第四系沉积物

合集下载

第四纪沉积物年代测定方法

第四纪沉积物年代测定方法

第四纪沉积物年代测定方法第四纪沉积物是指第四纪时期因地质作用所沉积的物质,一般呈松散状态。

在第四纪连续下沉地区,其最大厚度可达1000米。

第四纪沉积物中最常见的化石有哺乳动物、软体动物、有孔虫、介形虫及植物的孢粉。

这些化石,有助于确定第四纪沉积物的时代和成因.第四纪沉积物年代测定方法主要有物理年代学方法、放射性同位素年代法、其他方法一、物理年代学方法物理年代学方法是利用矿物岩石的物理性质(如热、电、磁性等)测定沉积物的年龄的方法。

如古地磁法、热释光(TL)、光释光(OSL)、电子自旋共振(ESR)、裂变径迹法等。

1、古地磁学方法古地磁学方法是利用岩石天然剩余磁性的极性正反方向变化,与标准极性年表对比,间接测量岩石年龄的方法。

他的实质是相对年代学和绝对年代学方法的结合——运用古地磁数据建立极性时(世、期)和极性亚时(事件)的相对顺序,再运用同位素(主要是K—Ar法)测定他们各自的年代,继而建立统一的磁性年表。

(1)基本原理A.过去地质历史时期与现代一样,地球是一个地心轴偶极子磁场。

B.含有铁磁性矿物的岩石,在形成过程中受到地磁场的作用而被磁化,磁化方向与当时的磁场方向一致。

a.沉积岩:沉积剩余磁性。

b.火成岩:居里点之下,称为热剩磁。

居里点温度一般在500~650℃(表)C.不同时期磁场是变化的,因此保存在沉积物中的磁场特征也是变化的:变化包括磁极移动(106—109年)和磁场倒转(104-106)。

(2)古地磁极性年表(A.Cox)古地磁极性年表是根据一系列主要用K-Ar法测定年龄的不同时间尺度的极性变化事件编制的地磁极性时间表。

目前用于第四纪研究的极性年表是A.Cox 等1969年根据陆地和大洋已有的140多个数据拟定的5MaB.P.以来的地磁极性时间表,后经许多研究者补充修正,综合成表。

(3) 测年范围及应用条件:无时间限制,整个第四纪都可以。

剖面沉积连续、厚度巨大的细粒沉积层。

(4) 应用情况:方法成熟,广泛应用。

第四纪沉积物

第四纪沉积物
经搬运、沉积而成的 沉积物,年代不长,未经压紧硬结成岩石之前,呈松散状态, 称为第四纪沉积物,即土。
根据搬运和沉积的情况不同,可分为以下几种类型: 残积层、坡积层、洪积层、冲积层、海相沉积层、湖沼沉积层。
不同成因类型的第四纪沉积物,各具有一定的分布规律和 工程地质特性。
(三) 洪积层
定义:
由暴雨或大量融雪骤然集聚而成的暂时性山洪急流,具 有很大的剥蚀、搬运能力。它冲刷地表,挟带着大量碎屑物 质堆积于山谷冲口或山前倾斜平原而形成洪积层。
特点:
离山渐远,颗粒变细,分布范 围逐渐扩大。其地貌特征是靠山近 处窄而陡,离山远处宽而缓,形如 锥体,故称为洪积锥(扇)。由相 邻沟谷口的洪积扇组成洪积扇群。
平原河谷横断面
粉细砂 砾卵石
地基基础
坡积、洪积物剥蚀后搬运沉积在河流坡降平缓地带形成的沉积 物。
特点: 呈现明显的层理构造。由于搬运作用显著,碎屑物质由带
棱角颗粒经滚磨、碰撞逐渐形成亚圆或圆形颗粒,其搬运距离 越长,则沉积物质越细。典型的冲积物是形成于河谷内的沉积 物,可分为平原河谷冲积层和山区河谷冲积层等。
黄土 粉质黏土
中粗砂
粉土 淤泥
5.砾石层 6.石灰岩层
靠近山地或离山较远地段的洪积物的承载力高,而过度地 带由于地下水溢出地表造成沼泽地带,土质软、承载力低。
残积层:应注意不均匀沉降和土坡稳定性问题。 坡积层:应注意不均匀沉降和地基稳定性问题。 洪积层:应注意土层的尖灭和透镜体引起的不均匀沉降。
(四) 冲积层
定义: 冲积物是河流流水的地质作用将两岸基岩及其上部覆盖的
(二)坡积物
定义:
雨雪水流的地质作用将高处岩石 风化产物缓慢地冲刷剥蚀、顺着斜坡 向下移动、沉积在较平缓的山坡上而 形成的沉积物。

第3章第四纪沉积物

第3章第四纪沉积物

• 洪积土的工程特性: • 1)靠近坡脚段为较粗的碎屑土,土质均匀,地势 高、地下水位低,地基承载力高; • 2)离山区远的地带由粉土、黏土颗粒组成,受周 期性干燥及可溶盐的胶结作用,承载力高; • 3)中间段由于受前沿细颗粒的影响,常有地下水 溢出,或形成沼泽,承载力较低。 • 另外:洪积扇富水,可做水源地。
坡积物的特点: 1)分为岩屑、矿屑、沙砾或矿质黏土。 2)碎屑颗粒大小混杂,棱角分明、分选性差,层理不明显。 坡积物质随斜坡自上而下呈现由粗而细的分选现象。其成份与坡上的残积土 基本一致。与下卧基岩没有直接关系,这是它与残积物明显的区别。 由于坡积物形成于山坡,常常发生沿下卧基岩倾斜面滑动,还由于组成物质 粗细颗粒混杂,土质不均匀,且其厚度变化很大(上部有时不足一米,下部可 达几十米),尤其是新近堆积的坡积物,土质疏松,压缩性较高。 坡积土上建设应注意的问题: ①注意下卧基岩表面的坡度及形态,分析坡积物稳定性。 ②坡积土含较多细颗粒,吸水性强,注意雨季的稳定性。 ③坡积物粗细混杂,土质不均匀,厚度不均匀,注意差异沉降。
1、残积物
岩石-(物理、化学)风化- 残留在原地
残积物-残积土-残积层
壳风 化
土壤层 残积物 化岩石 新鲜岩石
残积物成分与 母岩有关 残积物厚度与 地形有关
强风化
半风 中风化
弱风化
• 2、坡积层 • 坡积物是残积物经水流搬运,顺坡移动堆积而成的土。即 是雨雪水流的地质作用将高处岩石风化产物缓慢地洗刷剥 蚀,顺着斜坡向下逐渐移动、沉积在较平缓的山坡上而形 成的沉积物。其成份与坡上的残积土基本一致。由于地形 的不同,其厚度变化大,新近堆积的坡积土,土质疏松, 压缩性较高。它一般分布在坡腰上或坡脚下,其上部与残 积物相接。坡积物底部的倾斜度决定于基岩的倾斜程度, 而表面倾斜度则与生成的时间有关,时间越长,搬运、沉 积在山坡下部的物质就越厚,表面倾斜度就越小。 • 片流(坡流、面流)——在降雨或融雪时,地表水一部分 渗入地下,其余的沿坡面向下运动。这种暂时性的无固定 流槽的地面薄层状、网状细流称为片流。片流搬运的物体 在坡麓堆积下来,形成坡积土。

