2017年高一数学竞赛试题参考答案及评分标准
2017年广西高一数学竞赛“创新杯”决赛试卷(含参考答案)

2017年广西高一“创新杯”决赛试卷参考答案一、选择题(每小题6分,共36分)1.如果1=++cc bb aa ,则abcabc 的值为 ( _★_ )A.1-B. 1C. 1±D. 与c b a ,,的值有关【答案】A解:c c b b a a ,,的取值是1或-1,因为1=++c c b b a a ,所以c c b b a a ,,中有2个1,1个-1.c b a ,,中有两正一负,所以0<abc ,.1-=abcabc2.已知非零实数a b 、满足:2210a ab b a b ++-+=+,则a b +的值等于 ( _★_ )A .1-B .0C .1D .2 【答案】B解:由题设得22211102a b a b ⎡⎤++++-=⎣⎦()()(),则0a b =+,10a =+,10b -=,故0a b =+.3.方程 3)2(22=-+x x x 的所有实数根之和为 ( ★ ) A .1 B.3 C.5 D .7 【答案】C 解:方程22()32x x x +=-化为2222(2)3(2)x x x x -+=-。
即3251060x x x -+-=,2(1)(46)0x x x --+=。
解得1x =。
经检验1x =是原方程的根。
∴ 原方程所有实数根之和为5。
4.如图,四边形ABHK 是边长为6的正方形,点C 、D 在边AB 上,且AC =DB =1,点P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作正方形AMNP 和正方形BRQP ,E 、F 分别为MN 、QR 的中点,连接EF ,设EF 的中点为G ,则当点P 从点C 运动到点D 时,点G 移动的路径长为 ( _★_ ) A.1 B. 2 C. 3 D. 6【答案】B解:设KH 中点为S ,连接PE 、ES 、SF 、PF 、PS ,可证明四边形PESF 为平行四边形,∴G 为PS 的中点,即在点P 运动过程中,G 始终为PS 的中点,所以G 的运行轨迹为△CSD 的中位线,∵CD =AB -AC -BD =6-1-1=4,∴点G 移动的路径长为421⨯=2.5.已知,,x y z 为三个非负实数,且满足325231x y z x y z ++=⎧⎨+-=⎩,设37s x y z =+-,则s 的最大值是 ( _★_ ) A .57-B. 75-C. 111D. 111- 【答案】D 解:由方程组解出73711x z y z=-⎧⎨=-⎩,由,x y 非负实数,可解得37711z ≤≤,∵373(73)711732s x y z z z z z =+-=-+--=-,取711z =代入即可求得,111max -=s6.()f x 是定义在R 上的函数,若0)1(=f ,且对任意x R ∈,满足)()2(x f x f -+≤2,)()6(x f x f -+≥6,则=)2017(f ( _★_ )A. 2015B. 2016C. 2017D. 2018 【答案】B解:∵ 对任意x R ∈,满足)()2(x f x f -+≤2,∴[][][](6)()(6)(4)(4)(2)(2)()6f x f x f x f x f x f x f x f x +-=+-+++-+++-≤,又)()6(x f x f -+≥6因此,(6)()6f x f x +-=,(6)()6f x f x +=+. ∴ (6)()6f x k f x k +=+,*k N ∈.∴ .20163366)1()33661()2017(=⨯+=⨯+=f f f二、填空题(每小题9分,共54分)7.已知实数x ,y 满足x 2+3x +y -4=0,则x +y 的最大值为 . 【答案】5解:由x 2+3x +y -4=0得y =-x 2-3x +4,把y 代入x +y 得:x +y =x -x 2-3x +4=-x 2-2x +4=-(x +1)2+5≤5,∴x +y 的最大值为5.8.设a =,且ab = 1,则a 2 + b 2的值为 .【答案】98解:因25a ===+,及ab = 1知,625)23(23232-=-=+-=b ,故a 2 + b 2 = (a + b )2– 2ab = 100 – 2 = 98.9.若f ex dx cx bx ax x +++++=+23455)12(,则e d c b a +-+-的值是 .【答案】2解:f ex dx cx bx ax x +++++=+23455)12( ,当x =0时,1=f ,当1-=x 时,1-=+-+-+-f e d c b a ,2-=-+-+-e d c b a2=+-+∴e d c b a -.10.如图所示,BC 是半圆⊙O 的直径,EF ⊥BC 于点F ,5BFFC=. 已知AB = 8,AE = 2.则AD 的长为 .【答案】231+ 解:联结BE .由BC 为直径知∠BEC = 90°.故BE == 又由Rt △BFE ∽Rt △EFC ,知225BE BF EF BE BF EC EC EF FC EC FC==⇒==⇒=由割线定理得()AE AE EC AD AB +===11.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :34+=kx y 与x轴、y 轴分别交于A 、B ,∠OAB =30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是 .【答案】6解:∵直线l :y =kx +与x 轴、y 轴分别交于A 、B ,∴B (0,4),∴OB =在Rt △AOB 中,∠OAB =30°,∴OA OB =×4=12,∵⊙P 与l 相切,设切点为M ,连接PM ,则PM ⊥AB ,∴PM =12P A ,设P (x ,0),∴P A =12﹣x ,∴⊙P 的半径PM =12PA =6-12x ,∵x 为整数,PM 为整数,∴x 可以取0,2,4,6,8,10,6个数,∴使得⊙P 成为整圆的点P 个数是6.12.