数字频率计设计报告1
数电课程设计报告-数字频率计
![数电课程设计报告-数字频率计](https://img.taocdn.com/s3/m/6dd09b1f580102020740be1e650e52ea5518ce00.png)
数电课程设计报告题目:频率计目录第一章设计指标 (2)1.1设计指标 (2)第二章系统概述 (3)2.1设计思想 (3)2.2可行性论证 (3)2.3各功能的组成 (3)2.4总体工作过程 (3)第三章单元电路设计与分析 (5)3.1各单元电路的选择 (5)3.2设计及工作原理分析 (5)第四章电路的组构与调试 (12)4.1遇到的主要问题 (12)4.2现象记录及原因分析 (12)14.3解决措施及效果 (12)4.4功能的测试方法、步骤、设备、记录的数据 (12)第五章结束语 (15)5.1对设计题目的结论性意见及进一步改进的意向 (15)5.2总结设计的收获与体会 (15)附图(电路图、电路总图) (16)参考文献 (18)第一章:设计指标设计指标:要求设计一个测量TTL方波信号频率的数字系统。
用按键选择测量信号的频率。
测试值采用4个LED七段数码管显示,并以发光二极管只是测量对象(频率)的单位:Hz、kHz。
频率的测量范围有四档量程。
1)测量结果显示4位有效数字,测量精度为万分之一。
2)频率测量范围:100.1Hz——999.9kHz,分四档。
第一档:100.1Hz——999.9kHz第二档:1.000Hz——9.999kHz第三档:10.00kHz——99.99kHz第四档:100.0kHz——999.9kHz3)量程切换可以采用两个按键或由电路控制自动切换。
4)设计一个周期性方波产生电路频率计调试所需的信号。
输出信号的频率范围与测量范围相同,分为四个量程。
再设置四个按键在每档范围内选择4为有效数字的9~16个固定频率,最高位数值必须分布为1~9,信号占空比可以任意。
第二章:系统概述2.1设计思想所谓周期性信号频率,是指信号在1s时间内的周期数。
所以,通过记录信号在1s内的周期数即可确定其频率。
2.2可行性论证针对上述设计思想,可采用计数器来实现记录周期数的功能;采用时基信号产生计数时间作为采样时间;要通过数码管显示结果,考虑如果计数器直接将数据输入到数码管显示,则会出现数码管的数据不断变化,累计增加的情况,例如,一信号的频率为100Hz,计数器则会从1一直计数,数码管会在每秒内变化100次,所以采用寄存器或锁存器,在每个时间信号内,给予一个高电平使能有效,将计数器的数值锁存到寄存器或者锁存器。
数频率计的设计实验报告
![数频率计的设计实验报告](https://img.taocdn.com/s3/m/714c339b4793daef5ef7ba0d4a7302768f996f1e.png)
数频率计的设计实验报告一、实验目的本实验的目的是设计并实现一个能够准确测量输入信号频率的数频率计。
通过本次实验,深入理解频率测量的原理和方法,掌握数字电路的设计与实现技能,提高解决实际问题的能力。
二、实验原理频率是指单位时间内信号周期性变化的次数。
数频率计的基本原理是在给定的时间间隔内对输入信号的脉冲个数进行计数,然后根据时间间隔和计数值计算出输入信号的频率。
常见的数频率计测量方法有直接测频法和间接测频法。
直接测频法是在单位时间内(通常为 1 秒)对输入信号的脉冲进行计数,得到的计数值即为输入信号的频率。
间接测频法是先测量输入信号的周期,然后通过计算周期的倒数得到频率。
在本实验中,我们采用直接测频法。
使用计数器对输入信号在 1 秒内的脉冲个数进行计数,计数结果通过数码管显示出来,即为输入信号的频率值。
三、实验设备与器材1、数字电路实验箱2、示波器3、函数信号发生器4、集成电路芯片(如计数器、译码器、数码管驱动芯片等)5、电阻、电容、导线等四、实验设计1、计数器模块选用合适的计数器芯片,如 74LS160 十进制计数器。
通过级联多个计数器实现对较大频率范围的测量。
2、控制模块设计一个控制电路,产生 1 秒的测量时间间隔。
可以使用 555 定时器和相关的电阻、电容组成单稳态触发器来实现。
3、显示模块选用数码管作为频率显示器件。
使用译码器芯片(如 74LS48)将计数器的输出转换为数码管的驱动信号。
五、实验步骤1、按照设计原理图在实验箱上连接电路,确保连接正确无误。
2、打开函数信号发生器,产生一个已知频率的正弦波信号,作为输入信号。
3、接通实验箱电源,观察数码管的显示值。
4、调整输入信号的频率,观察数码管显示值的变化,并与已知频率进行对比,验证测量的准确性。
5、使用示波器同时观察输入信号和计数器的输出信号,检查电路的工作状态。
六、实验结果与分析1、当输入信号频率较低时,测量结果较为准确,与已知频率的误差较小。
数字频率计设计报告
![数字频率计设计报告](https://img.taocdn.com/s3/m/958c716d443610661ed9ad51f01dc281e53a56a0.png)
数字频率计设计报告数字频率计是一种用于测量信号频率的仪器,广泛应用于电子领域。
本文将针对数字频率计的原理、工作方式以及应用进行详细介绍。
一、引言数字频率计是一种基于数字信号处理技术的测量仪器,它能够精确地测量信号的频率。
它广泛应用于通信、无线电、音频和视频等领域,对于各种信号的频率测量具有重要意义。
二、原理数字频率计的测量原理基于信号的周期性特征。
当一个信号通过数字频率计时,它会被转换成数字信号,并通过计数器进行计数。
通过计数器的计数结果和时间基准的参考值进行比较,就可以得到信号的频率。
三、工作方式数字频率计的工作方式通常分为两种:直接计数法和间接计数法。
1. 直接计数法:该方法直接对信号进行计数,通过计数器对信号的脉冲进行计数,并将计数结果进行处理得到频率值。
这种方法简单直接,但对于高频率信号的计数精度较低。
2. 间接计数法:该方法通过将信号的频率分频至低频范围内进行计数。
通过将高频信号分频后再进行计数,可以提高测量的精度。
四、应用数字频率计在各个领域都有广泛的应用,以下是一些常见的应用场景:1. 通信领域:数字频率计在通信系统中被用于测量信号的载波频率,确保信号的稳定传输。
同时,数字频率计还可以用于频率偏移的测量,以评估通信系统的性能。
2. 无线电领域:数字频率计被用于测量无线电频率,对于射频信号的测量具有重要意义。
它可以用于无线电台站的调试和维护,以确保无线电信号的质量和稳定性。
3. 音频和视频领域:数字频率计在音频和视频设备的校准和测试中被广泛应用。
它可以测量音频和视频信号的频率,以确保音频和视频设备的正常工作。
4. 科学研究领域:数字频率计在科学研究中也起到了重要的作用。
比如,在天文学研究中,数字频率计可以用于测量天体的射电信号频率,从而研究宇宙的演化和结构。
五、总结数字频率计作为一种精确测量信号频率的仪器,在电子领域中有着广泛的应用。
本文从原理、工作方式和应用等方面对数字频率计进行了详细介绍。
数字频率计设计报告
![数字频率计设计报告](https://img.taocdn.com/s3/m/8e7306be8662caaedd3383c4bb4cf7ec4bfeb665.png)
数字频率计设计报告数字频率计设计报告一、设计目标本次设计的数字频率计旨在实现对输入信号的准确频率测量,同时具备操作简单、稳定性好、误差小等特点。
设计的主要目标是实现以下功能:1. 测量频率范围:1Hz至10MHz;2. 测量精度:±0.1%;3. 具有数据保持功能,可在断电情况下保存测量结果;4. 具有报警功能,可设置上下限;5. 使用微处理器进行控制和数据处理。
二、系统概述数字频率计系统主要由以下几个部分组成:1. 输入信号处理单元:用于将输入信号进行缓冲、滤波和整形,以便于微处理器进行准确处理;2. 计数器单元:用于对输入信号的周期进行计数,并通过微处理器进行处理,以得到准确的频率值;3. 数据存储单元:用于存储测量结果和设置参数;4. 人机交互单元:用于设置参数、显示测量结果和接收用户输入。