04第四纪沉积物的研究方法

04第四纪沉积物的研究方法

(b)砂和粘土的成因标志
※粒度分析
粒度参数
平均粒度 分选性
粗、细含量 峰值高低
标准差
偏度
峰态
σ值
等级
Sk值
等级
Kg值
等级
<0.35 0.35—0.5 0.5—0.7 0.7—1.0 1.0—2.0 2.0—4.0
4.0
分选极好 分选好
分选较好 分选中等 分选较差 分选很差 分选极差
+1.0—+0.3 +0.3—+0.1 +0.1—-0.1 -0.1—-0.3
分样
粒度分析步骤 洗样
洗盐:对海、泻湖和盐湖等样品,将样品置于高烧杯中, 加水用玻璃棒搅拌后静置过夜,第二天将杯中清水吸去, 再加清水,搅拌静置过夜,如此重复3次即可。 除去有机质:通过过氧化氢(H2O2)去处沉积物中的有 机质。在盛样品的高烧杯中加入6%的H2O2,用玻璃棒 搅拌,过一夜再加一次H2O2,直至没有气泡产生即说明 有机质已全部氧化,过量的H2O2用加热法排除。 去钙胶结物:盐酸去除;加10%左右盐酸于放有样品的 高烧杯,用玻璃棒搅拌后放置第二天,除去清液,再加 盐酸,如此反复至不再起泡,然后换清水,搅拌,过夜, 吸去清液,加水洗至无钙离子和氯离子为止。
式,推出沉积物的来源、搬运动力和沉积 环境
粒度分析步骤
• 样品预处理
– 分样:均匀将样品分成几份——缩分 – 洗样:洗去沉积物中的杂质
粒度分析步骤
将拌匀的样品平摊在纸上,在样 品上划十字,将样品分为相等的 四分,分别取对角的两分混和在 一起,就将样品缩分为一半了, 以此类推。 注意:缩分准确与否是决定分析 的样品是否真正具有沉积物代表 性的关键,故缩分必须有同一分 析人员亲自作。

第四纪沉积物的粒级划分

第四纪沉积物的粒级划分

第四纪沉积物的粒级划分
第四纪形成的松散岩石称为“堆积物”或“沉积物”。

当沉积物被认为无明显外力搬运、分选和成层结构时多称“堆积物”,如残积物、冰碛物、人工堆积物等等;具成层结构则常称为“沉积物”,如冲积物等。

第四纪沉积物存在一定的空间形态,具有一定的成分、结构与构造特征,与一定的沉积环境相联系。

总的来说其普遍特征如下:岩性松散,成因多样,岩性岩相变化快,厚度差异大,存在不同程度的风化,含哺乳动物化石并特含有古人类化石和古文化遗存。

第四纪沉积物一般形成不久或正在形成,成岩作用微弱,巨大部分松散,少部分半固结,极少硬结成岩。

这有利于深入沉积物内部进行研究,采矿、施工易于进行,同时也易发生地质灾害。

因此,“岩性松散”是其最基本的特征,其碎屑沉积物也是第四纪工作中最常研究的对象。

这些碎屑沉积物的粒级划分很重要,不同部门因研究目的不同出现很多的划分方法(Shepard,1954)。

下面推荐的粒级划分适用于第四纪沉积物成因的分析(表5-1-2)。

表5-1-2 碎屑粒级分类(温德华分类)
粒级名称 粒级最小粒径(mm)φ值*
砾石 巨砾 256 -8 粗砾 64 -6 中砾 4 -2 细砾 2 -1
砂 极粗砂 1 0 粗砂 0.5 1 中砂 0.25 2 细砂 0.125 3 极细砂 0.0625 4
粉砂
粗粉砂 0.031 5 中粉砂 0.0156 6 细粉砂 0.0078 7 及细粉砂 0.0039 8
粘土 粘土**<0.0039 9 … …
* φ=-log
2D,D为碎屑粒径,单位mm
** 粘土是不同成分的细粒混合物,不等于粘土矿物。

地质成因

地质成因

§1-4 第四纪沉积物(层)由原岩风化产物经各种外力地质作用而成的沉积物,至今其沉积历史不长,所以只能形成未经胶结硬化的沉积物,也就是通常所说的“第四纪沉积物”或“土”。

