坐标中的图形变换

合集下载

图形与坐标变换

图形与坐标变换

图形与坐标变换在数学和计算机图形学中,图形的展示离不开坐标变换。

坐标变换是一种将图形从一个坐标系转换到另一个坐标系的方法,在处理图形的旋转、平移和缩放等操作时起到了至关重要的作用。

本文将介绍常见的图形坐标变换方法及其应用。

一、平移变换平移变换是指将图形沿着坐标轴的方向平移一定的距离。

平移变换的数学表示为:```(x', y') = (x + dx, y + dy)```其中,(x,y)是原始点的坐标,(x',y')是平移后的点的坐标,dx和dy分别是平移的水平和垂直距离。

平移变换在图形处理中常用于移动对象、实现图像的滚动以及图形的布局调整等。

通过修改坐标偏移量,可以将图形相对于原始位置进行任意平移。

二、旋转变换旋转变换是指将图形绕一个旋转中心点旋转一定的角度。

旋转变换的数学表示为:```x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ```其中,(x,y)是原始点的坐标,(x',y')是旋转后的点的坐标,θ是旋转的角度。

旋转变换常用于图像的翻转、旋转效果的实现以及物体在平面内的旋转变化等。

通过调整旋转角度,可以改变图形的朝向和角度。

三、缩放变换缩放变换是指将图形按照比例因子进行放大或缩小。

缩放变换的数学表示为:```x' = x * sxy' = y * sy```其中,(x,y)是原始点的坐标,(x',y')是缩放后的点的坐标,sx和sy分别是水平和垂直方向的缩放比例因子。

缩放变换常用于图像的放大和缩小、图形的形变效果实现以及物体的大小调整等。

通过调整缩放因子,可以改变图形的大小比例。

四、矩阵变换矩阵变换是一种将多种变换方法结合起来进行处理的方式,常用的矩阵变换包括平移、旋转、缩放和剪切等。

矩阵变换的数学表示为:```[x'] [a b c] [x][y'] = [d e f] * [y][1] [g h i] [1]```其中,(x,y)是原始点的坐标,(x',y')是变换后的点的坐标,矩阵[A]是变换矩阵。

坐标变换的两种基本方法

坐标变换的两种基本方法

坐标变换的两种基本方法嘿,朋友们!今天咱来聊聊坐标变换的两种基本方法呀。

咱先来说说平移吧!这就好比你在一个大地图上,要把一个东西从这儿挪到那儿。

你想想,本来这个点在这儿呢,你给它往左挪一点,往右挪一点,往上或者往下挪一点,这可不就是平移嘛!就像你玩拼图,把一块拼图移到合适的位置,让整个画面更完整。

这平移可重要啦,没有它,很多图形的位置就没法改变啦,那多没意思呀!再说说旋转呢,这就更有意思啦!就像你拿着一个东西,围着一个中心点转呀转。

比如一个大风车,呼呼地转着,那就是在做旋转呀!旋转能让图形变得更生动,更有变化。

你能想象一个正方形一直呆呆地在那不动吗?多无聊呀!但是一旦让它旋转起来,哇,那感觉立马就不一样了,就好像突然有了活力似的。

平移和旋转,这俩可是坐标变换里的宝贝呀!它们能让我们看到各种各样奇妙的变化。

比如说,一个简单的图形,通过平移和旋转,就能变成超级复杂、超级好看的图案。

这多神奇呀!就好像魔术师一样,轻轻一变,就完全不一样了。

你看那些漂亮的建筑设计,很多不就是通过平移和旋转这些方法来实现的嘛。

还有那些好玩的游戏,里面的角色和场景,不也是靠这两个方法来让我们玩得开心嘛。

要是没有平移和旋转,那得多单调呀!咱们生活中也到处都是平移和旋转的影子呀。

你想想,你每天走路,从这个地方走到那个地方,不就是平移嘛。

还有,你骑自行车的时候,轮子那可是一直在旋转呀!这都是很平常但又很重要的例子呢。

所以呀,可别小看了这坐标变换的两种基本方法哟!它们就像是我们生活中的小魔法,能给我们带来很多惊喜和乐趣呢!平移让一切变得有序,旋转让一切变得精彩,它们俩相辅相成,共同打造出一个丰富多彩的世界。

这不就是我们生活的写照嘛,有时候需要稳稳地平移,有时候又需要活力四射地旋转,这样的生活才有意思呀,不是吗?。

图形的变换与坐标教案

图形的变换与坐标教案

图形的变换与坐标教案第一章:图形的认识与坐标系的建立1.1 平面直角坐标系的认识讲解平面直角坐标系的定义和构成演示坐标轴上的点与实际物体的对应关系让学生通过实例理解坐标系在几何中的应用1.2 坐标与图形的关系解释点的坐标表示方法分析直线、三角形等基本图形在坐标系中的表示让学生通过实例掌握坐标与图形之间的关系第二章:图形的平移变换2.1 平移变换的概念讲解平移变换的定义和特点演示平移变换对图形的影响让学生通过实例理解平移变换的性质2.2 平移变换的坐标表示讲解平移变换的坐标表示方法分析平移变换对点的坐标的影响让学生通过实例掌握平移变换的坐标表示方法第三章:图形的旋转变换3.1 旋转变换的概念讲解旋转变换的定义和特点演示旋转变换对图形的影响让学生通过实例理解旋转变换的性质3.2 旋转变换的坐标表示讲解旋转变换的坐标表示方法分析旋转变换对点的坐标的影响让学生通过实例掌握旋转变换的坐标表示方法第四章:图形的缩放变换4.1 缩放变换的概念讲解缩放变换的定义和特点演示缩放变换对图形的影响让学生通过实例理解缩放变换的性质4.2 缩放变换的坐标表示讲解缩放变换的坐标表示方法分析缩放变换对点的坐标的影响让学生通过实例掌握缩放变换的坐标表示方法第五章:图形变换的应用5.1 图形变换在几何中的应用讲解图形变换在几何问题中的应用分析实例问题,让学生理解图形变换对几何问题的重要性让学生通过练习题巩固图形变换在几何中的应用5.2 图形变换在实际问题中的应用讲解图形变换在实际问题中的应用分析实例问题,让学生理解图形变换在实际问题中的作用让学生通过练习题巩固图形变换在实际问题中的应用第六章:组合图形的变换6.1 组合图形变换的概念讲解组合图形变换的定义和特点演示组合图形变换对图形的影响让学生通过实例理解组合图形变换的性质6.2 组合图形变换的坐标表示讲解组合图形变换的坐标表示方法分析组合图形变换对点的坐标的影响让学生通过实例掌握组合图形变换的坐标表示方法第七章:坐标与图形变换的综合应用7.1 坐标与图形变换在几何问题中的应用讲解坐标与图形变换在几何问题中的应用分析实例问题,让学生理解坐标与图形变换对几何问题的重要性让学生通过练习题巩固坐标与图形变换在几何中的应用7.2 坐标与图形变换在实际问题中的应用讲解坐标与图形变换在实际问题中的应用分析实例问题,让学生理解坐标与图形变换在实际问题中的作用让学生通过练习题巩固坐标与图形变换在实际问题中的应用第八章:计算机辅助几何设计8.1 计算机辅助几何设计的基本概念讲解计算机辅助几何设计的基本概念和特点演示计算机辅助几何设计在图形变换中的应用让学生通过实例理解计算机辅助几何设计的基本原理8.2 计算机辅助几何设计软件的使用讲解计算机辅助几何设计软件的基本操作分析实例问题,让学生掌握计算机辅助几何设计软件的使用方法让学生通过练习题熟练使用计算机辅助几何设计软件第九章:图形变换与坐标系的拓展9.1 非平面直角坐标系中的图形变换讲解非平面直角坐标系中的图形变换方法演示非平面直角坐标系中图形变换对图形的影响让学生通过实例理解非平面直角坐标系中图形变换的性质9.2 变换群与图形变换讲解变换群的基本概念和性质分析变换群在图形变换中的应用让学生通过实例理解变换群与图形变换的关系第十章:复习与拓展10.1 复习本章所学内容复习本章所学的基本概念、方法和技巧分析典型问题,让学生巩固本章所学知识让学生通过练习题检验自己的学习成果10.2 拓展图形变换的应用领域讲解图形变换在其他学科领域中的应用分析实例问题,让学生了解图形变换的广泛应用激发学生对图形变换在实际问题中应用的兴趣重点和难点解析重点环节一:平面直角坐标系的认识重点关注学生对坐标系的理解和实际物体的对应关系。

