热力学统计物理(A参考答案)
热力学统计物理练习试题和答案
![热力学统计物理练习试题和答案](https://img.taocdn.com/s3/m/3b65a395aeaad1f347933f37.png)
WORD 格式 整理 热力学·统计物理练习题一、填空题 . 本大题 70 个小题,把答案写在横线上。
1. 当热力学系统与外界无相互作用时 , 经过足够长时间 , 其宏观性质时 间改变,其所处的 为热力学平衡态。
2. 系统,经过足够长时间,其不随时间改变,其所处的状态为热力学平衡态。
3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化 学参量等四类参量描述,但有 是独立的。
4.对于非孤立系统, 当其与外界作为一个整体处于热力学平衡态时,此时 的系统所处的状态是 。
5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视 为。
6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。
7.均匀物质系统的独立参量有 个,而过程方程独立参量只有个。
8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。
9.定容压力系数的意义是在 不变条件下系统的压强随的相 对变化。
10.等温压缩系数的意义是在 不变条件下系统的体积随的 相对变化。
11.循环关系的表达式为。
12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功 W Y i dy i ,其中 y i 是, Y i 是与 y i 相应的。
13. U B U A Q W ,其中 是作的功。
W14. dUQW0 ,-W 是作的功,且 -W 等于。
22( 、 均为热力学平衡态1、L2 为15.Q W QW ,L 1L 1 1 2 1L 2准静态过程)。
16.第一类永动机是指的永动机。
17.内能是 函数,内能的改变决定于和。
18.焓是函数,在等压过程中,焓的变化等于的热量。
19.理想气体内能温度有关,而与体积。
学习参考资料分享WORD 格式整理20.理想气体的焓温度的函数与无关。
21.热力学第二定律指明了一切与热现象有关的实际过程进行的。
云南师范大学《热力学与统计物理》期末试卷 A卷及答案
![云南师范大学《热力学与统计物理》期末试卷 A卷及答案](https://img.taocdn.com/s3/m/4822b6d2ce2f0066f533222f.png)
=
8π V 2m 3 2 π2 32 ( ) ( − α ) (1 + ) 3h3 β 8α 2
(4 分)
S = k (ln Ξ − α
∂ ln Ξ ∂ ln Ξ 5 −β ) = k (ln Ξ + α N + β U ) = k ( ln Ξ + α N ) (2 分) ∂α ∂β 2
热统(A)卷
(每个等号1分)
热统(A)卷
第 3 页 共 4 页
2.解:自由能的全微分 比较热力学方程 得熵和物态方程 内能 焓 吉布斯函数
dF = (
Байду номын сангаас
∂F ∂F )V dT + ( )T dV , ∂T ∂V
(2分) (2分)
dF = − SdT − pdV
S = −(
∂F )V ∂T
∂F )T (2分) ∂V ∂F U = F + ST = F − T (2分) ∂T ∂F ∂F H = U + pV = F − T −V (2分) ∂T ∂V ∂F ∂F ∂F G = H − ST = F − T −V +T ∂T ∂V ∂T ∂F = F −V (2 分) ∂V
二 填空题(每空 2 分,共 20 分) 1、发生二级相变时两相化学势、化学势的一级偏导数 ,但化学势的 级偏导数发生突变。 。 。 。 。费米分布表示为 。 。
2、普适气体常数 R 与阿伏伽德罗常数 N 0 和玻耳兹曼 k 之间的数学关系为 3、孤立系统平衡的稳定性条件表示为 4、如果采用对比变量,则范氏对比方程表示为 5、玻耳兹曼的墓志铭用数学关系表示为 和
一. 判断题(每小题 2 分,共 20 分) 1× 2× 3× 4√ 5√ 6√ 7√ 8× 9× 10×
热力学与统计物理答案第三章.(DOC)
![热力学与统计物理答案第三章.(DOC)](https://img.taocdn.com/s3/m/11113d61a26925c52cc5bfce.png)
第三章 单元系的相变3.1 证明下列平衡判据(假设S >0);(a )在,S V 不变的情形下,稳定平衡态的U 最小.(b )在,S p 不变的情形下,稳定平衡态的H 最小.(c )在,H p 不变的情形下,稳定平衡态的S 最小.(d )在,F V 不变的情形下,稳定平衡态的T 最小.(e )在,G p 不变的情形下,稳定平衡态的T 最小.(f )在,U S 不变的情形下,稳定平衡态的V 最小.(g )在,F T 不变的情形下,稳定平衡态的V 最小.解:为了判定在给定的外加约束条件下系统的某状态是否为稳定的平衡状态,设想系统围绕该状态发生各种可能的自发虚变动. 由于不存在自发的可逆变动,根据热力学第二定律的数学表述(式(1.16.4)),在虚变动中必有đ,U T S W δδ<+ (1) 式中U δ和S δ是虚变动前后系统内能和熵的改变,đW 是虚变动中外界所做的功,T 是虚变动中与系统交换热量的热源温度. 由于虚变动只涉及无穷小的变化,T 也等于系统的温度. 下面根据式(1)就各种外加约束条件导出相应的平衡判据.(a ) 在,S V 不变的情形下,有0,đ0.S W δ==根据式(1),在虚变动中必有0.U δ< (2) 如果系统达到了U 为极小的状态,它的内能不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S V 不变的情形下,稳定平衡态的U 最小.(b )在,S p 不变的情形下,有0,đ,S W pdV δ==-根据式(1),在虚变动中必有0,U p V δδ+<或0.H δ< (3)如果系统达到了H 为极小的状态,它的焓不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S p 不变的情形下,稳定平衡态的H 最小.(c )根据焓的定义H U pV =+和式(1)知在虚变动中必有đ.H T S V p p V W δδδδ<+++在H 和p 不变的的情形下,有0,0,đ,H p W p V δδδ===-在虚变动中必有0.T S δ> (4)如果系统达到了S 为极大的状态,它的熵不可能再增加,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,H p 不变的情形下,稳定平衡态的S 最大.(d )由自由能的定义F U TS =-和式(1)知在虚变动中必有đ.F S T W δδ<-+在F 和V 不变的情形下,有0,đ0,F W δ==故在虚变动中必有0.S T δ< (5)由于0S >,如果系统达到了T 为极小的状态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,F V 不变的情形下,稳定平衡态的T 最小.(e )根据吉布斯函数的定义G U TS pV =-+和式(1)知在虚变动中必有đ.G S T p V V p W δδδδ<-++-在,G p 不变的情形下,有0,0,đ,G p W p V δδδ===-故在虚变动中必有0.S T δ< (6)由于0S >,如果系统达到了T 为极小的状态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,G p 不变的情形下,稳定的平衡态的T 最小.(f )在,U S 不变的情形下,根据式(1)知在虚变动中心有đ0.W >上式表明,在,U S 不变的情形下系统发生任何的宏观变化时,外界必做功,即系统的体积必缩小. 如果系统已经达到了V 为最小的状态,体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,U S 不变的情形下,稳定平衡态的V 最小.