三、电路原理数字频率计的电路原理主要包括以下步骤:1. 输入信号处理:输入信号首先进入缓冲器进行缓冲,然后通过低通滤波器进行滤波,去除高频噪声。
滤波后的信号通过整形电路进行整形,以便于微处理器进行计数。
2. 计数器单元:整形后的信号输入到计数器,计数器对信号的周期进行计数。
计数器的精度直接影响测量结果的精度,因此需要选择高精度的计数器。
3. 数据存储单元:测量结果和设置参数通过微处理器进行处理后,存储在数据存储单元中。
数据存储单元一般采用EEPROM或者Flash 存储器。
4. 人机交互单元:人机交互单元包括显示屏和按键。
用户通过按键设置参数和查看测量结果。
显示屏用于显示测量结果和设置参数。
四、元器件选择根据系统设计和电路原理,以下是一些关键元器件的选择:1. 缓冲器:采用高性能的运算放大器,如OPA657;2. 低通滤波器:采用一阶无源低通滤波器,滤波器截止频率为10kHz;3. 整形电路:采用比较器,如LM393;4. 计数器:采用16位计数器,如TLC2543;5. 数据存储单元:采用EEPROM或Flash存储器,如24LC64;6. 显示屏:采用带ST7565驱动的段式液晶显示屏,如ST7565R。
频率计实验报告1
![频率计实验报告1](https://img.taocdn.com/s3/m/4019f705b52acfc789ebc9e1.png)
简易的数字频率计实验报告逻辑与数字系统设计——实验部分作者姓名班级学号一、实验目的1.学习数字系统设计的步骤和方法;2.学习QUARTUS II的编译环境,和VHDL编程语言;3.熟悉ALTERA公司的MAX7000S系列的使用及程序下载方法;二、实验内容本实验要求设计并实现简易的数字频率计电路,要求可以实现以下功能:(1) 频率计的频率测量范围:最低要求0~9999Hz。
(2) 闸门时间为1s,测量结果以十进制数字显示。
(3) 设计一位复位键,对频率计进行清零复位。
(4) 利用实验箱上的四个七段数码管显示频率计结果,要求显示结果稳定,无闪烁。
三、实验任务1. 设计频率计的原理图,完成频率计子模块的功能设计;2. 在QUARTUS II环境下,建立新工程文件;3. 新建VHDL文件,完成各个子模块的VHDL编程,并利用QuartusII的工具生成相应的原理图文件;4. 在QUARTUS II环境下,新建原理图文件(注意:原理图文件名应与新建的工程文件名相同),完成各个模块之间的电路连接;5. 电路的功能仿真,验证设计的正确性;6. 为电路分配输入输出引脚,生成.pof文件;6. 下载.pof文件到MAX7128SL84-15;7. 连接MAX7128SL84-15与实验箱,并利用信号发生器和示波器检验频率计是否正常工作并测试频率计的相对误差;8. 撰写实验报告。
四、考核方法实验成绩由三个部分组成:考核内容所占分值频率计设计合理,编译通过,功能仿真结果正确30分程序可以正常下载,连接实验箱后频率计能够正常工作30分频率计工作稳定性好,误差小,测量范围广(1.2MHz以上)10分实验报告内容详实,叙述准确30分五、实验原理5.1 Max7000S系列开发板简介MAX7000系列是高密度,高性能的CMOS CPLD,采用先进的0.8um CMOS E2PROM技术制造。
MAX7000系列提供600-5000个可用门,引线端子到引线端子的延时为6ns。
数字频率计设计报告
![数字频率计设计报告](https://img.taocdn.com/s3/m/9369e4e29b89680203d825f0.png)
(1)四个段寄存器:代码段寄存器、数据段寄存器、附加段寄存器、堆栈段寄存器;
(2)指令指针寄存器;
数字频率计设计报告
一、设计要求
近年来,在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
本设计实现一个由微机控制的数字频率计。具体要求如下:
1.能测量1Hz—10MHz频率范围的矩形和正弦波的频率或周期。
2.在全频率范围内测量误差≤0.1%。
3.以十进制数字显示出被测信号的频率或周期。
二、设计目的
1.进一步掌握8253、8255A的原理及应用方法。
2.熟悉数字频率计的测量原理与实现方法。
3.掌握微机化数字频率计的设计电路。
三、设计的具体实现
3.1系统概述
1.数字频率计的基本原理
频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。通常情况下计算每秒内待测信号的脉冲个数,此时我们称闸门时间为1秒。闸门时间也可以大于或小于一秒。闸门时间越长,得到的频率值就越准确,但闸门时间越长则每测一次频率的间隔就越长。闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。
图1中S1为一个三刀双掷开关,置于0时为高频挡,按频率测量法测量高频信号;置于1时为低频挡,按周期测量法测量低频信号。S2和S3分别为高频和低频分档开关。S2置于0和1时,分别对应于500KHz—5MHz频段和5MHz—10MHz频段;S3置于0和1时,分别对应于1Hz—100KHz频段和100KHz—500KHz频段。
(2)写入计数值。
若规定只写低8位,则写入的为计数值的低8位,高8位自动置0;若规定只写高8位,则写入的为计数值的高8位,低8位自动置0;若是16位计数值,则分两次写入,先写入低8位,再写入高8位。
数字频率计课程设计报告
![数字频率计课程设计报告](https://img.taocdn.com/s3/m/481d0d5a17fc700abb68a98271fe910ef12daed1.png)
数字频率计课程设计报告一、课程目标知识目标:1. 让学生理解数字频率计的基本原理,掌握频率、周期等基本概念;2. 使学生掌握数字频率计的使用方法,能够正确操作仪器进行频率测量;3. 引导学生运用已学的数学知识,对测量数据进行处理,得出正确结论。
技能目标:1. 培养学生动手操作仪器的技能,提高实验操作能力;2. 培养学生运用数学知识解决实际问题的能力,提高数据分析处理技能;3. 培养学生团队协作能力,提高实验过程中的沟通与交流技巧。
情感态度价值观目标:1. 培养学生对物理实验的兴趣,激发学习热情;2. 培养学生严谨的科学态度,养成实验过程中认真观察、准确记录的好习惯;3. 引导学生认识到物理知识在实际应用中的价值,提高学以致用的意识。
课程性质:本课程为物理实验课,结合数字频率计的原理与应用,培养学生的实践操作能力和数据分析能力。
学生特点:六年级学生具备一定的物理知识和数学基础,对实验操作充满好奇,具备初步的团队合作能力。
教学要求:结合学生特点,注重理论与实践相结合,以学生为主体,引导学生主动参与实验过程,培养其动手能力和解决问题的能力。
通过课程目标的分解,使学生在实验过程中达到预期的学习成果,为后续教学设计和评估提供依据。
二、教学内容1. 数字频率计基本原理:- 频率、周期的定义与关系;- 数字频率计的工作原理;- 数字频率计的测量方法。
2. 实验操作技能:- 数字频率计的操作步骤;- 实验过程中的注意事项;- 数据记录与处理方法。
3. 教学大纲:- 第一课时:介绍数字频率计的基本原理,让学生了解频率、周期的概念及其关系;- 第二课时:讲解数字频率计的工作原理,引导学生掌握其操作方法;- 第三课时:分组进行实验操作,让学生动手测量不同频率的信号;- 第四课时:对测量数据进行处理与分析,培养学生数据分析能力;- 第五课时:总结实验结果,讨论实验过程中遇到的问题及解决办法。
4. 教材章节:- 《物理》六年级下册:第六章《频率与波长》;- 《物理实验》六年级下册:实验八《数字频率计的使用》。
简易数字频率计设计报告
![简易数字频率计设计报告](https://img.taocdn.com/s3/m/0bcf8cea51e2524de518964bcf84b9d529ea2c50.png)
