污泥负荷对活性污泥中微生物的影响
活性污泥增长的规律是什么
活性污泥增长的规律是什么?
活性污泥的增长分为对数增长期、减速增长期和内源呼吸期三个阶段。
在每个阶段,有机物的去除率、氧的利用速率及活性污泥的特征都各不相同。
污泥负荷是影响活性污泥增长速率、有机物去除速率、氧利用速率、污泥凝聚吸附性能的重要因素。
活性污泥微生物的对数增长期在高负荷的营养过剩时出现,混合液中的有机物以最大的速率被氧化和转换成新的微生物细胞而被去除,活性污泥的增长速率与其生物量及有机物的浓度无关,活性污泥微生物的增殖速率很快,活菌的数量呈对数增长。
在这个阶段,活性污泥中的活性污泥的沉降性能较差,其微生物多处于松散的状态,并具有很高的能量水平及较大的需氧量。
随着营养物的不断消耗和新细胞的不断合成,污泥负荷开始逐渐降低,营养物不再过剩,而且成为限制微生物进一步生长的主要因素,活性污泥的增长便从对数增长期过渡到减速增长期。
随着营养物质的减少,微生物能量水平开始下降,活性污泥的絮体逐渐形成。
此时,活性污泥的活性虽然减弱,但凝聚吸附和沉降性能有所提升,大多数活性污泥处理法都是将运行工况控制在减速增长期。
进一步曝气,混合液中的营养物将继续降低或近乎耗尽。
当污泥负荷值降低到一定程度时,活性污泥便进入了内源呼吸期。
这时细菌已不能从其周围获得营养以维持自身的生命活动,于是开始消耗自身细胞内的营养物质,其死亡速率大于生长速度,致使污泥量减少。
由
于能量水平较低,絮体形成速率增高,吸附有机物的能力增强,游离的细菌被栖息于活性污泥表面的原生动物所捕获,处理水显著澄清。
如果要得到高质量的出水,活性污泥处理法也可运行于内源呼吸期。
污泥负荷的计算、控制及与其他指标的关系
污泥负荷F/M的计算、控制及与其他指标的关系一、污泥负荷的计算及一般控制区间1、什么是污泥负荷、承受负荷和去除负荷?如何计算?污泥负荷是指单位质量的污泥微生物在一定时间内所得基质的量,单位为kgCOD( BOD) /(kgMLSS·d)。
污泥负荷在微生物代谢方面的含义就是F/M比值,它代表了微生物量与食物量之间的一种平衡关系,直接影响活性污泥的增长速率、有机污染物的去除效果效率、氧的利用率以及污泥的沉降性能。
污泥负荷(F以BOD5表示,M以MLSS表示)的计算公式如下:F/M==(BOD5×Q)/曝气池中活性污泥总量其中,曝气池中活性污泥总量=曝气池有效容积×MLSS。
(由于一些污水厂没有条件测定BOD5,所以污泥负荷计算也可用CODcr 来取代BOD5。
因为就某一处理装置而言,其污水的BOD5/COD一般情况下是相对稳定的。
)此处需要特别说明的是,上面我们所介绍的污泥负荷只是大致反映了曝气池中单位质量的活性污泥每天所能接纳的BOD5量,而不能反映所能去除的BOD5量。
因此,在实际的运行管理中应采用污泥的BOD5去除负荷。
二者的计算不同在于:前者的F用曝气池每天进水BOD5的总量表示,是污泥的承受负荷;而后者的F用曝气池每天去除的BOD5的总量表示,是污泥的去除负荷。
在日常运行管理中,后者往往更具指导意义,能反映出处理装置的实际处理能力。
2、F/M的一般控制区间数据来源/《活性污泥法工艺控制》:F/M参考控制值值得一提的是,上图提到的这些控制区间数据,仅可用于参考,并不能作为定理或者切实准确的标准。
毕竟,随着环保政策越来越严格,国家对出水标准也提出了更高的要求,这就迫使我们把生化处系统的F/M必须控制得更低,否则很难做到达标排放。
当然,维持较低F/M时,也会出现很多不良表现。
在低负荷情况下的不良表现——曝气池和二沉池容易产生浮渣;放流水容易夹带颗粒物;有水力货荷冲击时,容易导致活性污泥流出二沉池。
污泥上浮原因分析
一、污泥上浮的原因分析在采用活性污泥法处理各种废水的运行管理中,由于各种原因引起怕曝气池活性污泥致毒、活性受到抑制产生的微生物性质和类群的改变,有些微生物(如丝状菌)的过量增长形成泡沫或浮渣,以及运行时机械应力、挟裹气论等出现活性污泥比重降低而上浮。
上浮污泥随处理水流失,不仅增加了出水的悬浮物固体量,使出水水质严重恶化。
从而大大降低了活性污泥的活性和数量(MVSS)。
引起活性污泥膨胀、上浮的主要因素有如下几方面的原因:1)、进水水质有过量的表面活性物质和油脂类化合物;2)、PH值的被动,当PH值的增加超过一定范围后,絮凝作用下降,形起活性污泥脱絮;3)、碱度的偏高,由于进水碱性而调PH值,虽具中和碱性物质,但也产生了盐,盐溶液浓度增大形成渗透压发生突变,就会使其细胞脱水而死或胀破而亡而工程经验当活性污泥反应池内碱度超过通常数倍时,多时情况下就会发生污泥上浮;4)、温度对活性污泥中微生物的影响幅度。
一般好氧活性污泥适宜温度范围在15-35℃,,超过45℃大部分活性污泥就要残废而上浮;5)、致毒性底物包括CODcr浓度骤然升高、含酚及其衍生物,醇、醛和某些有机酚、硫化物、重金属及卤化物过高等;6)、Do(溶解氧)过高,短期内污泥活性可能很好,因为新陈代谢快,有机物分解也块,但时间一久,污泥被打得又轻又碎(但天气论),象雾花片似风飘满池面,随水流走。
