液位与压力变送器输出电压的对应情况,那么可适度调节压力变送器中电路板上有“S”标识的增益电位器,再重复步骤2.1、2.2、2.3直到对应为至。
水箱液位自动控制系统工作原理
水箱液位自动控制系统工作原理引言水箱液位自动控制系统是一种常见的自动化控制系统。
本文将对水箱液位自动控制系统的工作原理进行详细的介绍和探讨。
其中包括传感器的使用、控制器的设计以及执行器的操作等方面。
传感器水箱液位传感器是水箱液位自动控制系统的核心组件之一。
传感器通过测量水箱中的液位高度来获取相应的液位信息。
常见的液位传感器包括浮球式液位传感器和压力式液位传感器。
浮球式液位传感器浮球式液位传感器利用浮球的浮力来测量液位。
当液位上升时,浮球会随之上升;当液位下降时,浮球也会下降。
传感器通过检测浮球的位置来确定液位的高度。
压力式液位传感器压力式液位传感器通过测量液体对传感器的压力来确定液位的高度。
当液位上升时,液体对传感器的压力增加;当液位下降时,压力减小。
传感器通过检测液体对传感器的压力变化来确定液位的高度。
控制器控制器是水箱液位自动控制系统的另一个重要组成部分。
控制器根据传感器提供的液位信息,判断水箱液位是否在设定范围之内,然后发出相应的控制信号。
PID控制器PID控制器是一种常用的控制器类型。
它根据当前的偏差以及偏差的变化率来调整输出信号,使得系统的输出能够稳定在设定值附近。
PID控制器由比例项、积分项和微分项组成,分别对应于当前偏差、累积偏差和变化率。
控制信号控制信号是控制器向执行器发送的命令信号,用于控制水箱液位的变化。
通过调整控制信号的大小和方向,控制器可以实现水箱液位的自动上升和下降。
执行器执行器是控制水箱液位的关键部件。
执行器根据控制器发出的命令信号,调整水箱进水和排水的流量,从而实现水箱液位的自动控制。
电动阀门电动阀门是一种常用的执行器类型。
它通过电动机驱动阀门的开闭,从而调节水箱的进水和排水流量。
控制器通过控制电动阀门的开度,使得水箱液位保持在设定范围之内。
水泵水泵也是一种常见的执行器类型。
它通过驱动液体流动来调节水箱的液位。
控制器根据液位信息,调整水泵的工作状态,从而实现水箱液位的自动控制。
基于PLC水箱液位控制系统毕业设计
基于PLC水箱液位控制系统毕业设计水箱液位控制系统是一种常见的自动化控制系统,通过控制水位的高低来实现水箱中水的供应与排放。
该系统常用于水处理、供水系统、工业生产等领域。
本篇毕业设计将基于可编程逻辑控制器(PLC)来设计一个水箱液位控制系统。
PLC作为控制器,能够实现对水位的监测、控制和保护。
首先,本设计将使用传感器来监测水箱的液位。
液位传感器将放置在水箱内部,在不同的液位位置测量水的高度。
传感器将通过模拟信号将液位信息传输给PLC。
PLC将读取并处理传感器的信号,得到水箱的液位信息。
其次,PLC将根据液位信息来控制水泵的运行。
当水箱的液位低于一定的阈值时,PLC将启动水泵,从水源处将水注入到水箱中。
当液位达到一定的高度时,PLC将关闭水泵,停止水的注入。
通过控制水泵的启动和停止,系统可以实现自动补水,从而保持水箱的水位在一个恰当的范围内。
此外,本系统还将具备一定的保护功能。
当水箱液位过高或过低时,PLC将触发报警装置,以便及时采取措施解决问题。
同时,系统将设置相应的安全控制,以防止水泵出现过载或短路等故障。
为了实现PLC控制系统的功能,本设计将使用PLC编程软件进行程序的编写和调试。
程序将根据液位传感器的输入信号,进行逻辑判断和控制指令的输出。
同时,本设计将与水泵、报警装置等硬件进行连接,以实现实际的控制功能。
最后,本设计将进行系统的仿真和调试。
通过模拟真实的液位变化情况,测试系统的控制性能和稳定性。
在确保系统正常运行的前提下,对系统进行各项性能指标的测试和评估。
通过该毕业设计的实施,我将能够掌握PLC水箱液位控制系统的原理和设计方法,提升自己在自动化控制领域的实践能力和工程应用能力。
同时,通过该设计的完成,也能为工业生产中的水箱液位控制问题提供一种可行的解决方案。
基于DCS实验平台实现的水箱液位控制系统综合设计
基于DCS实验平台实现的水箱液位控制系统综合设计水箱液位控制系统是一种常见的自动控制系统,用于控制水箱中水的液位,并实现自动注水或放水。
在本综合设计中,我们基于DCS(Distributed Control System)实验平台实现了一套水箱液位控制系统。
DCS是一种分布式控制系统,由多个控制器通过网络连接,并共享信息和资源,实现综合控制和监测。
本设计包含以下组成部分:1.水箱:水箱是整个系统的控制对象,用于存储水。
我们使用了一个实验型水箱,通过电动阀门来控制水的流入和流出。
2.传感器:系统中使用了液位传感器来监测水箱中水的液位。
通过传感器,我们可以获取实时的液位数据。
3.执行器:系统中使用了电动阀门作为执行器,用于控制水的注入和排出。
电动阀门可以根据控制信号打开或关闭,实现自动控制。
4.控制器:我们使用了DCS实验平台提供的控制器来实现水箱液位控制算法。
控制器通过接收传感器的反馈信号,并根据设定点和控制算法计算出相应的控制信号,再通过通信网络发送给执行器。
5.计算机界面:我们使用了DCS实验平台提供的计算机界面来监测和操作水箱液位控制系统。
通过计算机界面,操作人员可以实时查看水箱液位、设定控制参数,并监控系统的运行状态。
在系统运行时,控制器会不断地读取传感器的反馈信号,并根据设定点和控制算法计算出相应的控制信号。
