概率论与数理统计(多维随机变量及其联合分布)

合集下载

概率论与数理统计第三章笔记

概率论与数理统计第三章笔记

学院 交通 学号1126002026 姓名 吕立正三.多维随机变量及其分布1.二维随机变量1.设随机试验E 的样本空间为:{}()(),S e X e Y e =、 为定义在S 上的随机变量,由它们构成一个随机向量 ()X Y 、,叫二维随机向量或二维随机变量.2.定义:设二维随机变量()X Y 、,对任意实数x y 、,二元函数{}(),F X Y P X xY y =≤≤,,称为()X Y 、的(联合)概率分布函数. 二维随机变量分布函数的性质:(1)(),F x y 是变量x 和y 的不减函数,即对任意固定的y ,当21x x >时()2,F x y ≥()1,F x y ;对于任意固定的x ,当21y y >时()2,F x y ≥()1,F x y .(2)()0,1F x y ≤≤,且对于任意固定的y ,(),0F y -∞=,对于任意固定的x ,(),0F x -∞=,(),0F -∞-∞=,(), 1.F ∞∞=(3) (),F x y =()0,F x y +,(),F x y =(),0F x y +,即(),F xy 关于x 右连续,关于y 也右连续.(4) 对于任意()11,x y ,()22,x y ,21x x >,21y y >,下述不等式成立: ()()()()22211112,,,,0F x y F x y F x y F x y -+-≥.如果二维随机变量(,)X Y 全部可能取到的不相同的值是有限对或可列无限多对,则称(,)X Y 是离散型的随机变量.3. 对于二维随机变量(),X Y 的分布函数(),F x y .如果存在非负的函数(),f x y 使对于任意()X Y 、有()(),,y xF x y f d d μυμυ-∞-∞=⎰⎰,则称(),X Y 是连续型的二维随机变量,函数(),f x y 称为二维随机变量(),X Y 的概率密度,或称为随机变量X 和Y 的联合概率密度. 概率密度(),f x y 具有以下性质: (1)(,)0f x y ≥ (2) (,)(,)1f x y dxdy F ∞∞-∞-∞=∞∞=⎰⎰(3) 设G 是xOy 平面上的区域,点()X Y 、落在G 内的概率为{}(,)(,)GP X Y G f x y dxdy ∈=⎰⎰(4) 若(),f x y 在点()X Y 、连续 则有2(,)(,)F x y f x y x y∂=∂∂ 4. 两个常用的分布(1)均匀分布:定义设D 为闭区域面积为A ,若随机变量()X Y 、 的(联合)密度为: 则称: ()X Y 、服从D 上的均匀分布.(2)二维正态分布:若二维随机变量 ()X Y 、的概率密度为: 则称: ()X Y 、服从参数为μ1、μ2、σ1、σ2、ρ的二维正态分布.其中σ1>0,σ2>0,|ρ|≤1是常数.记为:()X Y 、~N (μ1、μ2、σ12、σ22、ρ) .⎩⎨⎧∈=其它),(/1),(D y x Ay x f 21222112222211221(,)211()()()()exp 22(1);f x y x x y y x y πσσρμμμμρρσσσσ=⋅-⎧⎫⎡⎤-----⎪⎪-+⎨⎬⎢⎥-⎪⎪⎣⎦⎩⎭-∞<<+∞-∞<<+∞2.边缘分布1.二维随机变量(),X Y 作为一个整体,具有分布函数(),F x y ,而X 和Y 都是随机变量,也有也有分布函数,将他们分别记为()X F x ,()Y F y ,依次称为二维随机变量(),X Y 关于X 和Y 的边缘分布函数。

峁诗松 概率论与数理统计

峁诗松 概率论与数理统计

华东师范大学
第三章 多维随机变量及其分布
第29页
3.2.1 边际分布函数
巳知 (X, Y) 的联合分布函数为 F(x, y),

X FX (x) = F(x, +),
Y FY (y) = F(+ , y).
17 July 2013
华东师范大学
第三章 多维随机变量及其分布
第30页
3.2.2 边际分布列
(4) 当a<b, c<d 时,有 (非负性) F(b, d) F(b, c) F(a, d) + F(a, c) 0. 注意:上式左边 = P(a<Xb, c<Y d).
17 July 2013
华东师范大学
第三章 多维随机变量及其分布
第6页
3.1.3 联合分布列 二维离散随机变量
第三章 多维随机变量及其分布
第33页
注 意 点 (1)
由联合分布可以求出边际分布.
但由边际分布一般无法求出联合分布.
所以联合分布包含更多的信息.
17 July 2013
华东师范大学
第三章 多维随机变量及其分布
第34页
注 意 点 (2)
二维正态分布的边际分布是一维正态: 若 (X, Y) N ( ),
地取一整数值。试求(X, Y)的联合分布列.
17 July 2013
华东师范大学
第三章 多维随机变量及其分布
第15页
3.1.4 联合密度函数
设二维随机变量(X, Y) 的分布函数为 F(x, y),若存在 非负可积函数 p(x, y),使得
则称 (X, Y) 为二维连续型随机变量。 称p(x, y) 为联合密度函数。