Do甚低,污泥缺氧呈灰色,若缺氧过久则呈黑色,并常常有小气泡;7)、反硝化引起的污泥上浮,当废水中总氮或氨氮高时,在适宜条件下可被硝酸菌和亚硝酸菌氧化为NO3-,如二沉池厌氧,NO3-就会还原为N2,N2被活性污泥絮凝体所吸附,使得活性污泥比重<1而上浮;8)、池底积泥引起的污泥上浮,污泥腐化产生CH4,H2S后上浮;9)、由于废水运行工况的水温和污泥负荷不能衡定,水质微生物菌种营养源缺铁,会引起菌种兑变成微丝菌,一般称丝状菌繁生而引起活性污泥上浮。
污泥负荷、容积负荷
污泥负荷sludge loading 曝气池内每公斤活性污泥单位时间负担的五日生化需氧量公斤数。
其计量单位通常以kg/(kg·d)表示。
污泥负荷(Ns)是指单位质量的活性污泥在单位时间内所去除的污染物的量。
污泥负荷在微生物代谢方面的含义就是F/M比值,单位kgCOD(BOD)/(kg污泥。
d)在污泥增长的不同阶段,污泥负荷各不相同,净化效果也不一样,因此污泥负荷是活性污泥法设计和运行的主要参数之一.一般来说,污泥负荷在0.3~0。
5kg/(kg。
d)范围内时,BOD5去除率可达90%以上,SVI为80-150,污泥的吸附性能和沉淀性能都较好。
污泥负荷的计算方法:Ns=F/M=QS/(VX) 式中 Ns —-污泥负荷,kgCOD(BOD)/(kg污泥。
d);Q -—每天进水量,m3/d; S -—COD(BOD)浓度,mg/L;V -—曝气池有效容积,m3;X —-污泥浓度,mg/L。
容积负荷volume loading 每立方米池容积每日负担的有机物量,一般指单位时间负担的五日生化需氧量公斤数(曝气池,生物接触氧化池和生物滤池)或挥发性悬浮固体公斤数(污泥消化池)。
其计量单位通常以kg/(m3·d)表示。
容积负荷Fr 单位曝气池容积,在单位时间内所能去除的污染物重量。
Fr=Fw×NW ,kgBOD5/(m3·d)或kgCOD/(m3·d)式中: FW——污泥负荷,kgBOD5/(kgMLSS·d)NW-—混合液污泥浓度(即MLSS),g/L或kg/m3FW=(Lq/NW)×T 式中: Lq-—单位体积污水中拟去除的污染物,kgBOD5/m3 T——曝气时间(按进水量计),d 简化后可按下式计算:Fr=[(q1-q2)×24]/1000V 式中: q1—-进水浓度,mg/Lq2—-出水浓度,mg/L V——曝气池池容,m3用容积负荷来评价生化装置的实际处理负荷及在相同条件下的操作管理的优劣是比较简便而直观的。
活性污泥处理系统运行过程中应考虑哪些因素
活性污泥处理系统运行过程中应考虑哪些因素?(1)溶解氧(DO)在用活性污泥法处理污水过程中应保持一定浓度的溶解氧,如供氧不足,溶解氧浓度过低,就会使活性污泥微生物正常的新陈代谢活动受到影响,净化能力降低,且易于滋生丝状菌,产生污泥膨胀现象。
但混合液溶解氧浓度过高,氧的转移效率降低,不仅会增高所需动力费用,而且还会造成活性污泥的过氧化,使污泥发散,影响沉淀效果。
根据经验,在曝气池出口处的混合液中的溶解氧浓度保持在2mg/L左右,就能够使活性污泥保持良好的净化功能。
(2)水温温度是影响微生物正常生理活动的重要因素之一。
其影响主要反映在两方面:①随着温度在一定范围内升高,细胞中的生化反应速率加快,活性污泥的增殖速度也加快;②细胞的组成物质,如蛋白质、核酸等对温度很敏感,若温度突然大幅度增高,并超过一定限度,可使其组织遭受到不可逆的破坏,造成微生物的死亡,影响生化系统的稳定。
活性污泥微生物的最适温度范围是15〜30°C。
一般水温低于10°C,即可对活性污泥的功能产生不利影响,但是,如果水温的降低是缓慢的,微生物逐步适应了这种变化,即所谓受到了温度降低的驯化,这样,即使水温降低到6〜7°C,再采取一定的技术措施,如降低污泥负荷、提高活性污泥与溶解氧的浓度以及延长曝气时间等,仍能够取得较好的处理效果。
在我国北方地区,大中型的活性污泥处理系统,可在露天建设,但小型的活性污泥处理系统,因受气温影响较大,则可以考虑建在室内。
水温过高的工业污水在进入生物处理系统前,应考虑降温措施。
水温上升有利于混合、搅拌、沉淀等物理过程,但不利于氧的传递。
(3)营养物质活性污泥微生物为了进行各项生命活动,必须不断地从环境中摄取各种营养物质。
微生物细胞的组成物质有碳、氢、氧、氮等几种元素,约占90%〜97%,其余的为无机元素,其中磷的含量最高达50%。
生活污水和城市污水含有足够的各种营养物质,但某些工业污水经常会出现营养物质不均衡,碳、氮、磷的比例失调,例如石油化工污水和制浆造纸污水缺乏氮、磷等物质。
活性污泥系统的异常现象及解决方法