(g )根据自由能的定义F U TS =-和式(1)知在虚变动中必有δδđ.F S T W <-+在,F T 不变的情形下,有δ0,δ0,F T ==必有đ0W > (8)上式表明,在,F T 不变的情形下,系统发生任何宏观的变化时,外界必做功,即系统的体积必缩小. 如果系统已经达到了V 为最小的状态,体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,F T 不变的情形下,稳定平衡态的V 最小.3.2 试由式(3.1.12)导出式(3.1.13)解:式(3.1.12)为()()22222222δδ2δδδ0.S S S S U U V V U U V V ⎡⎤⎛⎫⎛⎫∂∂∂=++<⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎣⎦ (1)将2δS 改写为2δδδδδδδ.S S S S S U V U U V V U U V U U V V V ⎡∂∂∂∂⎤⎡∂∂∂∂⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ (2)但由热力学基本方程TdS dU pdV =+可得 1,,V U S S p U T V T∂∂⎛⎫⎛⎫== ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 代入式(2),可将式(1)表达为211δδδδδδδS p p S U V U U V V U T V T U T V T ⎡∂∂⎤⎡∂∂⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 1δδδδ0.p U V T T ⎡⎤⎛⎫⎛⎫=+< ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (4) 以,T V 为自变量,有δδδV TU U U T V T V ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ δδ,V V p C T T p V T ⎡⎤∂⎛⎫=+- ⎪⎢⎥∂⎝⎭⎣⎦(5) 111δδδV TT V T T T V T ∂∂⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ 21δ,T T =- (6) δδδV Tp p p T V T T T V T ∂∂⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ 211δδ.V T p p T p T V T T T V ⎡⎤∂∂⎛⎫⎛⎫=-+ ⎪ ⎪⎢⎥∂∂⎝⎭⎝⎭⎣⎦(7) 将式(5)—(7)代入式(4),即得 ()()22221δδδ0,V TC p S T V T T V ∂⎛⎫=-+< ⎪∂⎝⎭ (8)这就是式(3.1.13).3.3 试由0V C >及0Tp V ∂⎛⎫< ⎪∂⎝⎭证明0p C >及0.S p V ∂⎛⎫< ⎪∂⎝⎭ 解:式(2.2.12)给出 2.p V TVT C C ακ-= (1) 稳定性条件(3.1.14)给出 0,0,V Tp C V ∂⎛⎫>< ⎪∂⎝⎭(2) 其中第二个不等式也可表为 10,T TV V p κ⎛⎫∂=-> ⎪∂⎝⎭(3) 故式(1)右方不可能取负值. 由此可知0,p V C C ≥>(4) 第二步用了式(2)的第一式.根据式(2.2.14),有 .S SV T pTVpC C Vp κκ⎛⎫∂ ⎪∂⎝⎭==⎛⎫∂ ⎪∂⎝⎭(5) 因为Vp C C 恒正,且1VpC C ≤,故 0,S TV V p p ⎛⎫⎛⎫∂∂≤< ⎪ ⎪∂∂⎝⎭⎝⎭(6)第二步用了式(2)的第二式.3.4 求证:(a ),,;V n T V S T n μ∂∂⎛⎫⎛⎫=- ⎪⎪∂∂⎝⎭⎝⎭ (b ),,.T pt n V p n μ⎛⎫∂∂⎛⎫=⎪⎪∂∂⎝⎭⎝⎭解:(a )由自由能的全微分(式(3.2.9))dF SdT pdV dn μ=--+ (1) 及偏导数求导次序的可交换性,易得 ,,.V n T VS T n μ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 这是开系的一个麦氏关系.(b ) 类似地,由吉布斯函数的全微分(式(3.2.2))dG SdT Vdp dn μ=-++ (3)可得,,.T p T n V p n μ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (4) 这也是开系的一个麦氏关系.3.5 求证:,,.T V V nU T n T μμ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ 解:自由能F U TS =-是以,,T V n 为自变量的特性函数,求F 对n 的偏导数(,T V 不变),有 ,,,.T V T V T VF U S T n n n ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (1) 但由自由能的全微分dF SdT pdV dn μ=--+可得 ,,,,,T VT V V n F n S n T μμ∂⎛⎫= ⎪∂⎝⎭∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2)代入式(1),即有,,.T V V nU T n T μμ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3)3.6 两相共存时,两相系统的定压热容量p pS C T T ∂⎛⎫= ⎪∂⎝⎭,体胀系数1p V V T α∂⎛⎫= ⎪∂⎝⎭和等温压缩系数1T TV V p κ⎛⎫∂=- ⎪∂⎝⎭均趋于无穷,试加以说明. 解:我们知道,两相平衡共存时,两相的温度、压强和化学势必须相等.如果在平衡压强下,令两相系统准静态地从外界吸取热量,物质将从比熵较低的相准静态地转移到比熵较高的相,过程中温度保持为平衡温度不变. 两相系统吸取热量而温度不变表明它的(定压)热容量p C 趋于无穷. 在上述过程中两相系统的体积也将发生变化而温度保持不变,说明两相系统的体胀系 数1pV V T α∂⎛⎫= ⎪∂⎝⎭也趋于无穷. 如果在平衡温度下,以略高(相差无穷小)于平衡压强的压强准静态地施加于两相系统,物质将准静态地从比容较高的相转移到比容较低的相,使两相系统的体积发生改变. 无穷小的压强导致有限的体 积变化说明,两相系统的等温压缩系数1T TV V p κ⎛⎫∂=- ⎪∂⎝⎭也趋于无穷.3.7 试证明在相变中物质摩尔内能的变化为1.m p dT U L T dp ⎛⎫∆=- ⎪⎝⎭ 如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简. 解:发生相变物质由一相转变到另一相时,其摩尔内能m U 、摩尔焓m H 和摩尔体积m V 的改变满足.m m m U H p V ∆=∆-∆ (1) 平衡相变是在确定的温度和压强下发生的,相变中摩尔焓的变化等于物质在相变过程中吸收的热量,即相变潜热L :.m H L ∆=克拉珀龙方程(式(3.4.6))给出,m dp L dT T V =∆ (3) 即 .m L dT V T dp∆= (4) 将式(2)和式(4)代入(1),即有 1.m p dT U L T dp ⎛⎫∆=- ⎪⎝⎭(5) 如果一相是气体,可以看作理想气体,另一相是凝聚相,其摩尔体积远小于气相的摩尔体积,则克拉珀龙方程简化为2.dp Lp dT RT = (6) 式(5)简化为1.m RT U L L ⎛⎫∆=- ⎪⎝⎭ (7)3.8 在三相点附近,固态氨的蒸气压(单位为Pa )方程为3754ln 27.92.p T=- 液态氨的蒸气压力方程为 3063ln 24.38.p T =-试求氨三相点的温度和压强,氨的汽化热、升华热及在三相点的熔解热.解:固态氨的蒸气压方程是固相与气相的两相平衡曲线,液态氨的蒸气压方程是液相与气想的两相平衡曲线. 