控制信号通过通信网络发送给执行器,执行器根据控制信号打开或关闭电动阀门,实现水的自动注入或排出。
同时,系统的运行状态和液位数据会通过计算机界面实时显示,方便操作人员监控和调整。
实验结果表明,我们设计的水箱液位控制系统能够准确地控制水箱中的液位,并实现自动注水或放水的功能。
通过DCS实验平台的分布式控制和监测能力,系统的可靠性和稳定性得到了有效提高。
通过本实验,我们深入了解了水箱液位控制系统的原理和设计方法,熟悉了DCS实验平台的使用,并通过实践掌握了水箱液位控制系统的综合设计过程。
总之,基于DCS实验平台的水箱液位控制系统综合设计是一个充满挑战但又非常有意义的实验项目,通过实验我们可以提升我们在自动控制和DCS技术方面的能力,并为工业自动化控制系统的设计和实施奠定基础。
水箱液位控制系统
水箱液位控制及MATLAB仿真实现报告目录水箱液位控制及MATLAB仿真实现报告 (1)目录 (2)摘要 (3)水箱液位控制系统原理 (4)水箱液位控制系统的数学模型 (4)(一)确定过程的输入变量和输出变量 (4)(二)水箱液位控制系统的算法: (5)(三)水箱液位控制系统的MATLAB/simulink的仿真: (6)(四)结果分析: (7)总结 (9)摘要在人们生活和工业生产等诸多领域中经常涉及到液位和流量的控制系统问题,因此液面高度是工业控制过程中的一个重要参数,特别是在动态的过程下,采用合适的方法对液位进行检测、控制,能收到很好的效果。
PID控制是目前采用最多的控制方法。
本文介绍了双容水箱中控制液位的控制技术以及使用matlab仿真软件去进行液位仿真,通过PID控制实现液位的自动控制,用matlab 软件建立数学模型,再写出液位控制的PID算法进行数据模拟,最后实现水箱液位通过计算机技术自动控制。
通过matlab软件仿真实现了液位的实时测量和监控。
系统通过matlab仿真对实验所得的参数和仿真数据与曲线进行分析,总结参数变化对系统性能的作用。
关键字:PID控制液位控制 matlab仿真算法水箱液位控制系统原理控制系统由四个基本环节组成,即被控对象、侧量传送装置、控制装置和执行装置:水箱液位控制系统的数学模型(一)确定过程的输入变量和输出变量流入水箱的流量Q1是输入变量,流出水箱的流量L2取决于液位L和水箱出水阀门的开度,Q2为输出变量,被控对象是水箱,故系统控制模型图如下:(二) 水箱液位控制系统的算法:Q 1:水箱流入量Q 2:水箱流出量A :水箱截面积u :进水阀开度f :出水阀开度h :水箱液位高度h0:水箱初始液位高度K1:阀体流量比例系数假设f 不变,系统初始态为稳态,H 0=2m ,K 1=10,A=10m 2。
则由物料平衡得:dtdh A Q Q *21=- u k Q *11=h k Q *12=代入方程得: )**(111h k u k Adt dh -= ① 在稳定条件下:0)(*112=-Q Q A② 由①-②得:dth d A Q Q )(*21∆=∆-∆ ③ h h k Q ∆=∆*)*2/(012 ④u K Q ∆∆=*11 ⑤对①、②、③进行拉氏变换得:)(10)(**)(2)(1s H S s H A S s Q s Q ∆=∆=∆-∆1536.31010)(1)(2)(传递函数为:)(*1536.3)(*)0*2(1)(2)(*1)(1+=∆∆=∆=∆=∆∆=∆S S Q S Q S G S H S H h k S Q S u k S Q (三) 水箱液位控制系统的MATLAB/simulink 的仿真:(四)结果分析:(一)P(比例)控制:水箱系统液位控制系统在无调节器的情况下,过渡过程是一个非周期过程,是稳定的系统;调节时间较短,响应比较迅速,但是,该系统为一个有静差的系统。
基于S7-1200PLC的水箱液位控制系统的设计
基于S7-1200PLC的水箱液位控制系统的设计重庆科技学院摘要水箱液位控制系统是一种用于监测、控制水箱液位的自动化设备。
它通过搭载传感器、控制器和执行机构等组件,实现对水箱液位的实时监控和自动控制。
通常,水箱液位控制系统由传感器,控制器,执行机构。
水箱液位控制系统的使用范围广泛,包括建筑物、工业生产、农业灌溉、城市给排水和环保等领域。
它具有结构简单、安装方便、实时性强等特点,该系统能够提高水资源的利用效率、减少用水浪费和防止水源的污染。
本文基于S7-1200 PLC实现水箱液位控制系统设计。
该系统由硬件和软件两部分组成,硬件包括PLC、人机界面触摸屏、传感器、执行器等;软件实现传感器数据处理、PID稳态控制、安全等功能;关键词:液位控制 PLC PID 传感器重庆科技学院本科生毕业设计 3水箱液位控制系统硬件设计1绪论在工业领域,几乎在各个行业都会或多或少的涉及到液位的检测等问题,然而液位变量具有延迟滞后性,参数不稳定,复杂多变等问题,因此,这就需要本文采取更为精确的控制器去实现液位变量的检测。
传统控制具有很多缺陷:比如精度低、速度慢、灵敏度低等。
一个稳定的液位系统,可以保证安全可靠的工业生产、高效的生产效率、充分合理的利用能源等,大大提高了工业生产的经济价值。
日益激烈的市场竞争,要求本文的控制技术必须更加先进,此前的控制技术已落伍,显然无法满足需求,这种对先进技术的需求加速了可编程逻辑控制器的问世。
引入PLC控制器后,能够使控制系统变得更集中、有效、及时。