根据系统设计要求, 需要实现一个 4 位十进制数字频率计, 其原理框 图如图 1 所示。
主要由脉冲发生器电路、 测频控制信号发生器电路、 待测 信号计数模块电路、 锁存器、 七段译码驱动电路及扫描显示电路等模块组 成。
由于是4位十进制数字频率计, 所以计数器CNT10需用4个,7段显示译 码器也需用4个。
频率测量的基本原理是计算每秒钟内待测信号的脉冲个 数。
为此,测频控制信号发生器 F_IN_CNT 应设置一个控制信号时钟CLK , 一个计数使能信号输出端EN 、一个与EN 输出信号反 向的锁存输出信号 LOCK 和清零输出信号CLR 。
若CLK 的输入频率为1HZ ,则输出信号端EN 输出 一个脉宽恰好为1秒的周期信号, 可以 作为闸门信号用。
由它对频率计的 每一个计数器的使能端进行同步控制。
当EN 高电平时允许计数, 低电平时 住手计数,并保持所计的数。
在住手计数期间,锁存信号LOCK 的上跳沿 将计数器在前1秒钟的计数值锁存进4位锁存器LOCK ,由7段译码器译出 并稳定显示。
设置锁存器的好处是: 显示的数据稳定, 不会由于周期性的标准时钟 CLKEN待测信号计数电路脉冲发 生器待测信号F_INLOCK锁存与译 码显示驱 动电路测频控制信 号发生电路CLR扫描控制数码显示清零信号而不断闪烁。
锁存信号之后,清零信号CLR对计数器进行清零,为下1秒钟的计数操作作准备。
时基产生与测频时序控制电路主要产生计数允许信号EN、清零信号CLR 和锁存信号LOCK。
其VHDL 程序清单如下:--CLK_SX_CTRLLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CLK_SX_CTRL ISPORT(CLK: IN STD_LOGIC;LOCK: OUT STD_LOGIC;EN: OUT STD_LOGIC;CLR: OUT STD_LOGIC);END;ARCHITECTURE ART OF CLK_SX_CTRL ISSIGNAL Q: STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(CLK)BEGINIF(CLK'EVENT AND CLK='1')THENIF Q="1111"THENQ<="0000";ELSEQ<=Q+'1';END IF;END IF;EN<=NOT Q(3);LOCK<=Q(3)AND NOT(Q(2))AND Q(1);CLR<=Q(3)AND Q(2)AND NOT(Q(1));END PROCESS;END ART;测频时序控制电路:为实现系统功能,控制电路模块需输出三个信号:一是控制计数器允许对被测信号计数的信号EN;二是将前一秒计数器的计数值存入锁存的锁存信号LOCK;三是为下一个周期计数做准备的计数器清零信号CLR。
数字频率计设计报告
![数字频率计设计报告](https://img.taocdn.com/s3/m/0af6678704a1b0717fd5dd91.png)
数字频率计设计报告学院:姓名:学号:专业:指导老师:2008-11-11一.内容介绍数字频率计是用来测量信号频率的装置。
它可以测量正弦波、方波、三角波和尖脉冲信号的频率。
在进行模拟、数字电路的设计、安装、调试过程中,经常要用到频率计。
由于其用十进制数显示,测量速度、精度高、显示直观,因此频率计得到广泛的应用。
二.设计内容、技术指标及框图设计内容:设计只用一只数码管显示结果的数字频率计。
技术指标:1.被测量信号频率范围:1KHZ-999KHZ2.测量精度:测量显示3位有效数字3.时基时间宽度:1ms4.测试和显示方法:(1)只用一只数码管显示结果。
(2)每2秒钟自动测试一次,按百、十、个、全灭的顺序逐位显示测试结果,每位的显示时间为0.5秒。
数字频率计的框图:如图1。
图1 频率计系统框图三.单元电路设计1. 时基产生电路时基信号的产生电路可用石英晶体振荡器经分频后得到高稳定度的时基信号。
图2采用CC4060十四级计数器构成0.5s脉冲(3)和毫秒脉冲1ms时基信号。
12脚接地。
图2 秒脉冲和毫秒脉冲时基产生电路2.节拍信号发生器设计要求每2秒自动测试一次,按百、十、个、灭的顺序逐位显示测试结果。
由此可知,节拍信号发生器需产生四种状态的变化,变化周期为2秒。
四种状态信号可以提供给数据选择器的地址端,用来逐位显示百、十、个、灭,2秒的周期信号用来控制计数器计数,保持和清零。
如图3。
节拍信号发生器图3 节拍信号发生器及波形3.整形电路将输入的被测信号送入施密特触发器74LS132的输入端,其输入将得到矩形波至闸门输入如图4。
图4 整形电路4.控制电路(门控电路)要求控制器每2秒向主闸门输入一个时间为2秒,采样脉宽为1ms的周期信号,如图5。
采用2个D触发器,以时基信号T=1ms作为同步时钟脉冲。
控制器电路图5 控制器电路及波形图5.译码显示电路计数器锁存百、十、个数据传送到数据选择器,数据选择器受节拍信号的控制,分时地送入译码显示电路,故译码显示由数据选择器、译码器及数码管组成。
八位十进制数字频率计设计报告
![八位十进制数字频率计设计报告](https://img.taocdn.com/s3/m/f863b6b181eb6294dd88d0d233d4b14e85243e85.png)
主控单元设计
MCU选型 1
选择功能强大、低功耗的ARM Cortex-M处理器
时钟电路 2
采用高精度晶振提供稳定的系统时钟
外围接口 3
包括GPIO、ADC、定时器、串口等外设接口
电源管理 4
整合电源调节电路以提供稳定电源 主控单元是该频率计的核心,负责采集、处理和显示数据。我们采用性能强劲、功耗低的ARM Cortex-M系列MCU作为主控芯片,并设计高精度时钟电路, 同时集成丰富的外设接口和电源管理电路,以确保系统的稳定运行。
对设计、制造、使用环境等各个环节进行全面的可靠性分析 和评估。
识别可能出现的失效模式,并采取相应的防范措施。
3 加速寿命测试
通过加速寿命试验,预测产品的实际使用寿命。
4 环境适应性
评估产品在不同环境条件下的性能和可靠性表现。
成本分析
主要原材料成本 制造成本 研发成本 营销及管理成本
占总成本64% 占总成本25% 占总成本5% 占总成本6%
关键元器件选型
集成电路
根据系统功能需求,选择合适的微控 制器、放大器、逻辑门电路等集成电 路器件。
无源元件
选用合适的电阻、电容、电感等无源 元件,满足电路的电压、电流和频率 需求。
显示模块
根据显示内容和环境选择合适的LCD 、LED或OLED显示器件。
电源模块
选用适合的变压器、稳压器、开关电 源等电源系统元件。
系统可以在相对湿度10%至95%的环 境中稳定运行,确保设备在潮湿环境中 也能可靠使用。
海拔适应
设计可在海拔0-5000米的高度环境中 正常工作,适应不同地理环境的使用需 求。
振动测试
系统通过严格的振动测试,能够承受5500Hz范围内的随机振动,抗击震能力 强。
简易数字频率计设计实验报告1赵勇
![简易数字频率计设计实验报告1赵勇](https://img.taocdn.com/s3/m/9fcc4d6958fafab069dc02dc.png)