活性污泥系统的异常现象及解决方法•相关推荐活性污泥系统的异常现象及解决方法活性污泥系统的异常现象及解决方法活性污泥处理系统在运行过程中,有时会出现种种异常情况,造成处理效果降低,污泥流失,下面是一些常见的异常现象和解决措施。
1、混合液溶解氧不足现象:活性污泥呈灰黑色,污泥发生厌氧反应,污泥中出现硫细菌,出水水质恶化。
原因:①负荷量增高;②曝气不足;③工业废水的流入等。
对策:①控制负荷量;②增大曝气量;③切断或控制工业废水的流人。
2、SV值异常(1)污泥沉淀30~60min后呈层状上浮(污泥上浮),多发生在夏季。
原因:硝化作用导致在二沉池中被还原成N2,引起污泥上浮。
对策:减少污泥在二沉池的HRT;减少曝气量。
(2)在沉淀后的上清液中含有大量的悬浮微小絮体,出水透明度下降。
原因:污泥解体,曝气过度;负荷下降,活性污泥自身氧化过度。
对策:减少曝气;增大负荷量。
(3)泥水界面不明显。
原因:高浓度有机废水的流入,使微生物处于对数增长期;污泥形成的絮体性能较差。
对策:降低负荷;增大回流量以提高曝气池中的.MLSS,降低F/M值。
3、SVI值异常原废水水质的变化和运行管理不善都会使SVI异常。
4、污泥膨胀污泥膨胀是指活性污泥质量变轻、膨大,沉降性能恶化,在二沉池中不能正常沉淀下来,SVI异常增高,可达400以上。
导致污泥膨胀的原因是多方面的,主要两种。
(1)因丝状菌异常增殖而导致的丝状菌性膨胀。
主要的丝状菌有球衣菌属、贝氏硫细菌、以及正常活性污泥中的某些丝状菌如芽孢杆菌属、某些霉菌等。
(2)因黏性物质大量积累而导致的非丝状菌性膨胀。
当出现污泥膨胀时,可考虑采取以下措施。
(1)杀灭丝状菌,如投加氯、臭氧、过氧化氢等的药剂。
(2)改善、提高活性污泥的絮凝性,投加絮凝剂如硫酸铝等。
(3)改善、提高活性污泥的沉降性、密实性,投加黏土、消石灰等。
(4)加大回流污泥量并在其回流前进行再生性曝气。
(5)使废水经常处于好氧状态,防止厌氧反应的发生,如预曝气。
污泥负荷、容积负荷
污泥负荷sludge loading 曝气池内每公斤活性污泥单位时间负担的五日生化需氧量公斤数。
其计量单位通常以kg/(kg·d)表示。
污泥负荷(Ns)是指单位质量的活性污泥在单位时间内所去除的污染物的量。
污泥负荷在微生物代谢方面的含义就是F/M比值,单位kgCOD(BOD)/(kg污泥.d)在污泥增长的不同阶段,污泥负荷各不相同,净化效果也不一样,因此污泥负荷是活性污泥法设计和运行的主要参数之一。
一般来说,污泥负荷在0.3~0.5kg/(kg.d)范围内时,BOD5去除率可达90%以上,SVI为80-150,污泥的吸附性能和沉淀性能都较好。
污泥负荷的计算方法:Ns=F/M=QS/(VX)式中 Ns ——污泥负荷,kgCOD(BOD)/(kg污泥.d);Q ——每天进水量,m3/d; S ——COD(BOD)浓度,mg/L;V ——曝气池有效容积,m3; X ——污泥浓度,mg/L。
容积负荷volume loading 每立方米池容积每日负担的有机物量,一般指单位时间负担的五日生化需氧量公斤数(曝气池,生物接触氧化池和生物滤池)或挥发性悬浮固体公斤数(污泥消化池)。
其计量单位通常以kg/(m3·d)表示。
容积负荷Fr 单位曝气池容积,在单位时间内所能去除的污染物重量。
Fr=Fw×NW ,kgBOD5/(m3·d)或kgCOD/(m3·d)式中: FW——污泥负荷,kgBOD5/(kgMLSS·d)NW——混合液污泥浓度(即MLSS),g/L或kg/m3FW=(Lq/NW)×T 式中: Lq——单位体积污水中拟去除的污染物,kgBOD5/m3 T——曝气时间(按进水量计),d 简化后可按下式计算:Fr=[(q1-q2)×24]/1000V 式中: q1——进水浓度,mg/Lq2——出水浓度,mg/L V——曝气池池容,m3用容积负荷来评价生化装置的实际处理负荷及在相同条件下的操作管理的优劣是比较简便而直观的。
污泥负荷对活性污泥中微生物的影响
污泥负荷对活性污泥中微生物的影响在污水处理过程中,进水有机负荷增加,活性污泥沉降性能变差.运行经验表明,如果污泥负荷超过0.35kgBOD/kgMLSS.d易于发生丝状菌性污泥膨胀。
污泥膨胀分为丝状菌膨胀和非丝状菌膨胀。
非丝状菌膨胀主要发生在废水水温较低而污泥负荷太高的时候,此时细菌吸附了大量有机物,来不及代谢,在胞外积贮大量高粘性的多糖物质,使得表面附着物大量增加,很难沉淀压缩。
而当氮严重缺乏时,也有可产生膨胀现象。
因为若缺氮,微生物便于工作不能充分利用碳源合成细胞物质,过量的碳源将被转弯为多糖类胞外贮存物,这种贮存物是高度亲水型化合物,易形成结合水,从而影响污泥的沉降性能,产生高粘性的污泥膨胀。
非丝状菌污泥膨胀发生时其生化处理效能仍较高,出水也还比较清澈,污泥镜检也看不到丝状菌。