2水箱液位控制总体方案设计2.1水箱液位控制系统实际应用特征水箱液位控制系统是一种广泛应用于水箱的自动化控制系统,常见于民用和工业领域。
实际应用中,水箱液位控制系统具有以下特征:①实时性强:系统能够实时检测水箱内的液位信息,并根据液位变化及时控制水泵的启停,保证水位稳定。
②可靠性高:系统通过各类安全措施确保水泵的正常启停,不会出现过量或不足的水位情况,避免因为水位变化带来的安全隐患。
水箱液位自动控制系统工作原理
水箱液位自动控制系统工作原理
1水箱液位自动控制系统
水箱液位自动控制系统是一种控制水箱液位的自动化控制系统,它包括一个液位探测器、一个液位计算机、水箱液位控制装置和一个加水控制装置。
1.1液位探测器
液位探测器是系统的最重要的组成部分,它可以实时测量水箱中液位和水温,并将其实时数据发送到液位计算机。
1.2液位计算机
液位计算机负责接收液位探测器发送过来的实时温度和液位数据,并对其进行分析,计算出水箱当前的液位状态和液位变化趋势,并将运算结果发送给控制装置。
1.3水箱液位控制装置
水箱液位控制装置接收到液位计算机发送过来的水箱当前液位状态和液位变化趋势,根据实际情况确定是否需要加水,并根据设定的液位变化趋势来决定加水的次数和加水量。
1.4加水控制装置
加水控制装置接收来自水箱液位控制装置发送过来的控制信号,根据设定次数和加水量,控制加水泵启动停止,最终实现自动控制水箱液位,保持水箱液位的稳定。
水箱液位自动控制系统通过液位探测器实时测量水箱液位和温度,液位计算机对测量数据进行分析,水箱液位控制装置根据设定液位趋势确定是否需要加水,加水控制装置根据设定次数和加水量控制加水泵启动停止,实现了水箱液位的稳定控制。
水箱液位控制系统设计设计
水箱液位控制系统设计设计一、系统概述水箱液位控制系统是一个智能化的系统,用于控制水箱液位并保持在设定的范围内。
该系统由传感器、控制器和执行器组成,通过传感器检测水箱液位,并将液位信号传输给控制器,控制器根据设定的参数进行判断和控制,最终通过执行器完成控制动作。
二、系统组成1.传感器:使用浮球传感器或超声波传感器来检测水箱液位。
传感器将液位转化为电信号,并传输给控制器。
2.控制器:控制器是系统的核心部分,它接收传感器的信号,并进行处理和判断。
控制器可以根据设定的参数来判断液位是否达到目标范围,并通过输出信号来控制执行器的动作。
此外,控制器还需要具备人机界面,方便用户进行参数设置和监测。
3.执行器:执行器根据控制器的控制信号,完成相应的动作。
例如,当液位过高时,执行器可以控制水泵关闭或排水阀打开,以降低液位;当液位过低时,执行器可以控制水泵开启或进水阀打开,以提高液位。
4.电源:为整个系统提供电能。
三、系统设计思路1.确定液位控制的范围:根据实际需求,确定水箱液位的上限和下限。
一般情况下,液位控制范围应在50%至85%之间。
2.选择合适的传感器:根据水箱的结构和液位控制要求,选择合适的传感器。
浮球传感器适用于小型水箱,超声波传感器适用于大型水箱。
3.设计控制器:控制器的主要功能是接收传感器的信号、处理和判断液位,并输出控制信号。
在设计控制器时,需要考虑如下几个方面:-信号处理:传感器的信号可能存在噪声,需要进行滤波处理,保证信号的准确性。
-参数设置:控制器应提供人机界面,方便用户根据实际需求设置参数,例如液位上下限、启停时间等。
-控制算法:根据设定的参数,控制器需要实现相应的控制算法,例如比例控制、积分控制等。
-控制输出:控制器根据判断结果输出控制信号,控制执行器的动作。
4.选用适配的执行器:根据液位控制要求,选择适合的执行器,例如水泵、进水阀、排水阀等。
5.系统集成与调试:将传感器、控制器和执行器进行连接和集成,进行系统调试和性能测试。
水箱液位自动控制系统工作原理
水箱液位自动控制系统工作原理
水箱液位自动控制系统是一种常见的自动化控制系统,它主要用于控制水箱的液位,确保水箱中的水始终保持在一定的水位范围内。
该系统的工作原理是通过传感器检测水箱中的液位,并根据液位信号控制水泵的启停,从而实现水箱液位的自动控制。
水箱液位自动控制系统主要由液位传感器、控制器和水泵组成。
液位传感器是系统的核心部件,它能够实时检测水箱中的液位,并将液位信号传输给控制器。
控制器根据液位信号来控制水泵的启停,当水箱中的液位低于设定值时,控制器会启动水泵,将水泵中的水送入水箱中,直到液位达到设定值时,控制器会停止水泵的运行。
水箱液位自动控制系统的工作原理非常简单,但是它能够有效地保证水箱中的水始终保持在一定的水位范围内,避免了水箱中水位过高或过低的情况发生。
这不仅可以保证水的供应,还可以避免水泵因为长时间运行而损坏,从而延长水泵的使用寿命。
除了水箱液位自动控制系统,还有许多其他的自动化控制系统,如温度自动控制系统、湿度自动控制系统等。
这些系统都是基于传感器检测环境参数,并根据参数信号来控制设备的启停,从而实现自动化控制的目的。
随着科技的不断发展,自动化控制系统将会越来越普及,为人们的生活带来更多的便利和舒适。
单容水箱液位控制系统的设计
单容水箱液位控制系统的设计水箱液位控制系统是指利用传感器等技术手段实时监测水箱液位,并通过控制装置调节供水和排水流量,使水箱的液位保持在设定的范围内的系统。
1.系统组成(1)传感器:负责实时监测水箱液位,常用的传感器有浮球传感器、电阻传感器、超声波传感器等。
传感器要具有高精度、稳定性好、可靠性高等特点。
(2)控制装置:根据传感器反馈的液位信号,控制水泵或排水装置,调节供水和排水流量,使水箱液位保持在设定的范围内。