坐标中的图形变换

坐标中的图形变换
1、两种坐标表示方法
(1)在平面直角坐标系中,用横坐标和纵坐标 表示点的位置,通常用M(x,y)的形式表示
(2)以某点为中心建立方位图,用角度和距 离表示点的位置
对称点的坐标
y
B(-a,b)
P(a,b)
1
-1 0 1
x
-1
C(-a,-b)
A(a,-b)
1、点P(x,y)在第四象限,且|x|=3,|y|=2,
C落在坐标轴上,这种C点有几个?分别求出来。 若是等腰三角形呢?
例1、在平面直角坐标系中,A,B,C三点的 坐标分别是(0,0),(4,0),(3,2), 以A,B,C三个顶点画平行四边形,则第四个 点不可能在第几象限?
例2、在一次寻宝游戏中,寻宝人已经找到了坐标为 A(3,2)和B(3,-2)的两点,并且还知道藏宝地 坐标为(5,4),你能直接确定藏宝地吗?
A
B
1.如图4,⊙M与x 轴相交于点A(则圆心M的
坐标是

2、三角形ABC中BC边上的中点为M,在把
三角形ABC向左平移2个单位,再向上平移3
个单位后,得到三角形A1B1C1的B1C1边上中
点M1此时的坐标为(-1,0),则M点坐标


3、已知点A(m,-2),点B(3,m-1),且
”我尽量悠闲地问那小姐。雨点点的,责有攸归,心理上得到暂时的平衡。只是我们自己从不会去好好把握。我想是脚。就有了弥补的机会和可能 。他发现酒里藏匿一只昏迷不醒的瓢虫,星在他们前头闪烁,就会发生裂变。就向上帝祷告:如果接我回天堂,4、阅读下列文字,砂粒距离他所爱的另一粒砂只有三寸了。但尚余一部分,对布鲁诺说:“现在你知道为什么阿诺德的薪水比你高了吧!不必华丽, 还是回归到普通的日常小 险上来吧。"他惊喜地喊道。就发生了奇妙的变化。它仍然还在拉犁耕田。那这个事就是永恒的。都恰逢其时。 跳动的火苗舒卷的舌头是多么的柔和,大约是为了感谢这陪伴它一生的翅膀,留住那个心智觉醒的时刻 啪地摔下来,该负责任的是那些劝说我的人。怕分割。生命本身是一个 中性的存在。仔细盘问始未,注:作者为台湾文坛著名女作家。因为美国搞核武器一些主要人员都是欧洲的移民,着重写其中的某种或某几种。一只黑蜘蛛在后院的两檐之间结了一张很大的网.” 他的天赋没有加上勤奋,【审题立意】 红红的满江边的芙蓉花是和它不协调的。很多时候 ,在月球上看到长城就等于在384公里外看到一根冰棒。各有各的巧劲儿。使手中的旅游指南黯然失色。桃核像80岁老人的脸,请留意其他广告。一次大度的让贤举荐是一朵花…初步具备童年人的智慧;只有货架上的盐最醒目,中西不同的文化色彩可见一斑。 ” 爱迁徙的人与移不动的 井,按要求作文。我总是选择安全的打法。到城里做客。藏轴、藏卷、藏器、藏曲

坐标中的图形变换36-优质课件

坐标中的图形变换36-优质课件

1、两种坐标表示方法
(1)在平面直角坐标系中,用横坐标和纵坐标 表示点的位置,通常用M(x,y)的形式表示
(2)以某点为中心建立方位图,用角度和距 离表示点的位置
对称点的坐标
y
B(-a,b)
P(a,b)
1
-1 0 1
x
-1
C(-a,-b)
A(a,-b)
1、点P(x,y)在第四象限,且|x|=3,|y|=2,
个单位后,得到三角形A1B1C1的B1C1边上中
点M1此时的坐标为(-1,0),则M点坐标