三相点的温度t T 可由两条相平衡曲线的交点确定:3754306327.9224.38,t tT T -=- (1) 由此解出195.2.t T K = 将t T 代入所给蒸气压方程,可得5934Pa.t p =将所给蒸气压方程与式(3.4.8)In L p A RT =-+ (2) 比较,可以求得443.12010J,2.54710J.L L =⨯=⨯升汽氨在三相点的熔解热L 溶等于40.57310J.L L L =-=⨯溶升汽3.9 以C βα表示在维持β相与α相两相平衡的条件下1mol β相物质升高1K 所吸收的热量,称为β相的两相平衡摩尔热容量,试证明:.m p m m p V L C C V V T βββαβα⎛⎫∂=- ⎪-∂⎝⎭ 如果β相是蒸气,可看作理想气体,α相是凝聚相,上式可简化为,p L C C Tββα=- 并说明为什么饱和蒸气的热容量有可能是负的.解:根据式(1.14.4),在维持β相与α相两相平衡的条件下,使1mol β相物质温度升高1K 所吸收的热量C βα为 .m m m p TdS S S dp C T T T dT T p dT ββββα⎛⎫⎛⎫⎛⎫∂∂==+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ (1) 式(2.2.8)和(2.2.4)给出 ,.m p p m m T p S T C T S V p T ββββ⎛⎫∂= ⎪∂⎝⎭⎛⎫⎛⎫∂∂=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2)代入式(1)可得 .m p p V dp C C T T dT βββα⎛⎫∂=- ⎪∂⎝⎭ (3) 将克拉珀龙方程代入,可将式(3)表为.m p m m p V L C C V V T βββαβα⎛⎫∂=- ⎪-∂⎝⎭ (4) 如果β相是气相,可看作理想气体,α相是凝聚相,m m V V αβ,在式(4)中略去m V α,且令m pV RT β=,式(4)可简化为 .p L C C Tββα=-(5) C βα是饱和蒸气的热容量. 由式(5)可知,当p L C T β<时,C βα是负的.3.10 试证明,相变潜热随温度的变化率为.m m p p m mp p V V dL L L C C dT T T T V V βαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+--⎢⎥ ⎪ ⎪∂∂-⎢⎥⎝⎭⎝⎭⎣⎦ 如果β相是气相,α相是凝聚相,试证明上式可简化为.p p dL C C dTβα=- 解: 物质在平衡相变中由α相转变为β相时,相变潜热L 等于两相摩尔焓之差:.m m L H H βα=- (1)相变潜热随温度的变化率为 .m m m m p T p T H H H H dL dp dp dT T p dT T p dTββαα⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂∂=+-- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 式(2.2.8)和(2.2.10)给出 ,,p pp T H C T H V V T p T ∂⎛⎫= ⎪∂⎝⎭⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3)所以().m m p p m m p p V V dL dp dp C C V V T dT dT T T dTβαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+---⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎝⎭⎣⎦ 将式中的dp dT用克拉珀龙方程(3.4.6)代入,可得 ,m m p p m m p p V V dL L L C C dT T T T V V βαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+--⎢⎥ ⎪ ⎪∂∂-⎢⎥⎝⎭⎝⎭⎣⎦ (4)这是相变潜热随温度变化的公式.如果β相是气相,α相是凝聚相,略去m V α和m pV T α⎛⎫∂ ⎪∂⎝⎭,并利用m pV RT β=,可将式(4)简化为.p p dL C C dTβα=- (5)3.11 根据式(3.4.7),利用上题的结果计及潜热L 是温度的函数,但假设温度的变化范围不大,定压热容量可以看作常量,试证明蒸气压方程可以表为ln ln .Bp A C T T=-+ 解: 式(3.4.7)给出了蒸气与凝聚相两平衡曲线斜率的近似表达式21.dp Lp dT RT = (1) 一般来说,式中的相变潜热L 是温度的函数. 习题3.10式(5)给出.p p dL C C dTβα=- (2) 在定压热容量看作常量的近似下,将式(2)积分可得()0,p p L L C C T βα=+- (3)代入式(1),得021,p pC C L dL p dT RT RTβα-=+ (4) 积分,即有ln ln ,Bp A C T T=-+ (5) 其中0,,p pC L B C A R C βα==是积分常数.3.12 蒸气与液相达到平衡. 以mdV dT表示在维持两相平衡的条件下,蒸气体积随温度的变化率. 试证明蒸气的两相平衡膨胀系数为111.m m dV LV dT T RT⎛⎫=-⎪⎝⎭解:蒸气的两相平衡膨胀系数为11.m m m p m m T dV V V dp V dT V T p dT ⎡⎤⎛⎫∂∂⎛⎫=+⎢⎥⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎣⎦(1) 将蒸气看作理想气体,m pV RT =,则有11,11.m p m m m T V V T T V V p p∂⎛⎫= ⎪∂⎝⎭⎛⎫∂=- ⎪∂⎝⎭ (2)在克拉珀龙方程中略去液相的摩尔体积,因而有2.m dp L LpdT TV RT== (3) 将式(2)和式(3)代入式(1),即有111.m m dV L V dT T RT⎛⎫=-⎪⎝⎭(4)3.13 将范氏气体在不同温度下的等温线的极大点N 与极小点J 联起来,可以得到一条曲线NCJ ,如图所示. 试证明这条曲线的方程为()32,m m pV a V b =-并说明这条曲线划分出来的三个区域Ⅰ、Ⅱ、Ⅲ的含义.解:范氏方程为2.m mRT ap V b V =-- (1) 求偏导数得()232.m m Tm p RT aV V V b ⎛⎫∂=-+ ⎪∂-⎝⎭ (3) 等温线的极大点N 与极小点J 满足0,m Tp V ⎛⎫∂= ⎪∂⎝⎭ 即()232,mm RTa V Vb =- 或()()32.m m mRT aV b V b V =-- (3) 将式(3)与式(1)联立,即有()322,m m ma ap V b V V =-- 或()32m m m pV a V b aV =--()2.m a V b =- (4)式(4)就是曲线NCJ 的方程.图中区域Ⅰ中的状态相应于过热液体;区域Ⅲ中的状态相应于过饱和蒸气;区域Ⅱ中的状态是不能实现的,因为这些状态的0m Tp V ⎛⎫∂> ⎪∂⎝⎭,不满足平衡稳定性的要求.3.14 证明半径为r 的肥皂泡的内压强与外压强之差为4rσ. 解:以p β表示肥皂泡外气体的压强,p γ表示泡内气体的压强,p α表示肥皂液的压强,根据曲面分界的力学平衡条件(式(3.6.6)),有2,p p r αβσ=+(1)2,p p rγασ=+ (2)式中σ是肥皂液的表面张力系数,r 是肥皂泡的半径. 肥皂液很薄,可以认为泡内外表面的半径都是r . 从两式中消去p α,即有4.p p rγβσ-=(3)3.15 证明在曲面分界面的情形下,相变潜热仍可表为().m m mm L T S S H H βαβα=-=- 解:以指标α和β表示两相. 在曲面分界的情形下,热平衡条件仍为两相的温度相等,即.T T T αβ== (1)当物质在平衡温度下从α相转变到β相时,根据式(1.14.4),相变潜热为().m m L T S S βα=- (2)相平衡条件是两相的化学势相等,即()(),,.T p T p ααββμμ= (3)根据化学势的定义 ,m m m U TS pV μ=-+式(3)可表为,m m m m m m U TS p V U TS p V ααααββββ-+=-+因此()()m m m m m mL T S S U p V U p V βαβββααα=-=+-+.m m H H βα=- (4)3.16 证明爱伦费斯特公式:()(2)(1)(2)(1)(2)(1)(2)(1),.p p dp dT C C dp dT TV αακκαα-=--=- 解:根据爱氏对相变的分类,二级相变在相变点的化学势和化学势的一级偏导数连续,但化学势的二级偏导数存在突变. 