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第三章

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第三章

第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y12311/61/91/1821/3a1/9求a.分析:dsfsd1f6d54654646解答:由分布律性质∑i⋅jPij=1,可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0}=P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512,请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1,故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0},{X=0,Y=13,{X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:Y01/31pk7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0),其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它, (1)确定常数k;(2)求P{X<1,Y<3};(3)求P{X<1.5};(4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c;(2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度. 解答:区域G的面积A=∫01(x-x2)dx=16,由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它,fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为从而(X,Y)的联合概率分布为P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0,求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx]=1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为=∫01dy∫y2y12dx=14,P{U=1,V=1}=1-P{U=0,V=0}-P{U=0,V=1}-P{U=1,V=0}=1/2,即U\V01011/401/41/2习题4设(X,Y)的联合分布密度为f(x,y)=12πe-x2+y22,Z=X2+Y2,求Z的分布密度.解答:FZ(z)=P{Z≤z}=P{X2+Y2≤z}.当z<0时,FZ(z)=P(∅)=0;当z≥0时,FZ(z)=P{X2+Y2≤z2}=∫∫x2+y2≤z2f(x,y)dxdy=12π∫∫x2+y2≤z2e-x2+y22dxdy=12π∫02πdθ∫0ze-ρ22ρdρ=∫0ze-ρ22ρdρ=1-e-z22.故Z的分布函数为FZ(z)={1-e-z22,z≥00,z<0.Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它,fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0,故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b.∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)F Y(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y,其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y},则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z}=1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0,F2(z)={1-e-βz,z≥00,z<0,故F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试证明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>z}=1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的是次品,试分别就(1),(2)两种情况,写出X和Y的联合分布律.解答:(1)有放回抽样,(X,Y)分布律如下:P{X=0,Y=0}=10×1012×12=2536; P{X=1,Y=0}=2×1012×12=536,P{X=0,Y=1}=10×212×12=536, P{X=1,Y=1}=2×212×12=136,(2)不放回抽样,(X,Y)的分布律如下:P{X=0,Y=0}=10×912×11=4566, P{X=0,Y=1}=10×212×11=1066,P{X=1,Y=1}=2×112×11=166,习题2假设随机变量Y服从参数为1的指数分布,随机变量Xk={0,若Y≤k1,若Y>k(k=1,2),求(X1,X2)的联合分布率与边缘分布率.解答:因为Y服从参数为1的指数分布,X1={0,若Y≤11,若Y>1, 所以有P{X1=1}=P{Y>1}=∫1+∞e-ydy=e-1,P{X1=0}=1-e-1,同理P{X2=1}=P{Y>2}=∫2+∞e-ydy=e-2,P{X2=0}=1-e-2,因为P{X1=1,X2=1}=P{Y>2}=e-2,P{X1=1,X2=0}=P{X1=1}-P{X1=1,X2=1}=e-1-e-2,P{X1=0,X2=0}=P{Y≤1}=1-e-1,P{X1=0,X2=1}=P{X1=0}-P{X1=0,X2=0}=0,故(X1,X2)联合分布率与边缘分布率如下表所示:习题3在元旦茶话会上,每人发给一袋水果,内装3只橘子,2只苹果,3只香蕉. 今从袋中随机抽出4只,以X记橘子数,Y记苹果数,求(X,Y)的联合分布.解答:X可取值为0,1,2,3,Y可取值0,1,2.P{X=0,Y=0}=P{∅}=0,P{X=0,Y=1}=C30C21C33/C84=2/70,P{X=0,Y=2}=C30C22C32/C84=3/70,P{X=1,Y=0}=C31C20C33/C84=3/70,P{X=1,Y=1}=C31C21C32/C84=18/70,P{X=1,Y=2}=C31C22C31/C84=9/70,P{X=2,Y=0}=C32C20C32/C84=9/70,P{X=2,Y=1}=C32C21C31/C84=18/70,P{X=2,Y=2}=C32C22C30/C84=3/70,P{X=3,Y=0}=C33C20C31/C84=3/70,P{X=3,Y=1}=C33C21C30/C84=2/70,P{X=3,Y=2}=P{∅}=0,所以,(X,Y)的联合分布如下:习题4设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)的联合分布律及关于X与Y解答:由题设X与Y相互独立,即有pij=pi⋅p⋅j(i=1,2;j=1,2,3), p⋅1-p21=p11=16-18=124,又由独立性,有p11=p1⋅p⋅1=p1⋅16故p1⋅=14.从而p13=14-124-18, 又由p12=p1⋅p⋅2, 即18=14⋅p⋅2.从而p⋅2=12. 类似的有p⋅3=13,p13=14,p2⋅=34.将上述数值填入表中有习题5设随机变量(X,Y)的联合分布如下表:求:(1)a值;(2)(X,Y)的联合分布函数F(x,y);(3)(X,Y)关于X,Y的边缘分布函数FX(x)与FY(y).解答:(1)\because由分布律的性质可知∑i⋅jPij=1, 故14+14+16+a=1,∴a=13.(2)因F(x,y)=P{X≤x,Y≤y}①当x<1或y<-1时,F(x,y)=0;②当1≤x<2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}=1/4;③当x≥2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}=5/12;④当1≤x<2,y>0时,F(x,y)=P{X=1,Y=-1}+P{X=1,Y=0}=1/2;⑤当x≥2,y≥0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}+P{X=1,Y=0}+P{X=2,Y=0}=1;综上所述,得(X,Y)联合分布函数为F(x,y)={0,x<1或y<-11/4,1≤x<2,-1≤y<05/12,x≥2,-1≤y<01/2,1≤x<2,y≥01,x≥2,y≥0.(3)由FX(x)=P{X≤x,Y<+∞}=∑xi<x∑j=1+∞pij, 得(X,Y)关于X的边缘分布函数为:FX(x)={0,x<114+14,1≤x<214+14+16+13,x≥2={0,x<11/2,1≤x<21,x≥2,同理,由FY(y)=P{X<+∞,Y≤y}=∑yi≤y∑i=1+∞Pij, 得(X,Y)关于Y的边缘分布函数为FY(y)={0,y<-12/12,-1≤y<01,y≥0.习题6设随机变量(X,Y)的联合概率密度为f(x,y)={c(R-x2+y2),x2+y2<R0,x2+y2≥R,求:(1)常数c; (2)P{X2+Y2≤r2}(r<R).解答:(1)因为1=∫-∞+∞∫-∞+∞f(x,y)dydx=∫∫x2+y2<Rc(R-x2+y)dxdy=∫02π∫0Rc(R-ρ)ρdρdθ=cπR33,所以有c=3πR3.(2)P{X2+Y2≤r2}=∫∫x2+y2<r23πR3[R-x2+y2]dxdy=∫02π∫0r3πR3(R-ρ)ρdρdθ=3r2R2(1-2r3R).习题7设f(x,y)={1,0≤x≤2,max(0,x-1)≤y≤min(1,x)0,其它,求fX(x)和fY(y).解答:max(0,x-1)={0,x<1x-1,x≥1, min(1,x)={x,x<11,x≥1,所以,f(x,y)有意义的区域(如图)可分为{0≤x≤1,0≤y≤x},{1≤x≤2,1-x≤y≤1},即f(x,y)={1,0≤x≤1,0≤y≤x1,1≤x≤2,x-1≤y≤1,0,其它所以fX(x)={∫0xdy=x,0≤x<1∫x-11dy=2-x,1≤x≤20,其它,fY(y)={∫yy+1dx=1,0≤y≤10,其它.习题8若(X,Y)的分布律为则α,β应满足的条件是¯, 若X与Y独立,则α=¯,β=¯.解答:应填α+β=13;29;19.由分布律的性质可知∑i⋅jpij=1, 故16+19+118+13+α+β=1,即α+β=13.又因X与Y相互独立,故P{X=i,Y=j}=P{X=i}P{Y=j}, 从而α=P{X=2,Y=2}=P{X=i}P{Y=j},=(19+α)(14+α+β)=(19+α)(13+13)=29,β=P{X=3,Y=2}=P{X=3}P{Y=2}=(118+β)(13+α+β)=(118+β)(13+13),∴β=19.习题9设二维随机变量(X,Y)的概率密度函数为f(x,y)={ce-(2x+y),x>0,y>00,其它,(1)确定常数c; (2)求X,Y的边缘概率密度函数;(3)求联合分布函数F(x,y); (4)求P{Y≤X};(5)求条件概率密度函数fX∣Y(x∣y); (6)求P{X<2∣Y<1}.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1求常数c.∫0+∞∫0+∞ce-(2x+y)dxdy=c⋅(-12e-2x)\vline0+∞⋅(-e-y)∣0+∞=c2=1,所以c=2.(2)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞2e-2xe-ydy,x>00,x≤0={2e-2x,x>00,x≤0,fY(y)=∫-∞+∞f(x,y)dx={∫0+∞2e-2xe-ydx,y>00,其它={e-y,y>00,y≤0.(3)F(x,y)=∫-∞x∫-∞yf(u,v)dvdu={∫0x∫0y2e-2ue-vdvdu,x>0,y>00,其它={(1-e-2x)(1-e-y),x>0,y>00,其它.(4)P{Y≤X}=∫0+∞dx∫0x2e-2xe-ydy=∫0+∞2e-2x(1-e-x)dx=13.(5)当y>0时,fX∣Y(x∣y)=f(x,y)fY(y)={2e-2xe-ye-y,x>00,x≤0={2e-2x,x>00,x≤0.(6)P{X<2∣Y<1}=P{X<2,Y<1}P{Y<1}=F(2,1)∫01e-ydy=(1-e-1)(1-e-4)1-e-1=1-e-4.习题10设随机变量X以概率1取值为0, 而Y是任意的随机变量,证明X与Y相互独立.解答:因为X的分布函数为F(x)={0,当x<0时1,当x≥0时, 设Y的分布函数为FY(y),(X,Y)的分布函数为F(x,y),则当x<0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{∅∩(Y≤y)}=P{∅}=0=FX(x)FY(y);当x≥0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{S∩(Y≤y)}=P{Y≤y}=Fy(y)=FX(x)FY(y),依定义,由F(x,y)=FX(x)FY(y)知,X与Y独立.习题11设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,试证P{X≤Y}=1/2. 解答:因为X,Y独立,所以f(x,y)=fX(x)fY(y).P{X≤Y}=∫∫x≤yf(x,y)dxdy=∫∫x≤yfX(x)fY(y)dxdy=∫-∞+∞[fY(y)∫-∞yfX(x)dx]dy=∫-∞+∞[fY(y)FY(y)]dy=∫-∞+∞FY(y)dFY(y)=F2(y)2∣-∞+∞=12,也可以利用对称性来证,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X},而P{X≤Y}+P{X≥Y}=1, 故P{X≤Y}=1/12.习题12设二维随机变量(X,Y)的联合分布律为若X与Y相互独立,求参数a,b,c的值.解答:关于X的边缘分布为由于X与Y独立,则有p22=p2⋅p⋅2 得b=(b+19)(b+49) ①p12=p1⋅p⋅2 得19=(a+19)(b+49) ②由式①得b=29, 代入式②得a=118. 由分布律的性质,有a+b+c+19+19+13=1,代入a=118,b=29, 得c=16.易验证,所求a,b,c的值,对任意的i和j均满足pij=pi⋅×p⋅j.因此,所求a,b,c的值为a=118,b=29,c=16.习题13已知随机变量X1和X2的概率分布为且P{X1X2=0}=1.(1)求X1和X2的联合分布律;(2)问X1和X2是否独立?解答:(1)本题是已知了X1与X2的边缘分布律,再根据条件P{X1X2=0}=1, 求出联合分布. 列表如下:P{X1=1,X2=1}=0,P{X1=-1,X2=1}=0.再由p⋅1=p-11+p11+p01, 得p01=12, p-10=p-1⋅=p-11=14,p10=p1⋅-p11=14,从而得p00=0.(2)由于p-10=14≠p-1⋅⋅p⋅0=14⋅12=18, 所以知X1与X2不独立.习题14设(X,Y)的联合密度函数为f(x,y)={1πR2,x2+y2≤R20,其它,(1)求X与Y的边缘概率密度;(2)求条件概率密度,并问X与Y是否独立?解答:(1)当x<-R或x>R时,fX(x)=∫-∞+∞f(x,y)dy=∫-∞+∞0dy=0;当-R≤x≤R时,fX(x)=∫-∞+∞f(x,y)dy=1πR2∫-R2-x2R2-x2dy=2πR2R2-x2.于是fX(x)={2R2-x2πR2,-R≤x≤R0,其它.由于X和Y的地位平等,同法可得Y的边缘概率密度是:fY(y)={2R2-y2πR2,-R≤y≤R0,其它.(2)fX∣Y(x∣y)=f(x,y)fY(y)注意在y处x值位于∣x∣≤R2-y2这个范围内,f(x,y)才有非零值,故在此范围内,有fX∣Y(x∣y)=1πR22πR2⋅R2-y2=12R2-y2,即Y=y时X的条件概率密度为fX∣Y(x∣y)={12R2-y2,∣x∣≤R2-y20,其它.同法可得X=x时Y的条件概率密度为fY∣X(y∣x)={12R2-x2,∣y∣≤R2-x20,其它.由于条件概率密度与边缘概率密度不相等,所以X与Y不独立.习题15设(X,Y)的分布律如下表所示X\Y -112-12 1/102/103/102/101/101/10求:(1)Z=X+Y; (2)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类似,本质上是利用事件及其概率的运算法则. 注意,Z的相同值的概率要合并.概率(X,Y)X+YXYX/Ymax{X,Y}1/102/103/102/101/101/10(-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)-2011341-1-2-2241-1-1/2-221-112222于是(1)习题16设(X,Y)的概率密度为f(x,y)={1,0<x<1,0<y<2(1-x)0,其他,求Z=X+Y的概率密度.解答:先求Z的分布函数Fz(z),再求概率密度fz(z)=dFz(z)dz.如右图所示.当z<0时,Fz(z)=P{X+Y≤z}=0;当0≤z<1时,Fz(z)=P{X+Y≤z}=∫∫x+y≤zf(x,y)dxdy=∫0zdx∫0z-x1dy=∫0z(z-x)dx=z2-12x2∣0z=12z2;当1≤z<2时,Fz(z)=∫02-zdx∫0z-xdy+∫2-z1dx∫02(1-x)dy=z(2-z)-12(2-z)2+(z-1)2;当z≥2时,∫∫Df(x,y)dxdy=∫01dx∫02(1-x)dy=1.综上所述Fz(z)={0,z<012z2,0≤z<1z(2-z)-12(2-z)2+(z-1)2,1≤z<21,z≥2,故fz(z)={z,0≤z<12-z,1≤z<20,其它.习题17设二维随机变量(X,Y)的概率密度为f(x,y)={2e-(x+2y),x>0,y>00,其它,求随机变量Z=X+2Y的分布函数.解答:按定义FZ(Z)=P{x+2y≤z},当z≤0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫∫x+2y≤z0dxdy=0.当z>0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫0zdx∫0(z-x)/22e-(x+2y)dy=∫0ze-x⋅(1-ex-z)dx=∫0z(e-x-e-z)dx=[-e-x]∣0z-ze-z=1-e-z-ze-z,故分布函数为FZ(Z)={0,z≤01-e-z-ze-z,z>0.习题18设随机变量X与Y相互独立,其概率密度函数分别为fX(x)={1,0≤x≤10,其它, fY(y)={Ae-y,y>00,y≤0,求:(1)常数A; (2)随机变量Z=2X+Y的概率密度函数.解答:(1)1=∫-∞+∞fY(y)dy=∫0+∞A⋅e-ydy=A.(2)因X与Y相互独立,故(X,Y)的联合概率密度为f(x,y)={e-y,0≤x≤1,y>00,其它.于是当z<0时,有F(z)=P{Z≤z}=P{2X+Y≤z}=0;当0≤z≤2时,有F(z)=P{2X+Y≤z}=∫0z/2dx∫0z-2xe-ydy=∫0z/2(1-e2x-z)dx;当z>2时,有F(z)=P{2X+Y≤2}=∫01dx∫0z-2xe-ydy=∫01(1-e2x-z)dx.利用分布函数法求得Z=2X+Y的概率密度函数为fZ(z)={0,z<0(1-e-z)/2,0≤z<2(e2-1)e-z/2,z≥2.习题19设随机变量X,Y相互独立,若X与Y分别服从区间(0,1)与(0,2)上的均匀分布,求U=max{X,Y}与V=min{X,Y}的概率密度.解答:由题设知,X与Y的概率密度分别为fX(x)={1,0<x<10,其它, fY(y)={1/2,0<y<20,其它,于是,①X与Y的分布函数分别为FX(x)={0,x≤0x,0≤x<11,x≥1, FY(y)={0,y<0y/2,0≤y<21,y≥2,从而U=max{X,Y}的分布函数为FU(u)=FX(u)FY(u)={0,u<0u2/2,0≤u<1u/2,1≤u<21,u≥2,故U=max{X,Y}的概率密度为fU(u)={u,0<u<11/2,1≤u<20,其它.②同理,由FV(v)=1-[1-FX(v)][1-FY)]=FX(v)+FY(v)-FX(v)FY(v)=FX(v)+FY(v)-FU(v),得V=min{X,Y}的分布函数为FV(v)={0,v<0v2(3-v),0≤v<11,v≥1,故V=min{X,Y}的概率密度为fV(v)={32-v,0<v<10,其它.注:(1)用卷积公式,主要的困难在于X与Y的概率密度为分段函数,故卷积需要分段计算;(2)先分别求出X,Y的分布函数FX(x)与FY(y), 然后求出FU(u),再求导得fU(u); 同理先求出FV(v), 求导即得fV(v).。

概率论与数理统计 多维随机变量及其分布习题答案

概率论与数理统计 多维随机变量及其分布习题答案

A e2xdx e3y dy
0
0
A(
1
e2x
)
(
1
e3 y
)
2 03 0
=A/6 =1
所以, A=6
P{ X<2, Y<1} f(x, y)dxdy {X2,Y1}
2
dx
1 6e(2x3 y)dy
0
0
6 2 e2xdx 1e3ydy
0
0
Y
1
{X<2, Y<1} 0
(1 e4 )(1 e3 )
令:从表中的每一种情况出现的次数计算出
它们的频率,就产生了二维随机向量(X,Y)的 概率分布:
P{X=0,Y=0}≈3/23000=0.00013,
P{X=1,Y=0}≈1/23000=0.00004,
P{X=0,Y=1}≈4597/23000=0.19987, P{X=1,Y=1}≈18399/23000=0.79996.
所以( X ,Y ) 的分布函数为
0, x 1 或 y 1,
F
(
x,
y)
1 3
,
1 x 2, y 2, 或 x 2,1 y 2,
1, x 2, y 2.
例3 二维随机向量(X,Y)的联合概率分布为:
XY 0 1
2
-1 0.05 0.1 0.1
0
0.1 0.2 0.1
1
a 0.2 0.05
1, 3
故 ( X , Y ) 的分布律为
YX
12
1
0 13
2
13 13
下面求分布函数.
(1)当 x 1 或 y 1 时, y
F ( x, y) P{X x,Y y} 2(1,2)

