电缆线路的电容电流

合集下载

电容电流计算书

电容电流计算书

电容电流的计算书电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。

1.架空线路的电容电流可按下式估算:I C =(2.7~3.3)U e L×10-3 (F-1)式中:L——线路的长度(㎞);U e——线路系统电压(线电压KV)I C ——架空线路的电容电流(A);2.7 ——系数,适用于无架空地线的线路;3.3 ——系数,适用于有架空地线的线路;同杆双回线路的电容电流为单回路的1.3~1.6倍。

亦可按附表1所列经验数据查阅。

附表1 架空线路单相接地电容电流(A/km)2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算I C=0.1U e L (F-2)按电容计算电容电流具有金属保护层的三芯电缆的电容值见附表2。

附表2 具有金属保护层的三芯电缆每相对地电容值(µF/㎞)将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。

单相接地电容电流可由下式求出: I C =3 U e ωC ×10-3(F-3)其中 ω=2πf e式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz );C —— 厂用电系统每相对地电容(µF );2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。

6kV 电缆线路=I C 6S 22002.84S95++U e (A ) (F-4)10kV 电缆线路 =I C 0.23S22001.44S95++U e(A ) (F-5) 式中 S —— 电缆截面 (㎜²)U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。

附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞)2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。

煤矿10kV供电系统电容电流计算方法

煤矿10kV供电系统电容电流计算方法

第36卷 第2期2016年03月西安科技大学学报JOURNALOFXI’ANUNIVERSITYOFSCIENCEANDTECHNOLOGYVol.36 No 2Mar 2016 DOI:10.13800/j.cnki.xakjdxxb.2016.0221文章编号:1672-9315(2016)02-0282-06 煤矿10kV供电系统电容电流计算方法张红涛1,王 星1,蔡文龙1, 永1,2(1 西安科技大学电气与控制工程学院,陕西西安710054;2 陕煤集团神木红柳林矿业有限公司,陕西榆林719300)摘 要:随着煤矿生产规模以及矿井供电网络不断扩大,使得矿井供电系统对地电容电流越来越大,存在很大的安全隐患,为了减少煤矿安全事故的发生,保障矿井供电系统的安全运行,对矿井供电系统电容电流的准确掌握就十分重要。

而传统的电容电流计算方法考虑的因素比较单一,估算误差较大,已不能满足要求。

文中总结了传统计算方法的特点,并在传统计算方法的基础上引入了电缆材料影响系数、电气设备增值系数以及环境因素影响系数,得到了煤矿10kV供电系统电容电流的修正计算方法。

文中以某煤矿10kV供电系统为例,进行了电容电流实测结果和理论计算结果的对比分析,验证了该修正计算方法的正确性。

综合考虑了多因素影响的煤矿供电系统电容电流修正计算方法较传统计算方法的计算误差更小,精度更高,对于煤矿供电系统电容电流的理论估算以及消弧线圈容量的确定具有一定的实际指导意义。

关键词:煤矿;电容电流;修正公式;计算方法中图分类号:TM751 文献标志码:ACapacitivecurrentcalculationmethodsof10kVpowersystemincoalmineZHANGHong tao1,WANGXing1,CAIWen long1,YUNYong1,2(1 CollegeofElectricalandControlEngineering,Xi’anUniversityofScienceandTechnology,Xi’an710054,China;2 ShaanxiCoalGroupShenmuHongliulinMiningCo.,Ltd.,Yulin719300,China)Abstract:Withthescaleofcoalmineproductionandpowernetworkcontinuestoexpand,thecapacitivecurrenttogroundoftheminepowersystemalsoincreases.Thusthereexistsgreatsecurityrisk.Inordertoreducetheaccidentsandensurethesafetyoftheminepowersystem,itisveryimportanttomasterthecapacitivecurrentintheminepowersystem.Traditionalcapacitivecurrentcalculationmethodconsidersrelativelyfewinfluentialfactors,soitsestimationerrorislarge,whichcannotmeettherequirements.Thispapersummarizesthecharacteristicsofthetraditionalmethod,andgetsthecorrectioncalculationmethodofacoalmine10kVpowersystemonthebasisofthetraditionalmethodbyintroducingthecablematerialinfluentialcoefficient,electricalequipmentaddedcoefficientandenvironmentalfactorsinfluentialcoefficient.Throughexamplesofacoalmine10kVpowersystem,thispapercomparedthecapacitivecurrentmeasuredresultswiththeoreticalcalculationresults,andthecorrectioncalculationmethodhasbeenverified.Thecapacitivecurrentcorrectioncalculationmethodtakesintoaccounttheinfluenceofmultiplefactors,soithassmallercalculationerrorsandhigheraccuracythanthetraditionalcalculationmethod.Thecorrectioncalculationmethodhascertainpracticalsignificancetoestimatetheca收稿日期:2015-10-20 责任编辑:高 佳通讯作者:张红涛(1989-),男,陕西咸阳人,硕士研究生,E mail:623558729@qq.com博看网 . All Rights Reserved.第2期张红涛等:煤矿10kV供电系统电容电流计算方法pacitivecurrentofminepowersystemanddeterminethepetersencoilcapacity.Keywords:coalmine;capacitivecurrent;correctionformula;calculationmethod0 引 言随着煤矿生产规模的不断扩大,电缆线路增长,矿区配网系统对地电容电流越来越大。