因此,二级相变没有相变潜热和体积突变,在相变点两相的比熵和比体积相等. 在邻近的两个相变点(),T p 和(),T dT p dp ++,两相的比熵和比体积的变化也相等,即(1)(2)v v ,d d = (1)(1)(2).ds ds = (2)但v v v v .p Td υdT dp T p dT dp ακ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭=- 由于在相变点(1)(2)v v =,所以式(1)给出(1)(1)(2)(2),dT dp dT dp ακακ-=-即(2)(1)(2)(1).dp dT αακκ-=- (3) 同理,有v .p T p pp s s ds dT dp T p C υdT dpT T C dT dp Tα⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭∂⎛⎫=- ⎪∂⎝⎭=- 所以式(2)给出(1)(2)(1)(1)(2)(2)v v ,ppC C dT dp dT dp TTαα-=-即()(2)(1)(2)(1),v p p C C dp dT T αα-=- (4)式中(2)(1)v v v ==. 式(3)和式(4)给出二级相变点压强随温度变化的斜率,称为爱伦费斯特方程.3.17 试根据朗道自由能式(3.9.1)导出单轴铁磁体的熵函数在无序相和有序相的表达式,并证明熵函数在临界点是连续的。
热力学统计物理-基础题库
![热力学统计物理-基础题库](https://img.taocdn.com/s3/m/c1f376ccb4daa58da1114ab6.png)
Q 一、选择题:(每题 3 分)下列选项正确的是().(热力学系统的平衡状态及其描述)(容易)A . 与外界物体有能量交换但没有物质交换的系统称为绝热系统。
B . 与外界物体既有能量交换又有物质交换的系统称为封闭系统。
C . 与外界物体既没有能量交换又没有物质交换的系统称为孤立系统。
D . 热力学研究的对象是单个的微观粒子。
答案:B.简单系统的物态方程的一般形式为().(物态方程)(容易)A. f ( p ,V ) = 0 ;B. f ( p ,V ,T ) = C ;C. f ( p ,V ,T ) = 0 ;D. f ( p ,V ) = C ;答案:C.下列关于状态函数的定义正确的是().(焓自由能吉布斯函数)(容易)A . 系统的焓是: H = U - pV ;B . 系统的自由能函数是: F = U + TS ;C . 系统的吉布斯函数是: G = U - TS + pV ;D . 系统的熵函数是: S = ;T答案:C.状态函数焓的全微分表达式为dH 为 ( ).(内能焓自由能和吉布斯函数的全微分)(中等)A. TdS - pdV ;B. TdS + Vdp ;C. -SdT - pdV ;D. -SdT + Vdp答案:B.内能函数的全微分表达式为dU 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:A.自由能函数的全微分表达式为dF 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:C.吉布斯函数的全微分表达式为dG 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:D.下列关于状态函数全微分正确的是().(内能焓自由能和吉布斯函数的全微分)(中等)A.内能: dU =TdS -pdV ;B.焓: dH =TdS -Vdp ;C.自由能: dF =-SdT +pdV ;D.吉布斯函数: dG =-SdT -Vdp ;答案:A.下面几个表达式中错误的是( ).(热量和焓)(容易).∂∂p ∂TCp =T∂TA.CVB.CV =∂U; V=∂S; V∂HC. C = ;p∂SD. ;p答案:B.下面关于热力学第零定律的表述错误的是()。
热力学与统计物理试题及答案
![热力学与统计物理试题及答案](https://img.taocdn.com/s3/m/976ca67fc5da50e2524d7f99.png)
热力学与统计物理试题及答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】一.选择(25分) 1.下列不是热学状态参量的是( )A.力学参量 B 。
几何参量 C.电流参量 D.化学参量2.下列关于状态函数的定义正确的是( )A.系统的吉布斯函数是:G=U-TS+PVB.系统的自由能是:F=U+TSC.系统的焓是:H=U-PVD.系统的熵函数是:S=U/T3.彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是( )A.态函数B.内能C.温度D.熵4.热力学第一定律的数学表达式可写为( ) A.W Q U U A B +=- B.W Q U U B A +=- C.W Q U U A B -=- D.W Q U U B A -=-5.熵增加原理只适用于( )A.闭合系统B.孤立系统C.均匀系统D.开放系统二.填空(25分)1.孤立系统的熵增加原理可用公式表示为( )。
2.热力学基本微分方程du=( )。
3.热力学第二定律告诉我们,自然界中与热现象有关的实际过程都是( )。
4.在不变的情况下,平衡态的( )最小。
5.在不变的情形下,可以利用( )作为平衡判据。
三.简答(20分)1.什么是平衡态平衡态具有哪些特点2.3.什么是开系,闭系,孤立系?四.证明(10分)证明范氏气体的定容热容量只是温度的函数,与比容无关五.计算(20分)试求理想气体的体胀系数α,压强系数β,等温压缩系数T K参考答案一.选择 1~5AACAB二.填空1. ds≧02. Tds-pdv3. 不可逆的4. 内能5. 自由能判据三.简答1.一个孤立系统,不论其初态如何复杂,经过足够长的时间后,将会达到这样状态,系统的各种宏观性质在长时间内不发生变化,这样的状态称为热力学平衡态。
特点:不限于孤立系统弛豫时间涨落热动平衡2.开系:与外界既有物质交换,又有能量交换的系统闭系:与外界没有物质交换,但有能量交换的系统,孤立系:与其他物体既没有物质交换也没有能量交换的系统四.证明解证:范氏气体()RT b v v a p =-⎪⎭⎫ ⎝⎛+2 T v U ⎪⎭⎫ ⎝⎛∂∂=T V T p ⎪⎭⎫ ⎝⎛∂∂-p =T 2va pb v R =-- T v U ⎪⎭⎫ ⎝⎛∂∂=2va ⇒)(),(0T f v a U v T U +-= =V C V T U ⎪⎭⎫ ⎝⎛∂∂=)(T f ' ;与v 无关。
热力学与统计物理课后习题答案第一章
![热力学与统计物理课后习题答案第一章](https://img.taocdn.com/s3/m/1a6f95f5960590c69ec3768f.png)
试求理想气体的体胀系数,压强系数和等温压缩系数。
解:已知理想气体的物态方程为(1)由此易得(2)(3)(4)证明任何一种具有两个独立参量的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得:如果,试求物态方程。
解:以为自变量,物质的物态方程为其全微分为(1)全式除以,有根据体胀系数和等温压缩系数的定义,可将上式改写为(2)上式是以为自变量的完整微分,沿一任意的积分路线积分,有(3)若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。
确定常量C需要进一步的实验数据。
在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。