黑板上写有1001,,31,21,1⋅⋅⋅共100个数字.每次操作先从黑板上的数中选取2个数b a ,,然后删去b a ,,并在黑板上写上数ab b a ++,则经过99次操作后,黑板上剩下的数是 . 【答案】100解:1)1)(1(-++=++b a ab b a ,∵计算结果与顺序无关,∴顺次计算得:21)121)(11(=-++,31)131)(12(=-++,41)141)(13(=-++,…… 1001)11001)(199(=-++.13.(本小题满分20分)已知实数a ,b ,c 满足a +b +c =13,a 2+b 2+c 2=77,abc =48,求cb a 111++的值. 解:因为a +b +c =13,所以(a +b +c )2=a 2+b 2+c 2+2(ab +bc +ca )=169. ……………… 5分 因为a 2+b 2+c 2=77,所以ab +bc +ca =46. ……………… 10分 又因为abc =48,所以2423111=++=++abc ca bc ab c b a . ……………… 20分14.(本小题满分20分)如图,⊙O 的直径AB =2,AM 和BN 是它的两条切线,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y . (1)求y 关于x 的关系式;(2)求四边形ABCD 的面积S ,并证明:S ≥2.解:(1)过点D 作BC DF ⊥于F ,则DF AB // ∵AB 是直径,AM 、BN 是切线∴AB BN AB AM ⊥⊥, ∴BN AM //∴四边形ABFD 为平行四边形又∵∠ABC =90°,∴四边形ABFD 为矩形.∴2==AB FD ,x AD BF ==∵DE 、DA ,CE 、CB 都是切线 ∴根据切线长定理,得x AD DE ==,y CB CE ==在DFC Rt ∆中,x y BF BC CF y x CE DE DC DF -=-=+=+==,,2∴222)(2)(x y y x -+=+化简,得)0(1>=x xy ……………………………… 10分 (2))0(,1)(21>+=+=x xx BC AD AB S ABCD,即)0(,1>+=x xx S ……………………………… 15分 ∵2)1(21xx x x -=-+≥0当且仅当1=x 时,等号成立 ∴xx 1+≥2,即S ≥2.……………………………… 20分15.(本小题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.解:因,a b 为正整数,要使得22324M a ab b =---的值为正整数,则有2a ≥. 当2a =时,b 只能为1,此时 4.M =故M 能取到的最小正整数值不超过4. 当3a =时,b 只能为1或2.若1,18b M ==;若2b =,则7M =.当4a =时,b 只能为1或2或3.若1,38b M ==;若2,24b M ==;若3,b =则2M =.……… 10分(下面考虑:22324M a ab b =---的值能否为1?)(反证法)假设1M =,则223241a ab b ---=,即22325a ab b -=+,2(3)25a a b b -=+ ①因b 为正整数,故25b +为奇数,从而a 为奇数,b 为偶数, 不妨设21,2a m b n =+=,其中,m n 均为正整数,则22222(3)(21)3(21)(2)4(332)3a a b m m n m m mn n ⎡⎤-=++-=+--+⎣⎦即2(3)a a b -被4除所得余数为3,而252(2)141b n n +=+=+被4除所得余数为1, 故①式不可能成立,故1M ≠.因此,M 能取到的最小正整数值为2.……………… 20分。
2017年全国高中数学联赛一试(B卷)答案

成立,求实 成立.由于
解:设 t 2 x ,则 t [2, 4] ,于是
对所有
t a 5 t (t a ) 2 (5 t ) 2 (2t a 5)(5 a ) 0 . ………………8 分 对给定实数 a ,设 f (t ) (2t a 5)(5 a ) ,则 f (t ) 是关于 t 的一次函数或常 值函数.注意 t [2, 4] ,因此 f (t ) < 0 等价于 f (2) (1 a )(5 a ) 0, ………………12 分 f (4) (3 a )(5 a ) 0, 解得 3 a 5 . 所以实数 a 的取值范围是 3 a 5 . ………………16 分 10. ( 本 题 满 分 20 分 ) 设 数 列 {an } 是 等 差 数 列 , 数 列 {bn } 满 足 2 , n 1, 2, . bn an1an2 an (1)证明:数列 {bn } 也是等差数列; (2) 设数列 {an } 、 并且存在正整数 s, t , 使得 as bt {bn } 的公差均是 d 0 , 是整数,求 a1 的最小值. 解: (1)设等差数列 {an } 的公差是 d ,则 2 2 bn1 bn ( an2an3 an 1 ) ( an1an2 an ) an2 ( an3 an1 ) ( an1 an )( an1 an ) an2 2d ( an1 an ) d
2017 年全国高中数学联合竞赛一试(B 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不得增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 在等比数列 {an } 中, a2 2, a3 3 ,则
2017年全国高中数学联合竞赛一试和加试(A卷)试题及答案考点分析