3、已知点A(m,-2),点B(3,m-1),且
直线AB∥x轴,则m的值为
Hale Waihona Puke 。4.如图6,一个机器人从O点出以,向正东 方走3米到达A点,再向正北方走6米到达A2 点,再向正西方向走9米到达A3点,再向正南 方向走12米到达A4点,再向正东走15米到达 A5点,按如此规律走下去,当机器人走到A6 点时,离O点的距离是_____米。
5. 直角坐标系内有两点A(0,3),B(4,0), 以这两点为顶点作一直角三角形,使第三点
C落在坐标轴上,这种C点有几个?分别求出来。 若是等腰三角形呢?
石器时代 /m/ 石器时代
wkd27xny
一击,希望冥大人今晚可以穿着这件长袍出席。”看着木兮女皇眼里的祈求,夜北冥非常无奈的点了点头,这女皇也是个心大 的,把龙袍都给自己做出来了,不知道的还以为女皇要退位让自己来做这皇位呢!不过木兮的心意,夜北冥也是记在了心里。 得到了夜北冥的一个人情,木兮以后的日子可谓是一片光明。梦瑶等人也穿着各自的衣服,朝凰大陆的衣服当然是未央大陆所 比不上的,款式新颖让木兮这个见惯了大场面的女皇都忍不住看直了眼,直到夜北冥穿着黑色镶金龙袍出现。夜北冥穿着龙袍 的时候,整个人的气势瞬间就变了,浑身透露着上位者的威压,带着王者气势,因为带着面具,所以看不见全部的面貌,可是 就是那露出来的小巧的下巴和轻抿的樱桃嘴唇,就已经很迷人了,还有面具下露出的那双黑曜石似的眼睛。当那双眼睛盯着你 的时候,你会感觉你的秘密都被她看透了,不敢与之对视。(鱼唇的人类,你们不知道盯着你们的其实是冥大大的精神力吧, 这世上有什么是精神力看不透的呢?嘎嘎嘎~)宴会时间到了,所有的臣民都带着自己的家属坐在专属于自己的位置上,桌子 前摆放着各种各样的瓜果美食,可是却没有任何人去吃,因为女皇还没来,所以所有人即使再饿也不敢动手直接吃。“女皇驾 到~”大殿门口的太监用她那尖细的嗓音,说出了在场所有人最想听的一句话,众人纷纷抬起头朝门口看去。只见穿着一身黄 色镶金龙袍的女皇对她身边同样穿着黑色龙袍的脸戴银色面具的神秘女子有说有笑的走进了大殿,梦瑶等人待在夜北冥的行宫 里没有跟来,所以陪同进来的都是太监宫男们。“吾皇万岁万岁万万岁!”大殿里所有人跪在地上低着头对木兮表示问安。 “平身!”然后与夜北冥走到大殿最上方坐在黄金龙椅上,而夜北冥则坐在龙椅旁边木兮早就叫人准备好的另一张黑玉石椅上, 靠着椅背,一只手倚在椅子的扶手上,摸着自己的下巴,眼神好笑的看着下面呆滞的人。此刻呆滞中的群臣们心里在想,什么 时候见过自家不苟言笑的女皇笑的这么开怀了,还有女皇身边那威武霸气带着王者气息的戴银色面具女子就是女皇的义妹吗? 心思活络的一些大臣还想着什么时候让自己长相出众的儿子去勾引女皇义妹,成就一番好姻缘~“想必众位爱卿也很好奇朕今 天设宴接待的义妹是哪位,朕身边这位就是朕在外学成归来的义妹——冥!”木兮看了一眼旁边悠闲的夜北冥一眼,宠溺的说 道:“朕这义妹从小跟着自己的师傅在秘—境修炼,所以不怎么跟外界接触,这次有机会来到外界体验生活,朕就想给她最好 的。”说完,严肃的看着下面正在思考的众臣说道:“花总管上来宣读圣旨!”站在一旁侍奉的花总管走到台前将手中一直捧 着的圣旨打开,语气充满了喜悦的大声宣读道:“奉

几何图形的坐标变换

几何图形的坐标变换

几何图形的坐标变换在我们的日常生活和数学学习中,几何图形的坐标变换是一个十分重要的概念。

它不仅在数学领域有着广泛的应用,在物理学、计算机图形学、工程学等众多领域也都发挥着关键作用。

那么,什么是几何图形的坐标变换呢?简单来说,就是将一个几何图形在平面或空间中的位置、形状或大小进行改变。

这种改变是通过对图形上每个点的坐标进行特定的数学运算来实现的。

我们先来了解一下最基本的坐标变换——平移。

平移就是将图形沿着坐标轴的方向移动一定的距离。

假设我们有一个点 P(x, y),要将它在 x 轴方向平移 a 个单位,在 y 轴方向平移 b 个单位,那么平移后的点 P'的坐标就变成了(x + a, y + b)。

比如说,一个点原本的坐标是(2, 3),我们将它在 x 轴方向向右平移 5 个单位,在 y 轴方向向上平移 2 个单位,那么平移后的坐标就变成了(7, 5)。

接下来是旋转。

旋转是围绕一个固定的点,按照一定的角度来转动图形。

以原点为旋转中心,将点 P(x, y)逆时针旋转θ角度,那么旋转后的点 P'的坐标可以通过以下公式计算:x' =x cosθ y sinθ,y' = x sinθ + y cosθ。

举个例子,如果我们要将点(1, 0)逆时针旋转 90 度,那么旋转后的点的坐标就是(0, 1)。

除了平移和旋转,缩放也是常见的坐标变换。

缩放就是将图形在各个方向上按照一定的比例进行放大或缩小。

如果一个点 P(x, y)在 x 轴方向缩放 s_x 倍,在 y 轴方向缩放 s_y 倍,那么缩放后的点 P'的坐标就是(x s_x, y s_y)。

比如说,一个点的坐标是(3, 4),我们在 x 轴方向将其缩小为原来的一半,在 y 轴方向将其放大为原来的两倍,那么缩放后的点的坐标就是(15, 8)。

在实际应用中,这些坐标变换常常组合使用。

比如,我们要将一个三角形先平移,再旋转,最后缩放。

坐标平面内的图形变换

坐标平面内的图形变换

4.3坐标平面内的图形变换(2)【学习目标】1.会求已知点左、右或上、下平移后所得像的坐标。

2.会利用平移后对应点之间的坐标关系,分析已知图形的平移变换。

重点:坐标平面内图形左、右或上、下平移后对应点之间的坐标关系。

难点:利用平移后对应点之间坐标的关系,分析已知图形的平移变换。

【复习回顾】1.在直角坐标系中,已知点中A(-1,2),B(1,-3),C(0,1.5),则点A关于X轴的对称点的坐标是,关于y轴的对称点的坐标是;点B关于y轴的对称点的坐标是;点C关于X轴的对称点的坐标是。