不同成因类型的第四纪沉积物,各具有一定的分布规律和工程地质特征,以下分别介绍其中主要的几种成因类型。

1.4.1 残积物、坡积物和洪积物1.4.1.1残积物(Q el )(Q el为第四纪地层的成因类型符号,下同此。

)残积物是由岩石风化后,未经搬运而残留于原地的土,而另一部分则被风和降水所带走。

它处于岩石风化壳的上部,是风化壳中的剧风化带,向下则逐渐变为半风化的岩石。

它的分布主要受地形的控制,在宽广的分水岭上,由雨水产生地表径流速度小,风化产物易于保留的地方,残积物就比较厚。

在平缓的山坡上也常有残积物覆盖。

(见书第8页图1-1)在不同的气候条件下、不同的原岩,将产生不同矿物成份、不同物理力学性质的残积土。

由于风化剥蚀产物是未经搬运的,颗粒不可能被磨圆或分选,没有层理构造。

残积物与基岩之间没有明显的界限,通常经过一个基岩风化层(带)而直接过渡到新鲜岩石。

残积物有时与强风化层很难区分。

一般说来,残积物是由于雨雪水流将细颗粒带走后残留的较粗颗粒的堆积物。

风化层则虽受风化作用的影响,但它是未被剥蚀搬运的基岩风化产物。

残积物中残留碎屑的矿物成分很大程度上与下卧基岩相一致,这是鉴定残积物的主要根据。

例如砂岩风化剥蚀后生成的残积物多为砂岩碎块。

根据这个道理可按地面残积物的成分推测下卧基岩的种类。

反之,也可按基岩分布的规律推测其风化产物的特征。

山区的残积物因原始地形变化很大且岩层风化程度不一,所以其厚度在小范围内变化极大。

由于残积物没有层理构造,均质性很差,因而土的物理力学性质很不一致,同时多为棱角状的粗颗粒土,其孔隙度较大,作为建筑物地基容易引起不均匀沉降。

不同岩类具有不同的风化特征,如块状构造的花岗岩,多以沿节理裂隙风化,风化厚度大,且以球状风化为主。

工程地质及土力学17第四纪沉积物的成因、类型与特征

工程地质及土力学17第四纪沉积物的成因、类型与特征

1.8 土与土层
土与土层的特点:
1
土与土层是自然地质环境下形成的产物,按其
成因的不同分别形成不同的土类和土层。
2
土按其成因不同,分别形成由一种或多种矿物颗粒, 一组不同颗粒粒径和不同结构性能所组成的集合体,
分别具有明显不同的应力应变特性。
3
土层按其成因不同,分别形成由一种或多种土构成 层状构造的复合体,分别具有程度不同的不均匀性、
1.7 第四纪沉积物的成因、类型与特征
第四纪沉积物是由地壳的岩石风化后,在风、地表流水、 湖泊、海洋等地质作用下形成的松散沉积物。
岩石
风化产物,即残积物
风化作用
搬运、沉积
坡洪 积积 物物






湖 风冰 积 积碛 物 物物
建筑场地一般涉及的都是第四纪沉积物。
1.7.1 残积土层(eluvium)
1.7.6 湖泊沉积土层(Ql)
湖泊 含水量极高 淤塞
沼泽
透水性很低 沉积物
沼泽
压缩性很高 且不均匀, 承载力很低
1.7.7 风积土层(Ql)
风积土层是指在干旱的气候条件下,岩石的风化破碎物被风 吹扬,搬运一段距离后,在有利条件下堆积起来的一类土。
由粉土粒或砂粒组成,含可溶
黄土
盐,土质均匀,质纯,具大孔
1.7.1 残积土层(Qel)
具有一定的结 构强度;易产生 不均匀沉降
孔隙度↑
松散、富水
工程性质
强度↓
均质性差
压缩性↑
1.7.2 坡积土层(Qdl)
雨雪水流将山坡高处的风化 碎屑物缓慢地顺坡冲洗,堆积在 较平缓的山坡脚处而形成的沉积 物。
地貌上称坡积裙。

第四纪沉积物的成因划分标志

第四纪沉积物的成因划分标志

Ⅱ、非流动营力结构
定向结构 冰楔式 冻融作用挤压 多边形式
非定向结构 架堆式 重力堆积 以点接触 层间式
③层的变形构造
它是在准同生或沉积期后可塑性变形作用 中形成的。有垂向为主和侧向为主之分。
垂向变形,主要由沉积物液化、重荷、潜 水渗透、水位变动等原因造成的,如盘状 构造、泄水构造、重荷构造(球-枕构造 )、帐篷构造等。
①层间构造
流体侵蚀冲刷先期沉积物的表面痕迹 和堆积形态。它能指示风、水流、波 浪的运动方向。波痕是最常见的层间 (面)构造。
②层内构造(层理构造)
是通过沉积物的成分、结构、颜色的突 变或渐变而表现出来的沿垂直方向变化 而形成层状构造。
细层是组成层理的最小单位,代表瞬时 加积的一个纹层。层系是在成分、结构 、形态相似的一组细层,代表一个持续 水动力状况的加积物。层系组由一系列 相似的层系所组成。
第二部分:第四纪沉积物研究
第四纪划分 第四纪的沉积物基本特点 第四纪沉积物研究
一.国际第四纪划分方案
(1)上世纪第四纪下限1.8Ma (2)2004年将新生代分为古近纪和新近
纪,取消了第四纪 (3)2008年恢复了第四纪,下限有两种
1.8Ma、 2.6Ma , (4)近年来有学者提出在第四纪中增加一
河流和洪流
叠瓦式
离散式
弥散式
充填式
冰楔式 多边形式
架堆式
层间式
F、沉积构造
定义:由成分、结构、颜色的不均一引起 的沉积层内部和层面上宏观特征的总称。
类型:它包括3种构造。①层间构造,流体 侵蚀冲刷先期沉积物的表面痕迹和堆积形 态。 ②层内构造,又称层理。流体在搬运过 程中由载荷物质垂向和侧向加积形成。 ③ 层的变形构造,又称同生变形构造。