2017年全国高中数学联合竞赛一试和加试(A 卷)试题及答案考点分析2017年全国高中数学联合竞赛一试卷〉参考答案及评分标准说明孑1.评阅试卷时*请依据本评分标淮.填空趣只设S 分和o 分两档1其他备题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.N 如果考生的解??方法和本解答不同+只要思路合理"步骤1E 确,在评卷时训 参苇本评分标准适为划分档次评仆.解芥题中第9小题*分対--个栉次.第10. 11小题5分为一个档次,不得增加其他中间档次*一、填空题;本大题共*小题,每小題*分,共64分.设八龙)屣走文任H 上的噌数,对任意实^xfTf(x+3)f(x-4) = -l.又 当0冬“V7时・/(x)=log 3(9-x)・则/X-100)的値为 ____________________________ ・答案;■齐比庄平面現角坐标系xQy 中.fffiEfC 的方程为芝■ +匚=1, F 为C 的上煉点,A 的右顶点.戶是(?上位丁第象限内的別点*则四边Jg OAPF 的面积 的燧大值为 ”解:易知#(3,0), F(O,D.设尸的酸掠圧(3ws 罠JTB 抽叭,w九秤=孔加 V S s^r- = | ■ 3 ■sin 0 + | ■ I ■ 3 cos!〔中 y : — arctan —.当(9 — arctanVTo 时.四边形OAPF iff | 积的fit 大備为卫■土*解:由篆件知,/U + 14) = ---------------- = f (x} t 所以./<x + 7)2.若实数工j 满足”F 4- 2 cosy = 1 .则x — cos y 的収值范围足i _______ 答案:H1,広+ 1].解:由 +.Y 1- 1 -2cos yG[-l > 故GX 时F 可以収?Th 由于扌U+1)'—1的恤域筍-h J5 + 1],从而X-CGSJ 的耿值范围是[一匕J5 + 1]・si n ( 4 *} +4. 若一个三位数中任总两个相邻数码的差均不超过1,则称其为“平稳数”.平稳数的个数是____________ ・答案:75. _解:考虑平稳数赢.若6 = 0,则。
2017年全国高中数学联合竞赛试题及解答.(A卷)

2017年全国高中数学联合竞赛一试(A 卷)一、填空题:本大题共8个小题,每小题8分,共64分。
2017A1、设)(x f 是定义在R 上函数,对任意的实数x 有1)4()3(-=-⋅+x f x f ,又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为 ◆答案: 21-★解析:由条件知,1)()7(-=+x f x f ,即1)14()7(-=++x f x f ,故)14()(+=x f x f ,即函数)(x f 的周期为14,所以21)5(1)2()100(-=-=-=-f f f2017A 2、若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围为 ◆答案: []13,1+-★解析:由1cos 22=+y x 得[]3,1cos 212-∈-=y x ,得[]3,3-∈x ,21cos 2x y -=,所以()1121cos 2--=-x y x ,[]3,3-∈x 可求得其范围为[]13,1+-。
2017A 3、在平面直角坐标系xOy 中,椭圆C 的方程为110922=+y x ,F 是C 的焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积最大值为 ◆答案:2113 ★解析:由题意得()0,3A ,()1,0F ,设P 点的坐标为()θθsin 10,cos 3,其中⎪⎭⎫⎝⎛∈2,0πθ,则 ()ϕθθθ+=⋅⋅+⋅⋅=+=∆∆sin 2113cos 321sin 10321OFP OAP OAPF S S S ,可得面积最大值为2113。
2017A 4、若一个三位数中任意两个相邻数码的差均不超过1,则称其为“平稳数”,则平稳数的个数 是 ◆答案: 75★解析:考虑平稳数abc 。
①若0=b ,则1=a ,{}1,0∈c ,有2个平稳数;②若1=b ,则{}2,1∈a ,{}2,1,0∈c ,有632=⨯个平稳数; ③若[]8,2∈b ,则a ,{}1,,1+-∈b b b c ,有63337=⨯⨯个平稳数; ④若9=b ,则{}9,8,∈c a ,有422=⨯个平稳数; 综上可知,平稳数的个数为7546362=+++。
整理2017年福建省高一数学竞赛试题参考答案及评分标准

文件编号: 3B -A1-F1-B0-18
整理人 尼克
高一数学竞赛试题
高一数学竞赛试题
考生注意:1.本试卷共有2个大题(13个小题);
2.用黑色中性笔作答;
3.不能使用计算器。
一、填空题(本题满分90分,每小题9分).
1.若非空集合,,则能使成立的所有的集合是.
2.已知是定义在上的函数,,且对任意的都有则
.
3.在直角坐标平面内,曲线围成的图形的面积是.
4.去掉集合中所有的完全平方数和完全立方数后,将剩下的元素按从小到大的顺序排成一个数列,则2014是这个数列的第项.
5.若,则称为集合的孤立元素.的无孤立元素的4元子集有个.
6.集合(不必相异)的并集且求满足条件的集合的有序三元组的个数为.
7.已知集合对它的任意一个非空子集,可以将中的每一个元素
,都乘以再求和(例如,则可求得)对的所有非空子集,这些和的总和为.
8.已知二次函数.(1),(2)对任意的都有
成立,那么.
9.已知(其中)且.则.
10.在集合的子集中,任意两个元素的平方和不是7的倍数.则中元素个数最大值为.
二、解答题(本题满分60分,每小题20分).
11.求函数的值域
12.锐角△ABC的外心为O,线段OA、BC的中点分别为M,N,∠ABC=4∠OMN,∠ACB=6∠OMN.求∠OMN.
13.已知函数
.
求函数在区间上的最大值.