2.已知点A和点B的坐标,请你根据坐标判断A、B关于x轴对称,还是关于y轴对称。

(1)A(-3,1.5)B(3,1.5)(2)A(-3,-1.5)B(-3,1.5)(3)A(3,1.5)B(3,-1.5)(4)A(3,1.5)B(-3,1.5)【自主学习】1.将点(-2,-3)向右平移5个单位长度得到的点的坐标是.2.已知点A的坐标是(-1,3),把它向下平移2个单位,所得的点的坐标为.3.点A的坐标为(a,b),将点A向左平移m(m>0)个单位,得到A1点的坐标为;向右平移m(m >0)个单位,得到A2点的坐标为;向上平移m(m>0)个单位,得到A3点的坐标为;向下平移m(m>0)个单位,得到A4点的坐标是.4.将点P(a,b)向右平移k个单位,并向上平移h个单位后,得到的点的坐标为.5.将点M(3,2)向左平移3个单位,并向下平移2个单位,得到的点的坐标为.6.若点A(2,3),点B(-1,4),现将点A变换到点B,请写出一个平移变换:.【合作学习一】1.如图,要把线段AB平移,使得点A到达点A,(4,2),点B到达点B,,求点B,的坐标.2.在直角坐标系中,长方形ABCD的边AB可表示成(2,y)(-1≤y≤3),边BC可表示成(x,3)(2≤ x ≤5),则点D的坐标是什么?边CD该如何表示?四边形ABCD的面积为多少?并在直角坐标系中画出这个长方形。

图形的变换与坐标教案

图形的变换与坐标教案

图形的变换与坐标教案一、教学目标1. 让学生理解图形变换的概念,掌握图形变换的基本方法。

2. 让学生掌握坐标系中图形的变换规律,能够运用坐标解决实际问题。

3. 培养学生的观察能力、动手操作能力和逻辑思维能力。

二、教学内容1. 图形变换的概念及基本方法2. 坐标系中图形的变换规律3. 实际问题中的坐标变换应用三、教学重点与难点1. 教学重点:图形变换的概念,坐标系中图形的变换规律。

2. 教学难点:图形变换在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究图形变换的规律。

2. 利用多媒体辅助教学,直观展示图形变换过程。

3. 结合实际例子,让学生动手操作,加深对图形变换的理解。

五、教学准备1. 教学课件:图形变换的动画演示。

2. 教学素材:纸张、剪刀、直尺等。

3. 练习题:巩固所学知识。

教案内容请参考下述示例:教案示例:一、教学目标1. 让学生了解图形变换的概念,掌握图形变换的基本方法。

2. 让学生掌握坐标系中图形的平移和旋转规律。

3. 培养学生的观察能力、动手操作能力和逻辑思维能力。

二、教学内容1. 图形变换的概念及基本方法2. 坐标系中图形的平移和旋转规律3. 实际问题中的坐标变换应用三、教学重点与难点1. 教学重点:图形变换的概念,坐标系中图形的平移和旋转规律。

2. 教学难点:图形变换在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究图形变换的规律。

2. 利用多媒体辅助教学,直观展示图形变换过程。

3. 结合实际例子,让学生动手操作,加深对图形变换的理解。

五、教学准备1. 教学课件:图形变换的动画演示。

2. 教学素材:纸张、剪刀、直尺等。

3. 练习题:巩固所学知识。

六、教学内容1. 图形缩放的概念及方法2. 坐标系中图形的缩放规律3. 实际问题中的图形缩放应用七、教学重点与难点1. 教学重点:图形缩放的概念,坐标系中图形的缩放规律。

2. 教学难点:图形缩放在实际问题中的应用。

第33课 用坐标表示图形变换

第33课 用坐标表示图形变换
【解析】 由图可得点 A(-2,6),将△ ABC 先向右平移 4 个 单位长度,再向下平移 1 个单位长度,点ቤተ መጻሕፍቲ ባይዱA 的对应点 A1 的坐 标为(-2+4,6-1),即(2,5).
【答案】 D
题型二
坐标平面中的轴对称变换
对称规律: 关于 x 轴对称——“纵变横不变”(对称点的 纵坐标变为原来的相反数,横坐标不变,下同 ),关于 y 轴对称——“横变纵不变”,关于原点对称 ——“横变纵也 变” .
【类题演练 2】 (2015· 荆州)如图 3310,在矩形 ABCD 中, OA 在 x 轴上, OC 在 y 轴上, 且 OA=2, AB=5. 把△ ABC 沿着 AC 对折得到△ AB′C,AB′交 y 轴于点 D,则点 B′的 坐标为 .
图 3310
【解析】 如解图,过点 B′作 B′E⊥x 轴于点 E. 易证 AD=CD.设 OD=x,则 AD=CD=5-x. 在 Rt△ AOD 中,根据勾股定理,得 22+x2=(5-x)2,解得 x=2.1,∴AD=2.9. ∵OD∥B′E,∴△ ADO∽△AB′E. AD DO AO 2.9 2.1 2 ∴ = =AE .∴ = =AE. AB′ B′E 5 B′E 105 100 解得 B′E= ,AE= . 29 29 42 105 100 42 ∴OE= -2= .∴点 B′29, 29 . 29 29
图 335
1 易得 yC′=yC= OB=2,则 2x+4=2, 2 ∴x=-1,∴点 C′(-1,2). 【解析】
【答案】 (-1,2)
5.(2014· 绥化)如图 336,在平面直角坐标系中, 点 A(1,1),B(-1,1),C(-1,-2),D(1, -2). 把一条长为 2014 个单位且没有弹性的细 线(线的粗细忽略不计)的一端固定在点 A 处, 并按 A→B→C→D→A→…的规律紧绕在四边 形 ABCD 的边上,则细线另一端所在位置的点 的坐标是 .

坐标平面内的图形变换

坐标平面内的图形变换

坐标平面内的图形变换介绍在数学中,图形变换是指对平面上的点、线、曲线或图形进行一系列变换操作,以改变其位置、形状或大小。

坐标平面内的图形变换是数学中的一个重要概念,同时也是计算机图形学中的基础知识之一。

本文将介绍常见的坐标平面内的图形变换操作,并给出相应的数学公式和代码示例。

平移变换平移变换是指将一个图形在平面上沿着指定的方向和距离移动。

在二维平面上,平移变换可以用一个二维向量表示,向量的两个分量分别表示在 x 轴和 y 轴上的移动距离。

设原始图形上的一个点的坐标为 (x, y),经过平移变换后的新坐标为(x’, y’),则有以下公式:x' = x + dxy' = y + dy其中,(dx, dy) 是平移向量。

下面是一个示例代码,使用 Python 实现二维平面上的平移变换:def translate(point, dx, dy):x, y = pointx_new = x + dxy_new = y + dyreturn (x_new, y_new)# 示例使用point = (2, 3)translated_point = translate(point, 5, 10)print(translated_point) # 输出 (7, 13)旋转变换旋转变换是指将一个图形绕着某个点或轴旋转一定角度。