线路对地电容电流计算

线路对地电容电流计算

一、电力线路电容电流估算方法。

一、中性点不接地系统对地电容电流近似计算公式:
无架空地线:Ic=××U×L×10-3(A)
有架空地线:Ic=××U×L×10-3(A)
其中U为额定线电压(KV)
L为线路长度(KM)
为系数,如果是水泥杆、铁塔线路增加10%
说明:1、双回线路的电容电流是单回线路的倍(6-10KV系统)
1、按现场实测经验:夏季比冬季电容电流增加10%左右。

2、由变电所中电力设备所引起的电容电流的增加估算如下:
额定电压(KV) 6 10 35 110
增值% 18 16 13 10
二、电力电缆线路的电容电流估算
6KV:Ic=Ue(95+)/(2200+6S)(安/公里)
10KV:Ic=Ue(95+)/(2200+)(安/公里)
其中S为电缆截面积(mm2)
Ue为额定线电压(KV)
上面的公式适用于油浸纸绝缘电力电缆,聚氯乙烯绞联电缆单位长度对地电容电流比油浸纸绝缘电力电缆大,参考厂家提供的参数和现场实测经验,大约增值20%左右。

电缆线路电容电流补偿分析

电缆线路电容电流补偿分析

平关 自闭 电缆 线 路 为例 , 析 电缆 分 线路 中电容 电流及 其补 偿方 法 。 略 阳— — 阳平 关 问 自闭线 路 在 十
分 困 难 区 段 采 用 电 缆 线 路 约 27 m。 项工 程竣 工投运 后 , .k 该 主断
2电缆 电容
电缆 电 容 因 不 同 厂 家 选 用 材
阳—— 阳平 关 自闭 电缆 V V 一3 L ×
9 5的结 构如下 图 :
1 = 0.9xl x 7 x 4× 1 0 2. 31
60 x 0 .6 1 s一 09 6 A .7
( ) 地 的电容 电流 Iy 2对 c
由 I =(・ ,L U c 1C・ ・ 9 , )
0 l 一 L l c o
() 2 流过接 地 点的 电容 电流 I c
I =x 31 =3 L =3 O9 6= / r x .7
电压 U 产 生补 偿 电 流 I,在单 相 。
接地 时 ,由线 间电压 U 产 生 补偿 e 电流 I =、 3 , / I,则 流 经 接地 点 的 L
补偿 电流 I = / I =3I L 、 3 d L L 。
性 ) 。
单 相 接 地 流 过 正 常 相 的补 偿 电流 I =、 3L L / I,方 I 与 1 相反 , S ] 而 与 I 成- 4 于 3 。 - , 0 的夹 角 。补偿 。 后 非 接地 相 始 端 残 流 为 I一 I 的 , 。 L
下。
1阻 抗 计 算
() 3 线路始 端 的电容 电流 Io e
I c I + 1 = 09 6 09 6 = 0= .7 + .7
13o O 酉 科 /o 28 铁技
维普资讯

电容电流计算(线路,发电机回路)

电容电流计算(线路,发电机回路)

电容电流的计算书电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。

1.架空线路的电容电流可按下式估算:I C =(2.7~3.3)U e L×10-3 (F-1)式中:L——线路的长度(㎞);U e——线路系统电压(线电压KV)I C ——架空线路的电容电流(A);2.7 ——系数,适用于无架空地线的线路;3.3 ——系数,适用于有架空地线的线路;同杆双回线路的电容电流为单回路的1.3~1.6倍。

亦可按附表1所列经验数据查阅。

附表1 架空线路单相接地电容电流(A/km)2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算I C=0.1U e L (F-2)按电容计算电容电流具有金属保护层的三芯电缆的电容值见附表2。

附表2 具有金属保护层的三芯电缆每相对地电容值(µF/㎞)将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。

单相接地电容电流可由下式求出: I C =3 U e ωC ×10-3(F-3)其中 ω=2πf e式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz );C —— 厂用电系统每相对地电容(µF );2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。

6kV 电缆线路=I C 6S 22002.84S95++U e (A ) (F-4)10kV 电缆线路 =I C 0.23S22001.44S95++U e(A ) (F-5) 式中 S —— 电缆截面 (㎜²)U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。

附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞)2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。