第四纪沉积物

第四纪沉积物

第四纪沉积物一、第四纪的时间范围最初,人们把地壳的发展历史分为第一纪(原始纪)、第二纪和第三纪3个大阶段。

1829年,法国学者J.德努瓦耶在研究巴黎盆地的地层时,把第三系上部的松散沉积物划分出来命名为第四系,其时代为第四纪。

随着地质科学的发展,第一纪和第二纪因细分成若干个纪被废弃了,仅保留下第三纪和第四纪的名称,这两个时代合称为新生代。

第四纪是地球发展史的最新阶段,时间范围从上新世末(距今 248万年)直到现在。

第四纪分为更新世和全新世两个阶段。

第四纪一词是J.德努瓦耶于1829年提出的。

第四纪形成的地层称第四系,再分为更新统和全新统。

更新世是1839年提出的,他把巴黎盆地含软体动物化石70%为现生种的地层称为更新世地层。

全新世和近代为同义词。

近代(Recent)一词是1833年由莱伊尔引进地质学中,含义是从此地球被人类所居住。

全新世是1850年P.热尔韦提出的,1885年正式通过。

第四系下界的确定是一个重大的基本理论问题,至今仍有不同意见。

1948年第18届国际地质大会确定,以真马、真牛、真象的出现作为划分更新世的标志。

陆相地层以意大利北部维拉弗朗层,海相以意大利南部的卡拉布里层的底界作为更新世的开始。

中国相当于维拉弗朗层的泥河湾层作为早更新世的标准地层。

其后,应用测定了法国和非洲相当于维拉弗朗层的地层底界年龄,约为180万年。

因此,许多学者认为第四纪下限应为距今180万年。

1977年,国际第四纪会议建议,以意大利的弗利卡 (Vrica)剖面作为上新世与更新世的分界,其地质年龄为170万年左右。

对中国黄土的研究表明,大约距今248万年黄土开始沉积,反映了气候和环境的明显变化。

还有部分学者认为,第四纪下限应定在距今350~330万年。

总之,第四纪下限尚未最后确定,本文暂以距今248万年作为第四纪的开始。

二、第四纪沉积物成因及工程性质第四纪沉积物的是沉积在陆地或水盆地中的松散的矿物质颗粒或有机物质,如砾石、砂、粘土、灰泥、生物残骸等。

第四纪沉积物和其工程地质基本特征

第四纪沉积物和其工程地质基本特征

创造了条件。地下水的渗入,又促进岩石进一步风化。如有些岩
石直接暴露在大气中一、二天就开始风化崩解。岩石不同,其在
相同条件下的风化情况不同,岩石相同,风化作用性质不同、经
受的风化程度不同、沉积环境不同,其生成物的性质也不尽相同。
显然,一般情况下不宜将建筑物设置在风化严重的岩层上,但 是工程中又往往不可能完全避开风化岩层。如隧道进出口地段的 岩层,大多有不同程度的风化,施工中如不注意加强支护,易造 成崩塌。对有些易风化的岩层,在隧道施工开挖后,要及时作支 护,防止岩石继续风化失稳增加山体压力,否则会引起坍塌。风 化岩层中的路堑边坡不宜太陡,同时还要采取防护措施。风化的 岩石更不宜作建筑材料。因此,从工程建筑观点来研究岩石的风 化特性、分布规律,对选择建筑物的合理位置,如隧道的进出口 位置,路堑边坡坡度,隧道的支护方法及衬砌厚度,大型建筑物 的地基承载力和开挖深度以及合理的选择施工方法等有着重要的 意义。
岩石风化后,其物质状态、物理力学性质和化学性质等均发
生了剧烈的变化。很多情况下,风化能使岩石破碎,形成细小颗
粒的次生粘土矿物—高岭石、蒙脱石及伊利石等,改变了岩石的
矿物成分。同时,在风化带中常有可溶盐的富集,如碳酸钙及石
膏。由于岩石风化后,节理、裂隙发育,使岩石整体性降低,孔
隙度增加,抗剪、抗压强度降低,透水性增大,这为地下水活动
被剥离的岩石碎块、岩屑等在雨、雪水流、风力等的夹带下向别处搬运, 并在地壳相对下降的地方堆积起来。在搬运过程中,土颗粒进一步破碎 分散,并使其中较大的颗粒变得浑圆光滑。与此同时,空气中的二氧化 碳、氧气、二氧化流及地表水和地下水还会在与岩石及岩石颗粒的直接 接触过程中发生一系列的化学反应,从而生成新的矿物。上述作用会使 已经破碎的岩石颗粒变得更加细小甚至非常细小。以上就是岩石风化成 土的过程。

第3章第四纪沉积物

第3章第四纪沉积物

• 3、中国西部及青藏地区 • 西部山高盆大,升降运动强烈,在山麓地带有粗碎屑堆积。 如天山北麓(即准噶尔盆地南缘)下更新统称西域组,以 砾石为主,厚1350m,含三门马化石。中更新统称乌苏组, 厚30m;上更新统称新疆组,厚150m,皆以砾石或砾、 砂、粘土等为主。盆地中全新世则主要为风沙堆积或盐湖 沉积,代表干燥气候条件下的产物。如柴达木盆地共有24 个盐湖,盐类总储量为600亿t,其中察尔汗盐湖是我国最 大的可溶性钾镁矿床、面积5800km2多,氯化钾储量约占 全国的97%,还含有大量的镁、锂等元素。 • 青藏高原,近年考察证明曾有多次冰川活动。在藏北遗留 有众多的湖泊,蕴藏丰富的硅藻土、硼砂及盐类矿产。
我国西北地区湿陷性黄土
• 3)黄土湿陷性的形成原因 • 内在因素:黄土的结构特征及其物质组成。 • 黄土的成分和结构上的基本特点是:以石英和长石组成的 粉粒为主,矿物亲水性较弱,粒度细而均一,连结虽较强 但不抗水;未经很好压实,结构疏松多孔,大孔性明显。 所以,黄土具有明显的遇水连结减弱,结构趋于紧密的倾 向。外部条件:水的浸润和压力作用。
第3章 第四纪沉积物
主要内容: 概述 第四纪沉积环境 ☆第四纪沉积层 中国第四纪地层特点

第四纪是地球发展最新阶段,它包括更 新世和全新世。地球发展历史有43亿年以 上,而第四纪却非常短促,约180万年左右。
一、概述
• 第四纪是地球发展史的最新阶段,时间范 围从上新世末(距今 248万年)直到现在。 第四纪分为更新世和全新世两个阶段。 • 它以人类的出现为开始,哺乳动物兴盛, 气候波动剧烈,各种陆相沉积发育。 • 有冰期和间冰期之分,更替达20多次。
• 3、膨胀土(expansive soil): • 膨胀土是一种富含亲水性黏土矿物,且随含 水量的增减体积发生显著胀缩变形的硬塑 性黏土。

第四纪沉积物的光释光测年

第四纪沉积物的光释光测年

第四纪沉积物的光释光测年第四纪沉积物是地球上相当普遍的现象,主要包括冰川、海洋、湖泊、风沙等各种不同类型的沉积物。

而对这些沉积物的年代测定,是了解地质历史和地球演化的重要方法之一。

其中,光释光测年是比较常用的一种方法。

光释光测年法是通过测量沉积物中放射性元素在受压缩的条件下释放出的光的强度,来推算出沉积物的年代,其原理是通过放射性核素的衰变产生的电子在晶体的能级中被激发并存储了一定的能量,当这些电子被外部光激发和释放出能量时,可以计算沉积物的年代。

由于不同类型的沉积物受到质地、孔隙度等因素的影响,其光释光测年的应用也各有不同。

对于河流沉积物,其物质组成相对单一,早期研究发现主要受水力因素控制。

当然,近年多因其他因素的介入,比如生物作用等等,可能导致河流产沉积物的方式也有所变化。

不过,河流沉积物本身属于不透明性渐新世石英发光物质,因此受热时间比较短,同时晶格中元素掺杂也比较少,易于研究。

对于湖泊沉积物,其组成和河流沉积物相比更加复杂。

由于受到河流输入物质的影响,经过复杂形成过程的湖泊沉积物包括有机物、矿物、碎屑等多种物质,对于其光释光测年的研究也相对较为困难。

不过,湖泊沉积物的研究价值也同样十分重要,可以用来研究气候变化、生态环境变化等。

对于滨海沉积物而言,其年代的测定除了综合其他因素以外,特别是受到潮汐作用及生源碎屑变质过程的影响,所以光释光测年的选单更为繁琐和复杂。

同时,由于滨海沉积物的成分多样且生活物质也相对较多,很多时候研究者需要应用多种年代测定的方法进行分析。

总之,在进行光释光测年研究的同时,需要考虑物质组成、沉积环境、沉积层次及沉积古地理等因素,同时进行多种年代方法的对比与综合,以获得最为可靠的研究结果。

第四纪沉积物

第四纪沉积物

第四纪沉积物是人类赖以生存的基础之一。

农业植根于务种松散第四纪沉积物表部发育的上;许多工业设施(地表与地下)和民用建筑都以第四纪沉积物为基础,大的地下水赋存在第四纪沉积物中;部分重要矿产(砂金、金刚石、锡、盐和硼等)和建筑材料(、秒砾石)产于第四纪沉积物中。