控制装置可以采用微控制器、PLC等。
(3)供水装置:负责向水箱供水,可以是普通水泵、恒压供水设备等。
供水装置的选型要考虑流量、扬程等参数。
(4)排水装置:负责将多余的水排出水箱,可以是排水泵、电磁阀等。
排水装置的选型要考虑排水能力、响应时间等参数。
(5)控制面板:提供操作和显示功能,用于设定液位控制的参数和实时显示液位情况。
2.系统原理(1)运行原理:系统根据设定的最低液位和最高液位,当液位低于最低液位时,控制装置开启供水装置;当液位高于最高液位时,控制装置开启排水装置。
当液位处于最低液位和最高液位之间时,控制装置停止供水和排水装置。
(2)至空调和给排水系统的作用:当液位低于最低液位时,系统将启动供水装置,为空调系统提供水源;当液位高于最高液位时,系统将启动排水装置,将多余的水排出,保证水箱不溢出。
3.系统设计要点(1)传感器的选择:根据实际情况选择不同类型的传感器。
传感器的安装位置要合理,避免水箱漏水或传感器受到污染。
(2)控制装置的设计:根据传感器反馈的液位信号,计算控制装置的输出信号,控制供水和排水装置的运行。
要考虑控制装置的响应时间、动作准确性等参数。
(3)供水装置和排水装置的选型:选型要根据水箱的容量和液位控制需求确定。
要考虑流量、扬程、动力源等因素。
(4)安全保护措施:系统应具备过液位保护、过流量保护、电源故障保护等功能,确保系统的安全可靠性。
(5)控制面板的设计:控制面板应具有操作简便、参数设定方便、实时显示液位等功能。
水箱液位控制系统原理
水箱液位控制系统原理水箱液位控制系统是一种通过控制水箱内水位的液位控制系统。
该系统可以自动控制水箱内的水位,在水位过高或过低的时候进行相应的调节,以保持水箱内的水位在设定范围内。
水箱液位控制系统的原理主要涉及水位传感器、控制阀门和控制器等几个关键部件。
水位传感器用于感知水箱内的液位变化,将信号传递给控制器;控制阀门则根据控制器的指令,对水箱的进水或排水进行调节;控制器作为系统的核心部件,接收水位传感器的信号,并根据设定的水位值进行分析和计算,最后控制阀门的开启或关闭。
具体来说,水箱液位控制系统的工作过程如下:1. 水位传感器感知水箱内的液位变化,并将信号传给控制器。
水位传感器可以使用浮子式、电容式或超声波等不同类型的传感器。
2. 控制器接收水位传感器的信号,并根据设定的水位值进行计算和判断。
如果当前水位低于设定值,控制器会发送指令给控制阀门开启进水通道;如果当前水位高于设定值,控制器会发送指令给控制阀门开启排水通道。
3. 控制阀门根据控制器发送的指令,调节水箱的进水或排水量。
当水位低于设定值时,控制阀门会开启进水通道,允许水从供水管道流入水箱;当水位高于设定值时,控制阀门会开启排水通道,将多余的水排出水箱。
4. 控制器不断接收水位传感器的信号,并实时更新水位值。
如果水位达到设定值,控制器会发送指令给控制阀门关闭进水或排水通道。
5. 在水箱液位控制系统中,还可以设置报警机制。
当水位超出设定的正常范围时,控制器会发出警报信号,提醒操作人员采取相应的处理措施。
总之,水箱液位控制系统通过水位传感器感知水箱内的液位变化,控制器根据设定值进行判断和计算,控制阀门调节进水或排水量,从而实现对水箱内水位的自动控制。
这样的系统在水箱应用中具有重要的作用,可以保持水箱内水位稳定,满足不同场景的需求。
单容水箱液位控制系统设计
单容水箱液位控制系统设计一、引言单容水箱液位控制系统是一种常见的工业自动化控制系统。
它主要用于监测和控制水箱的液位,确保水箱中的液位保持在特定的范围内。
本文将介绍单容水箱液位控制系统的设计原理、硬件电路设计、软件设计以及系统测试和实施。
二、设计原理1.传感器模块传感器模块用于监测水箱中的液位。
一种常用的传感器是浮球传感器,它随着液位的变化而移动,从而输出不同的电信号。
传感器模块将传感器输出的信号转换为数字信号,并传送给控制器模块进行处理。
2.控制器模块控制器模块是整个系统的核心,它接收传感器模块传来的信号,并根据预设的液位范围进行判断和控制。
控制器模块通常使用单片机或者嵌入式系统来实现。
它可以通过开关控制执行器模块的工作状态,以调节水箱的液位。
3.执行器模块执行器模块用于控制水箱的进水和排水。
在液位过低时,执行器模块打开水泵,使水箱进水;在液位过高时,执行器模块关闭水泵,使水箱排水。
执行器模块可以采用继电器、驱动电机等元件来实现。
三、硬件电路设计1.传感器模块传感器模块将传感器的信号转换为数字信号。
可以使用模拟到数字转换器(ADC)将传感器输出的模拟电压转换为数字信号,然后通过串口等方式传送给控制器模块。
2.控制器模块控制器模块可以使用单片机或者嵌入式系统来实现。
它需要包括输入接口、控制逻辑和输出接口。
输入接口负责接收传感器模块传来的信号,控制逻辑通过判断液位范围来控制执行器模块的工作状态,输出接口负责向执行器模块发送控制信号。
3.执行器模块执行器模块根据控制器模块的信号控制水箱的进水和排水。
可以使用继电器或驱动电机等元件来实现。
进水时,可以通过开启水泵或开启电磁阀等方式;排水时,可以通过关闭水泵或关闭电磁阀等方式。
四、软件设计软件设计主要包括控制器模块的程序设计。
程序需要实时监测传感器模块的信号,并根据预设的液位范围进行判断和控制。
可以使用状态机或者PID控制算法来实现。
1.状态机状态机通过定义不同的状态和状态转移条件来实现控制逻辑。