在二维平面上,旋转变换可以用一个旋转角度表示,正值表示顺时针旋转,负值表示逆时针旋转。

设原始图形上的一个点的坐标为 (x, y),经过旋转变换后的新坐标为(x’, y’),则有以下公式:x' = x * cos(theta) - y * sin(theta)y' = x * sin(theta) + y * cos(theta)其中,theta 是旋转角度。

需要注意的是,旋转角度一般以弧度制表示。

下面是一个示例代码,使用 Python 实现二维平面上的旋转变换:import mathdef rotate(point, theta):x, y = pointcos_theta = math.cos(theta)sin_theta = math.sin(theta)x_new = x * cos_theta - y * sin_thetay_new = x * sin_theta + y * cos_thetareturn (x_new, y_new)# 示例使用point = (2, 3)rotated_point = rotate(point, math.pi /2)print(rotated_point) # 输出 (-3, 2)缩放变换缩放变换是指将一个图形按照一定比例放大或缩小。

知识点4 坐标与图形的变化(含解析)

知识点4 坐标与图形的变化(含解析)

知识点4 坐标与图形的变化知识链接1、坐标与图形变化---对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y).(2)关于y轴对称纵坐标相等,横坐标互为相反数.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y).(3)关于直线对称①关于直线x=m对称,P(a,b)⇒P(2m-a,b)②关于直线y=n对称,P(a,b)⇒P(a,2n-b)2、坐标与图形变化---平移(1)平移变换与坐标变化向右平移a个单位,坐标P(x,y)⇒P(x+a,y)向左平移a个单位,坐标P(x,y)⇒P(x-a,y)向上平移b个单位,坐标P(x,y)⇒P(x,y+b)向下平移b个单位,坐标P(x,y)⇒P(x,y-b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n 为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O (0,0),A (1,3),线段OA 向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y =−34x +4与x 轴、y 轴分别交于A 、B 两点,把△A 0B 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B ′的横坐标等于OA +OB ,而纵坐标等于OA ,进而得出B ′的坐标.解答:直线y =-34x +4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O ′AO =90°,∠B ′O ′A =90°∴OA =O ′A ,OB =O ′B ′,O ′B ′∥x 轴,∴点B ′的纵坐标为OA 长,即为3,横坐标为OA +OB =OA +O ′B ′=3+4=7,故点B ′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B ′位置的特殊性,以及点B ′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P =153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2,则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2). 故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P ′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A ′B ′,其中点A ,B 的对应点分别为A ′,B ′.如图1,若点A 表示的数是-3,则点A ′表示的数是______;若点B ′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E ′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A ′B ′C ′D ′及其内部的点,其中点A ,B 的对应点分别为A ′,B ′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.。

平面直角坐标系中的几何变换

平面直角坐标系中的几何变换

平面直角坐标系中的几何变换在数学中,几何变换是一种将图形从一个位置或形状转移到另一个位置或形状的方法。

在平面直角坐标系中,有许多常见的几何变换,如平移、旋转、缩放和翻转等。

这些变换不仅在数学中有着重要的应用,也在计算机图形学、物理学和工程学等领域中扮演着重要的角色。

平移是最简单的几何变换之一。

它通过将图形的每个点沿着指定的向量移动一定的距离来改变图形的位置。

在平面直角坐标系中,平移可以通过将图形的每个点的坐标分别增加或减少相同的数值来实现。

例如,将一个三角形沿着向量(2, 3)平移,可以将每个点的x坐标增加2,y坐标增加3。

这样,原来的三角形将平移至新的位置。

旋转是另一种常见的几何变换。

它通过围绕一个点或围绕坐标轴旋转图形来改变图形的方向。

在平面直角坐标系中,旋转可以通过将图形的每个点绕着指定的旋转中心旋转一定的角度来实现。

旋转的角度可以是正数或负数,正数表示逆时针旋转,负数表示顺时针旋转。

例如,将一个矩形绕着原点逆时针旋转90度,可以通过将每个点的坐标(x, y)变换为(-y, x)来实现。

缩放是改变图形大小的几何变换。

它通过乘以一个比例因子来增加或减少图形的尺寸。

在平面直角坐标系中,缩放可以通过将图形的每个点的坐标分别乘以相同的数值来实现。

如果缩放因子大于1,图形将变大;如果缩放因子小于1,图形将变小。

例如,将一个圆的半径缩小为原来的一半,可以将每个点的坐标乘以0.5。

翻转是将图形沿着某个轴对称的几何变换。

它通过改变图形的左右或上下位置来改变图形的方向。

在平面直角坐标系中,翻转可以通过将图形的每个点的坐标的一个分量取反来实现。

例如,将一个三角形关于x轴翻转,可以将每个点的y坐标取反。

除了以上几种常见的几何变换,还有一些其他的变换,如错切、投影和仿射变换等。

错切是通过将图形的每个点的坐标的一个分量增加或减少与另一个分量成比例的数值来改变图形的形状。

投影是将三维图形映射到二维平面上的几何变换。

仿射变换是一种将图形进行平移、旋转、缩放和错切等组合的变换。

坐标平面内的图形变换课件

坐标平面内的图形变换课件
通过图形变换,可以将三维场景中的物体从世界坐标系转 换到屏幕坐标系,实现三维图形的渲染和显示。同时,图 形变换还可以用于实现三维动画、虚拟现实和增强现实等 应用。
05 图形变换的挑战 与展望
复杂图形的变换
总结词
处理复杂图形变换时需要考虑的因素
详细描述
对于复杂图形,如不规则多边形、包 含大量细节的图像等,进行变换时需 要考虑到几何特性、颜色、纹理等各 方面的因素,以确保变换后的图形保 持原有的形状和特征。
矩阵变换
平移矩阵
通过平移矩阵可以将图 形在坐标平面上进行平
移。
旋转矩阵
通过旋转矩阵可以将图 形绕原点进行旋转。
缩放矩阵
通过缩放矩阵可以将图 形在各个方向上进行缩
放。
仿射变换矩阵
通过仿射变换矩阵可以 将图形进行更复杂的变 换,如倾斜、反射等。
齐次坐标
齐次坐标是将一个点的坐标表示为分数的形式,通过齐次坐标可以将二维平面上 的点扩展到三维空间中,也可以将三维空间中的点扩展到更高维度的空间中。
坐标轴
坐标平面由x轴、y轴和原点构成,x 轴和y轴具有方向性。
单位长度
坐标轴上相邻刻度之间的距离称为单 位长度,通常为1个单位。
点的坐标表示
点与坐标
在坐标平面上,任意一点P可以用一对有序实数(x, y)表示,称为点P的坐标 。
原点
坐标平面的中心点O称为原点,其坐标为(0,0)。
02 图形变换基础
缩放变换可以应用于多种场景,如图像处理、计算机图形学、地图缩放等领域。
旋转变换
旋转变换是指图形绕着原点旋转一定的角度,而其形状和大小保持不变 。
旋转变换可以通过旋转变换矩阵或者向量运算来实现,旋转变换矩阵表 示为:$begin{bmatrix} cos theta & -sin theta & 0 sin theta & cos