概率论与数理统计__典型例题及其分析

概率论与数理统计__典型例题及其分析

概率论与数理统计 典型例题及其分析第三章 多维随机变量及其分布Y ⑴ 求,a b 应满足的条件; ⑵ 若X 与Y 相互独立 ,求 a,b 的值. 【思路】 先利用联合分布律的性质1ijijp=∑∑确定a,b 应满足的条件,再利用独立性的定义来求出a 与b. 【解】⑴ 因为1ij ijp =∑∑,所以11111,84248b a +++++= 因此 11.24a b += ⑵ 由于 X 与Y 相互独立,即对所有,i j x y 有 ()()(),,i j i j P X x Y y P X x Y y ===== 于是 ()()()112,121,46a P X Y P X Y a a ⎛⎫⎛⎫=======++⎪⎪⎝⎭⎝⎭解得 112a =或1.2a =同理 ()()()131,212,88b P X Y P X Y B b ⎛⎫⎛⎫=======++ ⎪⎪⎝⎭⎝⎭解得 18b =或3.8b = 再由11.24a b +=知 13,128a b == 【解毕】 【技巧】 由于X 与Y 的独立性,故对所有的,i j x y 应有()()(),,i j i j P X x Y y P X x Y y ===== 因此,我们可在联合分布律表中找到几个比较容易计算的值来分别确定分布律中的参数,例如()13,1,24P X Y ===而()()1131,66P X Y a ⎛⎫===∙+ ⎪⎝⎭可求得1;12a =又()13,2,8P X Y ===而18求得3.8b =这种参数的确定方式,需要读者熟练掌握. 例3.2.2 (1999年考研题)设随机变量X 与Y 相互独立 ,下表列出了二维随机变量(),X Y 的联合分布律及关于X 和关于Y 的边缘分布律中的部分数值,试将其余数值填入表中的空间处:- 62 -j【思路】 利用边缘分布律的求法及独立性来进行,例如,从11,86p +=求得11,24p =再利用独立性知1111.6p p =⨯从而知11,4p =等等. 【解】 利用;i ij jij jip p pp ==∑∑以及 1i jijp p==∑∑ 与独立性 ij i j p p p =. 求解空格内的数值,故11111111111,,68246p p p p p =-===⨯即11,4p =又由121,p p +=可得2131.44p =-= 反复运用上列公式,可求得 1322232313111,,,,.128423p p p p p ===== j例3.2.3 (1999年考研题)已知随机变量1X 和2X 的概率分布分别为 1x -1 0 1 2x 0 1 与 P111 424 P 1122, 而且()120 1.P X X ==求1X 和2X 的联合分布;问: ⑴ 1X 和2X 是否独立? ⑵ 为什么? 【思路】 已知1X 和2X 的边缘分布,一般是不能确定1X 和2X 的联合分布的,但题中给了一附加条件()120 1.P X X ==因此就要从条件入手加以分析,再利用边缘分布与联合分布的关系,就可求解此题了.独立性的判断是比较简单的.【解】⑴ 由()120 1.P X X ==知()1200,P X X ≠=即()()12121,11,10.P X X P X X =-===== 于是1X 和2X 的联合分布有如下结构:1j p 从而利用边缘分布律与联合分布律的关系知()()()1121211,01,1,P X P X X P X X =-==-=+==即 1110,4p +=从而得111.4p = 同理可知31222111,,0.p p p ===故1X 和2X 的联合分布律为1j p ⑵ 由以上结果知 ()120,00,P X X === 而 ()()12111000.224P X P X ===⨯=≠ 可见,1X 与2X 不独立. 【技巧】先.将边缘分布的数据以及由条件()1201P X X ==中对应数据填入表中,得到联合分布律表的基本结构,再来求其余ij p 的值,是对解离散型随机向量的基本技巧.按独立性的要求,可以检验1X 与2X 是否独立,特别对不独立的说明只需找出一对(),i j x y ,使ij i j p p p ≠即可.例3.2.4 将两封信投入3个编号为1,2,3的信箱,用,X Y 分别表示投入第1,2号信箱的信的数目,求(),X Y 的边缘分布律,并判断X 与Y 是否独立.【思路】 首先确定(),X Y 的所有可能取值,并用古典概型求出取相应值的概率,即可得到(),X Y 的联合分布律,剩下的问题也就迎刃而解了.【解】 将2封信投到3个信箱的总投法239,n ==而X 和Y 的可能取值均为0,1,2,于是- 64 -()0,0P X Y P ===(两封信都投入第3号信箱)=1;9()1,0P X Y P ===(两封信中一封投入第1号信箱,另一封投入第3号信箱)11212.99C C == 同理可得:()()220,1;1,1;99P X Y P X Y ====== ()()()1,22,12,20.P X Y P X Y P X Y ========= 这样,可得(),X Y 的联合分布律,又由于()()()()22,,0,1,2,,,0,1,2.i i P X k P X k Y i k P X k P X i Y k k ============∑∑故所求的分布律为X 的边缘分布律在表中的最后一列,Y 的边缘分布律在表中的最后一行. 由于()10,09P X Y ===,而()()44100,999P X P Y ===⨯≠故X 与Y 不独立. 【解毕】 【技巧】 二维离散型随机变量的联合分布律,在实际问题中可用事件的乘机(交)的概率求得,此时概率的乘法公式是十分常用的计算技巧. 例3.2.5 设(),X Y 服从区域(){}2,:01D x y y x =≤≤-上的均匀分布,⑴ 写出(),X Y 的联合密度函数;⑵ 求X 和Y 的边缘密度函数; ⑶ 求概率()2P Y X ≥.【思路】 先画出区域D 的图形,再按上面的解法来求解. 【解】 (1)由于区域D 是由曲线21y x =-和0y =所围成的(如图3.2.1所示),其面积为()12141.3D x dx -=-=⎰ 所以(),X Y 的联合密度为()23,01,40, y xf x y ⎧≤≤-⎪=⎨⎪⎩其他图3.2.1⑵ X 的边缘密度函数为()()()()2120331,11,11,440, 0, x X x x dy x f x f x y dy -+∞-∞⎧⎧⎪--<<⎪-<<===⎨⎨⎪⎪⎩⎩⎰⎰其他其他 而Y 的边缘密度函数为()()3,011,40, 0, Y dx y y f y f x y dy +∞-∞⎧<<⎪<<===⎨⎪⎪⎩⎩⎰其他其他 ⑶ 记(){}2,:G x y y x =≥,则G D ⋂为图3.2.2阴影部分,从而()()()()2221,,33 .442Gx G Dx P Y X P X Y G f x y dxdydxdy dxdy -⋂≥=∈====⎰⎰⎰⎰⎰【寓意】 本题要求熟悉二维均匀分布和计算边缘密度及概率的基本方法,求这些问题的技巧读者应牢牢掌握,最关键的问题是激发呢区间和积分区域的确定. 图 3.2.2例3.2.6 设二维随机变量(),X Y 的概率密度为 (), 0,,0, Ay Ae x y f x y -⎧<<=⎨⎩其他⑴ 确定常数A ;⑵ 求随机变量X 的密度()X f x ;⑶ 求概率()1P X Y +≤. (后二问为1992年考研题) 【解】⑴ 记D 为(),f x y 的零区域,即 (){},:0D x y x y =<< 其图形如图3.2.3所示.由联合密度的性质得(),1f x y dxdy +∞+∞-∞-∞=⎰⎰,从而有()01, .AyAyDxI f x y dxdy Aedxdy dx Ae dy A+∞+∞+∞+∞---∞-∞====⎰⎰⎰⎰⎰⎰ 因此,A=1. ⑵ X 的边缘密度为 ()(), 0, 0,0, 00, 0yx X x e d yx e x f x f x y dy x x +∞-+∞--∞⎧>⎧>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰⑶ 设(){},:1G x y x y =+≤,则D G ⋂如图3.2.4所示.故()()1112121, 12.xyyGD GxP X Y f x y dxdy edxdy dx e dy e e -----⋂+≤====+-⎰⎰⎰⎰⎰⎰- 66 -图 3.2.3 图3.2.4【技巧】 在利用(),1f x y dxdy +∞+∞-∞-∞=⎰⎰确定(),f x y 中的常数时,若(),0f x y ≠的区域为D ,则只需用(),1Df x y dxdy =⎰⎰就可以了.例3.3.1 设(),X Y 的联合分布律为求:⑴ 常数a; ⑵ 联合分布函数在点31,22⎛⎫⎪⎝⎭处的值31,;22F ⎛⎫ ⎪⎝⎭ ⑶ ()1|0.P X y ==【解】⑴ 由联合分布律的性质1ij ijp =∑∑知 1111,446ij ijp a ==+++∑∑ 求得1.3a =⑵(),X Y 的联合分布函数(),F x y 在点31,22⎛⎫⎪⎝⎭处的值 ()()3131111,,1,11,0.2222442F p X Y P X Y P X Y ⎛⎫⎛⎫=≤≤===-+===+= ⎪ ⎪⎝⎭⎝⎭⑶ ()()()11,0341|0.110743P X Y P X Y P X ========+ 【解毕】 【技巧】 求联合分布函数(),F x y 时,只需把取值满足,i j x x y y ≤≤的点(),i j x y 的概率ij p 找出来,然后求和就可以了,值得注意的是不要有遗漏.而求条件分布律时的关键是将其边缘分布求出即可,而边缘分布律的求法在前节已反复强调过多次.例3.3.2 已知随机变量X 和Y 联合概率密度为 ()4, 01,01,,0, xy x y f x y ≤<≤<⎧=⎨⎩其他求⑴ 条件密度()||X Y f x y 及()||;Y X f y x ⑵ X 和Y 的联合分布函数(),F x y .(第二问为1995年考研题) 【思路】 根据条件密度的定义,我们首先要求出X 与Y 的边缘密度,然后再来求条件密度.而联合分布函数的求法是一个较为繁琐的工作,需要分区域讨论,这些区域不能遗漏. 【解】⑴ 由于X 的边缘密度为 ()()104, 012, 01 ,0, 0, X x y d yx x x f x f x y dy +∞-∞⎧≤<≤<⎧⎪===⎨⎨⎩⎪⎩⎰⎰其他.其他同理,有 ()()2, 01,,0, Y y y f y f x y dx +∞-∞≤<⎧==⎨⎩⎰其他故当01y <<时,()Y f y >0,且 ()()()|4, 01,,2|0, X Y Y xyx f x y yf x y f y ⎧≤<⎪==⎨⎪⎩其他从而,在{}Y y =条件下,X 的条件密度为 ()|2, 01,01,|0, X Y x x y f x y ≤<<<⎧=⎨⎩其他同样可得,在{}X x =条件下,Y 的条件密度为 ()|2, 01,01,|0, Y X y y x f y x ≤<<<⎧=⎨⎩其他⑵ 对联合分布函数()(),,F x y P X x Y y =≤≤要分区域讨论.对于0x <或0y <,有 ()(),,0;F x y P X x Y y =≤≤= 对于01,01,x y ≤<≤<有 ()2200,4;yx F x y uvdudv xy ==⎰⎰对于1,1x y ≥≥,有 (),1;F x y = 对于1,01,x y ≥≤<有 ()()2,1,;F x y P XY y y =≤≤= 对于1,01,y x ≥≤<有 ()()2,,1;F x y P X x Y x =≤≤= 从而,X 和Y 的联合分布函数为 ()22220, 00,01,01,,, 01,1,, 1,01,1, 1,1x y x y x y F x y x x y y x y x y<<⎧⎪≤<≤<⎪⎪=≤<≤⎨⎪≤≤<⎪≤≤⎪⎩或【技巧】 由于本题中,X 与Y 的地位完全平等,因此,在求条件密度时,只需求出一个,另一个用对- 68 -称性即可得到,此对称性在(),F x y 中也有很好的体现,对称性的利用也经常是我们解决数学问题的一种技巧,另外,在求(),X Y 的分布函数时,一定要牢牢记住它的定义:()(),,.F x y P X x Y y =≤≤对一切,x y 都要讨论,它是一个分区域函数,不同值的定义范围一定要证明. 例3.4.1 设二维随机变量(),X Y 的概率密度函数为 ()()2,01,0,,0, ky x x y x f x y ⎧-≤≤≤≤=⎨⎩其他试求常数k ,并问X 与Y 是否相互独立?【思路】 常数k 的确定仍是利用联合密度的性质,而独立性质的判断只须验证是否成立()()(),,X Y f x y f x f y =为此,首先要求出X 与Y 的边缘密度()X f x 与()Y f y .