人类过去、现在和将来都离不开第四纪沉积物。

第四纪形成的松散岩石一般称为“堆积物”“沉积物”或“沉积层”,如河流形成的“冲积物”或“冲积层”,洪流形成的“洪积物”或“洪积层”等等。

有的研究者认为对无明显外动力运、分选和成层构造者才称为“堆积物”,如“残积物”“重力堆积物”“地震堆积物”、“人工堆积物”等等。

第四纪沉积物特征如下:1.岩性松散第四纪积物一般形成不久或正在形成,成岩作用微弱,绝大部分岩性松散,少数半固结,绝少硬结成岩。

这一特点有利于将反映形成时的古气候古环境信息保存下来,并易于进入沉积物内研究,采矿、施工易于进行,但也因此易于发生灾害。

对第四纪沉积物露头要及时摄影、测剂面和采样。

2.成因多样由于第四纪气候、外动力和地貌多种多样,由此而形成多种多样成因的大陆沉积物和海洋沉积物。

各种成因沉积物具有不同的岩性、岩相、结构、构造和物理化学性质与地震效应。

因此,要求尽可能在野外对开挖出的原始剖面进行详细描述,并统计分析各种成的物。

3.岩性岩相变化快即使同一种成因的陆相第四纪沉积— 1 —物,由于形成时动力和地貌环境变化大,因此沉积物的岩性岩相结构变化也大。

这就要求在野外要尽可能沿岩层(或标志层)多追索研究,不能以点代面。

第四纪海相沉积物则远较陆相沉积物岩性、岩相稳定。

4.厚度差异大剥蚀区第四纪陆相沉积物序度一般小,从几十厘米到十几米,堆积区(山前、盆地、平原、断裂谷地)可达几十米、一百多米或几百米,沉积厚度大的、沉积连续的地区,采用钻探(或物探)可以获得丰富的第四纪资料。

5.不同程度地风化陆相沉积物大多出露在地表,受到冷暖气交替变化的影响,时代越老风化越深。

第四纪沉积物的光释光测年

第四纪沉积物的光释光测年

第四纪沉积物的光释光测年第四纪沉积物的光释光测年第四纪沉积物是指在第四纪时期经过风化和运移后,沉积在陆地和海洋中的一种沉积物,包括冰碛岩、沙石、淤泥、泥炭等。

光释光测年是一种通过测定某些物质吸收自然或人工光后释放出的能量大小,来确定该物质形成或曾经受到过辐射的年代的方法。

下面将介绍第四纪沉积物光释光测年的原理、方法和应用。

一、原理光释光测年的原理主要是利用放射性元素如铀、钍、钾等在周围环境中辐射照射下,使沉积物中的矿物质发生捕获电子。

这些捕获的电子会在被光子激发后重新回到电子的基态,从而释放出固定的能量。

这些能量的大小与光子激发的时间长短、光子的强度等相关。

通过测量物质释放的光子数和大小,可以计算出当初放射性元素辐射照射到物质时的时间,从而确定物质的年代。

二、方法第四纪沉积物的光释光测年通常采用的是石英或长石中的能量陷阱信号。

具体方法如下:1. 样品制备:在选取样品时,需要注意样品中对应的矿物质应尽可能稳定,同时需要清理掉附着在样品表面的沉积物和氧化膜等物质。

然后经过机械、化学等处理,使样品的体积尽可能均匀,表面光洁。

2. 光释光测量:将样品置于黑暗环境下,利用激光、LED等光源进行激发,然后测量样品释放的光子数和大小。

3. 数据处理:根据样品释放出来的光子数和大小,利用计算机绘制出释光剖面图。

然后通过校准样品,将温度对测年结果的影响进行校正,最后得到样品的年代数据。

三、应用1. 确定岩石风化速率:通过光释光测年,可以计算出岩石中的富含石英的矿物质受到辐射照射的时间,从而确认该岩石表面的风化速率。

2. 确定海平面变化:利用从海洋底下采集的沉积物中的石英等矿物质,可以计算海洋沉积物的年代,从而确定岩石和海洋底部过去的海平面高度。

3. 确定冰川活动历史:通过采集冰川中的石英沉积物,在确定沉积物中石英矿物质年代的基础上,就可以推断出冰川活动的历史。

总之,第四纪沉积物的光释光测年可以在许多地质研究领域中发挥重要作用,并对我们认识地球历史和未来的变化具有重要的科学意义。

第四纪沉积物沉积代号

第四纪沉积物沉积代号

1. ml--人工填土2. pd--植物层3. al--冲击层4. pl--洪积层5. dl--坡积层6. el--残积层7. eol--风积层8. l--湖积层9. h--沼泽沉积层10. m--海相沉积层11. mc--海陆交互相沉积层12. gl--冰积层13. fgl--冰水沉积层14. b--火山堆积层15. col--崩积层16. del--滑坡堆积层17. set--泥石流堆积层18. o--生物堆积19. ch--化学堆积物20. pr--成因不明沉积注:上述每类符号前加第四纪符号Q,并以上标符号的形式显示,表示完整的地层符号。

由原岩风化产物经各种外力地质作用而成的沉积物,至今其沉积历史不长,所以只能形成未经胶结硬化的沉积物,也就是通常所说的“第四纪沉积物”或“土”。

不同成因类型的第四纪沉积物,各具有一定的分布规律和工程地质特征,以下分别介绍其中主要的几种成因类型:残积物、坡积物和洪积物。

残积物(Qel)残积物是由岩石风化后,未经搬运而残留于原地的土,而另一部分则被风和降水所带走。

它处于岩石风化壳的上部,是风化壳中的剧风化带,向下则逐渐变为半风化的岩石。

它的分布主要受地形的控制,在宽广的分水岭上,由雨水产生地表径流速度小,风化产物易于保留的地方,残积物就比较厚。

在平缓的山坡上也常有残积物覆盖。

在不同的气候条件下、不同的原岩,将产生不同矿物成份、不同物理力学性质的残积土。

由于风化剥蚀产物是未经搬运的,颗粒不可能被磨圆或分选,没有层理构造。

残积物与基岩之间没有明显的界限,通常经过一个基岩风化层(带)而直接过渡到新鲜岩石。

残积物有时与强风化层很难区分。

一般说来,残积物是由于雨雪水流将细颗粒带走后残留的较粗颗粒的堆积物。

风化层则虽受风化作用的影响,但它是未被剥蚀搬运的基岩风化产物。

残积物中残留碎屑的矿物成分很大程度上与下卧基岩相一致,这是鉴定残积物的主要根据。

例如砂岩风化剥蚀后生成的残积物多为砂岩碎块。

第七章第四纪沉积物(1)