整理丨尼克
本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。
2017浙江省高中数学竞赛试卷(PDF版)

5 q 6. 设 S 是 (0, ) 中所有有理数的集合,对简分数 ∈ S , ( p, q) = 1 ,定义函数 8 p 2 q q +1 ,则 f ( x) = 在 S 中根的个数为 _____________. f( )= 3 p p
解答 由于 f ( x) =
2 2m − 1 5 1 m∈ , , 令 q = 2m − 1, p = 3m , 则有 0 < < , <m<8 3 3m 8 2
x 2 + 32 > x 2 + 8 x 2 = 3 x ( 0 < x < 2 ).
x2 + 16 f k ( x) > x 2 + 1 6 x > 3x 。 3
当 n = k 时,设 f k ( x) > 3 x ,则 f k +1 ( x) =
由此可得 0 < x < 2 都不是 f n ( x) = 3 x 的解(对于所有的 n). 因此,对每个 n , f n ( x) = 3 x 的实数解为 x = 2 。 …………………………20 分
有三个根 x1 < x2 < x3 . 若 x3 − x2= 2( x2 − x1 ) ,则实数 a = 解答:设 g ( = x) 2 1 − x 2 ,定义域为 −1 ≤ x ≤ 1 ,
max ( f ( x), g ( x)) = 1 ( f ( x) + g ( x) + f ( x) − g ( x) ) . 2
−4k 。 3k 2 + 1
……………………5 分
于是有 y p + yq= k ( x p + xq ) − 4k= 因为 PQ 的中点为 N ,所以 N (
江西省萍乡市2017年高一数学竞赛试题(含解析)

2017年江西省萍乡市高一年级数学竞赛试卷第Ⅰ卷(共60分)一、填空题(每题10分,共80分.)1. 若是单位向量,且,则__________.【答案】0【解析】2. 函数的值域为__________.【答案】【解析】时,x-1时,1-x<0, <-1综上值域为故答案为点睛:分段函数求值域,先分段求,再求并集,注意的是指数函数都是大于0的3. 4个函数,,,图象的交点数共有__________.【答案】5故答案为54. 若,则__________.【答案】0.........5. 已知,,,则__________.【答案】【解析】∵cosα+cosβ+cosγ=sinα+sinβ+sinγ=0,∴cosγ=−cosα−cosβ,sinγ=−sinα−sinβ,∵=1,∴=1,整理得:2+2(cosαcosβ+sinαsinβ)=1,即cosαcosβ+sinαsinβ=−,∴cos(β−α)= −,∵0⩽α<β<2π,∴0<β−α<2π∴β−α=或.①∴同理可得:cos(γ−β)=−−,解得:γ−β=或②。
cos(γ−α)= −;解得:γ−α=或③。
∵0⩽α<β<γ<2π,∴β−α=,γ−β=,γ−α=.故β−α的值为.点睛:本题主要考查了同角平方关系的应用,解题的关键是要发现sin2γ+cos2γ=1,从而可得α,β的基本关系,但要注意出现多解时一定要三思而后行.6. 甲乙两人玩猜数学游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,其中,若,称甲乙“心相近”,现任意两人玩这游戏,则他们心相近的概率为__________.【答案】【解析】7. 在中,角所对边分别为,若,则__________.【答案】【解析】又A为锐角,所以A=8. 将10个数1,2,3,…,9,10按任意顺序排列在一个圆圈上,设其中连续相邻的3数之和为,则的最大值不小于__________.【答案】18【解析】设10个在圆圈上的排列的数依次为其中于是=故中必有一个不小于18故答案为18二、解答题(共70分)9. 已知函数()是偶函数,若对一切实数都成立,求实数的取值范围.【答案】【解析】试题分析:函数()是偶函数得出,证明出当时,为增函数,,根据单调性去掉f,得出,即得解试题解析:()是偶函数,当时,,得对一切都成立,所以,.于是设,,所以,当时,为增函数.,,于是,即,所以即对一切实数都成立.点睛:型如的题目肯定会用到函数的奇偶性,单调性,所以做题时从这两方面着手即可.10. 记表示不超过实数的最大整数,在数列中,,(),证明:.【答案】见解析【解析】试题分析:由()知,数列为正项递增数列.把化为,两边同除得,裂项相消求和即得解.试题解析:由()知,数列为正项递增数列.又,所以,.化为,两边同除得.因此,故11. 如图,定直线与定相离,为上任意一点,为的两条切线,为两切点,其垂足为点,交于点,证明:为定长.【答案】见解析【解析】试题分析:因为,,由射影定理,得,因为,所以,四点共圆,由圆幂定理得结合两个等式即得解.试题解析:连,设为,的交点,因为,,由射影定理,得因为,所以,四点共圆.由圆幂定理,得所以,即(定值),所以,为定长.12. 有()个整数:,,…,,满足,,证明能被4整除.【答案】见解析【解析】试题分析:反证法来解决问题,若为奇数,由,得均为奇数推出矛盾,所以,中必有偶数,如果中仅有一个偶数,推出矛盾,所以中必至少有2个偶数,即得证试题解析:首先,为偶数,事实上,若为奇数,由,得均为奇数,而奇数个奇数和应为奇数,且不为0,这与矛盾,所以,为偶数所以,中必有偶数.如果中仅有一个偶数,则中还有奇数个奇数,从而,也为奇数,矛盾,所以,中必至少有2个偶数.由知,能被4整除.。
2017年全国高中数学联合竞赛一试(A卷)(含参考答案及评分标准)

答案: 13, 20 . 解:由条件可知: a1 , a2 , b1 均为正整数,且 由于 ,故 . .反复运用 {an } 的递推关系知 , 因此 而 21a1 a10 b10 512b1 2b1 (mod 34) , ,故有 . 另一方面,注意到 ,有 . 当 当 时,①,②分别化为 时,①,②分别化为 ,此时 当 . ,得到唯一的正整数 ,无解. ,得到唯一的正整数 ,故 ②
( x1 + 3x2 + 5 x3 )( x1 +
x2 x3 1 5x + ) = ( x1 + 3x2 + 5 x3 )(5 x1 + 2 + x3 ) 3 5 5 3 2 1 1 5x ≤ ⋅ ( x1 + 3x2 + 5 x3 ) + (5 x1 + 2 + x3 ) 5 4 3
1 PP PF 1 1 P 2F 1 2 4 2 PF 1 2 P 2 F2 PP 1 2 4 2 , ………………15 分 (例如, 当 z1 z2 2 2 i 时,F2 恰是 PP 等号成立当且仅当 F2 位于线段 PP 1 2 上 1 2 的中点) . 综上可知, z1 2 z2 2 z1 z2 的最小值为 4 2 . …………20 分
① ② ③
a b a b ab f k m 1 . 2 2 2
由① ② 2 ③知, a b ( a b) 2 4, =f ( a ) f ( b ) 2 f 2 2 故ba 2 2 .