【解】 由联合密度的性质知()()()1010151,22,24xx y f x y dxdy ky x dxdy k dx x ydy k +∞+∞-∞-∞≤≤≤≤==-=-=⎰⎰⎰⎰⎰⎰ 所以,24.5k =(),X Y 关于X 的边缘密度为()()()()2024122, 012, 0 1,550, 0, x X x ydy x x x x f x f x y dy +∞-∞⎧⎧-≤≤-≤≤⎪⎪===⎨⎨⎪⎪⎩⎩⎰⎰其他.其他而(),X Y 关于Y 的边缘密度为()()()()122412, 01,34,01,52,50, 0, Y y ydx y y y y y x f y f x y dx +∞-∞⎧⎧≤<-+≤≤⎪⎪-===⎨⎨⎪⎪⎩⎩⎰⎰其他其他 很明显,当01,0,x y x <<<<时,有 ()()(),,X Y f x y f x f y ≠ 所以X 与Y 不互相独立. 【注】本例中,(),X Y 的联合密度(),0f x y ≠的区域是三角形区域(){},:01,0D x y x y x =≤≤≤≤.虽然(),f x y 在D 上可表达成分离变量形状 ()()()12,f x y kg x g y =,这里,()12,g x x =-()2.g y y =但需要注意的是,只有当D 为矩形区域(){},:,D x y a x b c y d =≤≤≤≤(包括全平面、半平面等)时,()()()12,f x y kg x g y =才是使X 与Y 相互独立的充要条件.从而本题中X 与Y 不是相互独立的.如果(),X Y 的联合密度改为()()~~2,01,01,,0, k y x x y f x y ⎧⎪-≤≤≤≤=⎨⎪⎩其他则此时,X 与Y 必相互独立.例3.4.2 设X 和Y 是两个相互独立的随机变量,X 服从区间()0,1上的均匀分布,Y 服从参数12λ=的指数分布,求a 的二次方程220a Xa Y ++=有实根的概率.【思路】 方程220a Xa Y ++=有实根当且仅当2440,X Y ∆=-≥故本题是求概率()2P X Y ≥,而要计算此概率必须知道X 与Y 的联合密度,因此 首先必须根据题中独立性的假定求出(),.f x y【解】 有题设知,X 与Y 的概率密度分别为 ()1 010, X x f x <<⎧=⎨⎩,其他. 和 () 00, y 0Y x f y ⎧>⎪=⎨⎪≤⎩y-21e 2.由于,X Y 相互独立,故X 与Y 的联合密度为 ()()(), 01,0,0, X Y x y f x y f x f y ⎧<<>⎪==⎨⎪⎩y-21e 2其他又因为方程220a Xa Y ++=有实数当且仅当2440,X Y ∆=-≥故所求概率为()()()()2221120000101, 1 1110.x x yx y x y P X Y f x y dxdy dxdy dx dy dx dx ≥≥<<>⎛⎫≥====- ⎪ ⎪⎝⎭=-=Φ-Φ⎤⎦⎰⎰⎰⎰⎰⎰⎰⎰22y y x ---222x -211e e e 22e而()()10,10.8432Φ=Φ=(查正态分布表),故方程220a Xa Y ++=有实根的概率为0.1448. 【技巧】 本题是二维连续型随机变量的综合题,要求读者熟悉均匀分布,指数分布的定义,掌握独立性和概率计算的基本方法,知道怎么利用独立性构造联合分布.同时,要求大家在计算形如2-Ax e的积分时,如何应用正态分布的性质和特征,这种计算技巧,在概率论、微积分中是常用的.例3.4.3 一电子仪器由两个部件构成,以X 和Y 分别表示两部件的寿命(单位:千小时),已知X 和Y 的联合分布函数为 ()()0.50.50.51,0,0,,0, x y x y e e e x y F x y -+--⎧--+≥≥⎪=⎨⎪⎩其他⑴ 问X 和Y 是否独立; ⑵ 求两个部件的寿命都超过100小时的概率.α【解】 (方法1)直接利用分布函数计算. ⑴ X 与Y 的边缘分布函数分别为()()0.51, 0,,0, 0.x X e x F x F x x -⎧-≥=+∞=⎨<⎩ 与 ()()0.51, y 0,,0,y 0.y Y e F y F y -⎧-≥=+∞=⎨<⎩ 故有 ()()(),, ,,X Y F x y F x F y x y =-∞<<+∞ 从而,X 与Y 相互独立. ⑵ 由于X 与Y 相互独立,故- 70 -()()()()()()()0.050.050.10.1,0.10.10.110.110.1 10.110.1 .x y P X Y P X P Y P X P Y F F eeeα---=>>=>>=-≤-≤⎡⎤⎡⎤⎣⎦⎣⎦⎡⎤=--==⎡⎤⎣⎦⎣⎦(方法2)利用概率密度进行计算.⑴ 以(),f x y ,()(),X Y f x f y 分别表示(),,,X Y X Y ,的概率密度,则()()()0.5,0.25, 0,0,,0, x y F x y e x y f x y x y -+⎧∂≥≥⎪==⎨∂∂⎪⎩其他. ()()0.50.5,0,,0, x X e x f x f x y dy +∞--∞⎧≥==⎨⎩⎰其他. ()()0.50.5,0,,0, y Y e y f y f x y dx +∞--∞⎧≥==⎨⎩⎰其他. 由()()(),, (,)X Y f x y f x f y x y =-∞<<+∞知X 与Y 独立. ⑵()()0.50.10.10.10.1,0.10.25.x y P X Y dy edx e α+∞+∞-+-=>>==⎰⎰ 【解毕】【技巧】 用分布函数和概率密度均可以判定随机变量的独立性,具体应用哪种方法要依题而定.一般较为常用的是概率密度的方法,但本题中用前一方法反而简单些.在本题的计算时,读者要注意X 与Y 的对称性,不必重复计算,另外,利用分布函数(),F x y 的性质也可以直接计算出α,即()()()()()0.10.1,0.1,0.1,,0.10.1,0.1.P X Y F F F F e α-=>>=+∞+∞-+∞-+∞+=例3.5.1 设二维随机变量的联合分布律为求:(1)1;Z X Y =+(2)2Z X Y =(3)3;Z Y=(4)()4max ,Z X Y =的分布律 【思路 】 思路与一维离散型随机变量的函数的分布律的计算类似,注意上面介绍的技巧.【解】 我们将(),i j x y 的取值与取这些值的概率以及要计算的所有随机变量的函数()1,2,3,4k Z k =的Y X Y从而得到:(1)1Z X Y =+的分布律为(2)2Z X Y =的分布律为 Y(3)3XZ=的分布律为(4)()4,Z max X Y =分布律为【注】(1)二维离散型随机变量的函数的分布律的计算是有一定的方法可循的,读者在利用上述方法计算时要搞清楚它的背景.在求XY的分布律时,注意要求()00.P Y =≠ (2)如果已知X 与Y 独立,且X 与Y 的分布律给定时,求(),Z g X Y =的分布律的方法是:首先利用独立性构造出X 与Y 的联合分布律表,然后再按本题类似的技巧处理. 例3.5.2 (1987年考研题)设随机变量X 与Y 相互独立,其概率密度函数分别为()1,01,0, X x f x ≤≤⎧=⎨⎩其他.和 (), 0,0, y 0y Y e y f y -⎧>=⎨≤⎩. 求随机变量2Z X Y =+的概率密度函数. 【思路】 这是计算两个独立随机变量和的概率密度的典型题,可有两种解法,一是通过2Z X Y =+的分布函数来求解.另一是利用卷积公式来计算. 【解】 (方法1)分布函数法.因为,X Y 相互独立,所以(),X Y 的联合概率密度函数为()()(), 01,0,,0, y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他.故2Z X Y =+的分布函数为 ()()()22,.Z X Y ZF z P X Y Z f x y dxdy +≤=+≤=⎰⎰记(),0f x y ≠的区域为(){},:01,0D x y x y =≤≤>,积分区域为(){},:2,G x y X Y Z =+≤于是().y Z D GF z e dxdy -⋂=⎰⎰为此,考虑区域D G ⋂的情形.① 当0z ≤时,D G ⋂≠∅(见图3.5.1),于是,()0.Z F z = ② 当02z <≤时,D G ⋂为图3.5.2中的阴影部分,于是()()()22220111.2z xyyx z z Z D GF z e dxdy dxe dy e dx z e ππ-----⋂===-=-+⎰⎰⎰⎰⎰图3.5.1 图3.5.2当2z >时,D G ⋂为图3.5.3中的阴影部分,于是()()1220111.2z xyy z Z D GF z e dxdy dxe dy e e ----⋂===--⎰⎰⎰⎰所以,随机变量2Z X Y =+的概率密度为 ()()()()'20, 0,11, 02,211, 2.2z z z zz f z F z e z e e z --⎧⎪≤⎪⎪==-<≤⎨⎪⎪->⎪⎩(方法2)卷积公式法.若记2W X =,为求W 的密度函数,我们先考虑W 的分布函数()()()()2220, 0,, 02,21, 2.W wXw F w P WwP Xw P X w w f x d x w w-∞⎛⎫=≤=≤=≤⎪⎝⎭≤⎧⎪⎪==<≤⎨⎪>⎪⎩⎰故W 的概率密度为()1, 02,20, W w f w ⎧<≤⎪=⎨⎪⎩其他.图3.5.3因为,X Y 相互独立,所以W 与Y 也相互独立,从而2Z X Y W Y =+=+的概率密度可按卷积公式计算,即 ()()()z W Y f z f wf z wd w+∞-∞=-⎰为使被积函数非零,则必须满足条件 02,0,w z w <≤⎧⎨->⎩ 即 02,.w w z <≤⎧⎨<⎩ 从而,分情况讨论:① 若0,z ≤则{}{}02,w w z <≤⋂<=∅于是 ()0;z f z = ② 若02,z <≤则 {}{}{}020,w w z w z <≤⋂<=<<故 ()()()0111;22zz w zz f z e dw e ---==-⎰ ③ 若2z >,则{}{}{}020,w w z w z <≤⋂<=<<故 ()()()220111.22z w z z f z e dw e e ---==-⎰ 综上知 ()()()20, 0,11, 02,211, 2.2z z zz f z e z e e z --⎧⎪≤⎪⎪=-<≤⎨⎪⎪->⎪⎩【技巧】 这类问题的求解,主要工作量是求分段函数的积分和积分上、下限的确定,希望读者仔细体会此题求解的方法,得到举一反三的效果.第一种分布函数的方法是通常的方法,第二种卷积公式法仅适用随机变量和的情形.其实,对两随机变量和的线性组合,我们也有如下推广的卷积公式:设(),X Y 的联合概率密度为(),f x y ,则()0,0Z aX bY a b =+≠≠的概率密度为()11,,.z z ax z by f z fx dx f y dy b b a a +∞+∞-∞-∞--⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭⎰⎰不妨用此公式去验证一下本题的结论. 例3.5.3 设二维随机变量(),X Y 的概率密度函数为 ()(), 0,0,,0, x y ex y f x y -+⎧>>⎪=⎨⎪⎩其他求Z X Y =-的概率密度. 【思路】 用分布函数法.【解】 显然,当0z ≤时,有 ()()()0;z F z P Z z P X Y z =≤=-≤= 当0z >时,有 ()()()()()00,.x y z x y zx y zy F z P Z z P X Y z f x y dxdy e dxdy -+-≤-≤>>=≤=-≤==⎰⎰⎰⎰此积分的积分区域如图3.5.4所示.因此,化此重积分为累次积分,得()()()()03331112221.z x zx zx y x y z zx zz z z z z F z dxedy dxedye e e e e ++∞+-+-+------=+⎛⎫=-++- ⎪⎝⎭=-⎰⎰⎰⎰所以有 ()1, 00, 0.z Z e z F z z -⎧->=⎨≤⎩从而Z X Y =-的概率密度为()(), 0,0, 0.z Z Z e z df z F z dz z -⎧>==⎨≤⎩ 图3.5.4 【寓意】 本题考查的是给定(),X Y 联合概率密度的条件下,求X 和Y 的函数的分布函数,关键是对二重积分确定其积分区域.例3.5.4 设二维随机变量(),X Y 服从取区域(){},:0,0D x y x a y a =<<<<上的均匀分布,试求:(1)XZ Y=的概率密度;(2)()max ,M X Y =的概率密度. 【思路】 利用分布函数法来处理,先分别求出Z 和M 的分布函数,然后再求导.