问:(a)压强要增加多少才能使铜块的体积维持不变?(b)若压强增加100,铜块的体积改变多少?解:(a)根据题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。
如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得(3)将式(2)积分得到式(3)首先意味着,经准静态等容过程后,系统在初态和终态的压强差和温度差满足式(3)。
但是应当强调,只要初态和终态是平衡态,两态间的压强差和温度差就满足式(3)。
这是因为,平衡状态的状态参量给定后,状态函数就具有确定值,与系统到达该状态的历史无关。
本题讨论的铜块加热的实际过程一般不会是准静态过程。
在加热过程中,铜块各处的温度可以不等,铜块与热源可以存在温差等等,但是只要铜块的初态和终态是平衡态,两态的压强和温度差就满足式(3)。
将所给数据代入,可得因此,将铜块由加热到,要使铜块体积保持不变,压强要增强(b)题式(4)可改写为(4)将所给数据代入,有因此,将铜块由加热至,压强由增加,铜块体积将增加原体积的倍。
简单固体和液体的体胀系数和等温压缩系数数值都很小,在一定温度范围内可以把和看作常量. 试证明简单固体和液体的物态方程可近似为解: 以为状态参量,物质的物态方程为根据习题式(2),有(1)将上式沿习题图所示的路线求线积分,在和可以看作常量的情形下,有(2)或(3)考虑到和的数值很小,将指数函数展开,准确到和的线性项,有(4)如果取,即有(5)描述金属丝的几何参量是长度,力学参量是张力J,物态方程是实验通常在1下进行,其体积变化可以忽略。
热力学统计物理(A参考答案)
![热力学统计物理(A参考答案)](https://img.taocdn.com/s3/m/90e9cc1859eef8c75fbfb38a.png)
宝鸡文理学院试题课程名称中学物理教育理论适用时间2011年7月与实践研究试卷类别 A 适用专业、年级、班专升本一. 填空题(本题共7 题,每空3 分,总共21 分)1. 假设一物质的体涨系数和等温压缩系数经过实验测得为:,则该物质的物态方程为:。
2. 1 mol 理想气体,保持在室温下(K)等温压缩,其压强从1 准静态变为10 ,则气体在该过程所放出的热量为:焦耳。
3. 计算机的最底层结构是由一些数字逻辑门构成的,比如说逻辑与门,有两个输入,一个输出,请从统计物理的角度估算,这样的一个逻辑与门,室温下(K)在完成一次计算后,产生的热量是:焦耳。
4. 已知巨热力学势的定义为,这里是系统的自由能,是系统的粒子数,是一个粒子的化学势,则巨热力学势的全微分为:。
5. 已知粒子遵从经典玻耳兹曼分布,其能量表达式为,其中是常数,则粒子的平均能量为:。
6. 温度时,粒子热运动的热波长可以估算为:。
7. 正则分布给出了具有确定的粒子数、体积、温度的系统的分布函数。
假设系统的配分函数为,微观状态的能量为,则处在微观状态上的概率为:。
二. 简答题(本题共3 题,总共30 分)1. 请从微观和统计物理的角度解释:热平衡辐射的吉布斯函数为零的原因。
(10分)2. 请说说你对玻耳兹曼分布的理解。
(10分)3. 等概率原理以及在统计物理学中的地位。
(10分)三. 计算题(本题共4 题,总共49 分)1. 一均匀杆的长度为L,单位长度的定压热容量为,在初态时左端温度为T1,右端温度为T2,T1 < T2,从左到右端温度成比例逐渐升高,考虑杆为封闭系统,请计算杆达到均匀温度分布后杆的熵增。
(你可能要用到的积分公式为)(10分)2. 设一物质的物态方程具有以下形式:,试证明其内能和体积无关。
(10分)3. 表面活性物质的分子在液面上作二维自由运动,可以看作是二维气体。
请用经典统计理论计算:(1)二维气体分子的速度分布和速率分布。
热力学与统计物理试卷1、2+答案
![热力学与统计物理试卷1、2+答案](https://img.taocdn.com/s3/m/2f46762eb84ae45c3b358c96.png)
热力学与统计物理试卷(甲)一、选择题:(每题3分,共15分)1、一个P、 V为参量的系统,T V不变时,下列说法证确的是()(1)系统处于平衡态时,熵最小;(2)系统处于平衡态时,内能最小;(3)系统处于平衡态时,自由能最大;(4)系统处于平衡态时,自由能最小;2、液体中有一气泡,如a表示液相,B表示气相,两相平衡时有()(1)、 T a≠ T B, P a≠ P B, μa≠μB;(2)、T a = T B, P a≠ P B, μa = μB;(3)、T a = T B, P a = P B, μa≠μB;(4)、T a = T B, P a = P B, μa= μB;3、一个单元系统,固、液两相共存时,()(1)因两相共存,所以不可能处于平衡态;(2)因两相共存,所以两相质量一定相等;(3)两相共存时,化学势高的相,物质的量将减少;(4)两相共存时,化学势高的相,物质的量将增加;4、初平衡态和终平衡态确定的热力学系统,,下列说法证确的是()(1)压强一定发生变化;(2)温度一定发生变化;(3)内能、熵、焓,自由能变化,但不确定;(4)内能、熵、焓、自由能变化都是确定的;5、两个完全不同的A、B物体,处于热平衡有:()(1)、 T A=T B , P A≠P B, V A≠V B ;(2)、 T A≠T B , P A=P B, V A=V B ;(3)、 T A=T B , P A=P B, V A=V B ;(4)、 T A≠T B , P A≠P B, V A=V B ;二、填空题:(每空3分,共30分)1、理想气体分别经等压、等容过程,温度都由T1升到T2,假设等压、等容热容是常数,则前后过程熵增的比值为()。
2、等温等容条件下的系统处在温度平衡`状态的必要和充分条件为(),由()可以确定平衡条件,由()可以确定平衡的稳定性条件。
3、写出玻尔兹曼分布表示式()、玻色分布表示式()、费米分布表示式()。
热力学与统计物理试题及答案
![热力学与统计物理试题及答案](https://img.taocdn.com/s3/m/15d3759605a1b0717fd5360cba1aa81144318ff9.png)
热力学与统计物理试题及答案一、选择题(每题3分,共30分)1. 热力学第一定律表明能量守恒,下列哪项描述是正确的?A. 能量可以被创造或消灭B. 能量可以从一个物体转移到另一个物体C. 能量可以被转化为物质D. 能量可以从高熵状态自发地转移到低熵状态答案:B2. 根据热力学第二定律,下列哪项描述是正确的?A. 熵是一个状态函数B. 熵总是减少的C. 自然过程总是向熵增加的方向发展D. 熵是一个过程量答案:C3. 理想气体的状态方程是:A. PV = nRTB. PV = nRT + 常数C. PV = nRT - 常数D. PV = nRT^2答案:A4. 以下哪种情况下,系统的熵会增加?A. 气体从高压区域膨胀到低压区域B. 气体被压缩C. 液体凝结成固体D. 固体熔化成液体答案:A5. 统计物理中,配分函数Z的物理意义是:A. 系统的总能量B. 系统的熵C. 系统的自由能D. 系统的微观状态数答案:D6. 绝对零度是:A. 温度的上限B. 温度的下限C. 压力的上限D. 压力的下限答案:B7. 以下哪种过程是可逆的?A. 气体的自由膨胀B. 气体的绝热压缩C. 气体的等温膨胀D. 气体的等压膨胀答案:C8. 以下哪种情况下,系统的吉布斯自由能会减少?A. 系统在恒温恒压下做功B. 系统在恒温恒压下吸收热量C. 系统在恒温恒压下放出热量D. 系统在恒温恒压下吸收热量并做功答案:C9. 理想气体的内能仅取决于:A. 体积B. 温度C. 压力D. 摩尔数答案:B10. 以下哪种情况下,系统的亥姆霍兹自由能会减少?A. 系统在恒温下做功B. 系统在恒温下吸收热量C. 系统在恒温下放出热量D. 系统在恒温下吸收热量并做功答案:B二、填空题(每题4分,共20分)11. 热力学第一定律的数学表达式为:ΔU = Q - W,其中ΔU表示系统的内能变化,Q表示系统吸收的热量,W表示系统对外做的功。
12. 热力学第二定律的开尔文表述是:不可能从单一热源吸热使之完全转化为功而不产生其他影响。
热力学与统计物理课后习题答案第一章复习课程
![热力学与统计物理课后习题答案第一章复习课程](https://img.taocdn.com/s3/m/8b0e8be931b765ce050814aa.png)