下水箱液位控制系统设计
下水箱液位控制系统设计下水箱液位控制系统是一种用于控制下水箱液位的自动化设备。
在城市排水系统中,下水箱是收集和暂时储存污水的设备,因此正确控制下水箱的液位对于保证排水系统的正常运行非常重要。
本文将详细介绍下水箱液位控制系统的设计原理、关键组成部分以及工作流程。
设计原理:下水箱液位控制系统的目标是将下水箱的液位维持在一个设定值附近。
当液位低于设定值时,系统将启动排泥泵将污泥排出,从而提高液位;当液位超过设定值时,系统将启动排水泵将污水排出,从而降低液位。
通过不断监测下水箱液位,系统可以自动调节排泥泵和排水泵的运行来控制液位。
关键组成部分:1.液位传感器:用于监测下水箱液位,并将液位信号传递给控制器。
常用的液位传感器有浮球传感器、超声波传感器等。
2.控制器:接收液位传感器的信号,并根据设定值判断是否需要启动排泥泵或排水泵。
同时,控制器还可以设置各种保护控制逻辑,如过流保护、过压保护等。
3.排泥泵和排水泵:当液位低于设定值时,控制器将启动排泥泵,将污泥排出;当液位高于设定值时,控制器将启动排水泵,将污水排出。
排泥泵和排水泵的选型应根据实际需求进行。
4.阀门:用于控制污水进出下水箱的流量。
可以根据实际需要选择手动阀门或电动阀门。
工作流程:1.系统启动后,控制器开始接收液位传感器的信号。
2.当液位低于设定值时,控制器判断需要启动排泥泵,并发送信号给排泥泵,排泥泵开始工作。
同时,控制器可以关闭进水阀门,以防止系统压力过高。
3.当液位达到设定值时,控制器判断需要停止排泥泵,并发送信号给排泥泵,排泥泵停止工作。
4.当液位高于设定值时,控制器判断需要启动排水泵,并发送信号给排水泵,排水泵开始工作。
同时,控制器可以关闭进水阀门,以防止系统压力过高。
5.当液位达到设定值时,控制器判断需要停止排水泵,并发送信号给排水泵,排水泵停止工作。
同时,控制器可以打开进水阀门,以便下一周期的运行。
6.系统持续监测液位,并根据液位变化进行相应的控制操作,以维持液位在设定值附近。
双容水箱液位控制系统
双容水箱液位控制系统简介双容水箱液位控制系统是一种能够自动检测液位并控制液位的系统,通常用于工业生产中的水处理、冷却等环节。
它包括两个水箱和一套自动液位控制系统。
系统组成双容水箱液位控制系统主要由以下几部分组成:1.双个水箱:分别是进水箱和出水箱,供水系统在进水箱中存储新的水,然后将水处理后的水送到出水箱,最后再供应到整个系统中。
2.液位控制器:一种能够检测并控制液位水平的控制器,通过传感器收集水位信号,并将数据传输到中控系统中。
3.中央控制器:用于处理液位信号和控制整个系统,开启或关闭水泵和控制进出水箱之间的流量。
系统工作原理当水处理系统开始工作时,水泵会将新的水送入水箱中。
同时,液位控制器会监测进水箱的液位,发送信号到中央控制器。
当进水箱的液位降到最低时,中央控制器会打开进水阀门,并将水流至进水箱中。
当进水箱液位升高到预设液位时,液位控制器会停止进水。
如果进水箱液位超过了预设值,控制器会关闭进水阀门,以避免水溢出。
同样的,出水箱也安装有液位控制器,监测出水箱液位,当液位达到最高限制时,中央控制器会打开出水阀门,并控制出水量。
当出水箱的液位降至预设值时,中央控制器会关闭出水阀门,以避免水泵过载。
优势双容水箱液位控制系统的优势主要在于以下几点:1.自动化程度高:整个水箱液位控制系统实现了全自动化的工作流程,大大减少了人工干预的频率和工作强度。
2.稳定性好:水箱液位控制系统能够实时监测液位变化,并根据水量来调整水泵流量,保证了流量平稳且不会超载,同时可以避免水流过大或过小带来的问题,提高了整个系统的稳定性和安全性。
应用场景双容水箱液位控制系统适用于以下场合:1.工业生产:工业生产中通常需要大量的水,而这些水又需要简单地进行过滤以保证生产质量。
双容水箱液位控制系统能够有效地满足这些需求。
2.冷却系统:在冷却系统中,温度是一个至关重要的因素。
过高或过低的温度都会导致整个系统的损坏,而恰当的水流量和水温可以保持整个系统的适宜温度和稳定性。
水箱液位控制系统
水箱液位控制系统水箱液位控制系统的原理:水箱液位控制系统是一种自动控制系统,其目的是通过控制进水量和排水量,使水箱中的液位保持在一定的范围内。
该系统主要由水箱、电动机、进水阀门、浮子连杆等配件构成。
当水箱液位下降时,浮子连杆会向下移动,通过传感器将信号发送给控制器,控制器将信号转化为控制信号,控制进水阀门的开度,从而增加进水量,使液位回升到设定值。
当水箱液位上升时,浮子连杆会向上移动,控制器会减小进水量或打开排水阀门,从而使液位回落到设定值。
控制系统元件的选择:在设计水箱液位控制系统时,需要选择合适的控制元件,如传感器、控制器、执行器等。
传感器需要选择灵敏度高、精度高的液位传感器,以确保液位检测的准确性;控制器需要具有良好的控制性能和稳定性,以确保系统的稳定性和可靠性;执行器需要选择响应速度快、控制精度高的电动阀门或电动泵等,以确保系统的响应速度和控制精度。
控制系统的参数确定:在设计水箱液位控制系统时,需要确定一些重要的参数,如控制器的比例、积分、微分系数,以及进水阀门的开度和排水阀门的开度等。
这些参数的确定需要结合实际情况和系统响应特性,通过试验和仿真等手段进行优化调整,以确保系统的性能和稳定性。
控制系统的仿真结果:通过Matlab/Simulink对水箱液位控制系统进行仿真,可以得到系统的响应曲线和稳态误差等性能指标。