电力电缆工岗位理论知识考试题与答案

电力电缆工岗位理论知识考试题与答案

电力电缆工岗位理论知识考试题与答案1、电缆长期允许载流量是指()。

A、电缆绝缘达到长期允许工作温度时的电流数值B、电缆导体达到长期允许工作温度时的电流数值C、电缆绝缘和导体达到长期允许工作温度时的电流数值D、电缆护层达到长期允许工作温度时的电流数值答案:B2、用机械敷设铜芯电缆时,用牵引头牵引不宜大于允许牵引强度()kg/mm2。

A、10B、7C、8D、9答案:B3、交联聚乙烯电缆金属护层采用单端接地方式时,接地线电流为()。

A、阻性电流B、感性电流C、容性电流D、工作电流答案:C4、巡视电缆隧道和夜间巡视电缆线路设备,按规定()进行。

A、三人以上B、可以一人单独C、应由两人D、班组答案:C5、制作35kV交联聚乙烯绝缘大截面积电缆接头前,应对端部电缆进行()矫直处理。

A、人工B、加温C、外力D、机械答案:B6、电力线路发生接地故障时,在接地点周围区域将会产生()。

A、感应电压B、接地电压C、短路电压D、跨步电压答案:D7、以()的地表开挖量进行各种地下管线探查、铺设、更换和修复的施工技术,即称为非开挖技术。

A、不开挖B、开挖C、最大D、最小答案:D8、在()工件上钻孔时,可不加冷却液。

A、铝B、硬胶木C、紫铜D、结构钢。

答案:B9、在纯电容单相交流电路中,电压()电流。

A、超前B、滞后C、既不超前也不滞后D、相反180°答案:B10、在桥梁和隧道附近以及公路弯道和()的地点进行测绘作业时,应事先采取安全措施,安排专人担任安全指挥。

A、视线不清B、视线死角C、道路不清D、道路死角答案:A11、110kV及以上电缆耐压前须用()V摇表测其护层绝缘。

A、1000B、10000C、2500D、5000答案:B12、三相交流系统中使用的单芯电缆,应组成紧贴的正三角形排列(充油电缆及水底电缆可除外),并且每隔()应用绑扎带扎牢。

A、0.5mB、1.5mC、1mD、2m答案:C13、超高压电缆工井电缆设备的巡视周期为()。

单相接地电容电流

单相接地电容电流

自动化论坛:单相接地电容电流的计算方法单相接地电容电流的计算4.1 空载电缆电容电流的计算方法有以下两种:(1)根据单相对地电容,计算电容电流(见参考文献2)。

Ic=√3×UP×ω×C×103式中: UP━电网线电压(kV)C ━单相对地电容(F)一般电缆单位电容为200-400 pF/m左右(可查电缆厂家样本)。

(2)根据经验公式,计算电容电流Ic=0.1×UP ×L式中: UP━电网线电压(kV)L ━电缆长度(km)4.2 架空线电容电流的计算有以下两种:(1)根据单相对地电容,计算电容电流Ic=√3×UP×ω×C×103式中: UP━电网线电压(kV)C ━单相对地电容(F)一般架空线单位电容为5-6 pF/m。

(2)根据经验公式,计算电容电流Ic= (2.7~3.3)×UP×L×10-3式中: UP━电网线电压(kV)L ━架空线长度(km)2.7━系数,适用于无架空地线的线路3.3━系数,适用于有架空地线的线路关于单相接地电容电流计算单相接地电容电流我所知道估算公式:对架空线:Ic=UL / 350对电缆:Ic=UL / 10我想请问的是L是指的架空线长度还是架空线距离?比如是三相的L是不是为距离X 3 另请问有没有更详细的计算方法?工业与民用配电设计手册上对L的定义是线路的长度,单位km,这里的长度与楼主说的距离是同一个概念,也就是说L是指架空线或电缆的距离,三相不需要再用距离乘以3更详细的单相接地电容电流计算公式见附件,摘自工业与民用配电设计手册152页描述:没有文件说明附件:( 189 K)单相接地电容电流计算.pdf下载次数(27)首先应该明确为什么要算这个电容电流,一般计算单相接地电容电流首先要了解,中性点接地系统的分类,什么样的系统才要计算单相接地电容电流,相关国家规定是怎样规定的,算出这个电流怎样进行相关的补偿,选用什么装置进行补偿,补偿的分类是欠补偿,还是过补偿,还是完全补偿,为什么要选用过补偿,单单理解怎样计算是没有任何用处的,中性点接地系统是个综合问题,考虑的要全面。