热力学与统计物理课后习题答案第一章1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数Tκ的定义,可将上式改写为.TdVdT dpVακ=-(2)上式是以,T p为自变量的完整微分,沿一任意的积分路线积分,有()ln.TV dT dpακ=-⎰(3)若11,TT pακ==,式(3)可表为11ln.V dT dpT p⎛⎫=-⎪⎝⎭⎰(4)选择图示的积分路线,从00(,)T p积分到()0,T p,再积分到(,T p),相应地体积由V最终变到V,有000ln=ln ln,V T pV T p-即00p VpVCT T==(常量),或.pV CT=(5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。
热力学统计物理课后习题答案.doc
![热力学统计物理课后习题答案.doc](https://img.taocdn.com/s3/m/585ef9f851e79b896802268c.png)
第七章 玻耳兹曼统计7. 1 试根据公式 Pa lL证明,对于非相对论粒子lVP21 2 22 U 222n x , n y , n z2m 2mL n x n yn z ,( 0, 1, 2, )有P3 V上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明: 处在边长为 L 的立方体中,非相对论粒子的能量本征值为P21 222 22n x , n y , n z 0, 1, 2, ) ------- (1)n x , n y ,n z2m 2mLn x n yn z(为书写简便,我们将上式简记为aV 23----------------------- ( 2)其中 V=L 3 是系统的体积,常量a(2 ) 2222l 代表 n x ,n y ,n z 三2m n xn y n z ,并以单一指标个量子数。
由( 2)式可得L2aVV35 32l--------------------- ( 3)3 V代入压强公式,有 PL2 2 Ua lal l---------------------- ( 4)lV3V l3 V式中 Ual l是系统的内能。
l上述证明未涉及分布的具体表达式, 因此上述结论对于玻尔兹曼分布, 玻色分布和费米分布都成立。
注:( 4)式只适用于粒子仅有平移运动的情形。
如果粒子还有其他的自由度,式( 4)中的U 仅指平动内能。
7. 2 根据公式 Pa lL证明,对于极端相对论粒子lVcp c2n x 2 n y 2 n z 2 11 U2 , n x , n y , n z 0, 1, 2, 有PL3 V 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为2 n x 2 n y 2 n z 2 1c 2 , n x , n y , n z 0, 1, 2,-------( 1)n x ,n y ,n zL1为书写简便,我们将上式简记为aV 3 ----------------------- ( 2)其中 V=L 3 是系统的体积, 常量 a 2 c n x 2 n y 2n z 212,并以单一指标 l 代表 n x ,n y ,n z 三个量子数。
汪志诚热力学统计物理习题答案(第一章)
![汪志诚热力学统计物理习题答案(第一章)](https://img.taocdn.com/s3/m/8d4bb10254270722192e453610661ed9ad515532.png)
第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。
解:由得:nRT PV = VnRTP P nRT V ==; 所以: T P nR V T V V P 11)(1==∂∂=α,T PV RnT P P V /1)(1==∂∂=β,P PnRT V P V V T T /111)(12=--=∂∂-=κ 。
习题1.2 试证明任何一种具有两个独立参量的p T ,物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果11,T T pακ==,试求物态方程。
解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以 T dV V dT V dp ακ=-,即T dVdT dp Vακ=-,两边积分有: ⎰-=dp dT V T καln ,当 p T T /1,/1==κα,代入得ln dT dp V T p =-⎰即 pV CT =习题 1.3在0oC 和1n p 下,测得一块铜块的体胀系数和等温压缩系数分别为514.8510K α--=⨯和717.810T n p κ--=⨯,T κα,可近似看作常量。
今使铜块加热至10o C 。
问(1)压强要增加多少n p 才能使铜块体积维持不变?(2)若压强增加100n p ,铜块的体积改变多少? 解:根据T dV dT dp V ακ=-,Tdp dT ακ=,代入数据可得:21622n p p p -=根据()()()000,,01T V T p V T T T K p α=+--⎡⎤⎣⎦有()()21211T VT T K p p V α∆=--- 代入数据有 44.0710V -∆=⨯习题1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。
2006-2007年度热力学与统计物理标准答案(A)
![2006-2007年度热力学与统计物理标准答案(A)](https://img.taocdn.com/s3/m/971a5760ddccda38376baf3f.png)
∂T ∂p
−
S
∂T ∂p
>0
H
(1分) (1分)
=
S
∂T ∂p
+
H
∂T ∂H
p
∂H ∂p
(2分)
S
∂T ∂p
=
H
∂T ∂H
p
∂H ∂p
(1分)共 8 页 第 3 页
2006-2007年度 《热力学与统计物理》 标准答案(A)
所以, 有: ∂H ∂p 又根据定压热容量的定义, 有: Cp = 所以, 有: ∂T ∂p −
考虑任意方向, 则在体积 V 内, 动量大小处在 p 到 p + dp 内的粒子数为: dNp = 4πN (2πmkT ) 由于动量与速度之间的关系: p = mv, px = mvx , py = mvy , pz = mvz 所以, 有: dp = mdv, dpx = mdvx , dpy = mdvy , dpz = mdvz 所以由 (7) 可得, 在体积 V 内, 速度处在 vx 到 vx + dvx 、 vy 到 vy + dvy 、 vz 到 vz + dvz 内的粒 子数为: dNv = N (2πmkT ) =N m 2πkT
V
∂S ∂V ∂S ∂V
dV − pdV
T
dT + T
V
− p dV
T
(4) (1分)
比较 (4) 和 (1) 中 dV 的系数, 有: ∂U ∂V =T
T
∂S ∂V
−p
T
(5) (1分)
又由 Maxwell 关系, 有: ∂S ∂V 所以, (5) 可以改写为: ∂U ∂V 上式即为能态方程。 =T
热力学统计物理习题(共五则)
![热力学统计物理习题(共五则)](https://img.taocdn.com/s3/m/4f508c322379168884868762caaedd3383c4b5e4.png)
热力学统计物理习题(共五则)第一篇:热力学统计物理习题《热力学统计物理2》教学大纲课程名称(英文):热力学统计物理2(Thermodynamics and Statistical Mechanics Ⅱ)课程代码:0612933课程类别:提高拓宽课程学时:34学时学分:2学分考核办法:考查适用对象:物理学本科专业一、课程简介《热力学统计物理2》课程是高等学校物理学专业本科选修的课程。
是在《热力学统计物理1》的基础上进一步掌握热力学统计物理的基本概念和原理,加深与扩展热力学统计物理的内容,使学生对热力学统计物理的概念、原理与基本理论有更透彻的理解与掌握。
同时掌握用热力学统计物理解决实际问题的方法,进一步提高学生的解题技巧与能力。