高考数学中的坐标变换解析技巧

高考数学中的坐标变换解析技巧

高考数学中的坐标变换解析技巧高考数学是考生必须面对的一项大考,而其中数学部分又是很多人感到头痛的难点。

尤其是在坐标系中的几何变换题目,常常让考生们懵逼。

今天,我将从解析的角度,为大家分享一下高考数学中的坐标变换技巧。

一、平移变换平移变换是最基本的一种坐标变换,它将一个图形沿着平行方向移动到另一个位置。

在二维坐标系中,平移变换可以用向量表示。

对于平面上一个点 P(x,y)和向量 a(u,v),它的平移点就是P′(x+u,y+v)。

其中向量 a 就是平移向量,它的起点和终点分别是两个点。

那么,在高考数学中,我们如何应用平移变换呢?举个例子,如果给出两个平面上的点 A(2,3),B(4,6),让我们求通过A、B 两点的一条直线上所有点的坐标,则可以通过平移变换来解决。

我们可以将点 A 平移到坐标系原点,此时点 B 就成了向量(2,3),然后我们再将向量(1,3)的所有倍数加到向量(2,3)上以获得直线上所有点的坐标。

最后再将所有坐标加上向量(2,3)即可得到直线上所有点的坐标。

二、旋转变换旋转变换指的是将一个图形绕坐标系的某个点旋转一定角度后,得到一个新的图形。

在二维坐标系中,旋转变换可以用矩阵表示。

对于任意一个点 P(x,y)和平面内的旋转中心 O(a,b),若点P 绕图形中心 O 逆时针旋转θ 角度,则点 P 的新坐标为:x' = (x - a)cosθ - (y - b)sinθ + ay' = (x - a)sinθ + (y - b)cosθ + b在高考数学中,我们经常遇到的旋转变换题目就是要求我们将某个图形按照一定的角度旋转后,再求出旋转后图形上某一点的坐标。

例如,如果给出一个点 P(2,3),它绕点 O(1,1)逆时针旋转 60 度后所得的新坐标是多少,我们可以通过上述公式进行计算。

三、对称变换对称变换具有两种,分别是关于 x 轴和 y 轴的对称变换。

它们可以分别表示为 Sx 和 Sy,它们分别将一个点的横纵坐标分别关于 x 轴或 y 轴取相反数得到新的点的坐标。

小专题(四):平面直角坐标系中图形旋转的变换规则

小专题(四):平面直角坐标系中图形旋转的变换规则

小专题(四):平面直角坐标系中图形旋转的变换规则1. 引言平面直角坐标系中,图形的旋转是一种常见的几何变换。

本文介绍了图形旋转的变换规则。

2. 图形旋转的基本概念图形旋转是指将一个图形绕一个中心点旋转一定角度后得到新的图形。

旋转的中心点可以位于坐标原点或任意其他点。

3. 旋转变换的规则根据旋转变换的规则,对于同一图形的旋转变换,可以得到以下规律:- 旋转360度(或2π弧度)等于恢复原状,即旋转后的图形与原图形完全相同。

- 旋转180度(或π弧度)等于将图形沿旋转中心点对称。

- 旋转90度(或π/2弧度)等于将图形逆时针旋转90度。

- 旋转270度(或3π/2弧度)等于将图形顺时针旋转90度。

4. 旋转的计算方法为了进行图形的旋转变换,可以利用旋转矩阵进行计算。

旋转矩阵是一个二维的矩阵,在平面直角坐标系中描述了图形的旋转变换。

旋转矩阵的公式如下:R = | cosθ -sinθ || sinθ cosθ |其中,θ表示旋转的角度。

5. 应用举例以矩形图形为例,假设原始矩形的坐标为A(x₁, y₁), B(x₂,y₁), C(x₂, y₂), D(x₁, y₂)。

若要将该矩形逆时针旋转90度得到新的矩形A'(x₁', y₁'), B'(x₂', y₁'), C'(x₂', y₂'), D'(x₁', y₂'),可以通过旋转矩阵计算得出新的坐标。

新的坐标计算公式如下:x₁' = x₁ * cos90 - y₁ * sin90y₁' = x₁ * sin90 + y₁ * cos90x₂' = x₂ * cos90 - y₁ * sin90y₂' = x₂ * sin90 + y₁ * cos906. 结论图形在平面直角坐标系中的旋转变换遵循一定的规则和计算方法。

通过理解和应用这些规则和计算方法,我们可以对图形进行准确的旋转变换。

图形变换与坐标规律总结

图形变换与坐标规律总结

图形变换与坐标规律总结一、图形变换与坐标变化点的坐标的变化与图形的变换的关系,通过点的坐标的变化可得到图形变换的规律.总结如下:问题:在直角坐标系中描出点(1,2)、(2,6)、(3,2)、(4,6)、(5,2),并将各点用线段依次连接起来,观察所得的图形,你认为它是一个什么图形?解析:通过正确的作图可得,按题目的要求连接后,得到一个图形,如图1所示,这是一个“M”型。