南理工紫金学院课题实验设计报告学生姓名:赵勇学号:100405268专业:电气工程及其自动化题目:电子综合应用实践:简易数字频率计设计课程设计任务书课程设计任务书(1)封面:课程设计题目、班级、姓名(2)设计任务书(3)目录(4)设计方案简介(5)设计条件及主要参数表(6)设计主要参数计算(7)设计结果(8)设计评述,设计者对本设计的评述及通过设计的收获体会目录第一章设计要求...................................................................................................................整体功能要求.....................................................................................................系统结构要求.....................................................................................................测试指标.............................................................................................................第二章整体方案设计.............................................................................................................2.1 算法设计......................................................................................................2.2 整体方框图及原理......................................................................................第三章单元电路设计...............................................................................................................3.1 模电部分设计..............................................................................................3.2数电部分设计...............................................................................................第四章测试与调整...................................................................................................................4.1 模拟电路的调测..........................................................................................4.2 数字电路的调测..........................................................................................第五章设计小结.......................................................................................................................5.1 设计任务完成情况......................................................................................5.2心得体会.......................................................................................................第一章设计要求1.整体功能要求频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。
数字频率计设计实验报告
![数字频率计设计实验报告](https://img.taocdn.com/s3/m/7872ec6fbf1e650e52ea551810a6f524ccbfcbf1.png)
数字频率计设计实验报告1.实验目的本实验旨在通过设计数字频率计的电路,使学生掌握数字电路的设计与运用,加深对计数器、分频器等数字电路的理解,同时熟悉数字电路及测量方法。
2.实验原理数字频率计的原理基于时间测量,将待测信号的周期或频率转化为时间或计数值,再转化为显示在数码管上的频率或周期。
其电路主要由时基、型切换及显示部分组成。
时基部分是实现数字频率计最核心的部分,具有准确的定频测量功能。
根据时基频率的稳定性,数字频率计还可分为光学时基式和晶体时基式,后者是目前数字频率计设计中较为主流和有效的方案。
型切换部分是将输入信号的周期或频率转化为电平,经一个比较器进行比较,输出脉冲后送到后端的计数器。
可分为一级型切换和两级型切换,一级型切换分频系数较小,能测量的频率范围较宽,但精度相对较低;两级型切换分频系数较多,能够实现更高的精度,但测量范围相对较窄。
显示部分主要由解码器、数码管、驱动器等构成,将计数器输出的数字部分经过解码器解码,以驱动数码管显示实际测量结果。
3.实验内容3.1电路设计本实验按照晶体时基式数字频率计的设计原理,设计一个简单的频率计电路。
时基部分采用简单的晶体振荡器电路,输入3V的电源电压,晶体振荡频率为6M,采用CD4066B型CMOS开关实现时填充寄存器与计数控制部分的切换。
型切换部分采用两级型切换,以加强精度,输入信号经过第一级分频后送到S1端,S1端接CD4066B的开关控制引脚,在S1位置上的6dB衰减电阻衰减输入信号再经过第二级分频后进入计数控制部分。
显示部分采用三片74LS47数码管显示器驱动芯片将数码转移至共阴数码管,选用CD4052B组成的位选开关循环驱动数码管。
3.2电路测试将方法频率计电路搭建完成后,接通电源,输入300Hz、3kHz、30kHz和300kHz的信号,观察数码管的测量结果。
并与示波器进行对比,计算相对误差。
4.实验结果通过实验测试,本设计可以稳定地测量300Hz至300kHz范围内的信号频率,并且测量误差相对较小。
数字显示频率计的设计1
![数字显示频率计的设计1](https://img.taocdn.com/s3/m/b5d40f2d876fb84ae45c3b3567ec102de2bddf8d.png)
模拟电子技术电路设计仿真作业简易数字频率计1.问题的重述数字频率既是一种十进制数字显示被测信号频率的数字测量仪器,它的基本功能是测量正弦信号、方波信号、尖脉冲信号以及其他各种单位时间内变化的物理量,因此,它的用途十分广泛。
2. 频率计电路分析及设计设计要求:1.测量范围:0~9999Hz2.最大读数9999Hz,闸门信号的采样时间为1s3.采用4位数码显示4.输入信号最大幅值可以扩展设计原理:所谓“频率”,就是周期性信号在单位时间(1s)内变化的次数。
若在一定时间间隔T内测得这个周期性信号的重复变化次数N,则其频率可表示为f=N/T。
数字频率计测量频率的原理框图如下图。
其中脉冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等于被测频率。
时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s,则门控电路的输出信号持续时间亦准确的等于1s。
闸门电路由标准秒信号进行控制,当秒信号到来时,闸门开通,被测脉冲信号通过闸门送到级数译码显示电路。
秒信号结束时闸门关闭,计数器停止计数。
由于计数器记得的脉冲数N是在1s时间内的累计数,所以被测信号ui的频率为NHz。
脉冲形成电路脉冲形成电路是555电路构成的施密特触发器。
为了扩展被测信号的频率范围,输入信号u i先经过限幅器,再经过施密特触发器整形,当输入信号幅值较小时,限幅器的二极管截止,不起限幅作用。