非丝状菌膨胀发生情况较少,且危害并不十分严重,在这里就不着重研究。
丝状菌膨胀在日常实际工作中较为常见,成因也十分复杂。
影响丝状菌污泥膨胀的因素有很多,但我们首先应该认识到的是活性污泥是一个混合培养系统,其中至少存在着30种可能引起污泥膨胀的丝状菌。
而丝状菌在与活性胶团系统共生的关系中是不可缺少的一类重要微生物。
它的存在对净化污水起着很好的作用。
它对保持污泥的絮体结构,保持生化处理的净化效率,及在沉淀中起着对悬浮物的过滤作用等都有很重要的意义。
事实也证明在丝状菌与菌胶团细菌平衡时是不会产生污泥膨胀,只有当丝状菌生长超过菌胶团细菌时,才会出现污泥膨胀现象。
1、污泥负荷对污泥膨胀的影响一般认为活性污泥中的微生物的增长都是符合Monod方程的:式中X----生物体浓度,mg/L;S----生长限制性基质浓度,mg/L;μ----生长限制性基质浓度,mg/L;KS-----饱和常数,其值为μ=μmax/2时的基质浓度,mg/L;μmax-----在饱和浓度中微生物的最大比增长速率,d-1研究证明大多数的丝状菌的KS和μmax值比菌胶团的低,所以,按照以上Monond方程,具有低KS和μmax值的丝状菌在低基质浓度条件下具有高的增长速率,而具有较高KS和μmax值的菌胶团在高基质浓度条件下才占优势。
污水处理中各种设计负荷大比拼
污水处理中各种设计负荷大比拼污泥负荷?容积负荷?表面负荷?水力负荷?负荷!负荷!负荷!傻傻分不清楚?宜正会我特此为您整理了此篇播bao o收藏在手、不再翻书 .............一、有机物负荷活性污泥法的设计计算,主要是根据进水水质和出水的要求,确定活性污泥法工艺流程,选择曝气池的类型,计算曝气池的容积,确定污泥回流比,计算所需的供氧量,曝气设备选择和剩余活性污泥量计算等。
有机物负荷通常有活性污泥负荷(简称污泥负荷)和曝气池容积负荷(简称容积负荷)两种表示方式。
L污泥负荷活性污泥负荷的方法,在原理上是基于对活性污泥中微生物生长曲线的理解,认为微生物所处的生长阶段决定于基质的量(F)与微生物总量(M)的比例(即污泥负荷)。
活性污泥负荷主要决定了活性污泥法系统中活性污泥的凝聚、沉降性能和系统的处理效率。
对于一定进水浓度的污水(So),只有合理地选择混合液污泥浓度(X)和恰当的活性污泥负荷(F/M),才能到达一定的处理效率。
根据这样的概念,活性污泥负荷LS可以用下式表示:因此,生物反应池的容积应为式中:污泥负荷,kgB0D5∕(kgMLSS&dot;d)或kgB0D5∕Ls(kgMLVSS&dot;d)F/M——食物与微生物比,gB0D5∕(gMLSS&dot;d)或gBOD5∕(gMLVSS&dot;d)Q——与曝气时间相当的平均进水流量,m3∕dSo --- 曝气池进水的平均B0D5值,mg/L或kg∕m3X——曝气池混合液污泥浓度,MLSS或MLVSS,mg/L或kg∕m3 V——曝气池容积,m3运用污泥负荷时注意使用MLSS或MLVSS表示曝气池混合液污泥浓度时应与Ls中的污泥浓度含义相对应。
2.容积负荷容积负荷是指单位容积曝气池在单位时间内所能接纳的B0D5量,即式中:Lv——容积负荷,kgB0D5∕(m3&dot;d)根据容积负荷可计算曝气池的容积V(m3),即:Q和SO是已知的,X和Ls、LV可参考以下表(1-1)选择。
活性污泥解体的原因和解决对策
活性污泥解体的原因和解决对策
活性污泥解体是污水处理过程中的一个常见问题,其主要原因有以下几点:
1. 污泥质量不稳定。
污泥质量不稳定是活性污泥解体的主要原因之一。
污泥中微生物的种类和数量会随着进水水质、温度、pH值等因素的改变而发生变化,从而导致污泥质量不稳定。
2. 污泥过度负荷。
如果进水水质突然发生变化,或者进水量突然增加,都会导致污泥过度负荷,从而引起活性污泥解体。
3. 污泥中有害物质的存在。
如果进水中含有重金属、有机物等有害物质,会对污泥中的微生物产生毒害作用,从而导致活性污泥解体。
为了解决活性污泥解体问题,可以采取以下对策:
1. 加强污泥管理。
对于污泥的质量和数量进行严格管理,确保污泥的稳定性和可控性。
2. 加强进水水质监测。
及时监测进水水质的变化,及时调整处理工艺和设备,避免污泥过度负荷。
3. 加强预处理。
对于进水中含有的有害物质进行预处理,减少对污泥微生物的影响。
4. 加强维护和保养。
定期对处理设备进行检修和保养,确保设备正常运行,避免设备故障引起的污泥解体。
总之,活性污泥解体是一个复杂的问题,需要从多个方面进行综合治理。
只有加强管理和维护,才能确保处理效果和环保效益。
活性污泥性状和生物相的观察与指导
活性污泥性状和生物相的观察与指导
活性污泥是一种由微生物群落组成的生物膜,它主要用于处理含有有机物和氮、磷等养分的废水。
活性污泥的性状和生物相是其功能和效率的关键因素。
活性污泥性状主要包括:
外观:活性污泥应是稠糊的,呈现浓稠的状态。