2
1 14 ………………10 分 = 6 x1 + x2 + 6 x3 20 3 1 9 2 ≤ ( 6 x1 + 6 x2 + 6 x3 ) = , 20 5 1 1 9 = x1 = , x2 0, = x3 当 时不等式等号成立,故欲求的最大值为 . ………20 分 2 2 5 11. ( 本 题 满 分 20 分 ) 设 复 数 z1 , z2 满 足 Re( z1 ) 0, Re( z2 ) 0 , 且
2017年第10届全国中学数理化竞赛高一数学试题答案(初赛)

二、填空题(每题 8 分,共 48 分) 9 9.-2 解析 函数f(x)的定义域是不等式ax2+abx+b≥0 的解集.不等式ax2+abx+b≥0 的解集为 a<0, 1+2=-b, {x|1≤x≤2},所以 b 1×2=a, 3 a=-2, 3 9 所以a+b=-2-3=-2. 解得 b=-3,
y f 0 x 2 的图像,作该图像在 x 轴下方的部分关于 x 轴的对称图形得到图 3,其中 x 轴
上方的部分即是 f 2 x f1 x 2 的图像.易得所求面积为 7.
y
y
y (1,2) 1
(-1,2)
1
o
x
-1
o
1
x
-3
o
-1
3
x
图1
图2
图3
三、解答题(共 70 分) 13.(23 分)
特级教师 王新敞
126. com wxckt @
1 1 1 1 对于①,f(x)=x-x , f ( ) =x-x=-f(x),满足“倒负”变换;对于②, f ( ) = x x
1 1 1 x ,0 x 1, x , x 1, 1 1 1 1 不满足 “倒负” 变换; 对于③, f ( ) = 0, 1, 即 f ( ) = 0, x 1, x +x=f(x), x x x x,0 x 1 1 x , x 1 1 故 f ( ) =-f(x),满足“倒负”变换.综上可知,满足“倒负”变换的函数是①③. x
2017年全国高中数学联赛(福建省赛区)预赛暨2017年福建省高中数学竞赛试卷及答案

2017年全国高中数学联赛(福建省赛区)预赛 暨2017年福建省高中数学竞赛试卷参考答案(考试时间:2017年5月21日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上) 1.已知集合{}2log (1)1A x x =-<,{}2B x x a =-<,若A B ⋂≠∅,则实数a 的取值范围为。
【答案】(15)-,【解答】由2log (1)1x -<,得012x <-<,13x <<,(13)A =,。
由2x a -<,得22x a -<-<,22a x a -<<+,(22)B a a =-+,。
若A B ⋂=∅,则21a +≤或23a -≥,1a ≤-或5a ≥。
∴ A B ⋂≠∅时,a 的取值范围为(15)-,。
2.已知()f x 是定义在R 上的奇函数,且函数(1)y f x =+为偶函数,当10x -≤≤时,3()f x x =,则9()2f =。
【答案】18【解答】由函数(1)y f x =+为偶函数,知(1)(1)f x f x -+=+。
又()f x 为奇函数,∴ (2)()()f x f x f x +=-=-,(4)(2)()f x f x f x +=-+=。
∴ 391111()()()()22228f f f ==--=--=。
3.已知{}n a 为等比数列,且120171a a =,若22()1f x x =+,则12320()()()()f a f a f a f a ++++=L 。
【答案】2017【解答】由22()1f x x =+知,2222212222()()211111()x f x f x x x x x+=+=+=++++。
∵ {}n a 为等比数列,且120171a a =, ∴ 12017220163201521a a a a a a a a =====L 。
2017年全国高中数学联赛A卷和B卷试题和答案(全文

可编辑修改精选全文完整版2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数.对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时.)9(log )(2x x f -=.则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x .则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中.椭圆C 的方程为1109:22=+y x .F 为C 的上焦点.A 为C 的右顶点.P 是C 上位于第一象限内的动点.则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1.则称其为“平稳数”.平稳数的个数是 。
5.正三棱锥P-ABC 中.AB=1.AP=2.过AB 的平面α将其体积平分.则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中.点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点.则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中.M 是边BC 的中点.N 是线段BM 的中点.若3π=∠A .ABC ∆的面积为3.则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a .对任意正整数n .有n n n a a a +=++12.n n b b 21=+.则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数.不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数.满足1321=++x x x .求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z .0)Re(2>z .且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部). (1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图.在ABC ∆中.AC AB =.I 为ABC ∆的内心.以A 为圆心.AB 为半径作圆1Γ.以I 为圆心.IB 为半径作圆2Γ.过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a . ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一.使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同.