为进一步学习现代物理学和科学技术奠定基础,并满足一部分学生考研的需要。
二、教学目的及要求1、掌握多元系热力学函数的一般性质和多元系的热力学方程,了解多元系的化学平衡条件。
2、系综理论可以应用于有相互作用粒子组成的系统。
掌握系综理论的基本概念,以及微正则系综、正则系综和巨正则系综。
3、进一步提高学生的解题技巧与能力。
为进一步学习现代物理学和科学技术奠定基础,并满足一部分学生考研的需要。
三、教学重点和难点教学重点和难点:多元系的热力学方程及复相平衡条件,热力学第三定律;相空间,刘维定理,微正则系综,正则系综,巨正则系综。
四、与其它课程的关系1、前期课程:力学、热学、原子物理、量子力学、高等数学,《热力学统计物理(1)》。
2、材料物理和固体物理等课程的先行课。
五、教学内容第四章多元系的复相平衡和化学平衡(10学时)本章主要教学内容:4.1 多元系的热力学函数和热力学方程:(1)多元单相系的热力学函数:欧勒定律偏摩尔量;(2)多元单相系的热力学基本方程:多元方程吉布斯关系;(3)多元复相的系热力学函数与基本方程。
4.2 多元系的复相平衡条件:力学平衡条件:Pα=Pβ;热平衡条件:Tα =Tβ;相平衡条件:μα i =μβi(i=1,2,3,...)4.3 吉布斯相律:证明吉布斯相律*4.5 化学平衡条件:化学反应式一般表达式;化学反平衡条件。
(完整版)热力学统计物理练习的题目及答案详解
![(完整版)热力学统计物理练习的题目及答案详解](https://img.taocdn.com/s3/m/5eee6fab5727a5e9846a6133.png)
热力学·统计物理练习题一、填空题. 本大题70个小题,把答案写在横线上。
1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质 时间改变,其所处的 为热力学平衡态。
2. 系统,经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。
3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有 是独立的。
4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是 。
5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视为 。
6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。
7.均匀物质系统的独立参量有 个,而过程方程独立参量只有 个。
8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。
9.定容压力系数的意义是在 不变条件下系统的压强随 的相对变化。
10.等温压缩系数的意义是在 不变条件下系统的体积随 的相对变化。
11.循环关系的表达式为 。
12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。
13.W Q U U A B +=-,其中W 是 作的功。
14.⎰=+=0W Q dU ,-W 是 作的功,且-W 等于 。
15.⎰δ+δ2L 11W Q ⎰δ+δ2L 12W Q (1、2均为热力学平衡态,L 1、L 2为准静态过程)。
16.第一类永动机是指 的永动机。
17.内能是 函数,内能的改变决定于 和 。
18.焓是 函数,在等压过程中,焓的变化等于 的热量。
19.理想气体内能 温度有关,而与体积 。
20.理想气体的焓 温度的函数与 无关。
21.热力学第二定律指明了一切与热现象有关的实际过程进行的 。
22.为了判断不可逆过程自发进行的方向只须研究 和 的相互关系就够了。
热力学统计物理试题及其参考答案完整版
![热力学统计物理试题及其参考答案完整版](https://img.taocdn.com/s3/m/7655b07303768e9951e79b89680203d8ce2f6a08.png)
一、1. B, 2. D, 3. A, 4. A, 5. B, 6. A, 7. C, 8. C, 9.A, 10. A.
评分标准:本题共20分, 每个答案2分。
二、1.状态,2.系统从外界吸收,3. , 4. , ,
5. , 6. 0, 7. , 8.负温度状态, 9. ,
(4)
评分标准:(1)和(4)式各2分,(2)(3)式各3分
五、计算题:
1.解:范氏方程可表为
对范氏方程取导数得
(1)
按循环关系式,我们有
(2)
因此
(3)
(4)
. (5)
评分标准:(1)--(5)式各2分。
2.解:双原子分子的转动自由度 =2,选广义坐标和广义动量为 。双原子分子的配分函数为
.(1)
双原子分子理想气体的转动内能和熵
.(2)
。(3)
评分标准:(1)式4分,(2)和(3)式各3分。
令 ,得
=- <0.(2)
这里应用了 和 。
再由
.(3)
令 ,得
= .(4)
这里应用了 和 .
评分标准:(1)和(3)式各2分,(2)和(4)式各3分。
3.证明:由 (1)
绝对零度下自由电子气体中电子动量(大小)的分布为
(2)
其中 是费米动量,)
因此电子的平均速率为
四、1.证:由正则分布 ,得
.(1)
将上式代入广义熵的表示式,得
.(2)
上式即正则系综中系统熵的表示式。
或者,由正则分布中熵的表示式出发
,(3)
利用(1)式,由上式得熵的普遍表示式
. (4)
评分标准:(1),(2)式各5分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宝鸡文理学院试题课程名称中学物理教育理论适用时间2011年7月与实践研究试卷类别 A 适用专业、年级、班专升本一. 填空题(本题共7 题,每空3 分,总共21 分)1. 假设一物质的体涨系数和等温压缩系数经过实验测得为:,则该物质的物态方程为:。
2. 1 mol 理想气体,保持在室温下(K)等温压缩,其压强从1 准静态变为10 ,则气体在该过程所放出的热量为:焦耳。
3. 计算机的最底层结构是由一些数字逻辑门构成的,比如说逻辑与门,有两个输入,一个输出,请从统计物理的角度估算,这样的一个逻辑与门,室温下(K)在完成一次计算后,产生的热量是:焦耳。
4. 已知巨热力学势的定义为,这里是系统的自由能,是系统的粒子数,是一个粒子的化学势,则巨热力学势的全微分为:。
5. 已知粒子遵从经典玻耳兹曼分布,其能量表达式为,其中是常数,则粒子的平均能量为:。
6. 温度时,粒子热运动的热波长可以估算为:。
7. 正则分布给出了具有确定的粒子数、体积、温度的系统的分布函数。
假设系统的配分函数为,微观状态的能量为,则处在微观状态上的概率为:。
二. 简答题(本题共3 题,总共30 分)1. 请从微观和统计物理的角度解释:热平衡辐射的吉布斯函数为零的原因。
(10分)2. 请说说你对玻耳兹曼分布的理解。
(10分)3. 等概率原理以及在统计物理学中的地位。
(10分)三. 计算题(本题共4 题,总共49 分)1. 一均匀杆的长度为L,单位长度的定压热容量为,在初态时左端温度为T1,右端温度为T2,T1 < T2,从左到右端温度成比例逐渐升高,考虑杆为封闭系统,请计算杆达到均匀温度分布后杆的熵增。
(你可能要用到的积分公式为)(10分)2. 设一物质的物态方程具有以下形式:,试证明其内能和体积无关。
(10分)3. 表面活性物质的分子在液面上作二维自由运动,可以看作是二维气体。
请用经典统计理论计算:(1)二维气体分子的速度分布和速率分布。
(9分)(2)二维气体分子的最概然速率。
(4分)4. (1)证明,在二维情况下,对于非相对论粒子,压强和内能的关系为:这里,是面积。
这个结论对于玻尔兹曼分布、玻色分布和费米分布都是成立的。
(8分)(2)假设自由电子在二维平面上运动,电子运动为非相对论性的,面密度为,试求: 0 K 时电子气体的费米能量、内能和简并压强。
(8分)热力学. 统计物理(A 卷)答案一. 填空题(本题共 7 题,每空 3 分,总共 21 分)1.const =TpV2. 31074.510ln ⨯=RT3. -211087.22ln ⨯=kT4. μNd pdV SdT dJ ---=5. kT 26. mkTh kTm h 22==λπλ或者7. ZekTE s S-=ρ二. 简答题(本题共 3 题,总共 30 分)1. 请从微观和统计物理的角度解释:热平衡辐射的吉布斯函数为零的原因。