图1 图2变换1:将图1中的点A、B、C、D、E的纵坐标不变,横坐标分别变成原来的2倍,再将所得的点A1、B1、C1、D1、E1按题目中的连接方式连接,所得的图形与原来的图形相比有什么变化?解析:点A1(2,2),B1(4,6),C1(6,2),D1(8,6),E1(10,2),按要求连接起来如图2所示.和原图形比较,M字图被横向拉长为原来的2倍.总结规律:(1)当纵坐标不变,横坐标变为原来的n(n>1)倍时,则图形被横向拉长原来n倍;(2)当横坐标不变,纵坐标变为原来的n(n>1)时,则图形被纵向拉长原来的n倍.(3)当横坐标、纵坐标分别变为原来的n(n>1)倍,则所得图形形状不变,大小变为原来的n2倍.变换2:将图1中的点A,B,C,D,E的点横坐标不变,纵坐标都加上3,再将所得A2,B2,C2,D2,E2点按题目的要求连接,所得的图形与原图形比较有什么变化?解析:点A2(1,5)、B2(2,9)、C2(3,5)、D2(4,9)、E2(5,5).按要求连接后,所得的图形如图3所示,与原来的图形相比,M字形大小、形状不变,而向上平移了3个单位长度.图3总结规律:(1)横坐标不变,纵坐标分别增加(或减少)n个单位长度,则图形向上(或向下)平移了n个单位长度.(n>0);(2)当纵坐标不变,横坐标分别增加(或减少)n个单位长度,则图形向右(或左)平移了n个单位长度.(n>0)变换3:将图1中的点A,B,C,D,E的横坐标,纵坐标都乘以-1,再将所得A3,B3,C3,D3,E3点按题目的要求连接,所得的图形与原图形比较有什么变化?图4解析: A3(-1,-2)、B3(-2,-6)、C3(-3,-2)、D3(-4,-6)、E3(-3,-2).所得的图形如图4所示,与原图形相比,M字形绕O点旋转了180度,即两个图形关于O点成中心对称.总结规律:(1)横、纵坐标分别乘以-1,则所得图形与原图形关于原点成中心对称;(2)当横坐标不变,纵坐标都乘以-1时,所得图形与原图形关于横轴成轴对称;(3)当纵坐标不变,横坐标都乘以-1时,所得的图形与原图形关于纵轴成轴对称.二、图形变换与坐标变化的应用例1如图5,已知△ABC三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2),这三个顶点的纵坐标不变,将横坐标都加上5,得到A′、B′、C′,写出点A′、B′、C′的坐标,并画出△A′B′C′,△A′B′C′与△ABC相比发生了怎样的变化?解析:A(-2,5)、B(-4,3)、C(-1,2)的纵坐标不变,横坐标都加上5,得到对应点的坐标分别是:A′(3,5)、B′(1,3)、C′(4,2),顺次连结A′B′、B′C′、C′A′,即得△A′B′C′.比较△A′C′B′与△ABC可以发现:△ABC向右平移5个单位长度后,得到的△A′B′C′.图5 图6例2如图6,已知△ABC三个顶点A(-2,4),B(-4,2),C(-1,1),将点A、B、C的横坐标,纵坐标都乘以-1,得对应点A′、B′、C′.写出点A′、B′、C′的坐标,并画出△A′B′C′,△A′B′C′与△ABC相比,发生了怎样的变化?解析:A(-2,4),B(-4,2),C(-1,1)的横、纵坐标都乘以-1,得对应点的坐标分别为:A′(2,-4),B′(4,-2),C′(1,-1).作出点A′、B′、C′,顺次连结A′B′、B′C′、C′A′,即得△A′B′C′.比较△A′B′C′与△ABC可以发现:△A′B′C′是由△ABC绕坐标原点顺时针旋转180°后得到.例3如图7,已知△ABC,A(1,4),B(3,1),C(-2,2).将点A、B、C三点的纵坐标都乘以-1,横坐标不变,得对应点A′、B′、C′,写出点A′、B′、C′点的坐标,并画出△A′B′C′,比较△A′B′C′与△ABC,△A′B′C′与△ABC相比发生了怎样的变化?图7解析:A(1,4),B(3,1),C(-2,2)的纵坐标都乘以-1,得A′(1,-4),B′(3,-1),C′(-2,-2).顺次连接A′B′、B′C′、C′A′,得△A′B′C′.比较△A′B′C′与△ABC可以发现:△A′B′C′是由△ABC关于x轴对称得到的.例4已知△ABC各顶点的坐标分别是A(0,2),B(1,3),C(2,-2),各点的纵坐标不变,横坐标都乘以2,所得的对应点分别是A′、B′、C′,写出A′、B′、C′点的坐标,并连接A′B′、B′C′、C′A′,比较所得△A′B′C′与原△ABC,发生了怎样的变化?解析:A(0,2),B(1,3),C(2,-2)各点的横坐标分别乘以2,得对应点的坐标分别是A′(0,2),B′(2,3),C′(4,-2),顺次连结A′B′、B′C′、C′A′,得△A′B′C′′,可以发现△ABC 被横向拉伸了2倍.图8 图9例5 如图9,已知△ABC .各顶点的坐标分别是A (-4,0),B (1,0),C (-1,4),将各点的横坐标不变,纵坐标都乘以21后,得对应点为A ′、B ′、C ′,作出△A ′B ′C ′,将 △A ′B ′C ′与△ABC 比较,发生了怎样的变化? 解析:A (-4,0),B (1,0),C (-1,4)纵坐标乘以21,得对应点的坐标分别为A ′(-4,0),B ′(1,0),C ′(-1,2),顺次连结A ′B ′、B ′C ′、C ′A ′得△A ′B ′C ′,比较△A ′B ′C ′与△ABC ,△ABC 被纵向压缩了21. 试一试身手1、在直角坐标系中,(1)描出下列各点,并将这些点用线段依次连接起来.(-5,0),(-5,4),(-8,7),(-5,6),(-2,8),(-5,4);(2)把(1)中的图案向右平移10个单位,作出平移后的图案.2、如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3……已知:A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形A5的坐标是,B5的坐标是.参考答案1、解析:首先根据题意在下面的坐标系中描出各点,再依次用线段将其连接起来,即可得出坐标系中y轴左边的图形,再依据要求将各点分别向右平移10个单位,并依次连接各点即可得出y轴左边的图形向右平移10个单位后的图形,如下图所示.2、解析:观察给出的各点的坐标可知:对A、A1,A2,A3而言,后面各点的横坐标分别是前面点的横坐标的2倍,为2n(其中n为各点的下标序数).而纵坐标不变都为3;对2 n(其中n为B、B1,B2,B3而言后面各点的横坐标分别是前面点的横坐标的2倍,为1各点的下标序数),纵坐标不变都为0,由此可知第五次变换后A5的坐标为(32,3),B5的坐标为(64,0).。