图中电阻R3和R4的作用是将被测信号进行电平移动,因为555构成的施密特触发器的上触发电平U T+=(2/3)U CC,下触发电平U T−=(1/3)U CC。
输入信号的直流电平U IO应满足下列关系:(1/3)U CC<U IO<(2/3)U CC。
输入信号的幅度U im与直流电平幅度U IO和回差∆U T有关,一般来说,∆U T越小,对输入信号的幅度U im要求越小。
若取+U CC=+5V,则回差∆U T=1.67V。
若取U IO=2.5V,则取R3=R4=10kΩ,则输入信号的幅度U im=0.83V。
EDA简易数字频率计-课设报告1
![EDA简易数字频率计-课设报告1](https://img.taocdn.com/s3/m/21b7548177a20029bd64783e0912a21614797fd8.png)
《EDA技术》课程设计报告题目:简易数字频率计专业:本组成员:简述随着数字电子技术的发展,频率测量成为一项越来越普遍的工作,因此测频计常受到人们的青睐。
目前许多高精度的数字频率计都采用单片机加上外部的高速计数器来实现,然而单片机的时钟频率不高导致测频速度比较慢,并且在这种设计中,由于PCB版的集成度不高,导致PCB板走线长,因此难以提高计数器的工作频率。
为了克服这种缺点,大大提高测量精度和速度,我们可以设计一种可编程逻辑器件来实现数字频率计。
EDA技术是以大规模可编程逻辑器件为设计载体,以硬件语言为系统逻辑描述的主要方式,以计算机、大规模可编程逻辑器件的开发软件及实验开发系统为设计工具,通过有关的开发软件,自动完成用软件设计的电子系统到硬件系统的设计,最终形成集成电子系统或专用集成芯片的一门新技术。
其设计的灵活性使得EDA技术得以快速发展和广泛应用。
以QUARTUSII软件为设计平台,采用VHDL 语言实现数字频率计的整体设计。
EDA技术已经广泛应用于模拟与数字电路系统等许多领域。
电子设计自动化是一种实现电子系统或电子产品自动化设计的技术,它与电子技术,微电子技术的发展密切相关,它吸收了计算机科学领域的大多数最新研究成果,以高性能的计算机作为工作平台,促进了工程发展。
EDA的一个重要特征就是使用硬件描述语言(HDL)来完成的设计文件,VHDL语言是经IEEE确认的标准硬件语言,在电子设计领域受到了广泛的接受。
1.设计概述1.1设计原理在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。
测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。
数字式频率计的测量原理有两类:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法即测周期法,如周期测频法。
简易数字频率计课程设计报告
![简易数字频率计课程设计报告](https://img.taocdn.com/s3/m/9bb5a33a02d8ce2f0066f5335a8102d276a26125.png)
简易数字频率计课程设计报告《简易数字频率计课程设计报告》一、设计目的和背景随着科技的不断发展和普及,计算机已经成为人们生活中不可或缺的一部分。
而数字频率计作为一种常见的电子测量仪器,在工业控制、电信通讯等领域有着广泛的应用。
本课程设计旨在通过设计一款简易的数字频率计,以帮助学生深入了解数字频率计的工作原理和设计方法。
二、设计内容和步骤1. 学习数字频率计的基本原理和工作方式:介绍数字频率计的基本功能、硬件组成和工作原理。
2. 设计数字频率计的主要电路:通过研究数字频率计的电路原理图,设计出适用于本设计要求的主要电路。
3. 制作数字频率计的原型:使用电子元器件将电路图中设计的电路进行实际制作,制作出数字频率计的原型。
4. 测试数字频率计的性能:通过对数字频率计进行各种频率波形的测试,验证其测量准确性和稳定性。
5. 优化和改进设计:根据测试结果和用户反馈,对数字频率计的电路和功能进行进一步优化和改进。
三、预期效果和评价标准通过本课程设计,预期学生能够掌握数字频率计的基本工作原理、主要电路设计和制作方法,并且能够针对实际需求进行优化和改进。
评价标准主要包括学生对数字频率计原理的理解程度、电路设计的准确性和创新性,以及对数字频率计性能进行测试和改进的能力。
四、开展方式和时间安排本课程设计可以结合理论学习和实践操作进行,建议分为以下几个阶段进行:1. 第一阶段(1周):学习数字频率计的基本原理和工作方式。
2. 第二阶段(1周):设计数字频率计的主要电路。
3. 第三阶段(2周):制作数字频率计的原型,并进行性能测试。
4. 第四阶段(1周):优化和改进数字频率计的设计。
总共需要约5周的时间来完成整个课程设计。
五、所需资源和设备1. 教材教辅资料:提供数字频率计的基本原理和电路设计方法的教材或教辅资料。
2. 实验设备和工具:数字频率计的主要电路所需的电子元器件、测试仪器和焊接工具等。
3. 实验环境:提供安全、稳定的实验室环境,以及必要的计算机软件支持。
简易数字频率计课程设计报告 .
![简易数字频率计课程设计报告 .](https://img.taocdn.com/s3/m/05f24e6ef11dc281e53a580216fc700abb68523b.png)
目录第一章概述1.1 数字频率计功能及特点1.2 数字频率计应用意义第二章设计方案2.1 设计指标与要求2.2 设计原理2.3方案论证第三章数字频率计分析及参数设计3.1 电路基本原理3.2 时基电路设计3.3闸门电路设计3.4控制电路设计3.5 小数点显示电路设计3.6 整体电路图第四章设计总结4.1 整体电路图4.2 元器件列表4.3 设计心得与体会4.4 附录4.5 参考文献第一章、概述数字频率计是直接用十进制数字来显示被测信号频率的一种测量装置。
它不仅可以测量正弦波、方波、三角波、尖脉冲信号和其他具有周期特性的信号的频率,而且还可以测量它们的周期。
经过改装,可以测量脉冲宽度,做成数字式脉宽测量仪;可以测量电容做成数字式电容测量仪;在电路中增加传感器,还可以做成数字脉搏仪、计价器等。
因此数字频率计在测量其他物理量如转速、振动频率等方面获得广泛应用。
1.1 整体功能及特点1,频率计主要用于测量正弦波、矩形波、三角波和尖脉冲及其它各种周期信号。
2,测量信号复制范围0.5-5v3,显示方式:四维十进制LED显示4,测量范围:1HZ-10HZ5,测量误差:≤±0.1%6,自动检测切换量程1.2 数字频率计应用意义数字频率计是一种应用很广泛的仪器电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路。
数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功能,从而提高系统可靠性和速度。
集成电路的类型很多,从大的方面可以分为模拟电路和数字集成电路2大类。
数字集成电路广泛用于计算机、控制与测量系统,以及其它电子设备中。
一般说来,数字系统中运行的电信号,其大小往往并不改变,但在实践分布上却有着严格的要求,这是数字电路的一个特点。
数字集成电路作为电子技术最重要的基础产品之一,已广泛地深入到各个领域。
第二章设计方案2.1 设计指标与要求2.1.1 设计指标1,频率计主要用于测量正弦波、矩形波、三角波和尖脉冲及其它各种周期信号。
数字频率计课程设计报告
![数字频率计课程设计报告](https://img.taocdn.com/s3/m/d42e2946773231126edb6f1aff00bed5b8f3737f.png)
THANKS
精度
精度是数字频率计的重要指标之一, 表示测量结果与真实值之间的接近程 度。提高精度的方法包括采用高精度 计数器、降低系统误差等。
分辨率
分辨率指数字频率计能够分辨的最小 频率间隔,与计数器的位数有关。
稳定性
稳定性指数字频率计在长时间使用过 程中保持其性能参数不变的能力。提 高稳定性的措施包括选用优质元器件 、优化电路设计等。