【解】 (1)由于(),X Y 的概率密度为 ()21, 0,0,,0, x a y a f x y a ⎧<<<<⎪=⎨⎪⎩其他故当0z <时,()0.Z X F z P Z Y ⎛⎫=≤=⎪⎝⎭而当01z <<时,有()()201,.2zya Z xz yX z F z P z f x y dxdy dy dx Y a ≤⎛⎫=≤=== ⎪⎝⎭⎰⎰⎰⎰当1z ≥时,有 ()()2011,1.2a aZ xx z yzX F z P z f x y dxdy dx dy Y a z≤⎛⎫=≤===- ⎪⎝⎭⎰⎰⎰⎰从而XZ Y =的概率密度为 ()()20, 0,1, 0<z<1,21, 1.2Z Z z d f z F z dz z z<⎧⎪⎪==⎨⎪⎪≥⎩(2)由于 ()21, 0,0,,0, x a y a f x y a ⎧<<<<⎪=⎨⎪⎩其他故 ()()1, 0,,0, X x a f x f x y dy a+∞-∞⎧<<⎪==⎨⎪⎩⎰其他. ()()1, 0,,0, Y y a f y f x y dx a +∞-∞⎧<<⎪==⎨⎪⎩⎰其他.从而,X 与Y 相互独立,且均服从()0,a 上的均匀分布,故对()max ,M X Y =的分布函数有()()()()()()()()()22max ,,, 0,0, M X Y F z P M z P X Y z P X z Y z P X z P Y z z z a F z F z a =≤=≤=≤≤=≤≤⎧<<⎪==⎨⎪⎩其他,.由此得()max ,M X Y =的概率密度为 ()()22, 0<z<a,0, .M M zd f z F z adz ⎧⎪==⎨⎪⎩其他 【注】 此题时考查对随机变量的商及极值函数的分布的计算,其中的关键仍然时积分区域的确定.当然,商运算等也已有现成的公式,我们在此一并介绍给读者.若(),X Y 的联合密度为(),f x y ,则有()()()()()()(),; ,;11,; ,.X Y X YXY X Y f z f x z x dx f z f x x z dx z f z f x dx f z f zy y dy x x y +∞+∞+--∞-∞+∞+∞-∞-∞=-=-⎛⎫== ⎪⎝⎭⎰⎰⎰⎰综例3.6.1 在10件产品中有2件一等品,7件二等品和1件次品,从10件产品中不放回地抽取3件,用X 表示其中的一等品数,Y 表示其中的二等品数.求:(1)(),X Y 的联合分布律;(2),X Y 的边缘分布律;(3)X 和Y 是否独立; (4)在 0X =的条件下,Y 的条件分布律.【解】 ⑴ 依题设知X 只能取0,1,2,Y 只能取0,1,2,3.显然,当2i j +<或3i j +>时,有 (),0.P X i Y j ===当23i j ≤+≤时,由古典概率知 ()()3271310,0,1,2,0,1,2,3.i j i j C C C P X i Y j i j C --===== 将这些一一计算并列表后,即得(),X Y 的分布律的具体表示. ⑵ ,X Y 的边缘分布律也列于分布律表中,具体形式如下:⑶ 而()()000,120P X P Y ===≠因此,X 与Y 不相互独立. ⑷ 在0X =的条件下,Y 的条件概率为 ()()()0,|0,0,1,2,3.0P X Y j P Y j X j P X =======因此Y 的条件分布律如下:【寓意】本例时二维离散型随机变量的综合题,首先要求读者了解如何用古典概型来求解相关的概率,进而考查联合分布律与边缘分布律的关系及独立性的判别,条件分布律的计算只需知道条件概率的定义便可给出.综例 3.6.2 设12,34,,ξξξξ独立同分布,且 ()()00.6,10.4,1,2,3,4.i i P P i ξξ=====(第一问为1994年考研题)求:(1)行列式1234ξξξξξ=的概率分布;(2)方程组112231420,0x x x x ξξξξ+=⎧⎨+=⎩ 只有零解的概率.【思路】 要求行列式ξ的分布律,先要将ξ的所有可能取值找到,然后利用独立性将取这些值的概率计算出来,而第二问就是求系数行列式0ξ≠的概率. 【解】(1)记114223,,ηξξηξξ==则 142312ξξξξξηη=-=-由于12,34,,ξξξξ相互独立,故12,ηη也相互独立,且12,ηη都只能取0,1两个值,而()()()()()122323111,1110.16,P P P P P ηηξξξξ==========()()120010.160.84.P P ηη====-= 随机变量12ξηη=-有3个可能取值-1,0,1,易见()()()()121210,1010.840.160.1344,P P P P ξηηηη=-=======⨯= ()()()()121211,0100.160.840.1344,P P P P ξηηηη========⨯= ()()()01110.7312.P P P ξξξ==-=--== 于是行列式ξ的概率分布为(2)由于齐次方程 112231420,0.x x x xξξξξ+=⎧⎨+=⎩ 只有零解的充要条件是系数行列式不为0,故此题就简化为求概率 ()()01010.73120.2688.P P ξξ≠=-==-=【技巧】 本题实质上是求多维离散型随机变量的函数分布的问题,通过引入变量12,ηη将其化为二维随机变量函数分布问题,问题的解决最关键的是用到了独立性的性质:若随机变量12,,,n ξξξ相互独立,则()112,,,m g ξξξ与()212,,,m m n g ξξξ++也相互独立.综例3.6.3 设随机变量(),X Y 服从(){}22,:0,1D x y y xy =≥+≤上的均匀分布,定义随机变量,U V如下:0, 0,1, 0,2, .X U X Y X Y <⎧⎪=≤<⎨⎪≥⎩0, 3,1, 3.XV X⎧≥⎪=⎨<⎪⎩ 求(),U V 的联合概率分布,并计算()0.P UV ≠【思路】 写出(),U V 的所有可能取值,并利用均匀分布的特征计算其取值的概率.【解】 由题设知,(),X Y 的联合密度函数为 ()()()2, ,,,0, ,.x y D f x y x y D π⎧∈⎪=⎨⎪∉⎩(),U V 有6个可能取值:()()()()()0,0,0,1,1,0,1,1,2,0和()2,1.由,U V 的定义知()()()()()()()()000,0,1,0,1,10,021, .4AOC BCE x yx yP U V P P U V P P U V P X Y X P X Y S f x y dxdy dxdy S π≤<≤<===∅===∅===≤<<=≤<====⎰⎰⎰⎰扇其中,AOC S 扇和BCE S 分别表示图3.6.1中扇形AOC 与半圆BCE 的面积.同理有()()()()()()()()()10,10,0 ,212,0, ,612,1,.12BCE BCE AOF BCE S P U V P X X P X S S P U V P Y X X P X S S P U V P Y X X P Y X S ===<<=<=====≤≥=≥=====≤≥=≤<==扇COE 扇BOF 扇所以,(),U V 的联合概率分布为图 3.6.1从而 ()()()01,12,1.4123P UV P U V P U V ≠===+===+= 【技巧】 本题是求连续型随机变量的离散值函数的分布问题,解题过程中巧妙地应用了均匀分布的性质从而简化了计算.综例3.6.4 设随机变量(),X Y 的联合概率密度为 (), 0,,0, .y cxe x y f x y -⎧<<<+∞=⎨⎩其他⑴ 求常数c; ⑵ X 与Y 是否独立?为什么? ⑶ 求()()|||,|X Y Y X f x y f y x ; ⑷ 求()()1|2,1|2;P X Y P X Y <<<= ⑸ 求(),X Y 的联合分布函数; ⑹ 求Z X Y =+的密度函数; ⑺ 求()1P X Y +<; ⑻ 求()()min ,1P X Y <.【解】 (1)根据(),1,f x y dxdy +∞+∞-∞-∞=⎰⎰得 ()20013.22y yy ccdy cxe dy y e dy c +∞+∞--===Γ=⎰⎰⎰这里利用了特殊函数()10x x e dx αα+∞--Γ=⎰的性质:()()1,αααΓ+=Γ故 1.c =(2)先分别计算X 和Y 的边缘密度.()(),0, 0,,0, 0.0,0yxX x xe dy x xe x f x f x y dy x x +∞-+∞--∞⎧>⎧>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰()()21, 0, y 0,,20, y 0.0, 0y y yY xxe dx y y e f y f x y dx y -+∞--∞⎧⎧>>⎪⎪===⎨⎨⎪⎪≤⎩≤⎩⎰⎰由于在0x y <<<+∞上,()()(),X Y f x y f x f y ≠,故X 与Y 不独立. (3)由条件分布密度的定义知()()()2|2,0,,|0, .X Y Y xx y f x y yf x y f y ⎧<<<+∞⎪==⎨⎪⎩其他 ()()()|,,0,|0,.x y Y X X f x y e x y f y x f x -⎧<<<+∞==⎨⎩其他 (4)直接由条件概率定义知()()()()()1212120222201,121,221|2.21512yxy Y dx xe dyf x y dxdy e e P X Y P X Y P Y ef y dyy e dy ----∞-∞---∞--<<<<====<-⎰⎰⎰⎰⎰⎰又由条件密度的性质知 ()()1|1|2|2X Y P X Y f x dx -∞<==⎰而 ()|,02,|220, .X Y xx f x ⎧<<⎪=⎨⎪⎩其他 ()111|2.24x P X Y dx <===⎰(5)由于()(),,,F x y P X x Y y =≤≤故有: 当0x <或0y <时,(),0.F x y = 当0y x ≤<<+∞时,有()()2200011,,11.22y yv vv y F x y P X x Y y dv ue du v e dv y y e ---⎛⎫=≤≤===-++ ⎪⎝⎭⎰⎰⎰当0x y ≤<<+∞时,有()()()()2001,,11.2y x xvu y x y u F x y P X x Y y dv ue dv u e e du x e x e -----=≤≤==-=-+-⎰⎰⎰综上知 ()()220, 00,1,11, 0,2111, 02yx y x y F x y y y e y x x e x e x y ---⎧⎪<<⎪⎪⎛⎫=-++≤<<+∞⎨ ⎪⎝⎭⎪⎪-+-≤<<+∞⎪⎩或 (6)根据两个随机变量和的密度公式 ()(),,z f z f x z x dx +∞-∞=-⎰ 由于要被积函数(),f x z x -非零,只要当0x z x <<-,即02zx <<时,从而有: 当0z <时, ()0;z f z =当0z ≥时, ()()22201;2zz x zxzz z f z xedx e xe dx e e ππ-----⎛⎫===+- ⎪⎝⎭⎰⎰因此, ()21, 0,20, 0.zz z z e e z f z z --⎧⎛⎫+-≥⎪ ⎪=⎨⎝⎭⎪<⎩(7)由于已经求出了Z X Y =+的密度,故()()1111220111.2z z z z P X Y f z dz e e dz e e -----∞⎡⎤⎛⎫+<==+-=--⎢⎥ ⎪⎝⎭⎣⎦⎰⎰(8)()()()()()2111min ,11min ,111,115 11 1.22v vvP X Y P X Y P X Y dv ue du v e dv e +∞+∞---<=-≥=-≥≥=-=-=-⎰⎰⎰【技巧】 本题是二维连续型随机变量的综合题,几乎涵盖了其中的主要内容.在常数确定c 时,应用了Γ函数的定义和性质,当然,读者也可以直接用分部积分法计算.概率()1|2P X Y <=的求法,要利用条件密度()||2X Y f x 进行计算,其计算过程同一般的一维密度的计算方法.()1P X Y +<的计算,我们利用了第(6)问的结论,在不需要求X Y +密度的情形下,只要直接计算就可以了,即 ()111212011.xyxP X Y dxxe dy ee ----+<==--⎰⎰综例3.6.5 设[]~0,1,X U 且在{}X x =的条件下,[]~0,,0 1.Y U X x ≤≤求(1)()221|,01;P X Y X x x +≤=≤≤ (2)()221.P X Y +≤【思路】第一问等价于求(),P Y x ≤=故只需利用条件密度()||Y X f y x 来计算,而第二问的计算,首先要知道(),X Y 的联合分布密度(),f x y . 【解】 由题设知,X 的密度函数为 ()1, 01,0, X x f x ≤≤⎧=⎨⎩其他.