35kV系统接地电容电流的计算

35kV系统接地电容电流的计算

35KV配电网络中性点接地华北水利水电大学周国安摘要电网中性点接地是关系到电网安全可靠运行的关键问题之一。

该文通过介绍中性点接地的基本概念、设计思想和理论联系实际的方法展开分析与研究。

阐明了35kV 配电网络中性点采取消弧线圈接地方式的原因及解决其接线的具体措施。

通过理论分析,明确了消弧线圈的作用,并深入地讨论了消弧线圈的调整范围及方法。

清楚地表达了35KV配电网络中性点消弧线圈的整定值的合理性。

文中还明确了35KV配电网络进一步完善措施与该网络形成的接地设施之间的内在联系,从而提出了对35KV配电网络完善要求的具体措施。

关键词35KV 配电消弧线前言农村和城市配电网的负荷逐步在增大,就有110KV和35KV 电网直接深入负荷区,这样给供电的安全、可靠性提出了更高的要求。

为此,必须分析和研究关系到整个供电系统安全、可靠的关键问题之一即35KV配电网络中性点接地方式问题。

对于大型变电站主变压器一般选择220/110/35KV 或220/110/10KV ,其接线组别为Y0/Y0/ Δ,三角形接线侧为35KV或10KV,35KV或10KV是中性点不直接接地系统,只有选择接地变压器接在不同的母线段上,来完成接地补偿等问题。

另外,弄清这个问题,便于进一步完善该网络时,尽可能考虑采取技术合理、经济节省的相应措施。

1规划设计的中性点接地方式1.1中性点接地方式基本概念电力系统中电网中性点接地方式分直接接地和不接地(或称绝缘)的两种方式。

电网中性点直接接地,中性点就不可能积累电荷而发生电弧接地过电压,其各种形式的操作过电压均比中性点绝缘电网要低,但接地为短路故障,特别是瞬间接地短路,必须通过保护动作切除,再依靠重合闸恢复正常供电。

现今110KV及以上电网大都采用中性点直接接地方式。

但若较低电压等级的电网采用中性点接地的运行方式,则其接地事故频繁,甚至引起很多更严重的事故,操作次数多,且会因此增加许多设备,即可能引起供电可靠性降低,又不经济,故在我国3~35KV甚至60KV电网中性点采用非直接接地运行方式。

变电站设计常用电气计算-电容电流计算

变电站设计常用电气计算-电容电流计算

2.5 m/回 平均每回架空长度
Ic= 120.52 A
准确计算法 U= C= 10.5 kV 0.37 uF 额定线电压 每相对地电容(uF) 角频率 每段线路回路数 线路单相接地电容电流
w 314.16 L= x= 总电容电流 12 回
2.5 m/回 平均每回线路长度
Ic= 63.418 A
第 1 页,共 3 页
〔1〕 6kV电缆线路
2.5 m/回 平均每回电缆长度
Ic= 44.746 A
2.5 m/回 平均每回电缆长度
Ic= 74.576 A 架空线路 L= x= Ic= 〔2〕 10kV架空线路 L= x= Ic= 总电容电流 二 〔1〕 6kV架空线路
2.5 m/回 平均每回架空长度 12 回 0.45 A 12 回 0.75 A 每段架空回路数 6kV架空线路单相接地电容电流 每段架空回路数 6kV架空线路单相接地电容电流 全站总电容电流第 3 页,共 3 页
电容电流计算 全所电容电流计算 一 1 常规算法 电缆线路 U= S= L= x= 〔2〕 10kV电缆线路 U= S= L= x= 2 6.3 kV 300 mm2 12 回 10.5 kV 300 mm2 12 回 额定线电压 电缆截面mm2 每段电缆回路数 6kV电缆线路单相接地电容电流 额定线电压 电缆截面mm2 每段电缆回路数 10kV电缆线路单相接地电容电流

单相接地电容电流及保护定值计算

单相接地电容电流及保护定值计算

摘自本人撰写的《余热(中册)》一一五、已知热电厂10KV 供电线路有8回,额定电压为10.5KV ,架空线路总长度为9.6Km ,电缆线路总长度为6Km ,计算单相接地时系统总的零序(电容)电流为多少安? 由于热电厂10KV 供电系统为中性点不接地的运行方式,所以应按照公式1、2进行计算:1.对于架空线路 I dC0(架空)=350UL (A ) 2.对于电缆线路 I dC0(电缆)=10UL (A ) 式中 U ——线路额定线电压(KV )L ——与电压U 具有电联系的线路长度(Km )解:根据公式1、2计算出10KV 供电线路单相接地时的零序(电容)电流为: I dC0(总)=3509.610.5⨯+10610.5⨯=0.288+6.3≈6.6(A ) 一一六、如何计算10KV 中性点不接地系统,线路单相接地的零序电流保护定值? 中性点不接地系统发生单相接地故障时,非故障线路流过的零序电流为本线路的对地电容电流,而故障线路流过的零序电流为所有非故障线路的对地电容电流之和。

为使保护装置具有高度的灵敏性,所以非故障线路的零序电流保护不应动作,故零序电流保护的动作电流必须大于外部接地故障时流过本线路的零序电流,因此零序电流保护的动作电流I dz 应为: I dz =K K 3U φωC 0=K K I dC0式中 K K ——可靠系数。