则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数.n m ≥.n a a a ,,,21 是n 个不超过m 的互不相同的正整数.且n a a a ,,,21 互素.证明:对任意实数x .均存在一个)1(n i i ≤≤.使得x m m x a i )1(2+≥.这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A卷一试答案1.2.3.4.5.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中.2a =.3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+.则||z 的值为 .3.设()f x 是定义在R 上的函数.若2()f x x +是奇函数.()2xf x +是偶函数.则(1)f 的值为 . 4.在ABC ∆中.若sin 2sin A C =.且三条边,,a b c 成等比数列.则cos A 的值为 .5.在正四面体ABCD 中.,E F 分别在棱,AB AC 上.满足3BE =.4EF =.且EF 与平面BCD 平行.则DEF ∆的面积为 .6.在平面直角坐标系xOy 中.点集{(,)|,1,0,1}K x y x y ==-.在K 中随机取出三个点.则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数.在平面直角坐标系xOy 中.二次曲线2220x ay a ++=的焦距为4.则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥.则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题.共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立.求实数a 的取值范围.10.设数列{}n a 是等差数列.数列{}n b 满足212n n n n b a a a ++=-.1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠.并且存在正整数,s t .使得s t a b +是整数.求1||a 的最小值.11.在平面直角坐标系xOy 中.曲线21:4C y x =.曲线222:(4)8C x y -+=.经过1C 上一点P 作一条倾斜角为45的直线l .与2C 交于两个不同的点,Q R .求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=.令max{,,}d a b c =.证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m .证明:存在正整数k .使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A .每个子集i A 中均不存在4个数,,,a b c d (可以相同).满足ab cd m -=.三、(本题满分50分)如图.点D 是锐角ABC ∆的外接圆ω上弧BC 的中点.直线DA 与圆ω过点,B C 的切线分别相交于点,P Q .BQ 与AC 的交点为X .CP 与AB 的交点为Y .BQ 与CP 的交点为T .求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈.1220,,,{1,2,,10}b b b ∈.集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<.求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a 的公比为33232a q a ==.故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案:5。
2017年全国高中数学联合竞赛广东赛区选拔赛试卷参考答案

m1 cos
2k
m1
i sin
2k
0, n1 cos 2k
n1
i sin
2k
0
k 0
m
ቤተ መጻሕፍቲ ባይዱ
k 0
m
k 0
n
k 0
n
所以 m1 cos 2k 0, n1 sin 2k 0 ,故: m1 cos 2k n1 sin 2k 0 .
k 0
m
k 0
n
k 0
m k0
n
而当 m
1 时 m 1 cos 2k
(x1, x2, x3, x4) (0,1,2,7),(0,1,3,6),(0,1,4,5),(0,2,3,5),(1,2,3,4) ,因此符合条件的四位数恰有:
4C31 3!4!
96 (个),故所求概率为
C915 C926
1 48
.
8. 已知 S 是正整数集合的无穷子集,满足对任何 a,b,c S, abc S ,将 S 中的元素按 照 由 小 到 大 的 顺 序 排 列 成 的 数 列 记 为 {an} , 且 已 知 a1 2, a2031 24061 , 则 a2017 _____ .
68
x
1 2
(
x1
x2 )
1 2
b 34
25 b
25
代入③式可得弦中点纵坐标恰好为点 Q( 25 , 9) 的纵坐标,即 bb
y 25 34 9 b bb
4
这就是说,点 Q( 25 , 9) 平分线段 MN . bb
--------------------------------------- 16 分
b3
|
11 11
2017年全国高中数学联合竞赛试题及解答.(A卷)

2 2 1 AM AN 3 AB AC 4 AB AC , 8
由 3 S ABC
1 3 AB AC sin A AB AC 得 AB AC 4 2 4
2
所以 AB AC 2 ,所以 3 AB
AC 8 3 ,当且仅当 AB
x x1 3x 2 5 x3 x1 2 3
★解析:由柯西不等式
x3 的最小值和最大值。 5 x2 5 x3 3 x3 5 1
2
x x x1 3x 2 5 x3 x1 x1 3 x 2 x1 2 3 3 5
当 x1 1 , x 2 0 , x 3 0 时取等号,故所求的最小值为 1 ; 又 x1 3 x 2 5 x 3 x1
x 2 x3 1 5x x1 3 x 2 5 x 3 5 x1 2 x 3 3 5 5 3
2
512 b1 ② 55
★证明:记 f ( x ) x kx m , x a, b ,则 f ( x ) 1,1 。于是
2
f (a ) a 2 ka m 1 ①; f (b) b 2 kb m 1 ② ab ab 2 ab )( ) k( ) m 1 ③ 2 2 2 ①+②- 2 ③知 f(
2017 年全国高中数学联合竞赛一试(A 卷)