计数与显示
采用高速计数器对输入信号的脉冲进行计数,同 时将计数值实时显示在数码管或液晶屏幕上。
3
控制与处理
通过微处理器或单片机等控制核心,实现计数器 的启动、停止、清零等操作,并对计数值进行处 理,得到频率值。
关键技术参数
计数范围
数字频率计的计数范围决定了其能够 测量的频率范围,一般应满足实际需 求。
显示器
选用LED或LCD显示器,用于显示测量结果的频率值。
硬件电路图设计
电源电路
设计稳定的电源电路 ,为整个系统提供所 需的工作电压。
输入信号调理电路
根据实际需求设计输 入信号调理电路,包 括放大倍数、滤波截 止频率等参数的确定 。
微控制器电路
设计微控制器的最小 系统电路,包括晶振 、复位电路等。
02
数字频率计基本原理
频率定义及测量方法
频率定义
频率是单位时间内周期性信号重复的 次数,通常以赫兹(Hz)为单位表示 。
测量方法
频率的测量可以通过计数单位时间内 信号周期的个数来实现。常见的测量 方法包括直接计数法、测周法和等精 度测频法。
数字频率计工作原理
1 2
输入信号处理
数字频率计首先接收输入信号,经过放大、整形 等处理,将其转换为适合计数的脉冲信号。
低频数字频率计设计仿真电路图及报告
![低频数字频率计设计仿真电路图及报告](https://img.taocdn.com/s3/m/99c0464c852458fb770b5612.png)
数字频率计设计报告一内容提要:数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器.它的基本功能是测量正弦信号.方波信号,尖脉冲信号及其他各种单位时间内变化的物理量.本文粗略讲述了我在本次实习中的整个设计过程及收获。
二设计内容及要求:要求设计一个简易的数字频率计,其信号是给定的脉冲信号,是比较稳定的。
1.测量信号:方波;2.测量频率范围: 1Hz~999Hz ;3.显示方式: 3位十进制数显示;4.时基电路由 555 定时器产生;三设计思路及原理:数字频率计由四部分组成:时基电路、闸门电路、逻辑控制电路以及可控制的计数、译码、显示电路。
由555 定时器,分级分频系统及门控制电路得到具有固定宽度T的方波脉冲做门控制信号,时间基准T称为闸门时间.宽度为T的方波脉冲控制闸门的一个输入端B.被测信号频率为fx,周期Tx.到闸门另一输入端A.当门控制电路的信号到来后,闸门开启,周期为Tx的信号脉冲和周期为T的门控制信号结束时过闸门,于输出端 C 产生脉冲信号到计数器,计数器开始工作,直到门控信号结束,闸门关闭.单稳1的暂态送入锁存器的使能端,锁存器将计数结果锁存,计数器停止计数并被单稳2暂态清零. (简单地说就是:在时基电路脉冲的上升沿到来时闸门开启,计数器开始计数,在同一脉冲的下降沿到来时,闸门关闭,计数器停止计数.同时,锁存器产生一个锁存信号输送到锁存器的使能端将结果锁存,并把锁存结果输送到译码器来控制七段显示器,这样就可以得到被测信号的数字显示的频率.而在锁存信号的下降沿到来时逻辑控制电路产生一个清零信号将计数器清零,为下一次测量做准备,实现了可重复使用,避免两次测量结果相加使结果产生错误.) 若T=1s,计数器显示fx=N(T时间内的通过闸门信号脉冲个数) 若T=0.1s,通过闸门脉冲个数位N时,fx=10N,(闸门时间为0.1s时通过闸门的脉冲个数).也就是说,被测信号的频率计算公式是fx=N/T.由此可见,闸门时间决定量程,可以通过闸门时基选择开关,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.被测信号频率通过计数锁存可直接从计数显示器上读出.在整个电路中,时基电路是关键,闸门信号脉冲宽度是否精确直接决定了测量结果是否精确.因此,可得出数字频率计的原理框图如下:四:设计分析1.时基电路其基本电路图如左:I555定时器组成的振荡器(即脉冲产生电路),要求其产生1S高电平的脉冲.振荡器的频率计算公式为:T1=(R30+R31)*C*ln2,因此,我们可以计算出各个参数通过计算确定了R30取30k欧姆,R31取10k欧姆,电容取47uF.这样我们得到了比较稳定的一秒时基信号。
实验报告模板:实验四 数字频率计设计
![实验报告模板:实验四 数字频率计设计](https://img.taocdn.com/s3/m/47789d40b6360b4c2e3f5727a5e9856a561226bd.png)
实验四数字频率计设计(1)【实验目的】1.掌握数字频率计的Verilog描述方法;2.学习设计仿真工具的使用方法;3.学习层次化设计方法;【实验内容】1.用4位十进制计数器对用户输入时钟进行计数, 计数间隔为1秒, 计数满1秒后将计数值(即频率值)锁存到4位寄存器中显示, 并将计数器清0, 再进行下一次计数。
2.为上述设计建立元件符号【实验原理】设计clk为1秒的计数器, 对用户输入的时钟进行计数, 所以记数间隔为1秒。
而在计数器后是寄存器, 所以可以将产生的数据放在寄存器里进行寄存, 然后再进行4位到7位转换, 在led上显示。
【程序源代码】(加注释)module CNT(CLKK,CNT_EN,RST_CNT,LOAD);input CLKK;output CNT_EN,RST_CNT,LOAD;wire CNT_EN,LOAD;reg RST_CNT,div2clk;always @(posedge CLKK) //定义CLKK为上升沿敏感信号div2clk<=~div2clk;always@(CLKK or div2clk)beginif(CLKK==1'b0&div2clk==1'b0)RST_CNT<=1'b1; //使用非阻塞赋值语句else RST_CNT<=1'b0;endassign LOAD=~div2clk;assign CNT_EN=div2clk;endmodule //模块结束module C10(CLK,EN,RST,COUT,DOUT);input CLK,EN,RST;output COUT;output [3:0]DOUT; //定义DOUT为4位带宽reg[3:0]Q; //定义Q为4位位宽reg COUT;assign DOUT=Q;always@(posedge CLK or posedge RST)beginif(RST)Q=0;else if(EN)beginif(Q<9)Q=Q+1; //当Q小于9时Q=Q+1else Q=0;endendalways@(Q)if(Q==4'b1001) //当Q为4位的1001时执行语句COUT=1;elseCOUT=0;endmodulemodule RGB4(DIN,LOAD,Dout);input LOAD;input [3:0] DIN; //定义DIN为4位位宽output [3:0] Dout;reg [3:0] Dout; //定义Dout为4位位宽的寄存器变量always@(posedge LOAD)Dout=DIN;endmodulemodule LED(in,led7);input [3:0] in;output [6:0] led7;reg [6:0] led7; //定义了led7为4位位宽的寄存器变量always@(in)begincase(in) //使用case语句0:led7<=7'b0111111; //in=0时输出7位的二进制01111111:led7<=7'b0000110; // in=1时输出7位的二进制00001102:led7<=7'b1011011; // in=2时输出7位的二进制10110113:led7<=7'b1001111; // in=3时输出7位的二进制10011114:led7<=7'b1100110; // in=4时输出7位的二进制11001105:led7<=7'b1101101; //in=5时输出7位的二进制11011016:led7<=7'b1111101; // in=6时输出7位的二进制11111017:led7<=7'b0000111; // in=7时输出7位的二进制00001118:led7<=7'b1111111; // in=8时输出7位的二进制11111119:led7<=7'b1101111; // in=9时输出7位的二进制1101111default