绝对值化简方法辅导

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下面我们就人大附中初一学生的家庭作业进行讲解如何对绝对值进行化简

首先我们要知道绝对值化简公式:

例题1:化简代数式 |x-1|

可令x-1=0,得x=1 (1叫零点值)

根据x=1在数轴上的位置,发现x=1将数轴分为3个部分

1)当x<1时,x-1<0,则|x-1|=-(x-1)=-x+1

2)当x=1时,x-1=0,则|x-1|=0

3)当x>1时,x-1>0,则|x-1|=x-1

另解,在化简分组过程中我们可以把零点值归到零点值右侧的部分

1)当x<1时,x-1<0,则|x-1|=-(x-1)=-x+1

2)当x≥1时,x-1≥0,则|x-1|=x-1

例题2:化简代数式 |x+1|+|x-2|

解:可令x+1=0和x-2=0,得x=-1和x=2(-1和2都是零点值)

在数轴上找到-1和2的位置,发现-1和2将数轴分为5个部分

1)当x<-1时,x+1<0,x-2<0,则|x+1|+|x-2|=-(x+1)-(x-2)=-x-1-x+2=-2x+1

2)当x=-1时,x+1=0,x-2=-3,则|x+1|+|x-2|=0+3=3

3)当-10,x-2<0,则|x+1|+|x-2|=x+1-(x-2)=x+1-x+2=3

4)当x=2时,x+1=3,x-2=0,则|x+1|+|x-2|=3+0=3

5)当x>2时,x+1>0,x-2>0,则|x+1|+|x-2|=x+1+x-2=2x-1

另解,将零点值归到零点值右侧部分

1)当x<-1时,x+1<0,x-2<0,则|x+1|+|x-2|=-(x+1)-(x-2)=-x-1-x+2=-2x+1

2)当-1≤x<2时,x+1≥0,x-2<0,则|x+1|+|x-2|=x+1-(x-2)=x+1-x+2=3

3)当x≥2时,x+1>0,x-2≥0,则|x+1|+|x-2|=x+1+x-2=2x-1

例题3:化简代数式 |x+11|+|x-12|+|x+13|

可令x+11=0,x-12=0,x+13=0 得x=-11,x=12,x=-13(-13,-11,12是本题零点值)

1)当x<-13时,x+11<0,x-12<0,x+13<0,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-12 2)当x=-13时,x+11=-2,x-12=-25,x+13=0,则|x+11|+|x-12|+|x+13|=2+25+13=40

3)当-130,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+14 4)当x=-11时,x+11=0,x-12=-23,x+13=2,则|x+11|+|x-12|+|x+13|=0+23+2=25

5)当-110,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+36 6)当x=12时,,x+11=23,x-12=0,x+13=25,则|x+11|+|x-12|+|x+13|=23+0+25=48

7)当x>12时,x+11>0,x-12>0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12

另解,将零点值归到零点值右侧部分

1)当x<-13时,x+11<0,x-12<0,x+13<0,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-12

2)当-13≤x<-11时,x+11<0,x-12<0,x+13≥0,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+14 3)当-11≤x<12时,x+11≥0,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+36 4)当x≥12时,x+11>0,x-12≥0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12

例题4:化简代数式|x-1|+|x-2|+|x-3|+|x-4|

解:令x-1=0,x-2=0,x-3=0,x-4=0

则零点值为x=1 , x=2 ,x=3 ,x=4

(1)当x<1时,|x-1|+|x-2|+|x-3|+|x-4|=-4x+10

(2)当1≤x<2时,|x-1|+|x-2|+|x-3|+|x-4|=-2x+8

(3)当2≤x<3时,,x-1|+|x-2|+|x-3|+|x-4|=4

(4)当3≤x<4时,|x-1|+|x-2|+|x-3|+|x-4|=2x-2

(5)当x≥4时,|x-1|+|x-2|+|x-3|+|x-4|=4x-10

总结化简此类绝对值时,先求零点值,之后根据零点值将数轴分成的部分进行分布讨论,若有多个零点值时,可以将零点值归到零点值右侧部分进行化简,这样比较省时间

同学们若不熟练可以针对以上3个例题反复化简熟练之后再换新的题进行练习

习题:化简下列代数式

|x-1|

|x-1|+|x-2|

|x-1|+|x-2|+|x-3|

|x-1|+|x-2|+|x-3|+|x-4|+|x-5|

|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6|

初一学生作业-绝对值中最值问题一

例题1: 1)当x取何值时,|x-1|有最小值,这个最小值是多少?

2)当x取何值时,|x-1|+3有最小值,这个最小值是多少?

3)当x取何值时,|x-1|-3有最小值,这个最小值是多少?

4)当x取何值时,-3+|x-1|有最小值,这个最小值是多少?

例题2:1)当x取何值时,-|x-1|有最大值,这个最大值是多少?

2)当x取何值时,-|x-1|+3有最大值,这个最大值是多少?

3)当x取何值时,-|x-1|-3有最大值,这个最大值是多少?

4)当x取何值时,3-|x-1|有最大值,这个最大值是多少?

若想很好的解决以上2个例题,我们需要知道如下知识点:、

1)非负数:0和正数,有最小值是0

2)非正数:0和负数,有最大值是0

3)任意有理数的绝对值都是非负数,即|a|≥0,则-|a|≤0

4)x是任意有理数,m是常数,则|x+m|≥0,有最小值是0 -|x+m|≤0有最大值是0

(可以理解为x是任意有理数,则x+a依然是任意有理数,如|x+3|≥0,-|x+3|≤0或者|x-1|≥0,-|x-1|≤0)

5)x是任意有理数,m和n是常数,

则|x+m|+n≥n,有最小值是n -|x+m|+n≤n,有最大值是n

(可以理解为|x+m|+n是由|x+m|的值向右(n>0)或者向左(n<0)平移了|n|个单位,为如|x-1|≥0,则|x-1|+3≥3,相当于|x-1|的值整体向右平移了3个单位,|x-1|≥0,有最小值是0,则|x-1|+3的最小值是3)

总结:根据3)、4)、5)可以发现,当绝对值前面是“+”时,代数式有最小值,有“—”号时,代数式有最大值

在没有学不等式的时候,很好的理解(4)和(5)有点困难,若实在理解不了,请同学们看下面的例题答案,分析感觉下,就可以总结出上面的结论了)

例题1: 1)当x取何值时,|x-1|有最小值,这个最小值是多少?

2)当x取何值时,|x-1|+3有最小值,这个最小值是多少?

3)当x取何值时,|x-1|-3有最小值,这个最小值是多少?

4)当x取何值时,-3+|x-1|有最小值,这个最小值是多少?

解: 1)当x-1=0时,即x=1时,|x-1|有最小值是0

2)当x-1=0时,即x=1时,|x-1|+3有最小值是3

3)当x-1=0时,即x=1时,|x-1|-3有最小值是-3

相关文档
最新文档