本次计算按8回线路中的4回在运行,故选取4。

I dC0——本线路的对地电容电流。

举例:已知上题10KV 线路单相接地时,系统总的零序电流I dC (总)=6.6安,计算其中1回线路零序电流保护的定值为多少安?解: I dz =K K I dC0 本计算的可靠系数按照K K =4选取则: I dz =4×86.6=3.3(A ) 选取3.3A 该电流系流过零序电流互感器一次侧的动作电流。

如果零序电流互感器标明了其变流比,则应根据变流比计算出零序电流保护装置的动作电流;若零序电流互感器未标明其变流比,则应通过现场实测的方法,测量零序电流互感器二次测的电流,该电流就是保护装置的动作电流。

电缆线路的电容电流

电缆线路的电容电流

电缆线路的电容电流
高压系统的漏电电流主要是电缆的容性电流,漏电电流的大小与接地时的运行方式和接地阻抗有关。

非故障线路零序电流之和等于接地线路的电容电流。

开关保护有两段漏电,漏电I(漏电保护)0秒可用于报信号或不使用;使用漏电II(漏电告警)设定值及延时投跳闸。

中央变电所和五采区变电所总开关不投跳闸,进线和上下级联线用0.15S以上时间级差上下级配合,不投方向。

漏电II延时跳闸,计算公式为:
定值=每公里电缆容性电流×电缆长度×1.5,投跳闸。

当电缆长度小于100米时,漏电电流较小(不足0.3A),为了躲避电流的零漂,至少取0.8A,为了上下级分开,上一级取1A。

当电缆长度较大时,以计算结果和上下级配合为依据进行整定。

电缆线路的容性电流的经验数据参照以下数据:
油浸纸绝缘电力电缆每公里电缆的容性电流经验数据。

电缆电容电流简单计算方法

电缆电容电流简单计算方法

1.变电站的电容电流计算方法
具体见《电力工程电气设计手册-电气一次部分》P261页。

1.电缆线路的电容电流计算。

2.架空线路的电容电流计算。

Ic=0.1UeL * K Ic=0.001(2.7~3.3)UeL * K
Ue:系统额定电压 2.7—系数:适用于无架空地线
L:电缆(架空线)长度的线路。

3.3—系数:有架空地线。

K:变电所增加的接地电容电流值(系数)
6kV:1.18
10kV:1.16
15kV:1.15
35kV:1.13
63kV:1.12
110kV:1.10
2.厂用电不同截面的电缆电容电流计算P81。

一条YJLV22-10KV-3*95mm2的电缆,敷设长度27.8Km,求怎样计算电容电流?为保证压降,怎样选择电抗器对电压抬升进行抑制?
对于10kV 电力电缆容流可以用下式估算:
Ic =[(95+1.44S)/(2200+0.23S)]Un×L
Un――线路的额定电压,kV
L ――电缆线路长度,km
S ――电缆截面积,mm2
电缆:
Ic=[(95+1.44×95)/(2200+0.23×95)]×10.5×27.8=30.45A
也可根据经验值估算,10KV电缆一般每公里1A左右,35KV电缆一般每公里3A左右
如有侵权请联系告知删除,感谢你们的配合!
如有侵权请联系告知删除,感谢你们的配合!。

35kV系统线路电容电流计算浅析 苗兴华

35kV系统线路电容电流计算浅析 苗兴华
其中S为电缆截面积(mm2)Up为额定线电压(kV)适用于聚氯乙烯绞联电缆
有架空地线Ic1=1.1×3.3×35×2.038×10-3=0.25A
无架空地线Ic2=1.1×2.7×35×4.1×10-3=0.43A
电缆电路Ic3=1.2×35×(95+1.2S)/(2200+0.23S)×2.1=1.2×35×(95+360)/(2200+69)= 8.42A
1.4、无架空地线T接35kVTZ线的35kVTZT线:LGJX-150/25导线长0.67km。
2电容电流不同计算方法分析
2.1方法一:线路电容算法
架空线路每相导线单位长度的电容公式:c1=0.241/lg(Dm/r)×10-6
所以长为L的线路其电容C=L×c1
根据查表可知:单位长度的电容c2=190pF/km
C=c2×L
因Dm=取对数,具体线距对结果影响很小,通常c1=0.009×10-6F/km
对于35kVGZ线
C=c1×L=0.009×10-6×(4.1+2.038)=0.055×10-6F
架空线路Ic1= ×10-3=1.05A
电缆线路Ic2=1.732×35×314×(190×2.1×10-6)=7.59A
35GZT线电容电流计算
IcT= Ic2=1.1×2.7×35×13×10-3=1.35A
因变电所设备引起的电容电流增加13%
总电容电流IcA=(Ic1+Ic2+Ic3+ IcT)(1+13%)=(0.25+0.43+8.42+1.35)×1.13=11.81A
对于35kVTZ线
无架空地线Ic4=1.1×2.7×35×5.525×10-3=0.57A