led7<=7'b1110111; //当出现错误时输出7位二进制1110111endcaseendendmodulemodule freg(CLK1,UCLK,led0,led1,led2,led3,rst,en,load);input CLK1,UCLK;output[6:0] led0,led1,led2,led3;output rst,en,load;wire [3:0] dout0,dout1,dout2,dout3, //定义dout0, dout1, dout2, dout3为网线型变量trs0,trs1,trs2,trs3;wire inload,inrst,inen,co,c1,c2; //定义inload, inrst, inen, c1, c2为网线型变量assign rst=inrst,load=inload,en=inen;CNT u1(.CLKK(CLK1),.CNT_EN(inen),.RST_CNT(inrst),.LOAD(inload)); //例化CNT模块C10 u2(.CLK(UCLK),.EN(inen),.RST(inrst),.COUT(c0),.DOUT(dout0));C10 u3(.CLK(c0),.EN(inen),.RST(inrst),.COUT(c1),.DOUT(dout1));C10 u4(.CLK(c1),.EN(inen),.RST(inrst),.COUT(c2),.DOUT(dout2));C10 u5(.CLK(c2),.EN(inen),.RST(inrst),.DOUT(dout3));RGB4 u6(.DIN(dout0),.LOAD(inload),.Dout(trs0));RGB4 u7(.DIN(dout1),.LOAD(inload),.Dout(trs1));RGB4 u8(.DIN(dout2),.LOAD(inload),.Dout(trs2));RGB4 u9(.DIN(dout3),.LOAD(inload),.Dout(trs3));LED u10(.in(trs0),.led7(led0));LED u11(.in(trs1),.led7(led1));LED u12(.in(trs2),.led7(led2));LED u13(.in(trs3),.led7(led3));endmodule【仿真和测试结果】【元件符号与总框图】【硬件仿真结果】:【实验心得和体会】随着做实验的次数越来越多, 我对QuartusII越来越熟悉, 对EDA也越来越熟悉, 对于这门课程也越来越有兴趣了, 我将会在接下来的学习中继续努力学习。
数字频率计设计实训报告
![数字频率计设计实训报告](https://img.taocdn.com/s3/m/26bb9a5ca7c30c22590102020740be1e640ecc52.png)
一、实训目的1. 熟悉数字频率计的原理和设计方法。
2. 学会使用数字电路设计工具进行电路设计。
3. 提高实际动手能力,培养创新思维。
4. 增强团队协作意识。
二、实训内容本次实训以设计一款简易数字频率计为目标,主要内容包括:1. 确定设计指标和功能要求。
2. 设计数字频率计的硬件电路。
3. 编写程序实现频率计的功能。
4. 进行电路调试和测试。
三、设计指标和功能要求1. 频率测量范围:1Hz~99.99kHz。
2. 波形测量:正弦波、方波、三角波等。
3. 数码显示:LCD1602液晶显示屏。
4. 量程选择:手动切换。
5. 误差:≤±1%。
四、硬件电路设计1. 信号输入电路:采用LM324运算放大器作为信号放大和整形电路,确保信号幅度在1Vpp以上。
2. 分频电路:采用74HC390计数器进行分频,将输入信号频率降低到计数器可计数的范围内。
3. 计数电路:采用74HC595移位寄存器实现计数功能,计数结果通过串口输出。
4. 显示电路:采用LCD1602液晶显示屏显示频率值。
5. 控制电路:采用AT89C52单片机作为主控制器,负责信号处理、计数、显示和量程切换等功能。
五、程序设计1. 初始化:设置计数器初值、波特率、LCD1602显示模式等。
2. 主循环:检测信号输入、计数、计算频率、显示结果。
3. 信号处理:对输入信号进行放大、整形、分频等处理。
4. 计数:根据分频后的信号频率,对计数器进行计数。
5. 计算频率:根据计数结果和分频系数计算实际频率。
6. 显示:将计算出的频率值通过串口发送到LCD1602显示屏。
7. 量程切换:根据手动切换的量程,调整分频系数。
六、电路调试与测试1. 调试信号输入电路,确保信号幅度在1Vpp以上。
2. 调试分频电路,确保分频后的信号频率在计数器可计数的范围内。
3. 调试计数电路,确保计数器能够正确计数。
4. 调试显示电路,确保LCD1602显示屏能够正确显示频率值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简易数字频率计设计报告设计内容:1、测量信号:方波、正弦波、三角波;2、测量频率范围: 1Hz~9999Hz;3、显示方式:4位十进制数显示;4、时基电路由由555构成的多谐振荡器产生(当标准时间的精度要求较高时,应通过晶体振荡器分频获得);5、当被测信号的频率超出测量范围时,报警。
设计报告书写格式:1、选题介绍和设计系统实现的功能;2、系统设计结构框图及原理;3、采用芯片简介;4、设计的完整电路以及仿真结果;5、Protel绘制的电路原理图;6、制作的PCB;7、课程设计过程心得体会(负责了哪些内容、学到了什么、遇到的难题及解决方法等)。
电子课程设计过程:系统设计→在Multisim2001下仿真→应用Protel 99SE绘制电路原理图→制作PCB →撰写设计报告简易数字频率计课程设计报告第一章技术指标1.1整体功能要求1.2系统结构要求1.3电气指标1.4扩展指标1.5设计条件第二章整体方案设计2.1 算法设计2.2 整体方框图及原理第三章单元电路设计3.1 时基电路设计3.2闸门电路设计3.3控制电路设计3.4 小数点显示电路设计3.5整体电路图3.6整机原件清单第四章测试与调整4.1 时基电路的调测4.2 显示电路的调测4-3 计数电路的调测4.4 控制电路的调测4.5 整体指标测试第五章设计小结5.1 设计任务完成情况5.2 问题及改进第一章技术指标1.整体功能要求频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。
其扩展功能可以测量信号的周期和脉冲宽度。
2.系统结构要求数字频率计的整体结构要求如图所示。
图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。
数字频率计整体方案结构方框图3.电气指标3.1被测信号波形:正弦波、三角波和矩形波。
3.2 测量频率范围:分三档:1Hz~999Hz0.01kHz~9.99kHz0.1kHz~99.9kHz3.3 测量周期范围:1ms~1s。
3.4 测量脉宽范围:1ms~1s。
3.5测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误差)。
3.6当被测信号的频率超出测量范围时,报警.4.扩展指标要求测量频率值时,1Hz~99.9kHz的精度均为+1。
5.设计条件5.1 电源条件:+5V。
5.2 可供选择的元器件范围如下表门电路、阻容件、发光二极管和转换开关等原件自定。
第二章整体方案设计2.1 算法设计频率是周期信号每秒钟内所含的周期数值。
可根据这一定义采用如图2-1所示的算法。
图2-2是根据算法构建的方框图。