通过仿真结果可以发现系统的稳态误差较小,响应速度较快,控制精度较高,符合设计要求。
设计总结:本文设计了一个水箱液位控制系统,并对其进行了仿真分析。
通过设计和仿真可以发现,该系统具有操作简便、可靠性好、运行成本低、可扩展行强等特点,能够满足实际应用需求。
同时,本文还提出了一些优化建议,如进一步优化控制器参数、加强系统的故障检测和容错能力等,以进一步提高系统的性能和稳定性。
参考文献:暂无。
在工业生产和日常生活中,经常需要对中的液位进行自动控制,例如自动控制水箱、水池、水槽、锅炉等中的蓄水量,以及生活中抽水马桶的自动补水控制、自动电热水器和电开水机的自动进水控制等。
水箱液位串级控制系统
水箱液位串级控制系统一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。
2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。
3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。
4.掌握液位串级控制系统采用不同控制方案的实现过程。
二、实验设备三、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。
主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。
副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。
主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。
副调节器的的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。
由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。
本实验系统结构图和方框图如图2所示。
图2 水箱液位串级控制系统(a)结构图 (b)方框图四、实验内容与步骤本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10、下水箱出水阀门F1-11开至适当开度(要求阀F1-10稍大于阀F1-11),其余阀门均关闭。
具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。
(一)、智能仪表控制1.将两个SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。
将“LT2中水箱液位”钮子开关拨到“OFF”的位置,将“LT3下水箱液位”钮子开关拨到“ON”的位置。
四容水箱液位控制系统传递函数
四容水箱液位控制系统传递函数四容水箱液位控制系统传递函数一、引言在工业生产和日常生活中,液位控制是一个非常重要的参数。
对于液位控制系统的设计和优化,传递函数是一个关键的理论工具。
本文将探讨四容水箱液位控制系统的传递函数,并分析其特性和应用。
二、背景1. 四容水箱液位控制系统概述四容水箱液位控制系统是一种常见的自动化控制系统,用于控制水箱中液位的稳定。
该系统由四个水箱组成,每个水箱都有一个入口和一个出口。
通过控制液位控制阀门的开度,可以调节水进入和排出的速度,从而实现对水箱液位的控制。
2. 传递函数概念传递函数是用于描述线性时不变系统输入和输出之间关系的数学模型。
对于液位控制系统而言,传递函数可以描述系统输入(控制阀门的开度)和输出(水箱液位)之间的关系。
传递函数通常表示为G(s),其中s是复变函数。
三、四容水箱液位控制系统传递函数的推导我们假设四容水箱液位控制系统是一个一阶惯性系统。
输入为控制阀门的开度,输出为水箱液位。
根据系统的动态方程和稳态方程,可以推导出系统的传递函数。
四、四容水箱液位控制系统传递函数的特性1. 零点和极点通过求解传递函数的分母和分子的零点和极点,可以得到系统的特性。
零点是使传递函数为0的输入频率,极点是使传递函数趋于无限大的输入频率。
2. 频率响应频率响应是系统对不同频率输入的响应特性。
通过将传递函数的复变量替换为纯虚数,可以计算出系统的幅频特性和相频特性。
频率响应可以用来分析系统的稳定性和抗干扰能力。
3. 稳态误差稳态误差是系统输出与目标输出之间的差异。
通过分析传递函数的极点,可以评估系统的稳态误差。
稳态误差越小,系统的性能越好。
四、四容水箱液位控制系统传递函数的应用1. 控制系统设计通过分析和调整传递函数的零点和极点,可以设计出满足要求的水箱液位控制系统。
传递函数可以帮助工程师理解系统特性,从而进行合理的系统设计和优化。
2. 故障诊断和故障排除传递函数还可以用于故障诊断和故障排除。
水箱液位控制系统设计
水箱液位控制系统设计一、引言二、水箱液位控制系统功能需求1.实时监测水箱内的液位,能够准确地反映水箱的水位高低。
2.自动控制水泵的启停,能够根据液位情况自动控制水泵的工作状态。
3.监测和报警功能,当水箱液位过高或过低时,能够及时发出警报,防止水箱溢满或干涸。
4.用户可通过控制面板进行参数设置和手动控制,便于系统的调试和操作。
三、系统硬件设计1.液位传感器:选择合适的液位传感器,如浮球式液位传感器、压力式液位传感器等,用于测量水箱内的液位。
2.控制面板:包括液晶显示屏、按键开关和警报器,用于进行参数设置、手动控制和状态显示。