浊度:活性污泥应具有较低的浊度,表现为透明度高。
流动性:活性污泥应具有较好的流动性,不易结块。
化学需氧量(COD):活性污泥应具有较高的降解能力,COD值应低于原水。
生物相观察主要包括:
微生物种类:活性污泥中应含有多种微生物,如细菌、厌氧菌、真菌等。
微生物数量:活性污泥中微生物数量应达到一定水平,保证其高效降解能力。
微生物多样性:活性污泥中微生物种类和数量应保持多样性,有利于提高降解能力。
微生物活性:活性污泥中微生物应具有较高的活性,表现为高的降解率和生长速率。
指导方面,可以通过以下措施来调节和改善活性污泥的性状和生物相:
调节污泥负荷:适当调整污泥负荷,使其保持在适当的水平,有利于微生物的生长和降解能力。
控制水温:保持水温在适宜的范围内,有利于微生物的生长和活性。
添加营养物质:适当添加含氮、磷等营养物质,提高微生物的降解能力。
控制氧气浓度:保持氧气浓度在适宜的范围内,有利
于微生物的生长和活性。
通过观察和指导,能够使活性污泥保持较好的性状和生物相,提高处理效率,保证废水处理系统的正常运行。
活性污泥法的影响因素及影响程度
活性污泥法的影响因素及影响程度影响活性污泥法的因素:溶解氧、有机负荷、营养物质、pH值、水温、有毒物质。
1、有机负荷对活性污泥法的影响:每一种好氧活性污泥法都有其最佳有机负荷,在进水有机负荷接近和等于其最佳值时,才有最佳效果。
进水有机负荷过高或过低,偏离最佳值,将会破坏活性污泥系统运行的效果。
2、温度对活性污泥法的影响:温度对活性污泥法中的微生物的影响是非常广泛的。
有的微生物喜欢生活在高温环境中(50~70℃),有的则喜欢生活在低温环境中(-5~10℃),但污水处理中的微生物大部分适宜生长在15~35℃之间。
在适宜的温度范围内,温度越高,微生物的活性越强,处理效果也越好,反之温度越低,生物活性就越差。
3、pH值对活性污泥法的影响:活性污泥中的各种微生物都有它们适宜的pH值范围,一般适宜的pH值在6~9之间。
pH值在45以下,活性污泥中原生动物将全部消失,大多数微生物的活动受到抑制。
只有真菌成为优势菌种,活性污泥絮体受到损坏,极易产生污泥膨胀。
当pH值大于9后,微生物的代谢速率将受到不利的影响,菌胶团会解体,悬浮物增多,出水恶化。
4、有毒、有害物质对好氧活性污泥法的影响:当污水中含有对微生物有毒、有害或有抑制作用的物质时,活性污泥的性能将会下降,直至完全失去作用。
《污水排入城市下水道水质标准》(CT3082-1999)中列出了常见的有毒、有害物质对活性污泥产生抑制作用的最低浓度进入活性污泥法处理系统的污水中的有毒有害物质的最低浓度含量应低于表中的限值。
有毒、有害物质的毒害作用还与处理过程中的水温、溶解氧、pH值等多种因素有关,也与有毒、有害物质共存时,其毒性相加或相减有关,还与微生物经过驯化后抗毒性能有关。
实践证明,经过专项、长期培训的特殊菌种,可以处理利用污水中的一定量的有毒、有害物质,有时甚至可以将有毒害物质变成微生物的营养成分,例如苯和酚等。
活性污泥耗氧速率、废水可生化性及毒性测定
活性污泥耗氧速率、废水可生化性及毒性的测定活性污泥的耗氧速率(OUR)是评价污泥微生物代谢活性的一个重要指标。
在日常运行中,污泥OUR的大小及其变化趋势可指示处理系统负荷的变化情况,并可以此来控制剩余污泥的排放。
污泥的OUR值若大大高于正常值,往往提示污泥负荷过高,这时出水水质较差,残留有机物较多,处理效果亦差。
污泥OUR 值长期低于正常值,这种情况往往在活性污泥负荷低下的延时曝气处理系统中可见,这时出水中残存有机物数量较少,处理完全,但若长期运行,也会使污泥因缺乏营养而解絮。
处理系统在遭受毒物冲击,而导致污泥中毒时,污泥OUR值的突然下降常是最为灵敏的早期警报。
此外,还可通过测定污泥在不同工业废水中OUR值的高低,来判断该废水的可生化性及废水毒性的极限程度。
实验目的1.了解活性污泥耗氧速率测定的意义。
2.掌握溶解氧测定仪测定活性污泥耗氧速率的方法和原理。
并利用该方法进行废水可生化性及毒性的测定。
一、实验原理活性污泥中微生物需要消耗溶解氧,利用溶解氧测定仪测出一定量活性污泥在一定的时间内所消耗的溶解氧即为活性污泥的内源呼吸耗氧速率。
OUR:单位体积溶液在单位时间内消耗氧量称为耗氧速率(摄氧率)。
SOUR:即比耗氧速率。
在污水处理中评价活性污泥稳定的定量指标,是指单位质量的活性污泥在单位时间内的耗氧量。
什么叫混合液悬浮固体(MLSS)?混合液悬浮固体(MLSS)亦要称为污泥浓度,它是指单位体积混合液所含干污泥的重量,单位为毫克/升,用来表征活性污泥浓度。
它包括有机物和无机物两部分。
什么叫混合液挥发性悬浮固体(MLVSS)?混合液挥发性悬浮固体(MLVSS)是指单位体积混合液所含干污泥中可挥发性物质的重量,单位也是毫克/升,由于它不包括活性污泥中的无机物,因此能较确切地代表活性污泥中微生物的数量。