图2-2 频率测量算法对应的方框图在测试电路中设置一个闸门产生电路,用于产生脉冲宽度为1s的闸门信号。
改闸门信号控制闸门电路的导通与开断。
让被测信号送入闸门电路,当1s 闸门脉冲到来时闸门导通,被测信号通过闸门并到达后面的计数电路(计数电路用以计算被测输入信号的周期数),当1s闸门结束时,闸门再次关闭,此时计数器记录的周期个数为1s内被测信号的周期个数,即为被测信号的频率。
测量频率的误差与闸门信号的精度直接相关,因此,为保证在1s内被测信号的周期量误差在10 ³量级,则要求闸门信号的精度为10 ⁴量级。
例如,当被测信号为1kHz时,在1s的闸门脉冲期间计数器将计数1000次,由于闸门脉冲精度为10 ⁴,闸门信号的误差不大于0.1s,固由此造成的计数误差不会超过1,符合5*10 ³的误差要求。
进一步分析可知,当被测信号频率增高时,在闸门脉冲精度不变的情况下,计数器误差的绝对值会增大,但是相对误差仍在5*10 ³范围内。
但是这一算法在被测信号频率很低时便呈现出严重的缺点,例如,当被测信号为0.5Hz时其周期是2s,这时闸门脉冲仍未1s显然是不行的,故应加宽闸门脉冲宽度。
假设闸门脉冲宽度加至10s,则闸门导通期间可以计数5次,由于数值5是10s的计数结果,故在显示之间必须将计数值除以10.2.2 整体方框图及原理输入电路:由于输入的信号可以是正弦波,三角波。
而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。
在整形之前由于不清楚被测信号的强弱的情况。
所以在通过整形之前通过放大衰减处理。
当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。
当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。
频率测量:测量频率的原理框图如图2-3.测量频率共有3个档位。
被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。
时基信号有555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。
被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。
周期测量:测量周期的原理框图2-4.测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。
方波信号中的脉冲宽度恰好为被测信号的1个周期。
将方波的脉宽作为闸门导通的时间,在闸门导通的时间里,计数器记录标准时基信号通过闸门的重复周期个数。
计数器累计的结果可以换算出被测信号的周期。
用时间Tx来表示:Tx=NTs 式中:Tx为被测信号的周期;N为计数器脉冲计数值;Ts为时基信号周期。
时基电路:时基信号由555定时器、RC组容件构成多谐振荡器,其两个暂态时间分别为T1=0.7(Ra+Rb)C T2=0.7RbC重复周期为 T=T1+T2 。
由于被测信号范围为1Hz~1MHz,如果只采用一种闸门脉冲信号,则只能是10s脉冲宽度的闸门信号,若被测信号为较高频率,计数电路的位数要很多,而且测量时间过长会给用户带来不便,所以可将频率范围设为几档: 1Hz~999Hz档采用1s闸门脉宽;0.01kHz~9.99kHz档采用0.1s闸门脉宽;0.1kHz~99.9kHz档采用0.01s闸门脉宽。
多谐振荡器经二级10分频电路后,可提取因档位变化所需的闸门时间1ms、0.1ms、0.01ms。
闸门时间要求非常准确,它直接影响到测量精度,在要求高精度、高稳定度的场合,通常用晶体振荡器作为标准时基信号。
在实验中我们采用的就是前一种方案。
在电路中引进电位器来调节振荡器产生的频率。
使得能够产生1kHz 的信号。
这对后面的测量精度起到决定性的作用。
计数显示电路:在闸门电路导通的情况下,开始计数被测信号中有多少个上升沿。
在计数的时候数码管不显示数字。
当计数完成后,此时要使数码管显示计数完成后的数字。
控制电路:控制电路里面要产生计数清零信号和锁存控制信号。
控制电路工作波形的示意图如图2-5.第三章单元电路设计3.1 时基电路设计图3-1 时基电路与分频电路它由两部分组成:如图3-1所示,第一部分为555定时器组成的振荡器(即脉冲产生电路),要求其产生1000Hz的脉冲.振荡器的频率计算公式为:f=1.43/((R1+2*R2)*C),因此,我们可以计算出各个参数通过计算确定了R1取430欧姆,R3取500欧姆,电容取1uF.这样我们得到了比较稳定的脉冲。
在R1和R3之间接了一个10K的电位器便于在后面调节使得555能够产生非常接近1KHz的频率。
第二部分为分频电路,主要由4518组成(4518的管脚图,功能表及波形图详见附录),因为振荡器产生的是1000Hz的脉冲,也就是其周期是0.001s,而时基信号要求为0.01s、0.1s和1s。
4518为双BCD加计数器,由两个相同的同步4级计数器构成,计数器级为D型触发器,具有内部可交换CP和EN线,用于在时钟上升沿或下降沿加计数,在单个运算中,EN输入保持高电平,且在CP上升沿进位,CR线为高电平时清零。
计数器在脉动模式可级联,通过将Q³连接至下一计数器的EN输入端可实现级联,同时后者的CP输入保持低电平。
如图3-2所示,555产生的1kHz的信号经过三次分频后得到3个频率分别为100Hz、10Hz和1Hz的方波。
图3-2 1kHz的方波分频后波形图3.2闸门电路设计如图3-3所示,通过74151数据选择器来选择所要的10分频、100分频和1000分频。
74151的CBA接拨盘开关来对选频进行控制。
当CBA输入001时74151输出的方波的频率是1Hz;当CBA输入010时74151输出的方波的频率是10Hz;当CBA输入011时74151输出的方波的频率是100Hz;这里我们以输出100Hz的信号为例。
分析其通过4017后出现的波形图(4017的管脚图、功能表和波形图详见附录)。
4017是5位计数器,具有10个译码输出端,CP,CR,INH输入端,时钟输入端的施密特触发器具有脉冲整形功能,对输入时钟脉冲上升和下降时间无限制,INH为低电平时,计数器清零。
100Hz的方波作为4017的CP端,如图3-3,信号通过4017后,从Q1输出的信号高电平的脉宽刚好为100Hz信号的一个周期,相当于将原信号二分频。
也就是Q1的输出信号高电平持续的时间为10ms,那么这个信号可以用来导通闸门和关闭闸门。
图3-3 闸门电路图3-43.3控制电路设计通过分析我们知道控制电路这部分是本实验的最为关键和难搞的模块。
其中控制模块里面又有几个小的模块,通过控制选择所要测量的东西。
比如频率,周期,脉宽。
同时控制电路还要产生74160的清零信号,4511的锁存信号。
控制电路。
计数电路和译码显示电路详细的电路如图3-5所示。
当74153的CBA 接001、010、011的时候电路实现的是测量被测信号频率的功能。
当74153的CBA接100的时候实现的是测量被测信号周期的功能。
当74153的CBA接101的时候实现的是测量被测信号脉宽的功能。
图3-6是测试被测信号频率时的计数器CP信号波形、PT端输入波形、CLR段清零信号波形、4511锁存端波形图。
其中第一个波形是被测信号的波形图、第二个是PT端输入信号的波形图、第三个是计数器的清零信号。
第四个是锁存信号。
PT是高电平的时候计数器开始工作。
CLR为低电平的时候,计数器清零。
根据图得知在计数之前对计数器进行了清零。
根据4511(4511的管脚图和功能表详见附录)的功能表可以知道,当锁存信号为高电平的时候,4511不送数。
如果不让4511锁存的话,那么计数器输出的信号一直往数码管里送。
由于在计数,那么数码管上面一直显示数字,由于频率大,那么会发现数字一直在闪动。
那么通过锁存信号可以实现计数的时候让数码管不显示,计完数后,让数码管显示计数器计到的数字的功能。