而在{}X x =条件下,Y 的条件密度为()|1, 01,|0, .Y Xy x f y x x⎧≤≤≤⎪=⎨⎪⎩其他 从而(),X Y 的联合密度函数为: ()()()|1, 01,,|0, X Y X y x f x y f x f y x x⎧≤≤≤⎪==⎨⎪⎩其他① 对01x ≤≤,有()()()22221|1|P X Y X x P Y x X x P Y X x +≤==≤-==≤=()((|11|min min .Y X y y f y x dy dx x x x===- 82 -②()()(22221422001101111,ln 1.cos x y x y y x P X Y f x y dxdy dxdy dr rd x r πθθ+≤+≤≤≤≤+≤===⎰⎰⎰⎰⎰⎰极坐标变换【注】 本题中的()||Y X f y x 和(),f x y 虽然具有相同的表示式,但其含义却截然不同. ()||Y X f y x 是y 的一元函数,而不是二元函数,x 在此视为常量,这相当于微积分中,当二元函数一个自变量固定时,它只是另一个变量的一元函数.当x 变化时,Y 的条件密度函数也变化. 综例3.6.6 设二维随机变量(),X Y 在矩形 (){},:02,01G x y x y =≤≤≤≤上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度().f s【解】 由题设知,二维随机变量(),X Y 的概率密度为 ()()()1,,,,20,,.x y G f x y x y G ⎧∈⎪=⎨⎪∉⎩若若设()(),S X Y F s P S s ==≤为S 的分布函数,则:当0s <时,()()0,F s P XY s =≤= 当2s ≥时,()()1,F s P XY s =≤= 当02s ≤<时,曲线xy s =与矩形G 的上边交于点(),1s (见图3.6.1),于是 ()()(),F s P S s P XY s =≤=≤因而,S XY =的概率密度为 ()()1ln 2ln ,02,20, s s f s ⎧-≤<⎪=⎨⎪⎩其他.【解毕】【寓意】 本题实质上是求两随机变量的乘积的概率密度.第四章 随机变量的数学特征例4.2.1 一台设备由三大部件构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30,假设各部件的状态相互独立,以X 表示同时需要调整的部件数,试求X 的数学期望EX 和方差DX . 【思路】 关键是求出X 的分布律,然后用定义计算EX .【解】 引入事件:{}i=1,2,3.i A i =第个部件需要调整 根据题设,三部件需要调整的概率分别为()()()1230.10,0.20,0.30.P A P A P A ===由题设部件的状态相互独立,于是有()()()()()1231230 0.90.80.70.504.P X P A A A P A P A P A ====⨯⨯=()()12312312310.10.80.70.90.20.70.90.80.3 0.398P X P A A A A A A A A A ==⋃⋃=⨯⨯+⨯⨯+⨯⨯=()()12312312320.10.20.70.10.80.30.90.20.3 0.092;P X P A A A A A A A A A ==⋃⋃=⨯⨯+⨯⨯+⨯⨯=X从而00.50410.39820.09230.0060.6,i i iEX x p ==⨯+⨯+⨯+⨯=∑22222200.50410.39820.09230.0060.820.i i iEX x p ==⨯+⨯+⨯+⨯=∑故 ()2220.8200.60.46.DX EX EX =-=-=【解毕】【技巧】 本题的关键是引入事件i A ,将X 的分布律求出,因此,可以发现求期望和方差的难点转到了求X 的分布.同时,方差的计算一般均通过公式()22DX EX EX =-来进行.例4.2.2 对目标进行射击,直到击中目标为止.如果每次射击的命中率为p ,求射击次数X 的数学期望和方差.【解】 由题意可求得X 的分布律为()1, 1,2,,1.k P X k pq k q p -====-于是 1111.k k k k EX kpqp kq ∞∞--====∑∑为了求级数11k k kq∞-=∑的和,我们利用如下的技巧:由于11, 0<q<1.1k k q q∞==-∑- 84 -对此级数逐项求导,得1001,kk k k k k d dq q kq dq dq ∞∞∞-===⎛⎫== ⎪⎝⎭∑∑∑ 因此()12111,11k k d kq dq q q ∞-=⎛⎫== ⎪--⎝⎭∑ 从而 ()22111.1EX ppp pq ===- 为了求DX ,我们先求2EX .由于 ()()212121111.k k K k EX k k pqpq k k q p p ∞∞--===-+=-+∑∑ 为了求()221k k k k q∞-=-∑得值,注意到()()123112.11k k d d kq dq dq q q ∞-=⎛⎫⎛⎫== ⎪ ⎪ ⎪--⎝⎭⎝⎭∑ 从而()2322121.1q EX p qp p pq =+=+- 因此 ()22221.p qDX EX EX p p-=-== 【寓意】 本题实质上是求几何分布的数学期望和方差.本题的主要技巧是利用了级数的逐项求导公式来求期望. 当然同样可用逐项积分方法来求11k k kq∞-=∑和211k k kq ∞-=∑,这种手段在级数求和或数学期望和方差的计算是十分奏效的.还有一点,我们在此说明一下,在本题中,由于X 的取值都是正数,所以只要正项级数1kk k xp ∞=∑收敛,则一定绝对收敛,即1k k k x p ∞=∑的和就为EX .而实际情况中,可能存在级数1k k k x p ∞=∑是条件收敛的,此时,X 的数学期望就不存在(虽然1kk k xp ∞=∑本身仍是收敛的),因此判断离散型随机变量的期望是否存在,要用关于级数绝对收敛的判断方法.例4.2.3 设X 是一随机变量,其概率密度为()1, 10,1, 01,0, x x f x x x +-≤≤⎧⎪=-<≤⎨⎪⎩其他.求DX .(1995年考研题) 【解】()()()()()()()011011222221110..11211 6EX xf x dx x x dx x x dx EX x f x dx x x dx x x dx x x dx +∞-∞-+∞-∞-==++-===++-=-=⎰⎰⎰⎰⎰⎰⎰于是 ()221.6DX EX EX =-=【解毕】 【技巧】 在计算数学期望和方差时,应首先检验一下()f x 的奇偶性,这样可利用对称区间上奇偶函数的积分公式简化求解,比如本题中,()f x 为偶函数,故()0.EX xf x dx +∞-∞==⎰同样DX 的计算也可直接简化.例4.2.4 已知连续型随机变量X 的密度函数为 ()221, -<x<+.xx f x -+-=∞∞求EX 与DX .(1987年考研题) 【思路】 一种求法是直接利用数学期望与方差的定义来求.另一种方法是利用正态分布的形式及其参数的含义.【解】 (方法1)直接法.由数学期望与方差的定义知()()()()()()222211111 1.x x x x EX xf x dx xedx edx x e dx e dx +∞+∞+∞+∞-------∞-∞+∞--===+-==⎰⎰⎰⎰⎰()()()()()22222212111 .2x t t DX E X EX x f x dx x dxt e e dt +∞+∞---∞-∞+∞+∞---∞=-=-=-==⎰⎰⎰⎰(方法2) 利用正态分布定义.由于期望为μ,方差为2σ()()222.x x μσ---∞<<+∞所以把()f x 变形为- 86 -()()221212x f x π--⨯=易知,()f x 为11,2N ⎛⎫ ⎪⎝⎭的概率密度,因此有 11,.2EX DX ==【解毕】 【技巧】 解决本题的关键是要善于识别常用分布的密度函数,不然的话,直接计算将会带来较大的工作量.反过来,用正态分布的特性也可以来求积分2kx e dx +∞--∞⎰等.(2)若干计算公式的应用主要包括随机变量函数的数学期望公式,数学期望与方差的性质公式的应用.例4.2.5 设X 表示10次独立重复射击中命中目标的次数,每次射中目标的概率为0.4,求2EX . (1995年考研题) 【解】 由题意知()~10,0.4X B 于是100.44,EX =⨯=()100.410.4 2.4.DX =⨯⨯-=由()22DX EX EX =-可推知()2222.4418.4.EX DX EX =+=+=【寓意】 本题考查了两个内容,一是由题意归结出随机变量X 的分布;二是灵活应用方差计算公式,如果直接求解,那么 ()1010221000.410.4kk k K EX k C -==-∑的计算是繁琐的.例4.2.6 设X 服从参数1λ=的指数分布,求()2XE X e -+.(1992年考研题)【解】 由题设知,X 的密度函数为(), 0,0, 0.x e x f x x -⎧>=⎨≤⎩且1EX =,又因为()22201,3Xxx xEeef x dx e e dx +∞+∞-----∞===⎰⎰ 从而 ()22141.33XX E X eEX Ee --+=+=+= 【解毕】 【寓意】 本题的目的是考查常见分布的分布密度(或分布律)以及它们的数字特征,同时也考查了随机变量函数的数学期望的求法.例4.2.7 设二维随机变量(),X Y 在区域(){},:01,G x y x y x =<<<内服从均匀分布,求随机变量21Z X =+的方差.DZ【解】 由方差的性质得知()214DZ D X DX =+=又由于X 的边缘密度为()()1, 01,0, .2, 010, xX xdy x f x f x y dy x x +∞--∞⎧<<⎪==⎨⎪⎩<<⎧=⎨⎩⎰⎰其他其他.于是()112200222212, 2,32121.2318EX x xdx EX x xdx DX EX EX ====⎛⎫=-=-= ⎪⎝⎭⎰⎰因此 , 1244.189DZ DX ==⨯=【解毕】 【技巧】 尽管本题给出的是二维随机变量,但在求X 的期望于方差时,可以从X 的边缘密度函数出发,而不必从X 与Y 的联合密度函数开始.在一般情形下,采用边缘密度函数较为方便.例4.2.8 设随机变量X 和Y 独立,且X 服从均值为1Y 服从标准正态分布,试求随机变量23Z X Y =-+的概率密度函数.(1989年考研题)【思路】 此题看上去好像与数字特征无多大联系,但由于X 和Y 相互独立且都服从正态分布,所以Z- 88 -作为,X Y 的线性组合也服从正态分布.故只需求EZ 和DZ ,则Z 的概率密度函数就唯一确定了. 【解】 由题设知,()()~1,2,~0,1X N Y N .从而由期望和方差的性质得2235,29.EZ EX EY DZ DX DY =-+==+=又因Z 是,X Y 的线性函数,且,X Y 是相互独立的正态随机变量,故Z 也为正态随机变量,又因正态分布完全由其期望和方差确定,故知()~5,9Z N ,于是,Z 的概率密度为 ()()2529, .z Z f z z --⨯=-∞<<+∞ 【解毕】【寓意】 本题主要考查二点内容,一是独立正态分布的线性组合仍为正态分布;其二是正态分布完全由其期望和方差决定.例4.2.9 假设随机变量Y 服从参数为1λ=的指数分布,随机变量 0, ,1, .k Y k X Y k ≤⎧=⎨>⎩若若 ()1,2k =(1) 求1X 和2X 的联合概率分布; (2) 求()12E X X +. 【解】 显然,Y 的分布函数为()1, 0,0, 0.y e y F y y -⎧->=⎨≤⎩10, 11 1.Y X Y ≤⎧=⎨>⎩若,,若 20, 21 2.Y X Y ≤⎧=⎨>⎩若,,若 (1)()12X X +有四个可能取值:()()()()0,0,0,1,1,0,1,1,且()()()()()()()()()()()()()()121121212120,01,21 11,0,11,20,1,01,212 21,1,11,22 P X X P Y Y P Y F e P X X P Y Y P X X P Y Y P Y F F e e P X X P Y Y P Y --===≤≤=≤==-===≤>====>≤=<≤=-=-===>>=>()2 12.F e -=-=于是得到1X 和2X 的联合分布律为(3) 显然,12,X X 的分布律分别为1X 0 1 2X 0 1P 11e -- 1e - P 21e -- 2e -因此 1212,.EX e EX e --==故 ()121212.E X X EX EX e e --+=+=+ 【解毕】【技巧】 本题中若不要求求X 与Y 的联合分布律,也可直接求出()12E X X +,这是因为 ()()()1111011.EX P Y P Y P Y e -=⨯>+⨯≤=>=而 222,EX PY e -=>= 因此 ()121212.E X X EX EX e e --+=+=+不仅如此,我们还能求12,X X 其他函数的期望.例如求()12E X X ,此时,由于121, 2,0 .Y X X >⎧=⎨⎩若,其他故 ()()()()21212022.E X X P Y P Y P Y e -=⨯>+⨯≤=>=例4.2.10 设随机变量(),X Y 服从二维正态分布,其密度函数为()()22121,2x y f x y e π-+= 求随机变量Z .【思路】 利用随机变量函数的期望的求法进行计算.。