一、填空题:本大题共 8 个小题,每小题 8 分,共 64 分。 2017A1、设 f ( x ) 是定义在 R 上函数,对任意的实数 x 有 f ( x 3) f ( x 4) 1 ,又当 0 x 7 时, f ( x ) log 2 (9 x ) ,则 f ( 100) 的值为 ◆答案:
2017年全国高中数学联合竞赛试题与解答(B卷)_PDF压缩

2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a中,2a =,3a =1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+,则||z 的值为 .3.设()f x 是定义在R 上的函数,若2()f x x +是奇函数,()2x f x +是偶函数,则(1)f 的值为 .4.在ABC ∆中,若sin 2sin A C =,且三条边,,a b c 成等比数列,则cos A 的值为 .5.在正四面体ABCD 中,,E F 分别在棱,AB AC 上,满足3BE =,4EF =,且EF 与平面BCD 平行,则DEF ∆的面积为 .6.在平面直角坐标系xOy 中,点集{(,)|,1,0,1}K x y x y ==-,在K 中随机取出三个点,则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数,在平面直角坐标系xOy 中,二次曲线2220x ay a ++=的焦距为4,则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥,则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|xxa -<-对所有[1,2]x ∈成立,求实数a 的取值范围.10.设数列{}n a 是等差数列,数列{}n b 满足212n n n n b a a a ++=-,1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠,并且存在正整数,s t ,使得s t a b +是整数,求1||a 的最小值.11.在平面直角坐标系xOy 中,曲线21:4C y x =,曲线222:(4)8C x y -+=,经过1C 上一点P 作一条倾斜角为45的直线l ,与2C 交于两个不同的点,Q R ,求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=,令max{,,}d a b c =,证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A ,每个子集i A 中均不存在4个数,,,a b c d (可以相同),满足ab cd m -=.三、(本题满分50分)如图,点D 是锐角ABC ∆的外接圆ω上弧BC 的中点,直线DA 与圆ω过点,B C 的切线分别相交于点,P Q ,BQ 与AC 的交点为X ,CP 与AB 的交点为Y ,BQ 与CP 的交点为T ,求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈,1220,,,{1,2,,10}b b b ∈,集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<,求X 的元素个数的最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高一数学竞赛试题参考答案及评分标准 (考试时间:5月14日上午8:30-11:00)一、选择题(每小题6分,共36分)1.已知集合203x A xx Z x +⎧⎫=≤∈⎨⎬-⎩⎭,,则集合A 中所有元素的和为( ) A .1- B .0 C .2 D .3 【答案】 B 【解答】由203x x +≤-,得23x -≤<。
又x Z ∈。
因此{}21012A =--,,,,。
所以,集合A 中所有元素的和为0。
2.已知正三棱锥A BCD -的三条侧棱AB 、AC 、AD 两两互相垂直,若三棱锥A BCD -外接球的表面积为3π,则三棱锥A BCD -的体积为( )A .43B .23C .16D .19【答案】 C【解答】设AB AC AD a ===,则三棱锥A BCD -外接球的半径R =。
由243R ππ=,得R =。
∴ 1a =,三棱锥A BCD -的体积31166V a ==。
3.已知x 为实数,若存在实数y ,使得20x y +<,且23xy x y =-,则x 的取值范围为( )A .(43)(0)--⋃+∞,, B .(02)(4)⋃+∞,, C .(4)(30)-∞-⋃-,, D .(0)(24)-∞⋃,, 【答案】 C 【解答】 由23xy x y =-,得23xy x =+ ∵ 20x y +<, ∴ 2203x x x +<+,即(4)03x x x +<+,解得4x <-或30x -<<。
∴ x 的取值范围为(4)(30)-∞-⋃-,,。
BC(第2题图)4.m 、n 是两条不重合的直线,α、β是两个不重合的平面,则下列命题中,正确的命题的个数是( )(1)对m 、n 外任意一点P ,存在过点P 且与m 、n 都相交的直线; (2)若m α⊥,n m ∥,n β∥,则αβ⊥; (3)若m α⊥,n β⊥,且αβ⊥,则m n ⊥; (4)若m α∥,n α∥,m β∥,n β∥,则αβ∥。
A .1 B .2 C .3 D .4 【答案】 B【解答】(1)不正确。
如图,在正方体1111ABCD A B C D -中,取m 为直线BD ,n 为直线11A C 。
过点A 的直线l 如果与直线BD相交,则l 在ABCD 面内,此时l 与直线11A C 不相交。
(2)、(3)正确。
(4)不正确。
如图,正方体1111ABCD A B C D -的面ABCD 内取两条与BC 平行的直线,如图中的直线AD 与EF ,则有11AD BCC B ∥面,11EF BCC B ∥面,1111AD A B C D ∥面,1111EF A B C D ∥面,但11BCC B 面与面1111A B C D 相交而不平行。
5.已知函数22()(2)()f x x x x mx n =+++,若对任意实数x 均有(3)(3)f x f x -+=--,则()f x 的最小值为( )A .16-B .14-C .12-D .10- 【答案】 A【解答】 依题意,()f x 的图像关于直线3x =-对称。
∴ (6)(0)0f f -==,(4)(2)0f f -=-=。
于是,24(366)08(164)0m n m n -+=⎧⎨-+=⎩,解得1024m n =⎧⎨=⎩。
10m =,24n =时,2222()(2)(1024)(2)(4)(6)(6)(68)f x x x x x x x x x x x x x =+++=+++=+++。