二、仪器和试剂1.溶解氧测定仪2.0.025mol·L-1、pH值为7的磷酸盐缓冲液3.活性污泥4.250ml广口瓶5.磁力搅拌器6.10%CuS04三、实验步骤1.测定活性污泥的耗氧速率方法一:(1)取曝气池活性污泥混合液迅即置于烧杯中,由于曝气池不同部位的活性污泥浓度和活性有所不同,取样时可取不同部位的混合样。
丝状菌澎账的原因及解决方法
正常的活性污泥沉降性能好,其SVI约为50—150之间为正常。
SVI=活性污泥体积/MLSS,当SVI>200并继续上升时,称为污泥膨胀(1)丝状菌繁殖引起的膨胀原因:污泥中丝状菌过渡增长繁殖的结果,丝状菌作为菌胶团的骨架,细菌分泌的外酶通过丝状菌的架桥作用将千万个细菌凝结成菌胶团吸附有机物形成活性污泥的生态系统。
但当丝状菌大量生长繁殖,活性菌胶团结构受到破坏,形成大量絮体而漂浮于水面,难于沉降。
这种现象称为丝状菌繁殖膨胀。
丝状菌增长过快的原因:a、溶解氧过低,<0.7—2.0mg/lb、冲击负荷——有机物超出正常负荷,引起污泥膨胀c、进水化学条件变化:一是营养条件变化,一般细菌在营养为BOD5:N:P=100:5:1的条件下生长,但若磷含量不足,C/N升高,这种营养情况适宜丝状菌生活。
二是硫化物的影响,过多的化粪池的腐化水及粪便废水进入活性污泥设备,会造成污泥膨胀。
含硫化物的造纸废水,也会产生同样的问题。
一般是加5~10mL/L氯加以控制或者用预曝气的方法将硫化物氧化成硫酸盐。
三是碳水化合物过多会造成膨胀。
四是pH值和水温的影响,pH过低,温度高于35度易引起丝状菌生长。
解决办法:a、保持一定的活性污泥浓度,控制每天排除污泥的净增量,控制回流比。
b、控制F/M(污泥负荷)调节进水和回流污泥c、保持污泥龄不变d、污泥膨胀严重时投加铁盐絮凝剂或有机阳离子凝聚剂。
活性污泥膨胀的控制摘要:从污泥膨胀产生的内在因素着手,分析丝状菌过量繁殖的原因,针对几种常见的活性污泥工艺提出解决方案和思路。
关键词:丝状菌污泥膨胀选择池活性污泥工艺污泥膨胀问题是活性污泥自产生以来一直伴随并常常发生的一个棘手的问题。
其主要特征是:污泥结构松散,质量变轻,沉淀压缩性能差;SV值增大,有时达到90%,SVI达到300以上;大量污泥流失,出水浑浊;二次沉淀难以固液分离,回流污泥浓度低,有时还伴随大量的泡沫的产生,无法维持生化处理的正常工作。
(整理)活性污泥运行的基础知识
活性污泥运行的基础知识运行指标:PH:6~9 最适宜的为6.5~8PH<4.5:原生动物全部消失,大多数微生物的活动受到限制,活性污泥絮体受到破坏,产生污泥膨胀现象。
PH>9.0:微生物的代谢速率将受极大影响,菌胶团会解体,会产生污泥膨胀现象。
温度:最适宜的温度15~30℃>40℃或<5℃时,活性污泥的功能全部停止。
溶解氧(DO):1.5~2mg/lDO过低,易滋生丝状菌,产生污泥膨胀。
DO过高,污泥中的微生物会自身氧化解体。
污泥负荷(F/M):0.2~0.3kgBOD5/(kgMLSS.d)污泥负荷(F/M):营养物质或有机物(F)与微生物(M)的比值。
F/M过高:微生物生长繁殖速率加快,尽管代谢分解有机物能力很强,但由于细菌能量高,趋于游离生长状态,会导致污泥絮体的解絮,沉淀池出水变浑浊,处理效果变差。
F/M过低:可能导致污泥过氧化而引起解絮现象,沉淀池出水清,但含有较多悬浮污泥颗粒。
污泥浓度(MLSS):2000~3000mg/l污泥沉降比(SV30):30~60%污泥容积指数(SVI):SVI用于判断污泥的沉降性能。
城市污水:60~100 工业废水:100~200 水力停留时间(HRT):是水流在处理构筑物内的平均驻留时间,用处理构筑物的容积与处理进水量的比值表示,HRT的单位一般用小时表示。
固体停留时间(SRT):是生物体(污泥)在处理构筑物内的平均驻留时间,即污泥龄。
可以用处理构筑物的污泥总量与剩余污泥排放量的比值来表示,SRT的单位一般用d表示。
也可以用MCRT或BSRT表示。
通常活性污泥法系统的微生物平均停留时间约为水力停留时间的20倍。
通常活性污泥系统的水力停留时间:城市污水为4~6小时,相应的微生物停留时间为3.3~5天,延时曝气的水力停留时间为24小时,则微生物停留时间为30天左右。
活性污泥净化水的过程活性污泥净化水主要是通过三个阶段来完成第一阶段,污水主要通过活性污泥的吸附作用而得到净化。
活性污泥法中微生物
活性污泥中细菌间的相互关系是竞争、互生(同种)。
利用含义大量需氧微生物的活性污泥,在强力通气的条件下使污水净化的生物学方法。
活性污泥:是由污水中繁殖的大量微生物凝聚而成的绒絮状泥粒。
具有很强的吸附和分解有机物的能力。
活性污泥中含有多种细菌、放线菌、酵母菌、霉菌。
原生动物及藻类。
净化水质的以好氧微生物为主体。
对于含氰。