3.控制器:采用单片机或PLC等控制器,用于控制水泵的启停和监测、处理液位传感器的信号。
4.电磁继电器:用于控制水泵的启停,根据控制器的输出信号来控制水泵的运行。
四、系统软件设计1.液位监测算法:通过液位传感器获取的模拟信号,经过模数转换后,传入控制器进行处理。
控制器根据预设的液位范围和阈值,判断并监测水箱的液位高低。
2.控制算法:根据液位监测的结果,判断是否需要启动或停止水泵。
当液位过低时,控制器输出控制信号,驱动电磁继电器闭合,启动水泵;当液位过高时,控制器输出控制信号,驱动电磁继电器断开,停止水泵。
3.参数设置界面:在控制面板上设计用户界面,用户可以通过按键设置液位的上下限值、警报阈值等参数。
4.警报功能:当水箱液位超过上限或低于下限时,控制器将发出警报信号,触发警报器报警,并在液晶显示屏上显示相应的警报信息。
五、系统测试与调试1.对液位传感器的测量精度进行测试,确认液位传感器和控制器的连接正确,信号传输正常。
2.进行液位控制的测试,对水箱进行填满、放空等操作,检查控制系统是否正常响应并进行相应的控制。
3.对警报功能进行测试,将液位设置为超过上限或低于下限的值,检查是否触发警报器和显示屏的报警信息。
六、系统优化与改进1.根据实际情况对控制算法进行优化,提高控制的精度和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告设计题目:水箱液位控制系统班级:自动化0901班学号:**************指导教师:王姝梁岩设计时间:2012年5月7号----5月25号摘要在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度, 既不能太满溢出造成浪费, 也不能过少而无法满足需求。
因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。
在这次课程设计中,我们主要是设计一个水箱液位控制系统,涉及到液位的动态控制、控制系统的建模、PID 参数整定、传感器和调节阀等一系列的知识。
通过将电磁流量计和涡轮流量计分别作为主管道和副管道控制系统的调节阀控制水箱液位高度。
首先测取被控液位高度过程的图像,建立了主回路的进水流量和主管道流量、进水流量和水箱(上)液位高度、副回路进水流量和水箱(上)液位、双容水箱的进水流量和水箱(下)液位之间的数学模型,从而加强了对液位控制系统的了解。
然后,通过参数试凑法对PID参数的调试,使上述的模型能快速的达到稳定并且超调量和余差等满足设计要求。
最后通过MATLAB仿真实验,加深了对双容水箱滞后过程以及串级水箱液位过程和前馈控制系统的理解,对工业控制工程中对控制系统设计过程有了一定的认识。
在PID参数整定过程中,我对比例控制,积分控制,微分控制的作用、效果以及调试方法有了一定了解。
通过这次课程设计加深我们对《自动控制原理》、《过程控制系统及仪表》等科目的理解。
关键词:水箱液位控制PID参数整定串级控制前馈控制MATLAB仿真目录1.概述....................................................... - 4 -2.课程设计任务及要求......................................... - 5 -2.1 实验系统熟悉及过程建模................................. - 5 -2.2实现单容水箱(上)液位的单回路控制系统设计.............. - 5 -2.3实现双容水箱液位(上下水箱串联)的单回路控制系统设计.... - 6 -2.4实现水箱(上)液位与进水流量的串级控制系统设计.......... - 6 -2.5实现副回路进水流量的前馈控制............................ - 7 -3 实验系统熟悉及过程建模...................................... - 8 -3.1 描述实验系统的总体结构(结构图及语言描述)。
............ - 8 -3.1.1水箱液位控制系统的原理框图······················································· - 8 -3.1.2水箱液位控制系统的数学模型 ····················································· - 8 -3.2 利用实验建模方法建立进水流量和主管道流量之间关系的数学模型。
- 9 -3.3 进水流量和上水箱液位模型.............................. - 11 -3.4 副回路流量与上水箱液位数学模型........................ - 12 -3.5双容水箱串联进水流量与下水箱液位模型................... - 14 -4 单容水箱液位的单回路控制系统设计........................... - 16 -4.1 结构原理.............................................. - 16 -4.2 单容水箱控制器PID参数整定............................ - 17 -4.3 旁路阶跃干扰响应曲线.................................. - 19 -4.4 副回路进水阶跃干扰响应曲线............................ - 20 -4.5 干扰频繁剧烈变化的解决办法............................ - 20 -5.实现双容水箱液位(上下水箱串联)的单回路控制系统设计 ....... - 22 -6.实现水箱(上)液位与进水流量的串级控制系统设计............. - 27 -7.实现副回路进水流量的前馈控制............................... - 33 -8.总结....................................................... - 36 -1.概述本次课程设计,是让我们应用自控控制原理和过程控制理论知识来设计水箱液位控制系统。
在实验过程中,我们用到了wincc软件,调节阀,传感器,PLC等原件,使得我们对于工厂的一些基础设备有了一定了解。
在设计过程中,我们通过手动和自动调节使液位保持平衡,以及通过经验凑试法来调节PID参数,这使得我们对于自动控制原理和过程控制系统及仪表课本加深理解,对工业生产中的液位控制有了一定了解,同时也学以致用,不再局限于书本的知识,培养我们独立思考的能力和小组合作精神。
2.课程设计任务及要求2.1 实验系统熟悉及过程建模①描述实验系统的总体结构(结构图及语言描述)。
②利用实验建模方法建立进水流量和主管道流量之间关系的数学模型。
要求写出具体的建模步骤及结果。
③利用实验建模方法建立进水流量和水箱(上)液位之间关系的数学模型。
要求写出具体的建模步骤及结果,记录该对象的阶跃响应曲线(2种不同幅值的阶跃扰动)④利用实验建模方法建立副回路流量和水箱(上)液位之间关系的数学模型。
要求写出具体的建模步骤及结果,记录该对象的阶跃响应曲线(2种不同幅值的阶跃扰动)⑤利用实验建模方法建立双容水箱(上下串联)的进水流量(上水箱进水)和水箱(下)液位之间关系的数学模型。
要求写出具体的建模步骤及结果,记录该对象的阶跃响应曲线(2种不同幅值的阶跃扰动)2.2实现单容水箱(上)液位的单回路控制系统设计①画出此单回路控制系统的控制原理图及方框图。
详细说明控制系统方框图中的各部分环节所对应的物理意义。
说明该控制系统的控制依据和控制功能。
②采用经验凑试法调节PID参数,使液位设定值发生阶跃变化时,控制系统达到满意的控制质量。
要求在PID参数调试过程中,按控制质量从坏到好分别(P,PI,PID)记录6组以上的控制系统过渡过程(过渡过程曲线,控制质量指标),并说明你做参数进一步调整的原因,进而掌握PID控制作用对控制质量的影响。
③控制系统稳态时,打开旁路干扰阀(3种开度模拟3种不同幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标)(注意:在这种情况下,不要去调整PID参数)。
④打开副回路进水阀(3种开度模拟3种不同幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标)(注意:在这种情况下,不要去调整PID参数)。
2.3实现双容水箱液位(上下水箱串联)的单回路控制系统设计①画出此单回路控制系统的控制原理图及方框图。
详细说明控制系统方框图中的各部分环节所对应的物理意义。
说明该控制系统的控制依据和控制功能。
②采用经验凑试法调节PID参数,使液位设定值发生阶跃变化时,控制系统达到满意的控制质量。
要求在PID参数调试过程中,按控制质量从坏到好分别(P,PI,PID)记录6组以上的控制系统过渡过程(过渡过程曲线,控制质量指标),并说明你做参数进一步调整的原因,进而掌握PID控制作用对控制质量的影响。
③控制系统稳态时,打开旁路干扰阀(3种开度模拟3种不同幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标)(注意:在这种情况下,不要去调整PID参数)。
④打开副回路进水阀(3种开度模拟3种不同幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标)(注意:在这种情况下,不要去调整PID参数)。
2.4实现水箱(上)液位与进水流量的串级控制系统设计①画出此串级控制系统的控制原理图及方框图,详细说明控制系统方框图中的各部分环节所对应的物理意义;说明该控制系统的控制依据和控制功能;分析该控制系统和液位单回路控制系统相比有哪些变化,这些变化会使得该系统有哪些优势。
②采用经验凑试法调节主、副控制器参数,使控制系统达到满意的控制质量。
要求写出调试控制器参数的具体步骤。
在PID参数调试过程中,记录10组以上的控制系统过渡过程(过渡过程曲线,控制质量指标)来说明你的调试过程,并说明你做参数进一步调整的原因。
③在设定值发生阶跃变化(设定值阶跃增大及设定值阶跃减小)时,观察并记录控制系统的过渡过程(过渡过程曲线,控制质量指标)。
④打开旁路干扰阀(较大幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标);并和(1)中③的控制质量进行对比,分析并说明控制质量变化的原因。
⑤打开副回路进水阀(较大幅值的阶跃扰动),记录与其对应的控制系统过渡过程(过渡过程曲线,控制质量指标);并和(1)中④的控制质量进行对比,分析并说明控制质量变化的原因。