概率论与数理统计课件:多维随机变量及其分布

概率论与数理统计课件:多维随机变量及其分布

多维随机变量及其分布
首页 返回 退出2
在实际问题中, 试验结果有时需要同时用两个或两
个以上的随机变量来描述.
如, 炮弹的弹着点的位置, (X, Y)是一个二维随
机变量.
又如,研究天气变化状况,令X, Y, Z分别表示
温度、湿度、风速,则(X, Y, Z)是一个三维随机变量.
研究多维随机变量有必要将多个变量作为一个整
二元函数
F ( x , y ) P{( X x ) (Y y )} P ( X x , Y y )
称为随机变量(X,Y)的联合分布函数。
一维随机变量X的联合分布
函数F ( x ) P ( X x ).
多维随机变量及其分布
首页 返回 退出
F(x,y)=P(X≤x,Y≤y)
y
F ( , y ) 0,
o
F ( x , ) 0,
F ( , ) 0, F ( , ) 1;
4 F ( x , y )关于x和y分别右连续;
x1
F ( x1 , y ) F ( x2 , y )
5 对于任意x1 x2 , y1 y2 , 有矩形公式




X
性质: 1 pij 0, i , j 1, 2, ;
2


p
i 1 j 1
多维随机变量及其分布
ij
1.
首页 返回 退出
例1 从1,2,3,4中任取一个数记为X、再从1,2, ⋯ ,
中任取一个数记为Y,求 ( X, Y ) 的联合分布律及P
( X=2Y ).
解:
可以证明,f(x,y)满足联合密度的性质。

概率论与数理统计(叶慈南 刘锡平 科学出版社)第4章 多维随机变量(r.v.)及其分布

概率论与数理统计(叶慈南 刘锡平 科学出版社)第4章 多维随机变量(r.v.)及其分布

fY
(
y
)
=
π2
1− y2, 0,
− 1 ≤ y ≤ 1. 其它
28
2. 二维正态分布 p97
(X,Y)的概率密度为
f (x, y) =
1
e 2(
−1 1− ρ
2
)

(
x
− µ1 σ2
1
)2
−2
ρ
(
x

µ1 )( σ 1σ
y
2

µ2
)
+
(
y
− µ2 σ2
2
)2

2πσ σ 1 − ρ 2 12
f ( x, y)dy
−∞
称为(X,Y)关于X的边缘概率密度。
∫ fY ( y) =
+∞
f ( x, y)dx
−∞
称为(X,Y)关于Y的边缘概率密度。
20
例p102 设 ( X ,Y )的概率密度是
f
(
x,
y)
=
cy(2 −

0,
x
),
0 ≤ x ≤ 1, 0 ≤ y ≤ x ,
其它
求 (1) c 的值; (2) 两个边缘密度; (3) P{X<1/2}.

pi j

p.j
… … … … ….. … …

p1 . p2 .

pi . …
1
18
3
例 将一枚硬币掷 3 次, 以X表示前 2 次中出现 H的次数, 以Y表示 3 次中出现H的次数. 求X,Y 的联合分布律以及(X,Y)的边缘分布律.
19
三、连续型(X,Y)的边缘概率密度

茆诗松《概率论与数理统计教程》(第2版)(课后习题 多维随机变量及其分布)【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)(课后习题   多维随机变量及其分布)【圣才出品】


(4)

解:(1)由
(2)
(3) (4)
的非零区域与
解得 k=1/8. .
. 的交集如图 3-1 的阴影部分,
图 3-1
5 / 84
圣才电子书

由图 3-1 得
十万种考研考证电子书、题库视频学习平 台
6.设随机变量(X,Y)的联合密度函数为
试求
(1)常数 k;
(2)
所以
的联合分布列为
表 3-9
10 / 84
圣才电子书

十万种考研考证电子书、题库视频学习平 台
12.设二维随机变量
的联合密度函数为
求 解:
. 的非零区域与
的交集为图 3-4 阴影部分,所以
图 3-4
图 3-5
13.设二维随机变量 .
的联合密度函数为
解:
的非零区域与
的交集为图 3-5 阴影部分,所以
(3)
的非零区域与
的交集为图 3-3(d)阴影部分,所以
9 / 84
圣才电子书

十万种考研考证电子书、题库视频学习平 台
图 3-3
11.设随机变量 Y 服从参数为
的指数分布,定义随机变量 X 如下:
求 X1 和 X2 的联合分布列.
解:
的联合分布列共有如下 4 种情况:
,试求
11 / 84
圣才电子书

14.设二维随机变量
十万种考研考证电子书、题库视频学习平

的联合密度函数为
求 X 与 Y 中至少有一个小于 0.5 的概率.
解:两事件

中至少有一个发生的概率为
15.从(0,1)中随机地取两个数,求其积不小于 3/16,且其和不大于 1 的概率. 解:设取出的两个数分别为 X 和 Y,则(X,Y)的联合密度函数为

概率论与数理统计讲义第三章 多维随机变量及其分布

概率论与数理统计讲义第三章 多维随机变量及其分布

第三章多维随机变量及其分布随机向量的定义:随机试验的样本空间为S={ω},若随机变量X1(ω),X2(ω),…,X n(ω)定义在S上,则称(X1(ω),X2(ω),…,X n(ω))为n维随机变量(向量)。

简记为(X1,X2,…,X n)。

二维随机向量(X,Y),它可看作平面上的随机点。

对(X,Y)研究的问题:1.(X,Y)视为平面上的随机点。

研究其概率分布——联合分布率、联合分布函数、联合概率密度;Joint2.分别研究各个分量X,Y的概率分布——边缘(际)分布律、边缘分布函数、边缘概率密度;marginal3.X与Y的相互关系;4.(X,Y)函数的分布。

§ 3.1 二维随机变量的分布一.离散型随机变量1.联合分布律定义3.1 若二维随机变量(X,Y)可能取的值(向量)是有限多个或可列无穷多个,则称(X,Y) 为二维离散型随机变量。

设二维离散型随机变量(X,Y)可能取的值(x i,y j), i,j=1,2…,取这些值的概率为p ij=P{(X,Y)=(x i,y i)}=p{X=x i,Y=y i}i, j=1,2,…——(3.1)称 (3.1)式为(X,Y)的联合分布律。

(X,Y)的联合分布律可以用表格的形式表示如下:性质:(1) p ij ≥ 0,i, j=1,2,… (2) ∑ji ij p ,=12.边缘分布律设二维离散型随机变量(X,Y) 的联合分布律为p ij = P{X=x i ,Y=y i } i, j=1,2,…分量X 和Y 的分布律分别为 p i.=P{X=x i } i=1,2,… 满足①p i.≥0②∑ p i.=1p .j = p{Y=y i }j=1,2,… ①p .j ≥0②∑ p .j =1我们称p i.和p .j 分别为(X,Y)关于X 和Y 的边缘分布律,简称为(X,Y)的边缘分布律。

二维离散型随机变量(X,Y) 的联合分布律与边缘分布率有如下关系: p i.=P{X=x i }=P{X=x i , S}=P{X=x i ,∑(Y=y j )}=j∑P{X=x i ,Y=y j }=j∑p ij (3.4) 同理可得 p .j =i∑p ij(3.5)例1:一整数X 随机地在1,2,3三个整数中任取一值,另一个整数Y随机地在1到X中取一值。

概率论与数理统计第三章

概率论与数理统计第三章

华东师范大学
第三章 多维随机变量及其分布
第18页
解: P{ X<2, Y<1}
2 1
{x 2, y 1}

y
p( x, y )dxdy
1 2
dx 6e ( 2 x 3 y ) dy
0 0
6 e dx e dy
2 x 3 y 0 0
2
1
{x<2, y<1}
y 1 x2
x y 1
2 2
y
其 它
-1 1 x
当|x|>1时,p(x, y)=0,所以 p(x)=0 当|x|≤1时,
p ( x)
1 x2
1 2 2 d y 1 x 1 x2
y 1 x2
不是均匀分布
6 December 2014
华东师范大学
华东师范大学
第三章 多维随机变量及其分布
第22页
二、多维超几何分布
口袋中有 N 只球,分成 r 类 。 第 i 种球有 Ni 只, N1+N2+……+Nr = N. 从中任取 n 只, 记 Xi 为取出的n 只球中第i 种球的只数. 则 (X1, X2, ……, Xr)的联合分布列为:
P146 例3.1.5
注意: P (X ,Y ) D p( x, y)dxdy
D

偏导数存在的点上有
华东师范大学
6 December 2014
第三章 多维随机变量及其分布
第15页
例3.1.2
Ae (2 x 3 y ) , x 0, y 0 若 (X, Y) ~ p( x, y ) 0, 其 它