铅汞等有毒工业废水的处理可加入分界毒物的微生物。
活性污泥絮粒的大小、形状、紧密程度、构成絮粒的菌胶团细菌与丝状菌的比例及其生长情况能很好地反映污水处理状况。
活性污泥的污泥絮粒大、边缘清淅、结构紧密,呈封闭状、具有良好的吸附和沉降性能。
絮粒以菌胶团细菌为骨架,穿插生长一些丝状菌,但丝状菌数量远少于菌胶团细菌,未见游离细菌、微型动物以固着类纤毛虫为主,如钟虫、盖纤虫、累枝虫等;还可见到木盾纤虫在絮粒上爬动,偶尔还可看到少量的游动纤毛虫等,轮虫生长活跃。
这是运行正常的污水处理设施的活性污泥生物相,表明污泥沉降及凝聚性能较好,它在二沉池能很快和彻底地进行泥水分离,处理出水效果好。
在形成这种生物相结构时,应加强运行管理,以继续保持这种运行条件。
污泥出现絮体结构松散,絮粒变小,观察到大量的游动型纤毛虫类(豆形虫属、肾形虫属、草履虫属、波多虫属、滴虫属等)生物、肉足类生物(变形虫属和简便虫属等)急剧增加的生物相,出现这种生物相时,污泥沉降性差,影响泥水分离。
产生的原因是由于污泥负荷过低,菌胶团细菌体外的多糖类基质会被细菌作为营养物用于维持生命需要,从而使絮体结构松散,絮粒变小。
若同时观察到大量的游离细菌的生物相时,则是由污泥负荷过高引起的,这时污水中的营养物质丰富,促使游离细菌生长很好,絮凝的菌胶团细菌趋于解絮成单个游离菌,以增大同周围环境的比表面,同样使污泥结构松散,絮粒变小。
此外,由于污泥絮粒的解絮或变小容易被微型生物吞噬,使得微型生物因食物充足而大量繁殖。
对由于污泥负荷过低,应采取减少污泥回流量、投加营养物质、缩短泥龄等方法提高污泥负荷运行;对由于污泥负荷过高,则应采取减少进水流量,减少排泥等措施降低污泥负荷运行。
衡量活性污泥数量和性能好坏的指标
衡量活性污泥数量和性能好坏的指标:主要有以下几项。
(1)活性污泥的浓度(MLSS)指以1L混合液内所含的悬浮固体或挥发性悬浮固体的量。
污泥浓度的大小可间接的反映废水中微生物的浓度。
一般在活性污泥曝气池内常保持MLSS浓度在2~6mg/L之间,多为3~4mg/L。
(2)污泥沉降比(SV%)指一定量的曝气池废水在静置30min后,沉淀污泥与废水的体积比,用%号表示。
它可反映污泥的沉淀和凝聚性能好坏。
污泥沉降比越大,越有利于活性污泥与水的迅速分离,性能良好的污泥,一般沉降比可达15~30%。
(3)污泥容积指数(SVI)又称污泥指数,是指一定量的曝气池废水经30min 沉淀后,1g干污泥所占有沉淀污泥容积的体积,单位ml/g,它实质是反映活性污泥的松散程度,污泥指数越大,则污泥越松散。
这样可有较大表面积,易于吸附和氧化分解有机物,提高废水的处理效果。
但污泥指数太高,污泥过于松散,则污泥的沉淀性差,故一般控制在50~150ml/g之间。
但根据废水性质的不同,这个指标也有差异。
如废水溶解性有机物含量高时,正常的SVI值可能较高;相反,废水中含有无机性悬浮物较多时,正常的SVI值可能较低。
以上三者之间的关系:SVI = SV * 10 / MLSS2.活性污泥的培养与驯化活性污泥是通过一定的方法培养与驯化出来的。
培养的目的是使微生物增殖,达到一定的污泥浓度;驯化则是对混合微生物群进行淘汰和诱导,使具有降解废水活性的微生物成为优势。
1.1 菌种和培养液除了采用纯菌种外,活性污泥菌种大多取自粪便污水、生活污水或性质相近的工业废水处理站二沉池剩余污泥。
培养液一般由上述菌液和诱导比例的营养物如淘米水、尿素或磷酸盐等组成。
1.2 培养与驯化方法1.2.1 有异步法和同步法。
异步法主要适用于工业废水,程序是:将经过粗滤的浓粪便水投入曝气池,用生活污水(或河水)稀释成BOD5~300-500mg/L,加培养液,连续曝气1~2d,池内出现絮状物后,停止曝气,静置沉淀1~1.5h,排除上清液(约池容的50%~70%);再加粪便水和稀释水,重新曝气,待污泥数量增加一定浓度后(约1~2周),开始进工业废水(10%~20%),当处理效果稳定(BOD去除率80%~90%)和污泥性能良好时,再增加工业废水的比例,每次宜增加10%~20%,直至满负荷。
活性污泥法在污水处理中的问题及措施
活性污泥法在污水处理中的问题及措施活性污泥法是一种常用的生物处理技术,它利用微生物处理污水,具有处理效率高、运行成本低等优点。
但同时,活性污泥法也存在着一些问题,本文将针对这些问题提出相应的解决措施。
问题一:负荷波动导致处理效率降低活性污泥法处理污水的效率与负荷有关,当负荷波动较大时,微生物无法适应,并可能引起系统崩溃,从而导致处理效率降低。
解决措施:为了避免负荷波动对处理效率的影响,可以增加反应器的容量,提高系统的缓冲能力,同时可以采用控制进水水质、保持进水水质稳定等手段,减少负荷波动。
问题二:微生物过多或过少导致污泥沉降难活性污泥法处理污水的关键在于微生物,微生物生长不平衡或死亡过多会使污泥产生过多的胶质物,从而导致污泥沉降难。