∴ 222222()(6)8(6)(3)98(3)9f x x x x x x x ⎡⎤⎡⎤=+++=+-++-⎣⎦⎣⎦,即2422()(3)10(3)9(3)516f x x x x ⎡⎤=+-++=+--⎣⎦。
此时,22(3)(5)16f x x -+=--,22(3)(5)16f x x --=--,符合题意。
∴ 2(3)50x +-=,即3x =-±()f x 取最小值16-。
1AA (第4题图)6.已知a ,b ,c R ∈,若2221a b c ++=,且(1)(1)(1)a b c abc ---=,则a 的最小值为( ) A .16- B .15- C .14- D .13-【答案】 D【解答】 由(1)(1)(1)a b c abc ---=,得1abc ab bc ca a b c abc ---+++-=。
∴ 1ab bc ca a b c ++=++-。
设a b c x ++=,则1ab bc ca x ++=-。
∵ 2222()2()1a b c a b c ab bc ca ++=++-++=,∴ 22(1)1x x --=,解得1x =,即1a b c ++=,0ab bc ca ++=。
∴ ()0ab a b c ++=,即()(1)0ab a b a b ++--=。
∴ 220a b ab a b ++--=,即22(1)0b a b a a +-+-=。
由a ,b R ∈知,22(1)4()0a a a =---≥△。
∴ 23210a a --≤,解得113a -≤≤。
因此,13a ≥-。
又当13a =-时,代入前面解得,23b c ==。
符合题设要求。
∴ a 的最小值为13-。
二、填空题(每小题6分,共36分)7.已知定义在[]10-,上的函数()log ()a f x x m =+(0a >,且1a ≠)的值域也是[]10-,,则a m +的值为 。
【答案】52【解答】当1a >时,()f x 在[]10-,上为增函数,依题意有(1)log (1)1(0)log (0)0a a f m f m -=-+=-⎧⎨=+=⎩,方程组无解。
当01a <<时,()f x 在[]10-,上为减函数,依题意有(1)log (1)0(0)log (0)1a a f m f m -=-+=⎧⎨=+=-⎩,解得212m a =⎧⎪⎨=⎪⎩。
所以,52a m +=。
8.如图,在三棱锥P ABC -中,5PA PC BA BC ====,6AC =,4PB =。
设PA 与ABC 面所成的角为θ,则sin θ的值为 。
【答案】235【解答】如图,取AC 中点O ,连接OP ,OB 。
∵ 5PA PC BA BC ====,6AC =, ∴ AC OP ⊥,AC OB ⊥,4OP OB ==。
∴ AC POB ⊥面,ABC POB ⊥面面。
又由4PB =,知POB △是等边三角形。
作PH OB ⊥于H ,则PH ABC ⊥面,且23PH =。
∴ PAH ∠是PA 与ABC 面所称的角。
∴ 23sin sin 5PH PAH PA θ=∠==。
9.已知(912)A -,,(1612)B --,,(00)O ,,点D 在线段OB 内,且AD 平分OAB ∠,则点D 的坐标为 。
【答案】 9(6)2--,【解答】如图,OB 方程为34y x =,设(43)D t t ,(40t -<<)。
又直线AO 方程为430x y +=,AB 方程为2473000x y -+=,AD 平分OAB ∠。
∴ 点D 到直线AO 、AB 距离相等。
∴1699621300525t t t t +-+=。
解得,6t =(舍去)或32t =-。
因此,点D 坐标为9(6)2--,。
OACBPH (第8题图)(第8题图)(第9题图)10.设()f x 是定义在R 上以2为周期的偶函数,且在区间[]01,上单调递减。
若()1f π=,(2)2f π=,则不等式组121()2x f x ≤≤⎧⎨≤≤⎩的解集为 。
【答案】 []282ππ--,【解答】∵ ()f x 是偶函数,且在区间[]01,上单调递减。
∴ ()f x 在区间[]10-,上为增函数。
又()f x 是以2为周期的周期函数, ∴ ()f x 在区间[]12,上为增函数。
又()1f π=,(2)2f π=,以及()f x 是以2为周期的偶函数。
∴ (2)()1f f ππ-==,(82)(28)(2)2f f f πππ-=-==。
又12822ππ<-<-<,∴ 不等式组的解集为[]282ππ--,。
11.已知()2xf x x =+,定义1()()f x f x =,1()(())n n f x f f x -=,2n =,3,4,…,则2017(3)f = 。
【答案】2019323-【解答】 依题意,有1333(3)523f ==-,2433(3)1323f ==-,3533(3)2923f ==-, …………… 一般地,有23(3)23n n f +=-。
所以,201720193(3)23f =-。
12.已知0x >,0y >,0z >,且22251x y z ++=,则2xy yz +的最大值为 。
【答案】12【解答】由222222215(4)()422(2)x y z x y y z xy yz xy yz =++=+++≥+=+,知122xy yz +≤,当且仅当2x y =,且y z =,即x =,y z ==所以,2xy yz +的最大值为12。
三、解答题(第13、14、15、16题每题16分,第17题14分,满分78分)13.已知21()()3f x ax a x c =+-+,且当11x -≤≤时,1()6f x ≤恒成立。
(1)求()f x 的解析式;(2)已知11()A x y ,、22()B x y ,是函数()y f x =图像上不同的两点,1(1)6P -,,且PA PB ⊥。
当1x 、2x 为整数,123x x <<时,求直线AB 的方程。
【解答】(1)依题意,1(0)6f c =≤,11(1)36f c =+≤。
∴ 1166c -≤≤,且1126c -≤≤-。
∴ 16c =-。
…………………………… 4分此时,1(0)6f =-,可见()f x 在区间[]11-,上的最小值为(0)f 。
∴ ()f x 的对称轴为0x =,即103a -=,13a =。
∴ 211()36f x x =-。
…………………………… 8分(2)由(1)知,2111111111()16366(1)13PA y x x k x x ----===--+。
同理213PBx k -=。
∵ PA PB ⊥, ∴ 1211133PA PB x x k k --⋅=⋅=-。
∴ 12(1)(1)9x x --=-。
…………………………… 12分 又1x 、2x 为整数,且12x x <,∴ 121911x x -=-⎧⎨-=⎩,或121313x x -=-⎧⎨-=⎩,或121119x x -=-⎧⎨-=⎩。