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

比如:
概率统计
比如:
1 x y 0
F( x, y) 0 x y 0
对这二元函数来验证第4条性质。
现找 4 个点如下:
( x2 , y2 ) (1, 1); ( x1, y2 ) (1, 1)
( x2 , y1 ) (1, 1); ( x1, y1 ) (1, 1)
F(1,1) F(1,1) F(1, 1) F(1, 1)
0
x 0, y 0 其它
求: (1) 分布函数 F( x, y)
(2) ( X ,Y )落在G内的概率
其中 G: x y 1 及 x 轴、y 轴所围区域
解: (1) Q
x
F(x, y)
y
f ( x, y)dxdy
当 x 0, y 0 时
xy
F( x, y)
0 dx 0
2,4,8,10,14,16,20这7个 数不能被3整除,但能
被2整除
6,12,18这3个数能被2 整除,又能被3整除
不难验证:
1 1
7473
pi j 0, 0 0 pi j 21 21 21 21 1
概率统计
故 得: (X,Y) 的 联合分布 律为:
XY
0 1
01
7
4
21 21
7
P( x1 X x2 , y1 Y y2 )
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y1 ) F ( x1, y2 )
如图:
y
y2 L
y1 L M
M
x
0 x1
x2
概率统计
2. 二维随机变量分布函数 F(x,y) 的性质
性质1 F(x,y) 分别对 x 和 y 单调非减, 即:

概率论与数理统计(茆诗松)第二版第三章课后习题3.1参考答案

概率论与数理统计(茆诗松)第二版第三章课后习题3.1参考答案

⎧0, ⎪ 2 2 x y , ⎪ ⎪ 2 F ( x, y ) = ⎨ x , ⎪y2, ⎪ ⎪ ⎩1,
x < 0 或 y < 0, 0 ≤ x < 1, 0 ≤ y < 1, 0 ≤ x < 1, y ≥ 1, x ≥ 1, 0 ≤ y < 1, x ≥ 1, y ≥ 1.
8. 设二维随机变量(X, Y ) 的联合密度函数为
1.5 2
x
(4) P{ X + Y < 4} = ∫ dx ∫
0 2
y 4 2 0 2 x
2
=∫
0
x2 ⎞ x3 ⎞ 1⎛ 1⎛ 2 2 ⎟ ⎜ ⎟ ⎜ x dx x x = . 6 4 6 2 = − + − + ⎟ ⎜ ⎟ ⎜ 8⎝ 2 ⎠ 8⎝ 6 ⎠0 3
2
6. 设随机变量(X, Y ) 的联合密度函数为
0.5 x 0.5
1
x
= ∫ (6 x − 6 x 2 )dx
0.5
1
= (3x 2 − 2 x 3 )
0.5
1 0.5
= 0.5 ;
y
P{Y < 0.5} = ∫ dy ∫
0
y
6dx = ∫ dy ⋅ 6 x
0
0.5
y y
= ∫ (6 y − 6 y ) dy
0
0.5
0 y 1 0.5
0.5
1
x
= (4 y − 3 y )
试求 (1)P{0 < X < 0.5, 0.25 < Y < 1}; (2)P{X = Y }; (3)P{X < Y }; (4)(X, Y ) 的联合分布函数. 解: (1) P{0 < X < 0.5, 0.25 < Y < 1} = ∫ dx ∫
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i1 j1
求二维离散型随机变量(X,Y)的分布律,关键 是写出(X,Y)所有可能取到的数对及其发生的概 率.
3.1.3 二维离散型随机变量及联合分布律
【例3.3】甲乙两人独立进行射击,甲每次命中率
为0.2,乙每次命中率为0.5.以X、Y分别表示甲、
乙各射击两次的命中次数,试求(X,Y)的分布律.
G
1x
1x
kx( x y)dydx kx( x y)dydx
0 x
0 x

1
x
kx2dydx 2k
1 x2dx
x
dy
2k
1 x3dx 1 k
0 x
0
0
0
2
解得 k=2
3.1 多维随机变量及联合分布
(2)设区域D为:[ Y X / 2 ]
3.1 多维随机变量及联合分布
3.1.4 二维连续型随机变量及联合概率密度
定义3.4 如果存在二元非负函数f (x,y),使得二维随 机变量(X,Y)的分布函数F(x,y)可表示为
xy
F( x, y)
f (u, v)dudv

则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的概
Y
解:由题知,X、Y均X可取00,1,2.1 由于甲2、乙
是独立进行射击,所以0{X = i}0与.16{Y = j0}.3两2 事件0相.16互
独立,i,j = 0,1,2.1于是 0.08
0.16 0.08
P{X = i,Y = j} = P{X =2i}P{Y =0.0j1}
0.02 0.01
为n维随机变量或n维随机向量,简记为X = (X1, X2,…,Xn).
注意,多维随机变量的关键是定义在同一样本空 间上,对于不同样本空间上的两个随机变量,本章 将不涉及这类问题.
3.1.1 多维随机变量的概念
【例3.1】在研究每个家庭的支出情况时,我们感
兴趣于每个家庭(样本点)的衣食住行四个方面, 若用X1(),X2(),X3(),X4()分别表示衣食住
率密度,或X与Y的联合概率密度.
显然,在F(x,y)偏导数存在的点上有
f (x, y) 2F(x, y) xy
3.1.4 二维连续型随机变量及联合概率密度
联合概率密度有如下性质:
(1) 非负性:f(x,y) 0
(2) 归一性:

f ( x, y)dxdy 1

行的花费,则(X1,X2,X3,X4)就是一个四维随机 变量.
逐个地来研究每个随机变量的性质是不够的,还 需 要 将 (X1 , X2 , … , Xn) 作 为 一 个 整 体 来 进 行 研 究.
本章中主要研究二维随机变量,二维以上的情 况可类似地进行.
3.1.2 二维随机变量及联合分布函数
定义3.2 设(X,Y)是二维随机变量,对于任意实数 x,y,事件{X x},{Y y}同时发生的概率
用Xi表示某类保险单的第i次理赔额,N表示在一个 会计年度所有这类保单发生理赔次数,Y表示这一年
中对这类保单的理赔总量.建立如下理赔总量模型:
【保险中的理赔总量模型】
现有一组保单,假设在一年内可能发生的理赔次 数为0,1,2和3,相应的概率为0.1,0.3,0.4和 0.2.每张保单可能产生的理赔额为1,2,3(万 元),相应的概率为0.5,0.4,0.1,试分析理赔
0x
e x e ydydx e2xdx 1
0
x
0
2
3.1.4 二维连续型随机变量及联合概率密度 【例3.6】设二维随机变量(X,Y)具有概率密度
2e(2x y) , x 0, y 0
f (x, y) 0,
其它
求分布函数F(x,y).
F(, y) lim F( x, y) 0 x
F( x,) lim F( x, y) 0 y
F(,) lim F( x, y) 1 x y
3.1.2 二维随机变量及联合分布函数
(3) 右连续性:对每个变量是右连续的,即
对任意的x0,有
其它
试求P{X < Y}.
解:由联合概率密度的性质3知:P{ X Y } f ( x, y)dxdy
积分区域x < y与f(x,y)取值非零的区域的x交y 集如图.
所以 P{ X Y } f ( x, y)dxdy e(xy)dydx
x y
求P{| X – Y | 1}.
解:设D表示区域{| x – y| 1},由于( X,Y )的概率
密度为 所以f( Nhomakorabeax,
y)

1 4
,
0,
(x, y)G 其它
P{| X Y | 1} f (x, y)dxdy 1dxdy
D:|x y|1
D G 4
=
总量Y的概率分布,并求理赔总量超过6万元的概
率.
第3章 多维随机变量及其分布
3.1 多维随机变量及联合分布
3.1.1 多维随机变量的概念
定义3.1 如果X1(),X2(),…,Xn()是定义在同 一个样本空间 = {}上的n个随机变量,则称
X () ( X1(), X2(), , Xn())
F( x, y) P{ X x,Y y}
称为二维随机变量(X,Y)的分布函数,或X与Y的 联合分布函数.
如果将二维随机变量(X,Y)看成是平面上随机 点的坐标,那么分布函数F(x,y)在(x,y)处的函数 值就是随机点(X,Y)落在以点(x,y)为右上角的无 穷矩形内的概率.
3.1.2 二维随机变量及联合分布函数
14 区域D∩G的面积=
13 3 44
3.1.5 常用二维分布
2. 二维正态分布
定义3.6 (X,Y)的概率密度为
f
( x,
y)

1 2 1 2
1
2
exp{
1 2(1
(x 2)[
1 )2

2 1

2
(x

1 )( y 1 2

2 )

(
y
2)2
分布律也可写成以下表格的形式.
3.1.3 二维离散型随机变量及联合分布律
X
0
1
2
Y
0
1/7
2/7
1/21
1
2/7
4/21
0
2
1/21
0
0
(2) P{ X Y 2} P{ X 0,Y 2} P{ X 1,Y 1}
P{ X 2,Y 0} 6 . 21
P{ X 2 Y 2 1} P{ X 0,Y 0} P{ X 0,Y 1} P{ X 1,Y 0} 5 . 7
C2i 0.2i0.82i C2j 0.5 j0.52 j
i,j = 0,1,2.
故(X,Y)的分布律为
3.1.3 二维离散型随机变量及联合分布律
【补充例 】袋中有2只黑球、2只白球、3只红球,
在其中任取2只球.以X表示取到黑球的只数,以Y表 示取到白球的只数.(1)求(X,Y)的分布律.
1. 二维均匀分布
定义3.5 设G是平面上的一个有界区域,其面积为
A,令
f
(
x,
y)


1 A
,
0,

(x, y)G 其它
以f(x,y)为概率密度的二维随机变量(X,Y)称为服
从区域G上的均匀分布.
3.1.5 常用二维分布
【例3.7】设( X,Y )服从区域
G:{0 x 2;0 y 2}上的均匀分布,
f
(
x,
y)

kx( x 0,

y),
0 x 1, x 其 它.
y
x,
(1) 试确定常数k;
y x
(2) 求概率P{Y X / 2}.
解:(1)由于在区域G:
0
1
[0<x<1, -x<y<x]上有f(x,y)>0,
y x
其他f(x,y)=0.所以 1

则 P{Y X / 2} P{( X ,Y ) D}
D f ( x, y)dxdy

f ( x, y)dxdy
D G

1
dx
x/2
2x( x y)dy
0
0
x
15/ 16.
y x
1 y x
y x/2
3.1 多维随机变量及联合分布
3.1.5 常用二维分布
第3章 多维随机变量及其分布
3.1 多维随机变量及联合分布 3.2 二维随机变量的边缘分布 3.3 条 件 分 布 3.4 随机变量的相互独立性 3.5 二维随机变量函数的分布
第3章 多维随机变量及其分布
在实际问题的研究中,只用一个随机变量往 往是不够的.
例如,要研究儿童的生长发育情况,常用身 高和体重两个随机变量来描述;
研究某地区的气候状况需要考虑温度、湿度 等多个随机变量;
研究国民经济状况,就需要用GDP、固定资 产投资、各产业产值、人均消费额等很多随机变 量来描述.
本章学习多维随机变量及其分布的有关概念、 理论和应用.
【保险中的理赔总量模型】
保险公司在一个会计年度保险单的理赔次数、每 次的理赔额和全年理赔总量均为随机变量.某保险 公司为了研究某类保险在一个会计年度的理赔总量,
容易证明分布函数F(x,y)具有以下的性质: (1) 单调性:F(x,y)分别对x或y是单调不减的,即 当 x1 x2 时,有 F ( x1, y) F ( x2, y) 当 y1 y2 时,有 F ( x, y1) F ( x, y2 ). (2) 有界性:对任意的x和y,有 0 F( x, y) 1 ,且
相关文档
最新文档