第七章第四纪沉积物(1)

第六章第四纪沉积物第四纪沉积物是人类赖以生存的基础之一。

农业根植于各种第四纪沉积物表部发育的土壤;许多工业设施和民用建筑都以第四纪沉积物为基础;大量的地下水赋存在第四纪沉积物中,部分重要矿产(砂金、金刚石、锡、盐和硼)和建筑材料(土、砂、砾石)产于第四纪沉积物中。

人类的过去、现在和将来都离不开第四纪沉积物。

从第四纪地质学、第四纪环境演变的角度看,第四纪沉积物是第四纪古环境信息的主要载体,是研究第四纪古环境的物质基础,所以,我们要学会辩认和划分不同类型的第四纪沉积物,并运用它来分析、解译第四纪古环境。

在介绍第四纪沉积物的辨认特征、沉积特点之前,我们首先总结我们地球表面整个第四纪沉积物的一般特征,即第四纪沉积圈的一般特征(因为我们已经学习了六章的内容,有了一些第四纪的知识)。

第四纪沉积圈是指地球表面由第四纪沉积物构成的圈层,它是地球岩石圈中一个最年轻和最表面的圈层,具有以下特征:(a)第四纪沉积圈基本上是一个连续的层圈在现今地球表面的任何地方,包括大陆和海洋的各个角落,都有第四纪沉积物分布。

(b)形成时间很短,一般不超过2Ma,第四纪沉积圈主要由尚未胶结成岩的松散沉积物构成,只有在少数情况下,才能见到已成岩的第四纪沉积。

所以,第四纪沉积常被称为沉积物,而不称作岩石。

(c)组成第四纪沉积圈的沉积物包括陆相沉积物和海相沉积物,其中陆相沉积物类型复杂多样,而海相沉积物类型比较简单。

(d)第四纪沉积圈由于其松散性,因而处于不稳定状态。

它除了受外力作用被再次搬运、沉积之外,在其内部,由于生物与水的作用,也在不断地发生物质的移动。

相对来讲海相沉积物,尤其是深海沉积物要比陆相沉积物稳定得多。

(e)第四纪沉积圈的厚度变化较大其中陆相沉积物的厚度可以从几十厘米到几千米。

剥蚀区第四纪陆相沉积物厚度一般小,从几十厘米到十几米,堆积区(山前盆地、平原、断裂谷地)可达几十米至几百米。

至于更厚的第四纪沉积层常常出现在构造沉降区海相沉积物的厚度较薄,一般仅厚几米到几十米,变化幅度也较小。

第3章第四纪沉积物

第3章第四纪沉积物

坡积物的特点: 1)分为岩屑、矿屑、沙砾或矿质黏土。 2)碎屑颗粒大小混杂,棱角分明、分选性差,层理不明显。 坡积物质随斜坡自上而下呈现由粗而细的分选现象。其成份与坡上的残积土 基本一致。与下卧基岩没有直接关系,这是它与残积物明显的区别。
由于坡积物形成于山坡,常常发生沿下卧基岩倾斜面滑动,还由于组成物质 粗细颗粒混杂,土质不均匀,且其厚度变化很大(上部有时不足一米,下部可 达几十米),尤其是新近堆积的坡积物,土质疏松,压缩性较高。 坡积土上建设应注意的问题: ①注意下卧基岩表面的坡度及形态,分析坡积物稳定性。 ②坡积土含较多细颗粒,吸水性强,注意雨季的稳定性。 ③坡积物粗细混杂,土质不均匀,厚度不均匀,注意差异沉降。
• 它以人类的出现为开始,哺乳动物兴盛, 气候波动剧烈,各种陆相沉积发育。
• 有冰期和间冰期之分,更替达20多次。
二、第四纪沉积环境
• 1.沉积环境:指形成松散碎屑物的地形、地 貌、动力、生物、无力、化学等因素的总 和。
• 2.沉积环境对沉积物特征的影响: • (1)动力愈强,搬运颗粒越粗; • (2)距离越远,颗粒磨圆程度越好; • (3)颗粒越粗,沉积物越易成单粒结构; • (4)搬运越远,沉积物分选性越好。
• 3.第四纪沉积物的总体特征:
• (1)岩性松散: • ——习称“松散堆积物”,也有胶结甚至固结的。是确定
第四纪沉积物的重要特征。除海滩岩、火山岩、强钙质胶 结的沉积物外。
• (2)富含生物化石 • (3)地层对比较困难 • (4)人类活动迹象明显
• 4成因类型:
三、第四纪沉积层
• 1、沉积层 • 残积物是由岩石风化后,未经搬运而残留于原地的土,而
1、残积物
岩石-(物理、化学)风化- 残留在原地

第四纪沉积物的概念

第四纪沉积物的概念

第四纪沉积物的概念
第四纪沉积物是指位于地球表面上的年代较为年轻的沉积物层,其形成时间跨越了从
约250万年前至今的地质历史阶段。

这些沉积物主要由岩屑、泥土、矿物颗粒、有机物质
等构成,并经过各种地质过程的作用而形成。

第四纪沉积物主要分布在各类水体(如湖泊、河流、海洋)和陆地表面,形成了广泛的沉积盆地和地貌。

这些沉积物具有丰富的地质信息,对于研究地球环境、古气候变化、古生物演化等具有重要意义。

通过科学对第四纪沉
积物的研究,可以了解地球历史的演化过程,揭示人类社会发展与自然环境之间的互动关系,为未来的环境变化和可持续人类发展提供重要参考。

第四纪沉积物

第四纪沉积物

1、残积物:①定义:岩石经风化后残留在原地的碎屑物②特征:不具层理;粒度和成分受气候条件和母岩岩性制;厚度往往与地形条件有关;表部土壤层孔隙率大、压缩性高、强度低;残积物一般透水性强,一般无地下水。

③工程地质特性:残积物表部土壤层孔隙率大、压缩性高、强度低;而其下部残积层常常是夹碎石或砂粒的粘性土或是被粘性土充填的碎石土、砂砾土,其强度较高。

④不均匀沉降,土坡稳定性。

2、坡积物:①定义:风化碎屑物由雨水或雪水沿斜坡搬运,或由于本身重力作用,堆积在斜坡上或坡脚处而成②特征:碎屑物从上往下逐渐变细;分选性差,层理不明显;多由碎石和粘性土组成,其成分与下伏基岩无关,而与山坡上部基岩成分有关;厚度变化较大,在斜坡较陡较薄,坡脚地段较厚③工程地质特性:坡积层松散、富水,作为建筑物地基强度较低。