解决措施:为了保持微生物数量的平衡,可以采用完善的操作控制、定期清洗曝气器、控制进水水质平衡等方法,同时可以引入一些支持菌种,维持好细菌的种类和数量的平衡。
问题三:氧气供应不足导致微生物活性降低氧气是活性污泥法处理污水所必需的,缺乏氧气会导致微生物无法进行正常的代谢活动,从而影响处理效率。
解决措施:为了保证氧气供应的充足性,可以增加曝气器的数量和体积,改进气体配送系统等手段,提高供氧效果,同时要注意调节曝气泡的大小和频率,使氧气均匀地分布在反应器内。
问题四:pH值过高或过低导致微生物活性降低污水的pH值对微生物代谢活动影响很大,pH值过高或过低会使微生物活性降低,从而影响处理效率。
解决措施:为了避免pH值过高或过低的情况发生,可以采用控制进水pH值的方法,如在进水前加入中和剂或酸碱调节剂,同时建立pH值监测系统,及时调节pH值。
问题五:异物进入反应器导致故障异物的进入会导致反应器内部的运转出现问题,从而影响处理效率,甚至引起系统崩溃。
解决措施:为了避免异物进入反应器,可以设置一些安全措施,例如设置网状过滤装置、安装闸门等,同时人员操作也应严格遵循操作要求,避免任何不必要的操作失误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
污泥负荷对活性污泥中微生物的影响
在污水处理过程中,进水有机负荷增加,活性污泥沉降性能变差.运行经验表明,如果污泥负荷超过0.35kgBOD/kgMLSS.d易于发生丝状菌性污泥膨胀。
污泥膨胀分为丝状菌膨胀和非丝状菌膨胀。
非丝状菌膨胀主要发生在废水水温较低而污泥负荷太高的时候,此时细菌吸附了大量有机物,来不及代谢,在胞外积贮大量高粘性的多糖物质,使得表面附着物大量增加,很难沉淀压缩。
而当氮严重缺乏时,也有可产生膨胀现象。
因为若缺氮,微生物便于工作不能充分利用碳源合成细胞物质,过量的碳源将被转弯为多糖类胞外贮存物,这种贮存物是高度亲水型化合物,易形成结合水,从而影响污泥的沉降性能,产生高粘性的污泥膨胀。
非丝状菌污泥膨胀发生时其生化处理效能仍较高,出水也还比较清澈,污泥镜检也看不到丝状菌。
非丝状菌膨胀发生情况较少,且危害并不十分严重,在这里就不着重研究。
丝状菌膨胀在日常实际工作中较为常见,成因也十分复杂。
影响丝状菌污泥膨胀的因素有很多,但我们首先应该认识到的是活性污泥是一个混合培养系统,其中至少存在着30种可能引起污泥膨胀的丝状菌。
而丝状菌在与活性胶团系统共生的关系中是不可缺少的一类重要微生物。
它的存在对净化污水起着很好的作用。
它对保持污泥的絮体结构,保持生化处理的净化效率,及在沉淀中起着对悬浮物的过滤作用等都有很重要的意义。
事实也证明在丝状菌与菌胶团细菌平衡时是不会产生污泥膨胀,只有当丝状菌生长超过菌胶团细菌时,才会出现污泥膨胀现象。
1、污泥负荷对污泥膨胀的影响
一般认为活性污泥中的微生物的增长都是符合Monod方程的:
式中X----生物体浓度,mg/L;
S----生长限制性基质浓度,mg/L;
μ----生长限制性基质浓度,mg/L;
KS-----饱和常数,其值为μ=μmax/2时的基质浓度,mg/L;
μmax-----在饱和浓度中微生物的最大比增长速率,d-1
研究证明大多数的丝状菌的KS和μmax值比菌胶团的低,所以,按照以上Monond方程,具有低KS和μmax值的丝状菌在低基质浓度条件下具有高的增长速率,而具有较高KS和μmax值的菌胶团在高基质浓度条件下才占优势。
同样认为低负荷对于丝状菌生长有利的理论还有表面积/容积比(A/V)假说。
这里的表面积和容积,是指活性污泥中微生物的表面积与体积。
该假说认为伸展于絮凝体之外的丝状菌的比表面积(A/V)要大大超过菌胶团细菌的比表面积。
当微生物处于受基质限制和控制的状态时,比表面积大的丝状菌在取得底物方面要比菌胶团有利,结果在曝气池内丝状菌就变成了优势菌。
低负荷易导致污泥膨胀这一观点无论是在实际运行中还是在理论上都有了较为
成熟的解释。
但在我国,通常生化反应的负荷设计都是较高的,的大量污泥膨胀却是在高负荷条件下发生的,这引起了人们对该理论的怀疑。
事实上,在高负荷条件下的污泥膨胀往往是由于供氧不足、曝气池内DO浓度降低引起的。
在运行中,如发生污泥膨胀,可针对膨胀的类型和丝状菌的特征,采取以下的一些抑制措施:
一、控制暴气量,使暴气池中保持适量的溶解氧(不低于1-2mg/l,不超过4mg/l)
二、调整PH值
三、如氮、磷的比例失调,可适量投加氮化合物和磷化合物
四、投加一些化学药剂(如铁盐凝聚剂、有机阳离子凝聚剂,某些黄泥等惰性物质以及漂白粉、液氯等)但投加药剂费用较贵,停止加药后又恢复膨胀,而且并不是对各类膨胀都有效的
五、城市污水厂的污水在经过沉沙池后,跳跃初沉池,直接进入暴气池。
因此,控制污泥负荷在废水生物处理中直接影响活性污泥处理污水的效率。