配电网电容电流计算

配电网电容电流计算

配电网电容电流计算一、概述随着城市电网的扩大,电缆出线的增多,系统电容电流大大增大。

当系统发生单相接地故障,其接地电弧不能自熄,极易产生间隙性弧光接地过电压,持续时间一长,在线路绝缘弱点还会发展成两相短路事故。

因此,当网络足够大时,就需要采用消弧线圈补偿电容电流,这是保证电力系统安全运行的重要技术措施之一。

为避免不适当的补偿给电力系统安全运行带来威胁,首先必须正确测定系统的电容电流值,并据此合理调整消弧线圈电流值,才能做到正确调谐,既可以很好地躲过单相接地的弧光过电流,又不影响继电保护的选择性和可靠性。

目前,电容电流的测定方法很多,通常采用附加电容法和金属接地法进行测量和计算,但前者测量方法复杂,附加电容对测量结果影响较大,后者试验中具有一定危险性。

目前,根据各种消弧线圈不同的调谐原理,有多种间接测量电网电容电流的方法。

其根本思想都是利用电网正常运行时的中性点位移电压、中性点电流以及消弧线圈电感值等参数,计算得到电网的对地总容抗,然后由单相故障时的零序回路,计算当前运行方式下的电容电流。

在实际运行中,对于出线数较多、线路较长或包含大量电缆线路的配电系统,当其发生单相接地故障时,对地电容电流会相当大,接地电弧如果不能自熄灭,极易产生间隙性弧光接地过电压或激发铁磁谐振,持续时间长,影响面大,线路绝缘薄弱点往往还会发展成两相短路事故。

因此,DL/T620-1997《交流电气装置的过电压保护和绝缘配合》规定:3~10kV钢筋混凝土或金属杆塔的架空线路构成的系统和所有35kV、66kV系统,当单相接地故障电流大于10A时应装设消弧线圈;3~10kV电缆线路构成的系统,当单相接地故障电流大于30A,又需在接地故障条件下运行时,应采用消弧线圈接地方式。

消弧线圈一般为过补偿运行(即流过消弧线圈的电感电流大于电容电流),也就是说装设的消弧线圈的电感必须根据对地电容电流的大小来确定,以防止中性点不接地系统发生单相接地而引起弧光过电压。

架空线、电缆线电容电流估算法

架空线、电缆线电容电流估算法

架空线、电缆线电容电流估算法
1、架空线的电容电流计算
I=(2.7~3.3)·U·L·10-3安
式中U —电网的额定电压(KV) L —线路长度(KM)
系数2.7适用于无避雷线的线路(木杆线路)
3.3适用于有避雷线的线路(木杆线路)金属杆塔时
变电所的电力设备所引起的电容电流增值,可按下表估计
2、电缆要比同样长度架空线的电容电流大25倍(三芯电缆)~50倍(单芯电缆),在近似计
算中可采用Ic=0.1UL安, U,L定义同上。

也可采用下表的平均值计算
电缆线路电容电流平均值(安/公里)
交联聚乙烯绝缘聚氯乙烯护套电力电缆选用互感器直径一览表。

XHK-II说明书(市南)

XHK-II说明书(市南)
为了解决上述问题,不少电网采用了谐振接地方式,即在中性点装设消弧线 圈,当发生单相接地时,由于消弧线圈产生的感性电流补偿了故障点的电容电流, 因而使故障点的残流变小,电网能够自然熄弧,防止事故扩大,消除事故隐患。 运行经验表明,消弧线圈对抑制间隙性弧光过电压及电磁谐振过电压、降低线路 的事故跳闸率、减少人身伤亡和设备的损坏都有明显的作用。因此新颁布的电力 行业标准 DL/T 620-1997《交流电气装置的过电压保护和绝缘配合》中明确规定: 3~10kV 架空线路构成的系统和所有 35kV、66kV 电网,当单相接地故障电流大于 10A 时,中性点应装设消弧线圈,3~10kV 电缆线路构成的系统,当单相接地故障 电流大于 30A 时,中性点应装设消弧线圈。
三、型号说明
X H K-Ⅱ □
□□
有载消弧线圈的档位数 系统额定线电压(kV) 有载消弧线圈的容量(KVA) 设计序号 控制装置 消弧线圈
四、XHK-Ⅱ成套装置的结构及组成原理
XHK-Ⅱ型自动调谐及选线成套装置组成原理如图 4.1 所示,包括以下七个部 分。
4-1.接地变压器
对于 66KV、35KV 配电网,变压器绕组通常为 Y 接法,有中性点引出,不需 要使用接地变压器。对 6、10KV 配电网,变压器绕组通常为△接法,无中性点引 出,这就需要用接地变压器引出中性点,接地变压器的一次侧设有无励磁调压。
xhk型消弧线圈自动调谐及选线成套装臵避免了同类装臵的不足之处独创性采用人工智能视在功率零序阻抗变化谐波变化五次谐波等多种选线方式进行选择极大提高了选线的准确性尤其是人工智能方式它采用大容量数据库方式能从以往的故障中取得有益经验达到自学习功能随着系统运行时间的增加系统故障选线将越来越准确某供电局将xhk型消弧线圈自动调谐及选线成套装臵与国某牌的接地选线装臵接入同一系统实际接地测试xhk型消弧线圈自动调谐及选线成套装臵选线准确率100该方法已获得国家知识产权局批准的专利专利号