由于坡积物形成于山坡,常发生沿下卧基岩倾斜面滑动的现象。

作为建筑物地基,应注意不均匀沉降和稳定性问题。

3、洪积物:①定义:由暂时性洪流将山区或高地的大量风化碎屑物携带至沟口或平缓地带堆积而成。

②特性:具有一定程度的分选和磨圆;常具有较明显的层理以及夹层、透镜体等。

③工程地质特性:洪积扇一般可分为上中下三部分,它们具有不同的工程地质特征。

⑴上部:多以砾石、卵石为主要成分;强度高、压缩性小,可作为工业、民用建筑的良好地基。

孔隙大,透水性强,不易建坝。

⑵中部以砂土为主,下部以粘性土为主,一般都是良好地基。

4、冲积物:①定义:由长期的地表水流搬运,在河流阶地冲积平原、三角洲地带堆积而成。

②特性:冲积层分选性好,层理明显,磨圆度高,有良好的韵律性。

③工程地质特性:古河床冲积物的压缩性较低、强度较高,是良好的建筑地基。

现代河床冲积物密实度较差、透水性强,尤其不利于作为水工建筑物地基。

河漫滩及阶地冲积物一般都是较好的地基,但要注意其中的软弱夹层以及粉细砂的振动液化问题。

牛轭湖冲积物常是一些压缩性很高而承载力很低的软弱土层,不宜作为建筑物天然地基。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四纪沉积物(层)1. ml--人工填土2. pd--植物层3. al--冲击层4. pl--洪积层5. dl--坡积层6. el--残积层7. eol--风积层8. l--湖积层9. h--沼泽沉积层10. m--海相沉积层11. mc--海陆交互相沉积层12. gl--冰积层13. fgl--冰水沉积层14. b--火山堆积层15. col--崩积层16. del--滑坡堆积层17. set--泥石流堆积层18. o--生物堆积19. ch--化学堆积物20. pr--成因不明沉积注:上述每类符号前加Q,并以上标符号的形式显示,表示完整的地层符号由原岩风化产物经各种外力地质作用而成的沉积物,至今其沉积历史不长,所以只能形成未经胶结硬化的沉积物,也就是通常所说的“第四纪沉积物”或“土”。

不同成因类型的第四纪沉积物,各具有一定的分布规律和工程地质特征,以下分别介绍其中主要的几种成因类型。

残积物、坡积物和洪积物残积物(Q el)(Q el为第四纪地层的成因类型符号)残积物是由岩石风化后,未经搬运而残留于原地的土,而另一部分则被风和降水所带走。

它处于岩石风化壳的上部,是风化壳中的剧风化带,向下则逐渐变为半风化的岩石。

它的分布主要受地形的控制,在宽广的分水岭上,由雨水产生地表径流速度小,风化产物易于保留的地方,残积物就比较厚。

在平缓的山坡上也常有残积物覆盖。

在不同的气候条件下、不同的原岩,将产生不同矿物成份、不同物理力学性质的残积土。

由于风化剥蚀产物是未经搬运的,颗粒不可能被磨圆或分选,没有层理构造。

残积物与基岩之间没有明显的界限,通常经过一个基岩风化层(带)而直接过渡到新鲜岩石。

残积物有时与强风化层很难区分。

一般说来,残积物是由于雨雪水流将细颗粒带走后残留的较粗颗粒的堆积物。

风化层则虽受风化作用的影响,但它是未被剥蚀搬运的基岩风化产物。

残积物中残留碎屑的矿物成分很大程度上与下卧基岩相一致,这是鉴定残积物的主要根据。

例如砂岩风化剥蚀后生成的残积物多为砂岩碎块。

根据这个道理可按地面残积物的成分推测下卧基岩的种类。

反之,也可按基岩分布的规律推测其风化产物的特征。

山区的残积物因原始地形变化很大且岩层风化程度不一,所以其厚度在小范围内变化极大。

由于残积物没有层理构造,均质性很差,因而土的物理力学性质很不一致,同时多为棱角状的粗颗粒土,其孔隙度较大,作为建筑物地基容易引起不均匀沉降。

不同岩类具有不同的风化特征,如块状构造的花岗岩,多以沿节理裂隙风化,风化厚度大,且以球状风化为主。

当岩石在大气,水、生物等外力地质作用下发生风化,使其结构、矿物成分、物理、力学、化学性质等产生不同程度的变异,则称为风化岩。

岩石已达到完全风化而未经搬运的碎屑物称为残积土。

我国南方花岗岩分布较广,如深圳地区约占60%的面积,花岗岩残积土的厚度在15—40m之间,是该区城市建筑物基础的主要持力层。

花岗岩残积土是在化学风化作用下淋滤形成的产物,其矿物成分与原岩虽有本质的改变,但多保留在原位并具有它的原始形状,其中不易风化的石英颗粒更是如此。

所以花岗岩残积土一般仍保持其原岩粒状结构,具有相当高的结构强度,外表看起来很象岩石。

对其采用一般的室内土工试验方法测得的物理力学性质分析,其工程性质是较差的,表现在高孔隙比、高压缩性等方面。

但从原位测试分析,它表现为承载力较高、压缩性较低。

坡积物(Q dl )坡积物是残积物经水流搬运,顺坡移动堆积而成的土。

即是雨雪水流的地质作用将高处岩石风化产物缓慢地洗刷剥蚀,顺着斜坡向下逐渐移动、沉积在较平缓的山坡上而形成的沉积物。

其成份与坡上的残积土基本一致。

由于地形的不同,其厚度变化大,新近堆积的坡积土,土质疏松,压缩性较高。

它一般分布在坡腰上或坡脚下,其上部与残积物相接。

坡积物底部的倾斜度决定于基岩的倾斜程度,而表面倾斜度则与生成的时间有关,时间越长,搬运、沉积在山坡下部的物质就越厚,表面倾斜度就越小。

坡积物质随斜坡自上而下呈现由粗而细的分选现象。

其成份与坡上的残积土基本一致。

与下卧基岩没有直接关系,这是它与残积物明显的区别。

由于坡积物形成于山坡,常常发生沿下卧基岩倾斜面滑动,还由于组成物质粗细颗粒混杂,土质不均匀,且其厚度变化很大(上部有时不足一米,下部可达几十米),尤其是新近堆积的坡积物,土质疏松,压缩性较高。