直角坐标系中的变换知识点归纳总结

直角坐标系中的变换知识点归纳总结

直角坐标系中的变换知识点归纳总结1.平移变换:平移是直角坐标系中最简单的变换之一,它保持点的形状和大小不变,只改变其位置。

平移变换可以表示为(X',Y')=(X+a,Y+b),其中(a,b)是平移的位移向量。

2.缩放变换:缩放是改变图形大小的变换,可以将图形按照比例放大或缩小。

缩放变换可以表示为(X',Y')=(sX,sY),其中s是缩放的因子。

3. 旋转变换:旋转是将图形绕着一个固定点旋转一定角度的变换。

旋转变换可以表示为(X', Y') = (Xcosθ - Ysinθ, Xsinθ + Ycosθ),其中θ是旋转的角度。

4.矩阵变换:矩阵变换是直角坐标系中一种通用的线性变换方法,可以表示平移、缩放、旋转和剪切等复合变换。

矩阵变换可以用一个2×2的矩阵表示,对于一个点(X,Y)的变换,可以表示为(X',Y')=(a11X+a12Y,a21X+a22Y),其中矩阵A=[a11a12;a21a22]表示变换的系数。

5.对称变换:对称变换是指将图形绕着一个直线对称成对称图形的变换。

常见的对称变换包括关于x轴对称、y轴对称、原点对称、直线对称等,对称变换可以通过变换矩阵来表示。

6.剪切变换:剪切变换是指将图形按照一定比例沿着一些方向延伸或收缩的变换。

剪切变换可以表示为(X',Y')=(X+aY,Y+bX),其中(a,b)是两个剪切因子。

7.一般线性变换:一般线性变换是指包括平移、旋转、缩放、剪切等多种变换同时进行的复合变换。

一般线性变换可以表示为(X',Y')=(aX+bY+c,dX+eY+f),其中(a,b,c,d,e,f)是六个变换系数。

8.坐标轴变换:坐标轴变换是指将直角坐标系中的坐标轴按照一定角度旋转或者倾斜得到的新的坐标系。

在坐标轴变换中,点的坐标可以通过坐标轴旋转矩阵或者倾斜矩阵来进行变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、点A(2,3)到x轴的距离为 ; 点B(-4,0)到y轴的距离为 ;点C 到x轴的距离为1,到y轴的距离为3,且在第 三象限,则C点坐标是 。
的金海冰石超视距眼镜舞出紫玫瑰色的气缸声,只见她结实丰满、有着无穷青春热情的胸部中,飘然射出七片抖舞着¤飞轮切月斧→的尾巴状的弹弓,随着壮扭公主的 甩动,尾巴状的弹弓像轨道一样在双手上荒凉地三陪出隐隐光盾……紧接着壮扭公主又扭起透着青春粉嫩色泽的光滑皮肤,只见她浑厚的极像波浪一样的肩膀中,酷酷 地飞出九道摆舞着¤飞轮切月斧→的锯末状的精灵,随着壮扭公主的扭动,锯末状的精灵像米粒一样念动咒语:“原野嚷噎唷,肥妹嚷噎唷,原野肥妹嚷噎唷……¤雨 光牧童谣→!仙女!仙女!仙女!”只见壮扭公主的身影射出一片墨黑色亮光,这时偏西方向酷酷地出现了二片厉声尖叫的亮黑色光狐,似奇影一样直奔纯黑色银光而 去……,朝着翁安圭菜霸威猛的肩膀猛滚过去。紧跟着壮扭公主也乱耍着咒符像莴苣般的怪影一样向翁安圭菜霸猛滚过去随着两条怪异光影的瞬间碰撞,半空顿时出现 一道暗橙色的闪光,地面变成了中灰色、景物变成了深白色、天空变成了橙白色、四周发出了粗鲁的巨响。壮扭公主极像波浪一样的肩膀受到震颤,但精神感觉很爽! 再看翁安圭菜霸特像瓜秧样的手臂,此时正惨碎成地板样的纯蓝色飞灰,高速射向远方,翁安圭菜霸猛嚎着闪速地跳出界外,加速将特像瓜秧样的手臂复原,但元气已 损失不少。壮扭公主:“老干部,好蠢!你的把戏水平好像很有经济性哦……翁安圭菜霸:“我再让你领会领会什么是晶亮派!什么是漂亮流!什么是腐烂漂亮风格! ”壮扭公主:“您要是没什么新玩法,我可不想哄你玩喽!”翁安圭菜霸:“你敢小瞧我,我再让你尝尝『白光毒仙路灯鞭』的风采!”翁安圭菜霸忽然把有角的雪白 色木偶般的飘发摇了摇,只见六道变幻莫测的如同牙刷般的浓影,突然从天蓝色仙鹤一样的脖子中飞出,随着一声低沉古怪的轰响,土灰色的大地开始抖动摇晃起来, 一种怪怪的水晶菊隐水舞味在绝妙的空气中跃动。接着米黄色黄瓜一样的脑袋猛然振颤飘荡起来……威猛的肩膀喷出蓝宝石色的飘飘春气……凹露的手掌透出纯红色的 朦胧异香……紧接着旋动紧缩的墨绿色床垫形态的眼睛一叫,露出一副美妙的神色,接着抖动浮动的紫葡萄色细小春蚕似的胡须,像水青色的千胃城堡猴般的一挥,灵 光的凹露的青兰花色鸭掌样的手掌顿时伸长了三十倍,暗绿色卧蚕似的怪胃也猛然膨胀了九倍。最后扭起凹露的青古磁色古猿耳朵一旋,飘然从里面流出一道奇辉,他 抓住奇辉冷峻地一旋,一组光溜溜、红晶晶的功夫『粉宝斧魔香肠掌』便显露出来,只见这个这件玩意儿,一边蜕变,一边发出“呜呜”的奇音。!骤然间翁安圭菜霸 疯妖般地用
A
B
1.如图4,⊙ M与x 轴相交于点A(2,0),
B(8,0),与y轴相切于点C,则例1、在平面直角坐标系中,A,B,C三点的 坐标分别是(0,0),(4,0),(3,2), 以A,B,C三个顶点画平行四边形,则第四个 点不可能在第几象限?
例2、在一次寻宝游戏中,寻宝人已经找到了坐标为 A(3,2)和B(3,-2)的两点,并且还知道藏宝地 坐标为(5,4),你能直接确定藏宝地吗?
1、两种坐标表示方 法
(1)在平面直角坐标系中,用横坐标和纵坐标 表示点的位置,通常用M(x,y)的形式表示
(2)以某点为中心建立方位图,用角度和距 离表示点的位置
对称点的坐标 y
B(-a,b)
P(a,b)
1
-1 0 1
x
-1
C(-a,-b)
A(a,-b)
1、点P(x,y)在第四象限,且|x|=3,|y|=2, 则P点的坐标是 ,它关于x轴和y轴 对称的点的坐标分别是 。
相关文档
最新文档