(10分)答:(1)热力学中研究的热平衡辐射系统,是一个和腔壁达到热力学平衡的系统,热力学理论可以证明,它的吉布斯函数为零。
……………………(2分)(2)从微观角度看,平衡辐射场可以认为是光子气体,每一个单色平面波对应于一个能量和动量确定的光子,腔壁中的辐射场对应于能量和动量从零到无穷大连续取值的光子气体。
辐射场和腔壁不断发生热交换,从微观角度来看,相当于交换光子,因此,腔壁中的光子数不守恒。
(2分)(3)光子是玻色子,满足玻色分布。
在确定玻色分布公式的时候,由于光子数不守恒,因此确定第一个拉氏乘子α的条件不存在,从物理上理解,这个拉氏乘子α就应该为零,因为kTμα-=,故化学势为零。
………………(4分)(4)化学势即为摩尔吉布斯函数(或者单个光子的吉布斯函数),光子气体的吉布斯函数等于摩尔数(或者平均分子数)乘上化学势,因此光子气体的吉布斯函数为零。
…………………(2分) 2. 请说说你对玻耳兹曼分布的理解。
(10分)答:(1)系统各个能级中的粒子数,构成一个数列,称为分布。
物理上,需要在给定的分布下,确定系统的微观状态。
…………………………………(3分)(2)玻耳兹曼系统是这样的一个系统,它的各个粒子是可以分辨的,因此,要确定玻耳兹曼的微观状态,就需要确定每一个粒子的微观状态,给出玻耳兹曼系统的一个分布,只是确定了每一个能级的粒子数,但是这些粒子是哪一些粒子并没有确定。
…………………………………(3分)(3)由于等概率原理,在给定的宏观状态下,任何一种微观状态出现的概率是一样的。
不同的分布对应的微观状态数是不一样的,因此,对应微观状态数最多的分布,出现的概率最大,这就是最概然分布。
玻耳兹曼系统的最概然分布就是玻耳兹曼分布。
……………………………(4分) 3. 等概率原理以及在统计物理学中的地位。
(10分)答:(1)作为热运动的宏观理论,热力学讨论的状态是宏观状态,由几个宏观参量表征,例如对于一个孤立系统,可以用粒子数N 、体积V 和能量E 来表征系统的平衡态,状态参量给定之后,处于平衡态的系统的所有宏观物理量都具有确定值。
…………………………………………(2分)(2)系统的微观状态是指构成系统的每一个粒子的力学运动状态,显然,在确定的宏观状态之下,系统可能的微观状态是大量的,而且微观状态不断地发生及其复杂的变化,例如,对于一个没有相互作用的系统中,总能量是由N 个单粒子能量的简单求和得到的,因此,将会有大量不同的方式选择个别粒子的能量使其总和等于总能量。
………(2分)(3)等概率原理认为:在任意时刻,该系统处于各个微观态中的任意一个状态都是同等可能的,也就是概率是一样的。
对于一个孤立系统,数学表述就是:设所有可能的微观状态的数目Ω是粒子数N 、体积V 和能量E 的函数:),,(E V N Ω=Ω,则每一个微观状态的概率为Ω1。
……(3分)(4)统计物理认为,宏观物理量是相应的微观物理量的系综平均值,要求系综平均值,就必须知道系统在各个微观状态出现的概率。
等概率原理给出了孤立系统的各个微观状态出现的概率,因此,只要知道总的微观状态数,就可以计算各种宏观物理量。
这样,等概率原理在连接宏观物理量和相对应的微观物理量之间建立了一个可以计算的桥梁。
当然,实际上,对给定的孤立系统,计算总的微观状态数一般是很困难的,但是它是分析其他问题(如分析正则分布和巨正则分布)的基础,等概率原理也称为微正则分。
……………………………………(3分)三. 计算题(本题共 4 题,总共 49 分)1. 一均匀杆的长度为 L ,单位长度的定压热容量为p c ,在初态时左端温度为 1T ,右端温度为 2T , 21T T <,从左到右端温度成比例逐渐升高,考虑杆为封闭系统,请计算杆达到均匀温度分布后杆的熵增。
(你可能要用到的积分公式为()⎰⎰-⋅=⋅x x x d dx x ln ln 。
)(10分) 答:设杆的初始状态是左端 0=l 温度为 1T ,右端 L l =为 2T ,从左到右端,位于 l 到dl l +的初始温度为l LT T T T 121-+=,达到平衡后温度为212T T -,这一小段的熵增加值为:122111222112lnT T p p T T T lLT T dT dS c dlc dl T T TT lL+-++==⋅-+⎰………………………………(4分)根据熵的可加性,整个均匀杆的熵增加值为1212211002112lnlnln 2L L L p p p T T T T T T S dS c dl c dl c dl T l T T L T lL ++-⎛⎫∆==⋅=⋅-⋅+ ⎪-⎝⎭+⎰⎰⎰⎰ ⎰⎪⎭⎫ ⎝⎛-+⋅--⋅-+⋅=Lp p l L T T T l LT T d L T T c T T L c 0121121221ln )(12ln⎰⋅-⋅-+⋅=21ln 12ln 1221T T p p x dx LT T c T T L c()1211221221ln ln 12lnT T T T T T T T L c T T L c p p +---⋅-+⋅=……………(6分)2. 设一物质的物态方程具有以下形式:TV f p )(=,试证明其内能和体积无关。
(10分)证明:以),(T V 作为自变量,则熵的全微分为:dV V S dT T S dS TV ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=………………………………(3分)利用热力学基本微分方程,有:dVp V S T dT T S T pdV dV V S T dT T S T pdVTdS dU T V T V ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=-=因此有: p V S T V U TT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂………………………………(3分) 由麦氏关系代入上式,可以得到: p T p T V U VT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 利用物态方程可以知:)(V f T p V=⎪⎭⎫⎝⎛∂∂ 故有:0)(=-=-⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂p V Tf p T p T V U VT …………………………(4分)得证。
3. 表面活性物质的分子在液面上作二维自由运动,可以看作是二维气体。
请用经典统计理论计算:(1)二维气体分子的速度分布和速率分布。
(9分) (2)二维气体分子的最概然速率。
(4分)答:玻耳兹曼分布的经典表达式是rl l h ea 01ωβεα∆=--…………………………………………(2分)在没有外场时,二维情况下的分子质心运动能量的经典表达式为 )(212222y x p p mm p+==ε在面积A 内,分子质心平动动量在y x dp dp 范围内的状态数为y x dp dp hA 20因此,在面积A 内,分子质心平动动量在y x dp dp 范围内的分子数为y x p p mkTdp dp ehA y x )(212022+--α参数由总分子数为N 的条件定出N dpdp ehA yx p p mkTy x =⎰⎰+--)(212022α积分出,得221h AN mkTeπα=-因此,质心动量在y x dp dp 范围内的分子数为y x p p mkTdp dp emkTNy x )(212221+-π用速度作为变量,y y x x mv p mv p ==;,上式化为:y x v v kTm dv dv ekTm Ny x )(2222+-π这就是在面积A 内,分子在y x dv dv 范围内的分子数。
用AN n =表示单位面积内的分子数,则在单位面积内,速度在y x dv dv 范围内的分子数为y x v v kTm y x y x dv dv ekTm ndv dv v v f y x )(2222),(+-=π…………………………(5分)这就是二维情况下的速度分布律。