10kV线路电容电流补偿方式分析

10kV线路电容电流补偿方式分析

10kV线路电容电流补偿方式分析电缆相间和相对地电容比较大,在正常运行以及故障条件下都会存在大电容电流,尤其对于轻载长电缆线路来说。

电容电流问题会加大线路安全隐患,为了补偿电力系统的电容电流,就必须应用有效技术措施。

在10kV线路运行期间,应当注重补偿效果,以此维护供电可靠性,减少设备损耗,从根本上提升系统功率因数,加强供电质量。

1、10kV线路保护存在的问题通常情况下,10kV线路长度在1km左右,其中部分线路为双电源。

在线路运行期间常常配置两段式电压速断,限时过流保护以及电流闭锁。

对于10kV线路工程来说,仅仅通过以上保护措施无法满足保护标准,并且对于Y型线路来说,不能采用整定计算方式实现保护效果。

对于地方10kV线路来说,由于会受到环境以及地理影响,导致电源点与负荷区域之间的位置比较远,电网运行过程中,会增加出线开关分闸机。

若将消弧线圈设置在电站中,当某电站发生跳闸施工之后,会导致消弧线圈退出运行,此时就会影响系统补偿效果。

因此消弧线圈不能设置在水电站。

由于10kV线路在欠补偿状态下极易产生谐振故障,所以必须注重电容电流补偿。

电网10kV系统不能集中进行电容电流补偿,因此无法将消弧线圈设置在变电站中。

在出现单相接地故障之后,接地电弧不会自动熄灭,此时就会导致相间短路。

电弧接地时会加大相电压,损坏电力系统中的薄弱设备,还会影响电力系统和电力设备运行安全性和稳定性。

所以,日常检修与维护期间需要合理应用补偿技术改善此类问题,可以通过电流补偿和电压补偿方式处理,以此消除电容电流的不利影响。

如果电力系统在正常运行状态下使用欠补偿方式,消弧线圈感性补偿电流小于线路电容电流,此时残余电流为容性。

当线路开关跳闸之后,会相应减少总容性电流分量,此时补偿残余电流近似于零。

在补偿之后,会加大中性点位移电压,此时会产生系统全补偿现象,导致系统运行期间发生振荡事故。

如果电力系统在正常运行状态下使用欠补偿方式,消弧线圈感性补偿电流大于线路电容电流,此时残余电流为感性。

35kV系统接地电容电流的计算

35kV系统接地电容电流的计算

35KV配电网络中性点接地华北水利水电大学周国安摘要电网中性点接地是关系到电网安全可靠运行的关键问题之一。

该文通过介绍中性点接地的基本概念、设计思想和理论联系实际的方法展开分析与研究。

阐明了35kV配电网络中性点采取消弧线圈接地方式的原因及解决其接线的具体措施。

通过理论分析,明确了消弧线圈的作用,并深入地讨论了消弧线圈的调整范围及方法。

清楚地表达了35KV配电网络中性点消弧线圈的整定值的合理性。

文中还明确了35KV配电网络进一步完善措施与该网络形成的接地设施之间的内在联系,从而提出了对35KV配电网络完善要求的具体措施。

关键词 35KV配电消弧线前言农村和城市配电网的负荷逐步在增大,就有110KV和35KV电网直接深入负荷区,这样给供电的安全、可靠性提出了更高的要求。

为此,必须分析和研究关系到整个供电系统安全、可靠的关键问题之一即35KV配电网络中性点接地方式问题。

对于大型变电站主变压器一般选择220/110/35KV或220/110/10KV,其接线组别为Y0/Y0/Δ,三角形接线侧为35KV或10KV,35KV或10KV是中性点不直接接地系统,只有选择接地变压器接在不同的母线段上,来完成接地补偿等问题。

另外,弄清这个问题,便于进一步完善该网络时,尽可能考虑采取技术合理、经济节省的相应措施。

1 规划设计的中性点接地方式1.1 中性点接地方式基本概念电力系统中电网中性点接地方式分直接接地和不接地(或称绝缘)的两种方式。

电网中性点直接接地,中性点就不可能积累电荷而发生电弧接地过电压,其各种形式的操作过电压均比中性点绝缘电网要低,但接地为短路故障,特别是瞬间接地短路,必须通过保护动作切除,再依靠重合闸恢复正常供电。