洪积物(Q pl )洪积土是山洪带来的碎屑物质,在山沟的出口处堆积而成的土。

由暴雨或大量融雪骤然集聚而成的暂时性山洪急流,具有很大的剥蚀和搬运能力。

它冲刷地表,挟带着大量碎屑物质堆积于山谷冲沟出口或山前倾斜平原而形成洪积物。

山洪流出沟谷口后,由于流速骤减,被搬运的粗碎屑物质(如块石、砾石、粗砂等)首先大量堆积下来,离山渐远,洪积物的颗粒随之变细,其分布范围也逐渐扩大。

其地貌特征,靠山近处窄而陡,离山较远宽而缓,形如锥体,故称为洪积扇(锥)。

由相邻沟谷口的洪积扇组成洪积扇群。

如果逐渐扩大以至连接起来,则形成洪积冲积平原的地貌单元。

洪积物的颗粒虽因搬运过程中的分选作用而呈现上述随离山远近而变的现象,但由于搬运距离短,颗粒的磨圆度仍不佳,此外,山洪是周期性产生的,每次的大小不尽相同,堆积下来的物质也不一样。

因此,洪积物常呈现不规则交错的层理构造,如具有夹层,尖灭或透镜体等产状。

冲积物(Q al)冲积物是河流流水的地质作用将两岸基岩及其上部覆盖的坡积、洪积物质剥蚀后搬运、沉积在河流坡降平缓地带形成的沉积物。

即是由于河流的流水作用,将碎屑物质搬运堆积在它流经的区域内,随着从上游到下游水动力的不断减弱,搬运物质从粗到细逐渐沉积下来,一般在河流的上游以及出山口,沉积有粗粒的碎石土、砂土,在中游丘陵地带沉积有中粗粒的砂土和粉土,在下游平原三角洲地带,沉积了最细的粘土。

冲积土分布广泛,特别是冲积平原是城市发达、人口集中的地带。

对于粗粒的碎石土、砂土,是良好的天然地基,但如果作为水工建筑物的地基,由于其透水性好会引起严重的坝下渗漏;而对于压缩性高的粘土,一般都需要处理地基。

冲积物的特点是呈现明显的层理构造。

由于搬运作用显著,碎屑物质由带棱角颗粒(块石,碎石及角砾)经滚磨、碰撞逐渐形成亚圆形或圆形颗粒(漂石、卵石、圆砾),其搬运距离越长,则沉积的物质越细,典型的冲积物是形成于河谷(河流流水侵蚀地表形成的槽形凹地)内的沉积物,可分为平原河谷冲积物和山区河谷冲积物等类型。

平原河谷冲积物平原河谷除河床外,大多数都有河漫滩及阶地等地貌单元。

平原河流常以侧向侵蚀为主,因而河谷不深而宽度很大。

正常流量时,河水仅在河床中流动,河床两侧则是宽广的河漫滩。

只在洪水期中,河水才溢出河床,泛滥于河漫滩之上。

河流(谷)阶地是在地壳的升降运动与河流的侵蚀,沉积等作用相互配合下形成的,位于河漫滩以上的阶地状平台。

河流阶地的形成过程大致如下:当地壳下降,河流坡度变小,发生沉积作用,河谷中的冲积层增厚;地壳上升时,则河流因竖向侵蚀作用增强而下切原有的冲积层,在河谷内冲刷出一条较窄的河床,新河床两侧原有的冲积物,即成为阶地。

如果地壳交替发生多次升降运动,就可以形成多级阶地,由河漫滩向上依次称为一级阶地、二级阶地,三级阶地……等,阶地的位置越高,其形成的年代则越早。

如黄河在兰州附近就有六级阶地。

山区河谷冲积层在山区,河谷两岸陡削,大多仅有河谷阶地(图1-15)地表水和地下水基本上都流向河床。

山区河流流速很大,故沉积物质较粗,大多为砂粒所填充的卵石,圆砾等。

山间盆地和宽谷中有河漫滩冲积物,其分选性较差,具有透镜体和倾斜层理构造,厚度不大,在高阶地往往是岩石或坚硬土层,作为地基,其工程地质条件很好。

风积物(Q eol)风积物是由风作为搬运动力,将碎屑物由风力强的地方搬运到风力弱的地方沉积下来的土。

风积土生成不受地形的控制,我国的黄土就是典型的风积土。

主要分布在沙漠边缘的干旱与半干旱气候带。

风积黄土的结构疏松,含水量小,浸水后具有湿陷性。

其它沉积物除了上述四种主要成因类型的沉积物(残积物、坡积物、洪积物和冲积物)外,还有海洋沉积物( Q m)、湖泊沉积物(Q l )及冰川沉积物(Q gl )等,它们是分别由海洋、湖泊及冰川等的地质作用形成的。

下面只简略介绍海洋沉积物和湖泊沉积物。

海洋沉积物( Q m)(海相沉积物)海洋按海水深度及海底地形划分为滨海带(指海水高潮位时淹没,而低潮位时露出的地带)、浅海区(指大陆架,水深约0-200m,宽度约100-200km)、陆坡区(指大陆陡坡,即浅海区与深海区之间过渡的陡坡地带,水深约200-1000m,宽度约100-200km)及深海区(海洋底盘,水深超过l000m)。

与上述海洋分区,相应的四种海相沉积物如下:滨海沉积物主要由卵石,圆砾和砂等粗碎屑物质组成(可能有粘性土夹层),具有基本水平或缓倾斜的层理构造,在砂层中常有波浪作用留下的痕迹。

作为地基,其强度尚高,但透水性较大。

粘性土夹层干时强度较高,但遇水软化后,强度很低。

由于海水大量含盐,因而使形成的粘土具有较大的膨胀性。

浅海沉积物主要有细颗粒砂土、粘性土、淤泥和生物化学沉积物(硅质和石灰质等)。

离海岸愈远,沉积物的颗粒愈细小。

浅海沉积物具有层理构造,其中砂土较滨海带更为疏松,因而压缩性高且不均匀,一般近代粘土质沉积物的密度小,含水量高,因而其压缩性大,强度低。

陆坡和深海沉积物主要是有机质软泥,成分均一。

湖泊沉积物(Q l )湖泊沉积物可分为湖边沉积物和湖心沉积物。

湖泊如逐渐淤塞,则可演变成沼泽,形成沼泽沉积物。

湖边沉积物主要由湖浪冲蚀湖岸、破坏岸壁形成的碎屑物质组成的。

在近岸带沉积的多数是粗颗粒的卵石、圆砾和砂土,远岸带沉积的则是细颗粒的砂土和粘性土。

湖边沉积物具有明显的斜层理。

相关文档
最新文档