现今110KV及以上电网大都采用中性点直接接地方式。

但若较低电压等级的电网采用中性点接地的运行方式,则其接地事故频繁,甚至引起很多更严重的事故,操作次数多,且会因此增加许多设备,即可能引起供电可靠性降低,又不经济,故在我国3~35KV甚至60KV电网中性点采用非直接接地运行方式。

电容电流的估算

电容电流的估算

电容电流的估算
10kV系统的接地电容电流与供电线路的结构、布置、长度有关, 主要取决电缆线路的截面和长度, 具体工程设计时应按工程条件计算,变电站10kV出线为电缆线路或架空线路, 根据《电力工程电气设计手册》第1册(电气一次部分) 电容电流的估算如下:
1、对于电缆线路电容电流估算为:
Ic1=0.1U e×L=1.05L [L为电缆线路总长度(km)]
10kV电缆实际各截面电容电流:
I c1=[(95+1.44S)/(2200+0.23S)]×Ue×L
表1:常用6~10kV电缆线路的电容电流(A/km)
注括号内为实测值
2、对于架空线路电容电流的估算值为:
I c2=(2.7~3.3)UeL×10-3
L——线路的长度(km)
I c2——架空线路的电容电流(A)
2.7——系数,适用于无架空地线的线路(10kV一般无地线)
3.3——系数,适用于有架空地线的线路
同杆双回线路电容电流为单回的1.3~1.6
I c2=2.7U e L·10-3=0.02835L [L为架空线路总长度(三相)]
3、对于变电站增加的接地电容电流如下表:
表2:变电站增加接地电容电流值
4、总电容电流
I C∑= I c1+ I c2
对于10kV系统, 附加的变电站电容电流为16%
故I c=1.16I C∑。

长距离电缆线路电容电流解决方案

长距离电缆线路电容电流解决方案

长距离电缆线路电容电流解决方案任晓光;张尚珍【摘要】In an oilfield project in Iran,actual problems exist in KUS and HOS OGM,namely the 11 kV bus bar over-voltage during normal operation,the power frequency over-voltage in a failure and the gas generator set shut down caused by single phase grounding failure of load cables at the wellhead belong to the two OGMs.In view of above problems,ground capacitance and cable charging power of 11 kV cables are calculated,and then the solution that installing isolation transformers with 1 000 kVA at the head end of power supply cables and shunt reactors with 800 kvar and 1300 kvar on the 11 kV bus bar of HOS and KUS OGM respectively is determined.Thesimulation result shows that the solution can effectively reduce the bus voltage of the two OGMs during normal operation and power frequency over voltage in a failure,properly set comprehensive protecting constant values and avoid frequent shut down of the gas generator set caused by failure current surge at the wellhead.%针对伊朗某油田项目IUS和HOS两接转站正常运行时11 kV母线电压偏高、故障时工频过电压过高、两接转站下属的井口负荷电缆出现单相接地故障时造成燃气发电机组停机的实际问题,计算11 kV电缆线路接地电容和电缆充电功率,确定了在两接转站的电缆首端分别加装1 000 kVA隔离变压器及在两个接转站11 kV母线上分别加装800 kvar和1 300 kvar并联电抗器的解决方案.仿真结果显示,该方案可以有效地降低两接转站正常运行时的母线电压及故障时的工频过电压,同时综合保护定值可以合理整定,避免了井口故障电流冲击燃气发电机组造成的频繁停机.【期刊名称】《油气田地面工程》【年(卷),期】2017(036)008【总页数】3页(P82-84)【关键词】长距离电缆线路;电容电流;隔离变压器;并联电抗器【作者】任晓光;张尚珍【作者单位】中国石化集团国际石油勘探开发有限公司;中国石化集团国际石油勘探开发有限公司【正文语种】中文电缆线路与架空线路相比具有受外界因素影响小、维护管理工作量小、工程隐蔽、不影响环境等优点,在海外油田项目中大量被采用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电缆线路的电容电流
高压系统的漏电电流主要是电缆的容性电流,漏电电流的大小与接地时的运行方式和接地阻抗有关。

非故障线路零序电流之和等于接地线路的电容电流。

开关保护有两段漏电,漏电I(漏电保护)0秒可用于报信号或不使用;使用漏电II(漏电告警)设定值及延时投跳闸。

中央变电所和五采区变电所总开关不投跳闸,进线和上下级联线用0.15S以上时间级差上下级配合,不投方向。

漏电II延时跳闸,计算公式为:
定值=每公里电缆容性电流×电缆长度×1.5,投跳闸。

当电缆长度小于100米时,漏电电流较小(不足0.3A),为了躲避电流的零漂,至少取0.8A,为了上下级分开,上一级取1A。

当电缆长度较大时,以计算结果和上下级配合为依据进行整定。

电缆线路的容性电流的经验数据参照以下数据:
油浸纸绝缘电力电缆每公里电缆的容性电流经验数据。

相关文档
最新文档